spi-topcliff-pch: supports a spi mode setup and bit order setup by IO control
[zen-stable.git] / drivers / net / wireless / rt2x00 / rt2800lib.c
blob7bef66def10c469166f6689adefbfe1d477bf034
1 /*
2 Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
3 Copyright (C) 2010 Ivo van Doorn <IvDoorn@gmail.com>
4 Copyright (C) 2009 Bartlomiej Zolnierkiewicz <bzolnier@gmail.com>
5 Copyright (C) 2009 Gertjan van Wingerde <gwingerde@gmail.com>
7 Based on the original rt2800pci.c and rt2800usb.c.
8 Copyright (C) 2009 Alban Browaeys <prahal@yahoo.com>
9 Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org>
10 Copyright (C) 2009 Luis Correia <luis.f.correia@gmail.com>
11 Copyright (C) 2009 Mattias Nissler <mattias.nissler@gmx.de>
12 Copyright (C) 2009 Mark Asselstine <asselsm@gmail.com>
13 Copyright (C) 2009 Xose Vazquez Perez <xose.vazquez@gmail.com>
14 <http://rt2x00.serialmonkey.com>
16 This program is free software; you can redistribute it and/or modify
17 it under the terms of the GNU General Public License as published by
18 the Free Software Foundation; either version 2 of the License, or
19 (at your option) any later version.
21 This program is distributed in the hope that it will be useful,
22 but WITHOUT ANY WARRANTY; without even the implied warranty of
23 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 GNU General Public License for more details.
26 You should have received a copy of the GNU General Public License
27 along with this program; if not, write to the
28 Free Software Foundation, Inc.,
29 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
33 Module: rt2800lib
34 Abstract: rt2800 generic device routines.
37 #include <linux/crc-ccitt.h>
38 #include <linux/kernel.h>
39 #include <linux/module.h>
40 #include <linux/slab.h>
42 #include "rt2x00.h"
43 #include "rt2800lib.h"
44 #include "rt2800.h"
47 * Register access.
48 * All access to the CSR registers will go through the methods
49 * rt2800_register_read and rt2800_register_write.
50 * BBP and RF register require indirect register access,
51 * and use the CSR registers BBPCSR and RFCSR to achieve this.
52 * These indirect registers work with busy bits,
53 * and we will try maximal REGISTER_BUSY_COUNT times to access
54 * the register while taking a REGISTER_BUSY_DELAY us delay
55 * between each attampt. When the busy bit is still set at that time,
56 * the access attempt is considered to have failed,
57 * and we will print an error.
58 * The _lock versions must be used if you already hold the csr_mutex
60 #define WAIT_FOR_BBP(__dev, __reg) \
61 rt2800_regbusy_read((__dev), BBP_CSR_CFG, BBP_CSR_CFG_BUSY, (__reg))
62 #define WAIT_FOR_RFCSR(__dev, __reg) \
63 rt2800_regbusy_read((__dev), RF_CSR_CFG, RF_CSR_CFG_BUSY, (__reg))
64 #define WAIT_FOR_RF(__dev, __reg) \
65 rt2800_regbusy_read((__dev), RF_CSR_CFG0, RF_CSR_CFG0_BUSY, (__reg))
66 #define WAIT_FOR_MCU(__dev, __reg) \
67 rt2800_regbusy_read((__dev), H2M_MAILBOX_CSR, \
68 H2M_MAILBOX_CSR_OWNER, (__reg))
70 static inline bool rt2800_is_305x_soc(struct rt2x00_dev *rt2x00dev)
72 /* check for rt2872 on SoC */
73 if (!rt2x00_is_soc(rt2x00dev) ||
74 !rt2x00_rt(rt2x00dev, RT2872))
75 return false;
77 /* we know for sure that these rf chipsets are used on rt305x boards */
78 if (rt2x00_rf(rt2x00dev, RF3020) ||
79 rt2x00_rf(rt2x00dev, RF3021) ||
80 rt2x00_rf(rt2x00dev, RF3022))
81 return true;
83 NOTICE(rt2x00dev, "Unknown RF chipset on rt305x\n");
84 return false;
87 static void rt2800_bbp_write(struct rt2x00_dev *rt2x00dev,
88 const unsigned int word, const u8 value)
90 u32 reg;
92 mutex_lock(&rt2x00dev->csr_mutex);
95 * Wait until the BBP becomes available, afterwards we
96 * can safely write the new data into the register.
98 if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
99 reg = 0;
100 rt2x00_set_field32(&reg, BBP_CSR_CFG_VALUE, value);
101 rt2x00_set_field32(&reg, BBP_CSR_CFG_REGNUM, word);
102 rt2x00_set_field32(&reg, BBP_CSR_CFG_BUSY, 1);
103 rt2x00_set_field32(&reg, BBP_CSR_CFG_READ_CONTROL, 0);
104 rt2x00_set_field32(&reg, BBP_CSR_CFG_BBP_RW_MODE, 1);
106 rt2800_register_write_lock(rt2x00dev, BBP_CSR_CFG, reg);
109 mutex_unlock(&rt2x00dev->csr_mutex);
112 static void rt2800_bbp_read(struct rt2x00_dev *rt2x00dev,
113 const unsigned int word, u8 *value)
115 u32 reg;
117 mutex_lock(&rt2x00dev->csr_mutex);
120 * Wait until the BBP becomes available, afterwards we
121 * can safely write the read request into the register.
122 * After the data has been written, we wait until hardware
123 * returns the correct value, if at any time the register
124 * doesn't become available in time, reg will be 0xffffffff
125 * which means we return 0xff to the caller.
127 if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
128 reg = 0;
129 rt2x00_set_field32(&reg, BBP_CSR_CFG_REGNUM, word);
130 rt2x00_set_field32(&reg, BBP_CSR_CFG_BUSY, 1);
131 rt2x00_set_field32(&reg, BBP_CSR_CFG_READ_CONTROL, 1);
132 rt2x00_set_field32(&reg, BBP_CSR_CFG_BBP_RW_MODE, 1);
134 rt2800_register_write_lock(rt2x00dev, BBP_CSR_CFG, reg);
136 WAIT_FOR_BBP(rt2x00dev, &reg);
139 *value = rt2x00_get_field32(reg, BBP_CSR_CFG_VALUE);
141 mutex_unlock(&rt2x00dev->csr_mutex);
144 static void rt2800_rfcsr_write(struct rt2x00_dev *rt2x00dev,
145 const unsigned int word, const u8 value)
147 u32 reg;
149 mutex_lock(&rt2x00dev->csr_mutex);
152 * Wait until the RFCSR becomes available, afterwards we
153 * can safely write the new data into the register.
155 if (WAIT_FOR_RFCSR(rt2x00dev, &reg)) {
156 reg = 0;
157 rt2x00_set_field32(&reg, RF_CSR_CFG_DATA, value);
158 rt2x00_set_field32(&reg, RF_CSR_CFG_REGNUM, word);
159 rt2x00_set_field32(&reg, RF_CSR_CFG_WRITE, 1);
160 rt2x00_set_field32(&reg, RF_CSR_CFG_BUSY, 1);
162 rt2800_register_write_lock(rt2x00dev, RF_CSR_CFG, reg);
165 mutex_unlock(&rt2x00dev->csr_mutex);
168 static void rt2800_rfcsr_read(struct rt2x00_dev *rt2x00dev,
169 const unsigned int word, u8 *value)
171 u32 reg;
173 mutex_lock(&rt2x00dev->csr_mutex);
176 * Wait until the RFCSR becomes available, afterwards we
177 * can safely write the read request into the register.
178 * After the data has been written, we wait until hardware
179 * returns the correct value, if at any time the register
180 * doesn't become available in time, reg will be 0xffffffff
181 * which means we return 0xff to the caller.
183 if (WAIT_FOR_RFCSR(rt2x00dev, &reg)) {
184 reg = 0;
185 rt2x00_set_field32(&reg, RF_CSR_CFG_REGNUM, word);
186 rt2x00_set_field32(&reg, RF_CSR_CFG_WRITE, 0);
187 rt2x00_set_field32(&reg, RF_CSR_CFG_BUSY, 1);
189 rt2800_register_write_lock(rt2x00dev, RF_CSR_CFG, reg);
191 WAIT_FOR_RFCSR(rt2x00dev, &reg);
194 *value = rt2x00_get_field32(reg, RF_CSR_CFG_DATA);
196 mutex_unlock(&rt2x00dev->csr_mutex);
199 static void rt2800_rf_write(struct rt2x00_dev *rt2x00dev,
200 const unsigned int word, const u32 value)
202 u32 reg;
204 mutex_lock(&rt2x00dev->csr_mutex);
207 * Wait until the RF becomes available, afterwards we
208 * can safely write the new data into the register.
210 if (WAIT_FOR_RF(rt2x00dev, &reg)) {
211 reg = 0;
212 rt2x00_set_field32(&reg, RF_CSR_CFG0_REG_VALUE_BW, value);
213 rt2x00_set_field32(&reg, RF_CSR_CFG0_STANDBYMODE, 0);
214 rt2x00_set_field32(&reg, RF_CSR_CFG0_SEL, 0);
215 rt2x00_set_field32(&reg, RF_CSR_CFG0_BUSY, 1);
217 rt2800_register_write_lock(rt2x00dev, RF_CSR_CFG0, reg);
218 rt2x00_rf_write(rt2x00dev, word, value);
221 mutex_unlock(&rt2x00dev->csr_mutex);
224 void rt2800_mcu_request(struct rt2x00_dev *rt2x00dev,
225 const u8 command, const u8 token,
226 const u8 arg0, const u8 arg1)
228 u32 reg;
231 * SOC devices don't support MCU requests.
233 if (rt2x00_is_soc(rt2x00dev))
234 return;
236 mutex_lock(&rt2x00dev->csr_mutex);
239 * Wait until the MCU becomes available, afterwards we
240 * can safely write the new data into the register.
242 if (WAIT_FOR_MCU(rt2x00dev, &reg)) {
243 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_OWNER, 1);
244 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_CMD_TOKEN, token);
245 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG0, arg0);
246 rt2x00_set_field32(&reg, H2M_MAILBOX_CSR_ARG1, arg1);
247 rt2800_register_write_lock(rt2x00dev, H2M_MAILBOX_CSR, reg);
249 reg = 0;
250 rt2x00_set_field32(&reg, HOST_CMD_CSR_HOST_COMMAND, command);
251 rt2800_register_write_lock(rt2x00dev, HOST_CMD_CSR, reg);
254 mutex_unlock(&rt2x00dev->csr_mutex);
256 EXPORT_SYMBOL_GPL(rt2800_mcu_request);
258 int rt2800_wait_csr_ready(struct rt2x00_dev *rt2x00dev)
260 unsigned int i = 0;
261 u32 reg;
263 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
264 rt2800_register_read(rt2x00dev, MAC_CSR0, &reg);
265 if (reg && reg != ~0)
266 return 0;
267 msleep(1);
270 ERROR(rt2x00dev, "Unstable hardware.\n");
271 return -EBUSY;
273 EXPORT_SYMBOL_GPL(rt2800_wait_csr_ready);
275 int rt2800_wait_wpdma_ready(struct rt2x00_dev *rt2x00dev)
277 unsigned int i;
278 u32 reg;
281 * Some devices are really slow to respond here. Wait a whole second
282 * before timing out.
284 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
285 rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
286 if (!rt2x00_get_field32(reg, WPDMA_GLO_CFG_TX_DMA_BUSY) &&
287 !rt2x00_get_field32(reg, WPDMA_GLO_CFG_RX_DMA_BUSY))
288 return 0;
290 msleep(10);
293 ERROR(rt2x00dev, "WPDMA TX/RX busy, aborting.\n");
294 return -EACCES;
296 EXPORT_SYMBOL_GPL(rt2800_wait_wpdma_ready);
298 static bool rt2800_check_firmware_crc(const u8 *data, const size_t len)
300 u16 fw_crc;
301 u16 crc;
304 * The last 2 bytes in the firmware array are the crc checksum itself,
305 * this means that we should never pass those 2 bytes to the crc
306 * algorithm.
308 fw_crc = (data[len - 2] << 8 | data[len - 1]);
311 * Use the crc ccitt algorithm.
312 * This will return the same value as the legacy driver which
313 * used bit ordering reversion on the both the firmware bytes
314 * before input input as well as on the final output.
315 * Obviously using crc ccitt directly is much more efficient.
317 crc = crc_ccitt(~0, data, len - 2);
320 * There is a small difference between the crc-itu-t + bitrev and
321 * the crc-ccitt crc calculation. In the latter method the 2 bytes
322 * will be swapped, use swab16 to convert the crc to the correct
323 * value.
325 crc = swab16(crc);
327 return fw_crc == crc;
330 int rt2800_check_firmware(struct rt2x00_dev *rt2x00dev,
331 const u8 *data, const size_t len)
333 size_t offset = 0;
334 size_t fw_len;
335 bool multiple;
338 * PCI(e) & SOC devices require firmware with a length
339 * of 8kb. USB devices require firmware files with a length
340 * of 4kb. Certain USB chipsets however require different firmware,
341 * which Ralink only provides attached to the original firmware
342 * file. Thus for USB devices, firmware files have a length
343 * which is a multiple of 4kb.
345 if (rt2x00_is_usb(rt2x00dev)) {
346 fw_len = 4096;
347 multiple = true;
348 } else {
349 fw_len = 8192;
350 multiple = true;
354 * Validate the firmware length
356 if (len != fw_len && (!multiple || (len % fw_len) != 0))
357 return FW_BAD_LENGTH;
360 * Check if the chipset requires one of the upper parts
361 * of the firmware.
363 if (rt2x00_is_usb(rt2x00dev) &&
364 !rt2x00_rt(rt2x00dev, RT2860) &&
365 !rt2x00_rt(rt2x00dev, RT2872) &&
366 !rt2x00_rt(rt2x00dev, RT3070) &&
367 ((len / fw_len) == 1))
368 return FW_BAD_VERSION;
371 * 8kb firmware files must be checked as if it were
372 * 2 separate firmware files.
374 while (offset < len) {
375 if (!rt2800_check_firmware_crc(data + offset, fw_len))
376 return FW_BAD_CRC;
378 offset += fw_len;
381 return FW_OK;
383 EXPORT_SYMBOL_GPL(rt2800_check_firmware);
385 int rt2800_load_firmware(struct rt2x00_dev *rt2x00dev,
386 const u8 *data, const size_t len)
388 unsigned int i;
389 u32 reg;
392 * If driver doesn't wake up firmware here,
393 * rt2800_load_firmware will hang forever when interface is up again.
395 rt2800_register_write(rt2x00dev, AUTOWAKEUP_CFG, 0x00000000);
398 * Wait for stable hardware.
400 if (rt2800_wait_csr_ready(rt2x00dev))
401 return -EBUSY;
403 if (rt2x00_is_pci(rt2x00dev)) {
404 if (rt2x00_rt(rt2x00dev, RT3572) ||
405 rt2x00_rt(rt2x00dev, RT5390)) {
406 rt2800_register_read(rt2x00dev, AUX_CTRL, &reg);
407 rt2x00_set_field32(&reg, AUX_CTRL_FORCE_PCIE_CLK, 1);
408 rt2x00_set_field32(&reg, AUX_CTRL_WAKE_PCIE_EN, 1);
409 rt2800_register_write(rt2x00dev, AUX_CTRL, reg);
411 rt2800_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000002);
415 * Disable DMA, will be reenabled later when enabling
416 * the radio.
418 rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
419 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
420 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_DMA_BUSY, 0);
421 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
422 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_RX_DMA_BUSY, 0);
423 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
424 rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
427 * Write firmware to the device.
429 rt2800_drv_write_firmware(rt2x00dev, data, len);
432 * Wait for device to stabilize.
434 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
435 rt2800_register_read(rt2x00dev, PBF_SYS_CTRL, &reg);
436 if (rt2x00_get_field32(reg, PBF_SYS_CTRL_READY))
437 break;
438 msleep(1);
441 if (i == REGISTER_BUSY_COUNT) {
442 ERROR(rt2x00dev, "PBF system register not ready.\n");
443 return -EBUSY;
447 * Initialize firmware.
449 rt2800_register_write(rt2x00dev, H2M_BBP_AGENT, 0);
450 rt2800_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
451 msleep(1);
453 return 0;
455 EXPORT_SYMBOL_GPL(rt2800_load_firmware);
457 void rt2800_write_tx_data(struct queue_entry *entry,
458 struct txentry_desc *txdesc)
460 __le32 *txwi = rt2800_drv_get_txwi(entry);
461 u32 word;
464 * Initialize TX Info descriptor
466 rt2x00_desc_read(txwi, 0, &word);
467 rt2x00_set_field32(&word, TXWI_W0_FRAG,
468 test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
469 rt2x00_set_field32(&word, TXWI_W0_MIMO_PS,
470 test_bit(ENTRY_TXD_HT_MIMO_PS, &txdesc->flags));
471 rt2x00_set_field32(&word, TXWI_W0_CF_ACK, 0);
472 rt2x00_set_field32(&word, TXWI_W0_TS,
473 test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
474 rt2x00_set_field32(&word, TXWI_W0_AMPDU,
475 test_bit(ENTRY_TXD_HT_AMPDU, &txdesc->flags));
476 rt2x00_set_field32(&word, TXWI_W0_MPDU_DENSITY,
477 txdesc->u.ht.mpdu_density);
478 rt2x00_set_field32(&word, TXWI_W0_TX_OP, txdesc->u.ht.txop);
479 rt2x00_set_field32(&word, TXWI_W0_MCS, txdesc->u.ht.mcs);
480 rt2x00_set_field32(&word, TXWI_W0_BW,
481 test_bit(ENTRY_TXD_HT_BW_40, &txdesc->flags));
482 rt2x00_set_field32(&word, TXWI_W0_SHORT_GI,
483 test_bit(ENTRY_TXD_HT_SHORT_GI, &txdesc->flags));
484 rt2x00_set_field32(&word, TXWI_W0_STBC, txdesc->u.ht.stbc);
485 rt2x00_set_field32(&word, TXWI_W0_PHYMODE, txdesc->rate_mode);
486 rt2x00_desc_write(txwi, 0, word);
488 rt2x00_desc_read(txwi, 1, &word);
489 rt2x00_set_field32(&word, TXWI_W1_ACK,
490 test_bit(ENTRY_TXD_ACK, &txdesc->flags));
491 rt2x00_set_field32(&word, TXWI_W1_NSEQ,
492 test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags));
493 rt2x00_set_field32(&word, TXWI_W1_BW_WIN_SIZE, txdesc->u.ht.ba_size);
494 rt2x00_set_field32(&word, TXWI_W1_WIRELESS_CLI_ID,
495 test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags) ?
496 txdesc->key_idx : txdesc->u.ht.wcid);
497 rt2x00_set_field32(&word, TXWI_W1_MPDU_TOTAL_BYTE_COUNT,
498 txdesc->length);
499 rt2x00_set_field32(&word, TXWI_W1_PACKETID_QUEUE, entry->queue->qid);
500 rt2x00_set_field32(&word, TXWI_W1_PACKETID_ENTRY, (entry->entry_idx % 3) + 1);
501 rt2x00_desc_write(txwi, 1, word);
504 * Always write 0 to IV/EIV fields, hardware will insert the IV
505 * from the IVEIV register when TXD_W3_WIV is set to 0.
506 * When TXD_W3_WIV is set to 1 it will use the IV data
507 * from the descriptor. The TXWI_W1_WIRELESS_CLI_ID indicates which
508 * crypto entry in the registers should be used to encrypt the frame.
510 _rt2x00_desc_write(txwi, 2, 0 /* skbdesc->iv[0] */);
511 _rt2x00_desc_write(txwi, 3, 0 /* skbdesc->iv[1] */);
513 EXPORT_SYMBOL_GPL(rt2800_write_tx_data);
515 static int rt2800_agc_to_rssi(struct rt2x00_dev *rt2x00dev, u32 rxwi_w2)
517 s8 rssi0 = rt2x00_get_field32(rxwi_w2, RXWI_W2_RSSI0);
518 s8 rssi1 = rt2x00_get_field32(rxwi_w2, RXWI_W2_RSSI1);
519 s8 rssi2 = rt2x00_get_field32(rxwi_w2, RXWI_W2_RSSI2);
520 u16 eeprom;
521 u8 offset0;
522 u8 offset1;
523 u8 offset2;
525 if (rt2x00dev->curr_band == IEEE80211_BAND_2GHZ) {
526 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_BG, &eeprom);
527 offset0 = rt2x00_get_field16(eeprom, EEPROM_RSSI_BG_OFFSET0);
528 offset1 = rt2x00_get_field16(eeprom, EEPROM_RSSI_BG_OFFSET1);
529 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_BG2, &eeprom);
530 offset2 = rt2x00_get_field16(eeprom, EEPROM_RSSI_BG2_OFFSET2);
531 } else {
532 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_A, &eeprom);
533 offset0 = rt2x00_get_field16(eeprom, EEPROM_RSSI_A_OFFSET0);
534 offset1 = rt2x00_get_field16(eeprom, EEPROM_RSSI_A_OFFSET1);
535 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_A2, &eeprom);
536 offset2 = rt2x00_get_field16(eeprom, EEPROM_RSSI_A2_OFFSET2);
540 * Convert the value from the descriptor into the RSSI value
541 * If the value in the descriptor is 0, it is considered invalid
542 * and the default (extremely low) rssi value is assumed
544 rssi0 = (rssi0) ? (-12 - offset0 - rt2x00dev->lna_gain - rssi0) : -128;
545 rssi1 = (rssi1) ? (-12 - offset1 - rt2x00dev->lna_gain - rssi1) : -128;
546 rssi2 = (rssi2) ? (-12 - offset2 - rt2x00dev->lna_gain - rssi2) : -128;
549 * mac80211 only accepts a single RSSI value. Calculating the
550 * average doesn't deliver a fair answer either since -60:-60 would
551 * be considered equally good as -50:-70 while the second is the one
552 * which gives less energy...
554 rssi0 = max(rssi0, rssi1);
555 return (int)max(rssi0, rssi2);
558 void rt2800_process_rxwi(struct queue_entry *entry,
559 struct rxdone_entry_desc *rxdesc)
561 __le32 *rxwi = (__le32 *) entry->skb->data;
562 u32 word;
564 rt2x00_desc_read(rxwi, 0, &word);
566 rxdesc->cipher = rt2x00_get_field32(word, RXWI_W0_UDF);
567 rxdesc->size = rt2x00_get_field32(word, RXWI_W0_MPDU_TOTAL_BYTE_COUNT);
569 rt2x00_desc_read(rxwi, 1, &word);
571 if (rt2x00_get_field32(word, RXWI_W1_SHORT_GI))
572 rxdesc->flags |= RX_FLAG_SHORT_GI;
574 if (rt2x00_get_field32(word, RXWI_W1_BW))
575 rxdesc->flags |= RX_FLAG_40MHZ;
578 * Detect RX rate, always use MCS as signal type.
580 rxdesc->dev_flags |= RXDONE_SIGNAL_MCS;
581 rxdesc->signal = rt2x00_get_field32(word, RXWI_W1_MCS);
582 rxdesc->rate_mode = rt2x00_get_field32(word, RXWI_W1_PHYMODE);
585 * Mask of 0x8 bit to remove the short preamble flag.
587 if (rxdesc->rate_mode == RATE_MODE_CCK)
588 rxdesc->signal &= ~0x8;
590 rt2x00_desc_read(rxwi, 2, &word);
593 * Convert descriptor AGC value to RSSI value.
595 rxdesc->rssi = rt2800_agc_to_rssi(entry->queue->rt2x00dev, word);
598 * Remove RXWI descriptor from start of buffer.
600 skb_pull(entry->skb, RXWI_DESC_SIZE);
602 EXPORT_SYMBOL_GPL(rt2800_process_rxwi);
604 void rt2800_txdone_entry(struct queue_entry *entry, u32 status, __le32 *txwi)
606 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
607 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
608 struct txdone_entry_desc txdesc;
609 u32 word;
610 u16 mcs, real_mcs;
611 int aggr, ampdu;
614 * Obtain the status about this packet.
616 txdesc.flags = 0;
617 rt2x00_desc_read(txwi, 0, &word);
619 mcs = rt2x00_get_field32(word, TXWI_W0_MCS);
620 ampdu = rt2x00_get_field32(word, TXWI_W0_AMPDU);
622 real_mcs = rt2x00_get_field32(status, TX_STA_FIFO_MCS);
623 aggr = rt2x00_get_field32(status, TX_STA_FIFO_TX_AGGRE);
626 * If a frame was meant to be sent as a single non-aggregated MPDU
627 * but ended up in an aggregate the used tx rate doesn't correlate
628 * with the one specified in the TXWI as the whole aggregate is sent
629 * with the same rate.
631 * For example: two frames are sent to rt2x00, the first one sets
632 * AMPDU=1 and requests MCS7 whereas the second frame sets AMDPU=0
633 * and requests MCS15. If the hw aggregates both frames into one
634 * AMDPU the tx status for both frames will contain MCS7 although
635 * the frame was sent successfully.
637 * Hence, replace the requested rate with the real tx rate to not
638 * confuse the rate control algortihm by providing clearly wrong
639 * data.
641 if (unlikely(aggr == 1 && ampdu == 0 && real_mcs != mcs)) {
642 skbdesc->tx_rate_idx = real_mcs;
643 mcs = real_mcs;
646 if (aggr == 1 || ampdu == 1)
647 __set_bit(TXDONE_AMPDU, &txdesc.flags);
650 * Ralink has a retry mechanism using a global fallback
651 * table. We setup this fallback table to try the immediate
652 * lower rate for all rates. In the TX_STA_FIFO, the MCS field
653 * always contains the MCS used for the last transmission, be
654 * it successful or not.
656 if (rt2x00_get_field32(status, TX_STA_FIFO_TX_SUCCESS)) {
658 * Transmission succeeded. The number of retries is
659 * mcs - real_mcs
661 __set_bit(TXDONE_SUCCESS, &txdesc.flags);
662 txdesc.retry = ((mcs > real_mcs) ? mcs - real_mcs : 0);
663 } else {
665 * Transmission failed. The number of retries is
666 * always 7 in this case (for a total number of 8
667 * frames sent).
669 __set_bit(TXDONE_FAILURE, &txdesc.flags);
670 txdesc.retry = rt2x00dev->long_retry;
674 * the frame was retried at least once
675 * -> hw used fallback rates
677 if (txdesc.retry)
678 __set_bit(TXDONE_FALLBACK, &txdesc.flags);
680 rt2x00lib_txdone(entry, &txdesc);
682 EXPORT_SYMBOL_GPL(rt2800_txdone_entry);
684 void rt2800_write_beacon(struct queue_entry *entry, struct txentry_desc *txdesc)
686 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
687 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
688 unsigned int beacon_base;
689 unsigned int padding_len;
690 u32 orig_reg, reg;
693 * Disable beaconing while we are reloading the beacon data,
694 * otherwise we might be sending out invalid data.
696 rt2800_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
697 orig_reg = reg;
698 rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 0);
699 rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg);
702 * Add space for the TXWI in front of the skb.
704 memset(skb_push(entry->skb, TXWI_DESC_SIZE), 0, TXWI_DESC_SIZE);
707 * Register descriptor details in skb frame descriptor.
709 skbdesc->flags |= SKBDESC_DESC_IN_SKB;
710 skbdesc->desc = entry->skb->data;
711 skbdesc->desc_len = TXWI_DESC_SIZE;
714 * Add the TXWI for the beacon to the skb.
716 rt2800_write_tx_data(entry, txdesc);
719 * Dump beacon to userspace through debugfs.
721 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb);
724 * Write entire beacon with TXWI and padding to register.
726 padding_len = roundup(entry->skb->len, 4) - entry->skb->len;
727 if (padding_len && skb_pad(entry->skb, padding_len)) {
728 ERROR(rt2x00dev, "Failure padding beacon, aborting\n");
729 /* skb freed by skb_pad() on failure */
730 entry->skb = NULL;
731 rt2800_register_write(rt2x00dev, BCN_TIME_CFG, orig_reg);
732 return;
735 beacon_base = HW_BEACON_OFFSET(entry->entry_idx);
736 rt2800_register_multiwrite(rt2x00dev, beacon_base, entry->skb->data,
737 entry->skb->len + padding_len);
740 * Enable beaconing again.
742 rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 1);
743 rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg);
746 * Clean up beacon skb.
748 dev_kfree_skb_any(entry->skb);
749 entry->skb = NULL;
751 EXPORT_SYMBOL_GPL(rt2800_write_beacon);
753 static inline void rt2800_clear_beacon_register(struct rt2x00_dev *rt2x00dev,
754 unsigned int beacon_base)
756 int i;
759 * For the Beacon base registers we only need to clear
760 * the whole TXWI which (when set to 0) will invalidate
761 * the entire beacon.
763 for (i = 0; i < TXWI_DESC_SIZE; i += sizeof(__le32))
764 rt2800_register_write(rt2x00dev, beacon_base + i, 0);
767 void rt2800_clear_beacon(struct queue_entry *entry)
769 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
770 u32 reg;
773 * Disable beaconing while we are reloading the beacon data,
774 * otherwise we might be sending out invalid data.
776 rt2800_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
777 rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 0);
778 rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg);
781 * Clear beacon.
783 rt2800_clear_beacon_register(rt2x00dev,
784 HW_BEACON_OFFSET(entry->entry_idx));
787 * Enabled beaconing again.
789 rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 1);
790 rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg);
792 EXPORT_SYMBOL_GPL(rt2800_clear_beacon);
794 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
795 const struct rt2x00debug rt2800_rt2x00debug = {
796 .owner = THIS_MODULE,
797 .csr = {
798 .read = rt2800_register_read,
799 .write = rt2800_register_write,
800 .flags = RT2X00DEBUGFS_OFFSET,
801 .word_base = CSR_REG_BASE,
802 .word_size = sizeof(u32),
803 .word_count = CSR_REG_SIZE / sizeof(u32),
805 .eeprom = {
806 .read = rt2x00_eeprom_read,
807 .write = rt2x00_eeprom_write,
808 .word_base = EEPROM_BASE,
809 .word_size = sizeof(u16),
810 .word_count = EEPROM_SIZE / sizeof(u16),
812 .bbp = {
813 .read = rt2800_bbp_read,
814 .write = rt2800_bbp_write,
815 .word_base = BBP_BASE,
816 .word_size = sizeof(u8),
817 .word_count = BBP_SIZE / sizeof(u8),
819 .rf = {
820 .read = rt2x00_rf_read,
821 .write = rt2800_rf_write,
822 .word_base = RF_BASE,
823 .word_size = sizeof(u32),
824 .word_count = RF_SIZE / sizeof(u32),
827 EXPORT_SYMBOL_GPL(rt2800_rt2x00debug);
828 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
830 int rt2800_rfkill_poll(struct rt2x00_dev *rt2x00dev)
832 u32 reg;
834 rt2800_register_read(rt2x00dev, GPIO_CTRL_CFG, &reg);
835 return rt2x00_get_field32(reg, GPIO_CTRL_CFG_BIT2);
837 EXPORT_SYMBOL_GPL(rt2800_rfkill_poll);
839 #ifdef CONFIG_RT2X00_LIB_LEDS
840 static void rt2800_brightness_set(struct led_classdev *led_cdev,
841 enum led_brightness brightness)
843 struct rt2x00_led *led =
844 container_of(led_cdev, struct rt2x00_led, led_dev);
845 unsigned int enabled = brightness != LED_OFF;
846 unsigned int bg_mode =
847 (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
848 unsigned int polarity =
849 rt2x00_get_field16(led->rt2x00dev->led_mcu_reg,
850 EEPROM_FREQ_LED_POLARITY);
851 unsigned int ledmode =
852 rt2x00_get_field16(led->rt2x00dev->led_mcu_reg,
853 EEPROM_FREQ_LED_MODE);
854 u32 reg;
856 /* Check for SoC (SOC devices don't support MCU requests) */
857 if (rt2x00_is_soc(led->rt2x00dev)) {
858 rt2800_register_read(led->rt2x00dev, LED_CFG, &reg);
860 /* Set LED Polarity */
861 rt2x00_set_field32(&reg, LED_CFG_LED_POLAR, polarity);
863 /* Set LED Mode */
864 if (led->type == LED_TYPE_RADIO) {
865 rt2x00_set_field32(&reg, LED_CFG_G_LED_MODE,
866 enabled ? 3 : 0);
867 } else if (led->type == LED_TYPE_ASSOC) {
868 rt2x00_set_field32(&reg, LED_CFG_Y_LED_MODE,
869 enabled ? 3 : 0);
870 } else if (led->type == LED_TYPE_QUALITY) {
871 rt2x00_set_field32(&reg, LED_CFG_R_LED_MODE,
872 enabled ? 3 : 0);
875 rt2800_register_write(led->rt2x00dev, LED_CFG, reg);
877 } else {
878 if (led->type == LED_TYPE_RADIO) {
879 rt2800_mcu_request(led->rt2x00dev, MCU_LED, 0xff, ledmode,
880 enabled ? 0x20 : 0);
881 } else if (led->type == LED_TYPE_ASSOC) {
882 rt2800_mcu_request(led->rt2x00dev, MCU_LED, 0xff, ledmode,
883 enabled ? (bg_mode ? 0x60 : 0xa0) : 0x20);
884 } else if (led->type == LED_TYPE_QUALITY) {
886 * The brightness is divided into 6 levels (0 - 5),
887 * The specs tell us the following levels:
888 * 0, 1 ,3, 7, 15, 31
889 * to determine the level in a simple way we can simply
890 * work with bitshifting:
891 * (1 << level) - 1
893 rt2800_mcu_request(led->rt2x00dev, MCU_LED_STRENGTH, 0xff,
894 (1 << brightness / (LED_FULL / 6)) - 1,
895 polarity);
900 static void rt2800_init_led(struct rt2x00_dev *rt2x00dev,
901 struct rt2x00_led *led, enum led_type type)
903 led->rt2x00dev = rt2x00dev;
904 led->type = type;
905 led->led_dev.brightness_set = rt2800_brightness_set;
906 led->flags = LED_INITIALIZED;
908 #endif /* CONFIG_RT2X00_LIB_LEDS */
911 * Configuration handlers.
913 static void rt2800_config_wcid(struct rt2x00_dev *rt2x00dev,
914 const u8 *address,
915 int wcid)
917 struct mac_wcid_entry wcid_entry;
918 u32 offset;
920 offset = MAC_WCID_ENTRY(wcid);
922 memset(&wcid_entry, 0xff, sizeof(wcid_entry));
923 if (address)
924 memcpy(wcid_entry.mac, address, ETH_ALEN);
926 rt2800_register_multiwrite(rt2x00dev, offset,
927 &wcid_entry, sizeof(wcid_entry));
930 static void rt2800_delete_wcid_attr(struct rt2x00_dev *rt2x00dev, int wcid)
932 u32 offset;
933 offset = MAC_WCID_ATTR_ENTRY(wcid);
934 rt2800_register_write(rt2x00dev, offset, 0);
937 static void rt2800_config_wcid_attr_bssidx(struct rt2x00_dev *rt2x00dev,
938 int wcid, u32 bssidx)
940 u32 offset = MAC_WCID_ATTR_ENTRY(wcid);
941 u32 reg;
944 * The BSS Idx numbers is split in a main value of 3 bits,
945 * and a extended field for adding one additional bit to the value.
947 rt2800_register_read(rt2x00dev, offset, &reg);
948 rt2x00_set_field32(&reg, MAC_WCID_ATTRIBUTE_BSS_IDX, (bssidx & 0x7));
949 rt2x00_set_field32(&reg, MAC_WCID_ATTRIBUTE_BSS_IDX_EXT,
950 (bssidx & 0x8) >> 3);
951 rt2800_register_write(rt2x00dev, offset, reg);
954 static void rt2800_config_wcid_attr_cipher(struct rt2x00_dev *rt2x00dev,
955 struct rt2x00lib_crypto *crypto,
956 struct ieee80211_key_conf *key)
958 struct mac_iveiv_entry iveiv_entry;
959 u32 offset;
960 u32 reg;
962 offset = MAC_WCID_ATTR_ENTRY(key->hw_key_idx);
964 if (crypto->cmd == SET_KEY) {
965 rt2800_register_read(rt2x00dev, offset, &reg);
966 rt2x00_set_field32(&reg, MAC_WCID_ATTRIBUTE_KEYTAB,
967 !!(key->flags & IEEE80211_KEY_FLAG_PAIRWISE));
969 * Both the cipher as the BSS Idx numbers are split in a main
970 * value of 3 bits, and a extended field for adding one additional
971 * bit to the value.
973 rt2x00_set_field32(&reg, MAC_WCID_ATTRIBUTE_CIPHER,
974 (crypto->cipher & 0x7));
975 rt2x00_set_field32(&reg, MAC_WCID_ATTRIBUTE_CIPHER_EXT,
976 (crypto->cipher & 0x8) >> 3);
977 rt2x00_set_field32(&reg, MAC_WCID_ATTRIBUTE_RX_WIUDF, crypto->cipher);
978 rt2800_register_write(rt2x00dev, offset, reg);
979 } else {
980 /* Delete the cipher without touching the bssidx */
981 rt2800_register_read(rt2x00dev, offset, &reg);
982 rt2x00_set_field32(&reg, MAC_WCID_ATTRIBUTE_KEYTAB, 0);
983 rt2x00_set_field32(&reg, MAC_WCID_ATTRIBUTE_CIPHER, 0);
984 rt2x00_set_field32(&reg, MAC_WCID_ATTRIBUTE_CIPHER_EXT, 0);
985 rt2x00_set_field32(&reg, MAC_WCID_ATTRIBUTE_RX_WIUDF, 0);
986 rt2800_register_write(rt2x00dev, offset, reg);
989 offset = MAC_IVEIV_ENTRY(key->hw_key_idx);
991 memset(&iveiv_entry, 0, sizeof(iveiv_entry));
992 if ((crypto->cipher == CIPHER_TKIP) ||
993 (crypto->cipher == CIPHER_TKIP_NO_MIC) ||
994 (crypto->cipher == CIPHER_AES))
995 iveiv_entry.iv[3] |= 0x20;
996 iveiv_entry.iv[3] |= key->keyidx << 6;
997 rt2800_register_multiwrite(rt2x00dev, offset,
998 &iveiv_entry, sizeof(iveiv_entry));
1001 int rt2800_config_shared_key(struct rt2x00_dev *rt2x00dev,
1002 struct rt2x00lib_crypto *crypto,
1003 struct ieee80211_key_conf *key)
1005 struct hw_key_entry key_entry;
1006 struct rt2x00_field32 field;
1007 u32 offset;
1008 u32 reg;
1010 if (crypto->cmd == SET_KEY) {
1011 key->hw_key_idx = (4 * crypto->bssidx) + key->keyidx;
1013 memcpy(key_entry.key, crypto->key,
1014 sizeof(key_entry.key));
1015 memcpy(key_entry.tx_mic, crypto->tx_mic,
1016 sizeof(key_entry.tx_mic));
1017 memcpy(key_entry.rx_mic, crypto->rx_mic,
1018 sizeof(key_entry.rx_mic));
1020 offset = SHARED_KEY_ENTRY(key->hw_key_idx);
1021 rt2800_register_multiwrite(rt2x00dev, offset,
1022 &key_entry, sizeof(key_entry));
1026 * The cipher types are stored over multiple registers
1027 * starting with SHARED_KEY_MODE_BASE each word will have
1028 * 32 bits and contains the cipher types for 2 bssidx each.
1029 * Using the correct defines correctly will cause overhead,
1030 * so just calculate the correct offset.
1032 field.bit_offset = 4 * (key->hw_key_idx % 8);
1033 field.bit_mask = 0x7 << field.bit_offset;
1035 offset = SHARED_KEY_MODE_ENTRY(key->hw_key_idx / 8);
1037 rt2800_register_read(rt2x00dev, offset, &reg);
1038 rt2x00_set_field32(&reg, field,
1039 (crypto->cmd == SET_KEY) * crypto->cipher);
1040 rt2800_register_write(rt2x00dev, offset, reg);
1043 * Update WCID information
1045 rt2800_config_wcid(rt2x00dev, crypto->address, key->hw_key_idx);
1046 rt2800_config_wcid_attr_bssidx(rt2x00dev, key->hw_key_idx,
1047 crypto->bssidx);
1048 rt2800_config_wcid_attr_cipher(rt2x00dev, crypto, key);
1050 return 0;
1052 EXPORT_SYMBOL_GPL(rt2800_config_shared_key);
1054 static inline int rt2800_find_wcid(struct rt2x00_dev *rt2x00dev)
1056 struct mac_wcid_entry wcid_entry;
1057 int idx;
1058 u32 offset;
1061 * Search for the first free WCID entry and return the corresponding
1062 * index.
1064 * Make sure the WCID starts _after_ the last possible shared key
1065 * entry (>32).
1067 * Since parts of the pairwise key table might be shared with
1068 * the beacon frame buffers 6 & 7 we should only write into the
1069 * first 222 entries.
1071 for (idx = 33; idx <= 222; idx++) {
1072 offset = MAC_WCID_ENTRY(idx);
1073 rt2800_register_multiread(rt2x00dev, offset, &wcid_entry,
1074 sizeof(wcid_entry));
1075 if (is_broadcast_ether_addr(wcid_entry.mac))
1076 return idx;
1080 * Use -1 to indicate that we don't have any more space in the WCID
1081 * table.
1083 return -1;
1086 int rt2800_config_pairwise_key(struct rt2x00_dev *rt2x00dev,
1087 struct rt2x00lib_crypto *crypto,
1088 struct ieee80211_key_conf *key)
1090 struct hw_key_entry key_entry;
1091 u32 offset;
1093 if (crypto->cmd == SET_KEY) {
1095 * Allow key configuration only for STAs that are
1096 * known by the hw.
1098 if (crypto->wcid < 0)
1099 return -ENOSPC;
1100 key->hw_key_idx = crypto->wcid;
1102 memcpy(key_entry.key, crypto->key,
1103 sizeof(key_entry.key));
1104 memcpy(key_entry.tx_mic, crypto->tx_mic,
1105 sizeof(key_entry.tx_mic));
1106 memcpy(key_entry.rx_mic, crypto->rx_mic,
1107 sizeof(key_entry.rx_mic));
1109 offset = PAIRWISE_KEY_ENTRY(key->hw_key_idx);
1110 rt2800_register_multiwrite(rt2x00dev, offset,
1111 &key_entry, sizeof(key_entry));
1115 * Update WCID information
1117 rt2800_config_wcid_attr_cipher(rt2x00dev, crypto, key);
1119 return 0;
1121 EXPORT_SYMBOL_GPL(rt2800_config_pairwise_key);
1123 int rt2800_sta_add(struct rt2x00_dev *rt2x00dev, struct ieee80211_vif *vif,
1124 struct ieee80211_sta *sta)
1126 int wcid;
1127 struct rt2x00_sta *sta_priv = sta_to_rt2x00_sta(sta);
1130 * Find next free WCID.
1132 wcid = rt2800_find_wcid(rt2x00dev);
1135 * Store selected wcid even if it is invalid so that we can
1136 * later decide if the STA is uploaded into the hw.
1138 sta_priv->wcid = wcid;
1141 * No space left in the device, however, we can still communicate
1142 * with the STA -> No error.
1144 if (wcid < 0)
1145 return 0;
1148 * Clean up WCID attributes and write STA address to the device.
1150 rt2800_delete_wcid_attr(rt2x00dev, wcid);
1151 rt2800_config_wcid(rt2x00dev, sta->addr, wcid);
1152 rt2800_config_wcid_attr_bssidx(rt2x00dev, wcid,
1153 rt2x00lib_get_bssidx(rt2x00dev, vif));
1154 return 0;
1156 EXPORT_SYMBOL_GPL(rt2800_sta_add);
1158 int rt2800_sta_remove(struct rt2x00_dev *rt2x00dev, int wcid)
1161 * Remove WCID entry, no need to clean the attributes as they will
1162 * get renewed when the WCID is reused.
1164 rt2800_config_wcid(rt2x00dev, NULL, wcid);
1166 return 0;
1168 EXPORT_SYMBOL_GPL(rt2800_sta_remove);
1170 void rt2800_config_filter(struct rt2x00_dev *rt2x00dev,
1171 const unsigned int filter_flags)
1173 u32 reg;
1176 * Start configuration steps.
1177 * Note that the version error will always be dropped
1178 * and broadcast frames will always be accepted since
1179 * there is no filter for it at this time.
1181 rt2800_register_read(rt2x00dev, RX_FILTER_CFG, &reg);
1182 rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_CRC_ERROR,
1183 !(filter_flags & FIF_FCSFAIL));
1184 rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_PHY_ERROR,
1185 !(filter_flags & FIF_PLCPFAIL));
1186 rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_NOT_TO_ME,
1187 !(filter_flags & FIF_PROMISC_IN_BSS));
1188 rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_NOT_MY_BSSD, 0);
1189 rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_VER_ERROR, 1);
1190 rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_MULTICAST,
1191 !(filter_flags & FIF_ALLMULTI));
1192 rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_BROADCAST, 0);
1193 rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_DUPLICATE, 1);
1194 rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_CF_END_ACK,
1195 !(filter_flags & FIF_CONTROL));
1196 rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_CF_END,
1197 !(filter_flags & FIF_CONTROL));
1198 rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_ACK,
1199 !(filter_flags & FIF_CONTROL));
1200 rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_CTS,
1201 !(filter_flags & FIF_CONTROL));
1202 rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_RTS,
1203 !(filter_flags & FIF_CONTROL));
1204 rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_PSPOLL,
1205 !(filter_flags & FIF_PSPOLL));
1206 rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_BA,
1207 !(filter_flags & FIF_CONTROL));
1208 rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_BAR,
1209 !(filter_flags & FIF_CONTROL));
1210 rt2x00_set_field32(&reg, RX_FILTER_CFG_DROP_CNTL,
1211 !(filter_flags & FIF_CONTROL));
1212 rt2800_register_write(rt2x00dev, RX_FILTER_CFG, reg);
1214 EXPORT_SYMBOL_GPL(rt2800_config_filter);
1216 void rt2800_config_intf(struct rt2x00_dev *rt2x00dev, struct rt2x00_intf *intf,
1217 struct rt2x00intf_conf *conf, const unsigned int flags)
1219 u32 reg;
1220 bool update_bssid = false;
1222 if (flags & CONFIG_UPDATE_TYPE) {
1224 * Enable synchronisation.
1226 rt2800_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
1227 rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_SYNC, conf->sync);
1228 rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg);
1230 if (conf->sync == TSF_SYNC_AP_NONE) {
1232 * Tune beacon queue transmit parameters for AP mode
1234 rt2800_register_read(rt2x00dev, TBTT_SYNC_CFG, &reg);
1235 rt2x00_set_field32(&reg, TBTT_SYNC_CFG_BCN_CWMIN, 0);
1236 rt2x00_set_field32(&reg, TBTT_SYNC_CFG_BCN_AIFSN, 1);
1237 rt2x00_set_field32(&reg, TBTT_SYNC_CFG_BCN_EXP_WIN, 32);
1238 rt2x00_set_field32(&reg, TBTT_SYNC_CFG_TBTT_ADJUST, 0);
1239 rt2800_register_write(rt2x00dev, TBTT_SYNC_CFG, reg);
1240 } else {
1241 rt2800_register_read(rt2x00dev, TBTT_SYNC_CFG, &reg);
1242 rt2x00_set_field32(&reg, TBTT_SYNC_CFG_BCN_CWMIN, 4);
1243 rt2x00_set_field32(&reg, TBTT_SYNC_CFG_BCN_AIFSN, 2);
1244 rt2x00_set_field32(&reg, TBTT_SYNC_CFG_BCN_EXP_WIN, 32);
1245 rt2x00_set_field32(&reg, TBTT_SYNC_CFG_TBTT_ADJUST, 16);
1246 rt2800_register_write(rt2x00dev, TBTT_SYNC_CFG, reg);
1250 if (flags & CONFIG_UPDATE_MAC) {
1251 if (flags & CONFIG_UPDATE_TYPE &&
1252 conf->sync == TSF_SYNC_AP_NONE) {
1254 * The BSSID register has to be set to our own mac
1255 * address in AP mode.
1257 memcpy(conf->bssid, conf->mac, sizeof(conf->mac));
1258 update_bssid = true;
1261 if (!is_zero_ether_addr((const u8 *)conf->mac)) {
1262 reg = le32_to_cpu(conf->mac[1]);
1263 rt2x00_set_field32(&reg, MAC_ADDR_DW1_UNICAST_TO_ME_MASK, 0xff);
1264 conf->mac[1] = cpu_to_le32(reg);
1267 rt2800_register_multiwrite(rt2x00dev, MAC_ADDR_DW0,
1268 conf->mac, sizeof(conf->mac));
1271 if ((flags & CONFIG_UPDATE_BSSID) || update_bssid) {
1272 if (!is_zero_ether_addr((const u8 *)conf->bssid)) {
1273 reg = le32_to_cpu(conf->bssid[1]);
1274 rt2x00_set_field32(&reg, MAC_BSSID_DW1_BSS_ID_MASK, 3);
1275 rt2x00_set_field32(&reg, MAC_BSSID_DW1_BSS_BCN_NUM, 7);
1276 conf->bssid[1] = cpu_to_le32(reg);
1279 rt2800_register_multiwrite(rt2x00dev, MAC_BSSID_DW0,
1280 conf->bssid, sizeof(conf->bssid));
1283 EXPORT_SYMBOL_GPL(rt2800_config_intf);
1285 static void rt2800_config_ht_opmode(struct rt2x00_dev *rt2x00dev,
1286 struct rt2x00lib_erp *erp)
1288 bool any_sta_nongf = !!(erp->ht_opmode &
1289 IEEE80211_HT_OP_MODE_NON_GF_STA_PRSNT);
1290 u8 protection = erp->ht_opmode & IEEE80211_HT_OP_MODE_PROTECTION;
1291 u8 mm20_mode, mm40_mode, gf20_mode, gf40_mode;
1292 u16 mm20_rate, mm40_rate, gf20_rate, gf40_rate;
1293 u32 reg;
1295 /* default protection rate for HT20: OFDM 24M */
1296 mm20_rate = gf20_rate = 0x4004;
1298 /* default protection rate for HT40: duplicate OFDM 24M */
1299 mm40_rate = gf40_rate = 0x4084;
1301 switch (protection) {
1302 case IEEE80211_HT_OP_MODE_PROTECTION_NONE:
1304 * All STAs in this BSS are HT20/40 but there might be
1305 * STAs not supporting greenfield mode.
1306 * => Disable protection for HT transmissions.
1308 mm20_mode = mm40_mode = gf20_mode = gf40_mode = 0;
1310 break;
1311 case IEEE80211_HT_OP_MODE_PROTECTION_20MHZ:
1313 * All STAs in this BSS are HT20 or HT20/40 but there
1314 * might be STAs not supporting greenfield mode.
1315 * => Protect all HT40 transmissions.
1317 mm20_mode = gf20_mode = 0;
1318 mm40_mode = gf40_mode = 2;
1320 break;
1321 case IEEE80211_HT_OP_MODE_PROTECTION_NONMEMBER:
1323 * Nonmember protection:
1324 * According to 802.11n we _should_ protect all
1325 * HT transmissions (but we don't have to).
1327 * But if cts_protection is enabled we _shall_ protect
1328 * all HT transmissions using a CCK rate.
1330 * And if any station is non GF we _shall_ protect
1331 * GF transmissions.
1333 * We decide to protect everything
1334 * -> fall through to mixed mode.
1336 case IEEE80211_HT_OP_MODE_PROTECTION_NONHT_MIXED:
1338 * Legacy STAs are present
1339 * => Protect all HT transmissions.
1341 mm20_mode = mm40_mode = gf20_mode = gf40_mode = 2;
1344 * If erp protection is needed we have to protect HT
1345 * transmissions with CCK 11M long preamble.
1347 if (erp->cts_protection) {
1348 /* don't duplicate RTS/CTS in CCK mode */
1349 mm20_rate = mm40_rate = 0x0003;
1350 gf20_rate = gf40_rate = 0x0003;
1352 break;
1355 /* check for STAs not supporting greenfield mode */
1356 if (any_sta_nongf)
1357 gf20_mode = gf40_mode = 2;
1359 /* Update HT protection config */
1360 rt2800_register_read(rt2x00dev, MM20_PROT_CFG, &reg);
1361 rt2x00_set_field32(&reg, MM20_PROT_CFG_PROTECT_RATE, mm20_rate);
1362 rt2x00_set_field32(&reg, MM20_PROT_CFG_PROTECT_CTRL, mm20_mode);
1363 rt2800_register_write(rt2x00dev, MM20_PROT_CFG, reg);
1365 rt2800_register_read(rt2x00dev, MM40_PROT_CFG, &reg);
1366 rt2x00_set_field32(&reg, MM40_PROT_CFG_PROTECT_RATE, mm40_rate);
1367 rt2x00_set_field32(&reg, MM40_PROT_CFG_PROTECT_CTRL, mm40_mode);
1368 rt2800_register_write(rt2x00dev, MM40_PROT_CFG, reg);
1370 rt2800_register_read(rt2x00dev, GF20_PROT_CFG, &reg);
1371 rt2x00_set_field32(&reg, GF20_PROT_CFG_PROTECT_RATE, gf20_rate);
1372 rt2x00_set_field32(&reg, GF20_PROT_CFG_PROTECT_CTRL, gf20_mode);
1373 rt2800_register_write(rt2x00dev, GF20_PROT_CFG, reg);
1375 rt2800_register_read(rt2x00dev, GF40_PROT_CFG, &reg);
1376 rt2x00_set_field32(&reg, GF40_PROT_CFG_PROTECT_RATE, gf40_rate);
1377 rt2x00_set_field32(&reg, GF40_PROT_CFG_PROTECT_CTRL, gf40_mode);
1378 rt2800_register_write(rt2x00dev, GF40_PROT_CFG, reg);
1381 void rt2800_config_erp(struct rt2x00_dev *rt2x00dev, struct rt2x00lib_erp *erp,
1382 u32 changed)
1384 u32 reg;
1386 if (changed & BSS_CHANGED_ERP_PREAMBLE) {
1387 rt2800_register_read(rt2x00dev, AUTO_RSP_CFG, &reg);
1388 rt2x00_set_field32(&reg, AUTO_RSP_CFG_BAC_ACK_POLICY,
1389 !!erp->short_preamble);
1390 rt2x00_set_field32(&reg, AUTO_RSP_CFG_AR_PREAMBLE,
1391 !!erp->short_preamble);
1392 rt2800_register_write(rt2x00dev, AUTO_RSP_CFG, reg);
1395 if (changed & BSS_CHANGED_ERP_CTS_PROT) {
1396 rt2800_register_read(rt2x00dev, OFDM_PROT_CFG, &reg);
1397 rt2x00_set_field32(&reg, OFDM_PROT_CFG_PROTECT_CTRL,
1398 erp->cts_protection ? 2 : 0);
1399 rt2800_register_write(rt2x00dev, OFDM_PROT_CFG, reg);
1402 if (changed & BSS_CHANGED_BASIC_RATES) {
1403 rt2800_register_write(rt2x00dev, LEGACY_BASIC_RATE,
1404 erp->basic_rates);
1405 rt2800_register_write(rt2x00dev, HT_BASIC_RATE, 0x00008003);
1408 if (changed & BSS_CHANGED_ERP_SLOT) {
1409 rt2800_register_read(rt2x00dev, BKOFF_SLOT_CFG, &reg);
1410 rt2x00_set_field32(&reg, BKOFF_SLOT_CFG_SLOT_TIME,
1411 erp->slot_time);
1412 rt2800_register_write(rt2x00dev, BKOFF_SLOT_CFG, reg);
1414 rt2800_register_read(rt2x00dev, XIFS_TIME_CFG, &reg);
1415 rt2x00_set_field32(&reg, XIFS_TIME_CFG_EIFS, erp->eifs);
1416 rt2800_register_write(rt2x00dev, XIFS_TIME_CFG, reg);
1419 if (changed & BSS_CHANGED_BEACON_INT) {
1420 rt2800_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
1421 rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_INTERVAL,
1422 erp->beacon_int * 16);
1423 rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg);
1426 if (changed & BSS_CHANGED_HT)
1427 rt2800_config_ht_opmode(rt2x00dev, erp);
1429 EXPORT_SYMBOL_GPL(rt2800_config_erp);
1431 static void rt2800_config_3572bt_ant(struct rt2x00_dev *rt2x00dev)
1433 u32 reg;
1434 u16 eeprom;
1435 u8 led_ctrl, led_g_mode, led_r_mode;
1437 rt2800_register_read(rt2x00dev, GPIO_SWITCH, &reg);
1438 if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
1439 rt2x00_set_field32(&reg, GPIO_SWITCH_0, 1);
1440 rt2x00_set_field32(&reg, GPIO_SWITCH_1, 1);
1441 } else {
1442 rt2x00_set_field32(&reg, GPIO_SWITCH_0, 0);
1443 rt2x00_set_field32(&reg, GPIO_SWITCH_1, 0);
1445 rt2800_register_write(rt2x00dev, GPIO_SWITCH, reg);
1447 rt2800_register_read(rt2x00dev, LED_CFG, &reg);
1448 led_g_mode = rt2x00_get_field32(reg, LED_CFG_LED_POLAR) ? 3 : 0;
1449 led_r_mode = rt2x00_get_field32(reg, LED_CFG_LED_POLAR) ? 0 : 3;
1450 if (led_g_mode != rt2x00_get_field32(reg, LED_CFG_G_LED_MODE) ||
1451 led_r_mode != rt2x00_get_field32(reg, LED_CFG_R_LED_MODE)) {
1452 rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom);
1453 led_ctrl = rt2x00_get_field16(eeprom, EEPROM_FREQ_LED_MODE);
1454 if (led_ctrl == 0 || led_ctrl > 0x40) {
1455 rt2x00_set_field32(&reg, LED_CFG_G_LED_MODE, led_g_mode);
1456 rt2x00_set_field32(&reg, LED_CFG_R_LED_MODE, led_r_mode);
1457 rt2800_register_write(rt2x00dev, LED_CFG, reg);
1458 } else {
1459 rt2800_mcu_request(rt2x00dev, MCU_BAND_SELECT, 0xff,
1460 (led_g_mode << 2) | led_r_mode, 1);
1465 static void rt2800_set_ant_diversity(struct rt2x00_dev *rt2x00dev,
1466 enum antenna ant)
1468 u32 reg;
1469 u8 eesk_pin = (ant == ANTENNA_A) ? 1 : 0;
1470 u8 gpio_bit3 = (ant == ANTENNA_A) ? 0 : 1;
1472 if (rt2x00_is_pci(rt2x00dev)) {
1473 rt2800_register_read(rt2x00dev, E2PROM_CSR, &reg);
1474 rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK, eesk_pin);
1475 rt2800_register_write(rt2x00dev, E2PROM_CSR, reg);
1476 } else if (rt2x00_is_usb(rt2x00dev))
1477 rt2800_mcu_request(rt2x00dev, MCU_ANT_SELECT, 0xff,
1478 eesk_pin, 0);
1480 rt2800_register_read(rt2x00dev, GPIO_CTRL_CFG, &reg);
1481 rt2x00_set_field32(&reg, GPIO_CTRL_CFG_GPIOD_BIT3, 0);
1482 rt2x00_set_field32(&reg, GPIO_CTRL_CFG_BIT3, gpio_bit3);
1483 rt2800_register_write(rt2x00dev, GPIO_CTRL_CFG, reg);
1486 void rt2800_config_ant(struct rt2x00_dev *rt2x00dev, struct antenna_setup *ant)
1488 u8 r1;
1489 u8 r3;
1490 u16 eeprom;
1492 rt2800_bbp_read(rt2x00dev, 1, &r1);
1493 rt2800_bbp_read(rt2x00dev, 3, &r3);
1495 if (rt2x00_rt(rt2x00dev, RT3572) &&
1496 test_bit(CAPABILITY_BT_COEXIST, &rt2x00dev->cap_flags))
1497 rt2800_config_3572bt_ant(rt2x00dev);
1500 * Configure the TX antenna.
1502 switch (ant->tx_chain_num) {
1503 case 1:
1504 rt2x00_set_field8(&r1, BBP1_TX_ANTENNA, 0);
1505 break;
1506 case 2:
1507 if (rt2x00_rt(rt2x00dev, RT3572) &&
1508 test_bit(CAPABILITY_BT_COEXIST, &rt2x00dev->cap_flags))
1509 rt2x00_set_field8(&r1, BBP1_TX_ANTENNA, 1);
1510 else
1511 rt2x00_set_field8(&r1, BBP1_TX_ANTENNA, 2);
1512 break;
1513 case 3:
1514 rt2x00_set_field8(&r1, BBP1_TX_ANTENNA, 0);
1515 break;
1519 * Configure the RX antenna.
1521 switch (ant->rx_chain_num) {
1522 case 1:
1523 if (rt2x00_rt(rt2x00dev, RT3070) ||
1524 rt2x00_rt(rt2x00dev, RT3090) ||
1525 rt2x00_rt(rt2x00dev, RT3390)) {
1526 rt2x00_eeprom_read(rt2x00dev,
1527 EEPROM_NIC_CONF1, &eeprom);
1528 if (rt2x00_get_field16(eeprom,
1529 EEPROM_NIC_CONF1_ANT_DIVERSITY))
1530 rt2800_set_ant_diversity(rt2x00dev,
1531 rt2x00dev->default_ant.rx);
1533 rt2x00_set_field8(&r3, BBP3_RX_ANTENNA, 0);
1534 break;
1535 case 2:
1536 if (rt2x00_rt(rt2x00dev, RT3572) &&
1537 test_bit(CAPABILITY_BT_COEXIST, &rt2x00dev->cap_flags)) {
1538 rt2x00_set_field8(&r3, BBP3_RX_ADC, 1);
1539 rt2x00_set_field8(&r3, BBP3_RX_ANTENNA,
1540 rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
1541 rt2800_set_ant_diversity(rt2x00dev, ANTENNA_B);
1542 } else {
1543 rt2x00_set_field8(&r3, BBP3_RX_ANTENNA, 1);
1545 break;
1546 case 3:
1547 rt2x00_set_field8(&r3, BBP3_RX_ANTENNA, 2);
1548 break;
1551 rt2800_bbp_write(rt2x00dev, 3, r3);
1552 rt2800_bbp_write(rt2x00dev, 1, r1);
1554 EXPORT_SYMBOL_GPL(rt2800_config_ant);
1556 static void rt2800_config_lna_gain(struct rt2x00_dev *rt2x00dev,
1557 struct rt2x00lib_conf *libconf)
1559 u16 eeprom;
1560 short lna_gain;
1562 if (libconf->rf.channel <= 14) {
1563 rt2x00_eeprom_read(rt2x00dev, EEPROM_LNA, &eeprom);
1564 lna_gain = rt2x00_get_field16(eeprom, EEPROM_LNA_BG);
1565 } else if (libconf->rf.channel <= 64) {
1566 rt2x00_eeprom_read(rt2x00dev, EEPROM_LNA, &eeprom);
1567 lna_gain = rt2x00_get_field16(eeprom, EEPROM_LNA_A0);
1568 } else if (libconf->rf.channel <= 128) {
1569 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_BG2, &eeprom);
1570 lna_gain = rt2x00_get_field16(eeprom, EEPROM_RSSI_BG2_LNA_A1);
1571 } else {
1572 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_A2, &eeprom);
1573 lna_gain = rt2x00_get_field16(eeprom, EEPROM_RSSI_A2_LNA_A2);
1576 rt2x00dev->lna_gain = lna_gain;
1579 static void rt2800_config_channel_rf2xxx(struct rt2x00_dev *rt2x00dev,
1580 struct ieee80211_conf *conf,
1581 struct rf_channel *rf,
1582 struct channel_info *info)
1584 rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset);
1586 if (rt2x00dev->default_ant.tx_chain_num == 1)
1587 rt2x00_set_field32(&rf->rf2, RF2_ANTENNA_TX1, 1);
1589 if (rt2x00dev->default_ant.rx_chain_num == 1) {
1590 rt2x00_set_field32(&rf->rf2, RF2_ANTENNA_RX1, 1);
1591 rt2x00_set_field32(&rf->rf2, RF2_ANTENNA_RX2, 1);
1592 } else if (rt2x00dev->default_ant.rx_chain_num == 2)
1593 rt2x00_set_field32(&rf->rf2, RF2_ANTENNA_RX2, 1);
1595 if (rf->channel > 14) {
1597 * When TX power is below 0, we should increase it by 7 to
1598 * make it a positive value (Minimum value is -7).
1599 * However this means that values between 0 and 7 have
1600 * double meaning, and we should set a 7DBm boost flag.
1602 rt2x00_set_field32(&rf->rf3, RF3_TXPOWER_A_7DBM_BOOST,
1603 (info->default_power1 >= 0));
1605 if (info->default_power1 < 0)
1606 info->default_power1 += 7;
1608 rt2x00_set_field32(&rf->rf3, RF3_TXPOWER_A, info->default_power1);
1610 rt2x00_set_field32(&rf->rf4, RF4_TXPOWER_A_7DBM_BOOST,
1611 (info->default_power2 >= 0));
1613 if (info->default_power2 < 0)
1614 info->default_power2 += 7;
1616 rt2x00_set_field32(&rf->rf4, RF4_TXPOWER_A, info->default_power2);
1617 } else {
1618 rt2x00_set_field32(&rf->rf3, RF3_TXPOWER_G, info->default_power1);
1619 rt2x00_set_field32(&rf->rf4, RF4_TXPOWER_G, info->default_power2);
1622 rt2x00_set_field32(&rf->rf4, RF4_HT40, conf_is_ht40(conf));
1624 rt2800_rf_write(rt2x00dev, 1, rf->rf1);
1625 rt2800_rf_write(rt2x00dev, 2, rf->rf2);
1626 rt2800_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
1627 rt2800_rf_write(rt2x00dev, 4, rf->rf4);
1629 udelay(200);
1631 rt2800_rf_write(rt2x00dev, 1, rf->rf1);
1632 rt2800_rf_write(rt2x00dev, 2, rf->rf2);
1633 rt2800_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004);
1634 rt2800_rf_write(rt2x00dev, 4, rf->rf4);
1636 udelay(200);
1638 rt2800_rf_write(rt2x00dev, 1, rf->rf1);
1639 rt2800_rf_write(rt2x00dev, 2, rf->rf2);
1640 rt2800_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
1641 rt2800_rf_write(rt2x00dev, 4, rf->rf4);
1644 static void rt2800_config_channel_rf3xxx(struct rt2x00_dev *rt2x00dev,
1645 struct ieee80211_conf *conf,
1646 struct rf_channel *rf,
1647 struct channel_info *info)
1649 u8 rfcsr;
1651 rt2800_rfcsr_write(rt2x00dev, 2, rf->rf1);
1652 rt2800_rfcsr_write(rt2x00dev, 3, rf->rf3);
1654 rt2800_rfcsr_read(rt2x00dev, 6, &rfcsr);
1655 rt2x00_set_field8(&rfcsr, RFCSR6_R1, rf->rf2);
1656 rt2800_rfcsr_write(rt2x00dev, 6, rfcsr);
1658 rt2800_rfcsr_read(rt2x00dev, 12, &rfcsr);
1659 rt2x00_set_field8(&rfcsr, RFCSR12_TX_POWER, info->default_power1);
1660 rt2800_rfcsr_write(rt2x00dev, 12, rfcsr);
1662 rt2800_rfcsr_read(rt2x00dev, 13, &rfcsr);
1663 rt2x00_set_field8(&rfcsr, RFCSR13_TX_POWER, info->default_power2);
1664 rt2800_rfcsr_write(rt2x00dev, 13, rfcsr);
1666 rt2800_rfcsr_read(rt2x00dev, 23, &rfcsr);
1667 rt2x00_set_field8(&rfcsr, RFCSR23_FREQ_OFFSET, rt2x00dev->freq_offset);
1668 rt2800_rfcsr_write(rt2x00dev, 23, rfcsr);
1670 rt2800_rfcsr_write(rt2x00dev, 24,
1671 rt2x00dev->calibration[conf_is_ht40(conf)]);
1673 rt2800_rfcsr_read(rt2x00dev, 7, &rfcsr);
1674 rt2x00_set_field8(&rfcsr, RFCSR7_RF_TUNING, 1);
1675 rt2800_rfcsr_write(rt2x00dev, 7, rfcsr);
1678 static void rt2800_config_channel_rf3052(struct rt2x00_dev *rt2x00dev,
1679 struct ieee80211_conf *conf,
1680 struct rf_channel *rf,
1681 struct channel_info *info)
1683 u8 rfcsr;
1684 u32 reg;
1686 if (rf->channel <= 14) {
1687 rt2800_bbp_write(rt2x00dev, 25, 0x15);
1688 rt2800_bbp_write(rt2x00dev, 26, 0x85);
1689 } else {
1690 rt2800_bbp_write(rt2x00dev, 25, 0x09);
1691 rt2800_bbp_write(rt2x00dev, 26, 0xff);
1694 rt2800_rfcsr_write(rt2x00dev, 2, rf->rf1);
1695 rt2800_rfcsr_write(rt2x00dev, 3, rf->rf3);
1697 rt2800_rfcsr_read(rt2x00dev, 6, &rfcsr);
1698 rt2x00_set_field8(&rfcsr, RFCSR6_R1, rf->rf2);
1699 if (rf->channel <= 14)
1700 rt2x00_set_field8(&rfcsr, RFCSR6_TXDIV, 2);
1701 else
1702 rt2x00_set_field8(&rfcsr, RFCSR6_TXDIV, 1);
1703 rt2800_rfcsr_write(rt2x00dev, 6, rfcsr);
1705 rt2800_rfcsr_read(rt2x00dev, 5, &rfcsr);
1706 if (rf->channel <= 14)
1707 rt2x00_set_field8(&rfcsr, RFCSR5_R1, 1);
1708 else
1709 rt2x00_set_field8(&rfcsr, RFCSR5_R1, 2);
1710 rt2800_rfcsr_write(rt2x00dev, 5, rfcsr);
1712 rt2800_rfcsr_read(rt2x00dev, 12, &rfcsr);
1713 if (rf->channel <= 14) {
1714 rt2x00_set_field8(&rfcsr, RFCSR12_DR0, 3);
1715 rt2x00_set_field8(&rfcsr, RFCSR12_TX_POWER,
1716 (info->default_power1 & 0x3) |
1717 ((info->default_power1 & 0xC) << 1));
1718 } else {
1719 rt2x00_set_field8(&rfcsr, RFCSR12_DR0, 7);
1720 rt2x00_set_field8(&rfcsr, RFCSR12_TX_POWER,
1721 (info->default_power1 & 0x3) |
1722 ((info->default_power1 & 0xC) << 1));
1724 rt2800_rfcsr_write(rt2x00dev, 12, rfcsr);
1726 rt2800_rfcsr_read(rt2x00dev, 13, &rfcsr);
1727 if (rf->channel <= 14) {
1728 rt2x00_set_field8(&rfcsr, RFCSR13_DR0, 3);
1729 rt2x00_set_field8(&rfcsr, RFCSR13_TX_POWER,
1730 (info->default_power2 & 0x3) |
1731 ((info->default_power2 & 0xC) << 1));
1732 } else {
1733 rt2x00_set_field8(&rfcsr, RFCSR13_DR0, 7);
1734 rt2x00_set_field8(&rfcsr, RFCSR13_TX_POWER,
1735 (info->default_power2 & 0x3) |
1736 ((info->default_power2 & 0xC) << 1));
1738 rt2800_rfcsr_write(rt2x00dev, 13, rfcsr);
1740 rt2800_rfcsr_read(rt2x00dev, 1, &rfcsr);
1741 rt2x00_set_field8(&rfcsr, RFCSR1_RF_BLOCK_EN, 1);
1742 rt2x00_set_field8(&rfcsr, RFCSR1_RX0_PD, 0);
1743 rt2x00_set_field8(&rfcsr, RFCSR1_TX0_PD, 0);
1744 rt2x00_set_field8(&rfcsr, RFCSR1_RX1_PD, 0);
1745 rt2x00_set_field8(&rfcsr, RFCSR1_TX1_PD, 0);
1746 if (test_bit(CAPABILITY_BT_COEXIST, &rt2x00dev->cap_flags)) {
1747 if (rf->channel <= 14) {
1748 rt2x00_set_field8(&rfcsr, RFCSR1_RX0_PD, 1);
1749 rt2x00_set_field8(&rfcsr, RFCSR1_TX0_PD, 1);
1751 rt2x00_set_field8(&rfcsr, RFCSR1_RX2_PD, 1);
1752 rt2x00_set_field8(&rfcsr, RFCSR1_TX2_PD, 1);
1753 } else {
1754 switch (rt2x00dev->default_ant.tx_chain_num) {
1755 case 1:
1756 rt2x00_set_field8(&rfcsr, RFCSR1_TX1_PD, 1);
1757 case 2:
1758 rt2x00_set_field8(&rfcsr, RFCSR1_TX2_PD, 1);
1759 break;
1762 switch (rt2x00dev->default_ant.rx_chain_num) {
1763 case 1:
1764 rt2x00_set_field8(&rfcsr, RFCSR1_RX1_PD, 1);
1765 case 2:
1766 rt2x00_set_field8(&rfcsr, RFCSR1_RX2_PD, 1);
1767 break;
1770 rt2800_rfcsr_write(rt2x00dev, 1, rfcsr);
1772 rt2800_rfcsr_read(rt2x00dev, 23, &rfcsr);
1773 rt2x00_set_field8(&rfcsr, RFCSR23_FREQ_OFFSET, rt2x00dev->freq_offset);
1774 rt2800_rfcsr_write(rt2x00dev, 23, rfcsr);
1776 rt2800_rfcsr_write(rt2x00dev, 24,
1777 rt2x00dev->calibration[conf_is_ht40(conf)]);
1778 rt2800_rfcsr_write(rt2x00dev, 31,
1779 rt2x00dev->calibration[conf_is_ht40(conf)]);
1781 if (rf->channel <= 14) {
1782 rt2800_rfcsr_write(rt2x00dev, 7, 0xd8);
1783 rt2800_rfcsr_write(rt2x00dev, 9, 0xc3);
1784 rt2800_rfcsr_write(rt2x00dev, 10, 0xf1);
1785 rt2800_rfcsr_write(rt2x00dev, 11, 0xb9);
1786 rt2800_rfcsr_write(rt2x00dev, 15, 0x53);
1787 rt2800_rfcsr_write(rt2x00dev, 16, 0x4c);
1788 rt2800_rfcsr_write(rt2x00dev, 17, 0x23);
1789 rt2800_rfcsr_write(rt2x00dev, 19, 0x93);
1790 rt2800_rfcsr_write(rt2x00dev, 20, 0xb3);
1791 rt2800_rfcsr_write(rt2x00dev, 25, 0x15);
1792 rt2800_rfcsr_write(rt2x00dev, 26, 0x85);
1793 rt2800_rfcsr_write(rt2x00dev, 27, 0x00);
1794 rt2800_rfcsr_write(rt2x00dev, 29, 0x9b);
1795 } else {
1796 rt2800_rfcsr_write(rt2x00dev, 7, 0x14);
1797 rt2800_rfcsr_write(rt2x00dev, 9, 0xc0);
1798 rt2800_rfcsr_write(rt2x00dev, 10, 0xf1);
1799 rt2800_rfcsr_write(rt2x00dev, 11, 0x00);
1800 rt2800_rfcsr_write(rt2x00dev, 15, 0x43);
1801 rt2800_rfcsr_write(rt2x00dev, 16, 0x7a);
1802 rt2800_rfcsr_write(rt2x00dev, 17, 0x23);
1803 if (rf->channel <= 64) {
1804 rt2800_rfcsr_write(rt2x00dev, 19, 0xb7);
1805 rt2800_rfcsr_write(rt2x00dev, 20, 0xf6);
1806 rt2800_rfcsr_write(rt2x00dev, 25, 0x3d);
1807 } else if (rf->channel <= 128) {
1808 rt2800_rfcsr_write(rt2x00dev, 19, 0x74);
1809 rt2800_rfcsr_write(rt2x00dev, 20, 0xf4);
1810 rt2800_rfcsr_write(rt2x00dev, 25, 0x01);
1811 } else {
1812 rt2800_rfcsr_write(rt2x00dev, 19, 0x72);
1813 rt2800_rfcsr_write(rt2x00dev, 20, 0xf3);
1814 rt2800_rfcsr_write(rt2x00dev, 25, 0x01);
1816 rt2800_rfcsr_write(rt2x00dev, 26, 0x87);
1817 rt2800_rfcsr_write(rt2x00dev, 27, 0x01);
1818 rt2800_rfcsr_write(rt2x00dev, 29, 0x9f);
1821 rt2800_register_read(rt2x00dev, GPIO_CTRL_CFG, &reg);
1822 rt2x00_set_field32(&reg, GPIO_CTRL_CFG_GPIOD_BIT7, 0);
1823 if (rf->channel <= 14)
1824 rt2x00_set_field32(&reg, GPIO_CTRL_CFG_BIT7, 1);
1825 else
1826 rt2x00_set_field32(&reg, GPIO_CTRL_CFG_BIT7, 0);
1827 rt2800_register_write(rt2x00dev, GPIO_CTRL_CFG, reg);
1829 rt2800_rfcsr_read(rt2x00dev, 7, &rfcsr);
1830 rt2x00_set_field8(&rfcsr, RFCSR7_RF_TUNING, 1);
1831 rt2800_rfcsr_write(rt2x00dev, 7, rfcsr);
1834 #define RT5390_POWER_BOUND 0x27
1835 #define RT5390_FREQ_OFFSET_BOUND 0x5f
1837 static void rt2800_config_channel_rf53xx(struct rt2x00_dev *rt2x00dev,
1838 struct ieee80211_conf *conf,
1839 struct rf_channel *rf,
1840 struct channel_info *info)
1842 u8 rfcsr;
1844 rt2800_rfcsr_write(rt2x00dev, 8, rf->rf1);
1845 rt2800_rfcsr_write(rt2x00dev, 9, rf->rf3);
1846 rt2800_rfcsr_read(rt2x00dev, 11, &rfcsr);
1847 rt2x00_set_field8(&rfcsr, RFCSR11_R, rf->rf2);
1848 rt2800_rfcsr_write(rt2x00dev, 11, rfcsr);
1850 rt2800_rfcsr_read(rt2x00dev, 49, &rfcsr);
1851 if (info->default_power1 > RT5390_POWER_BOUND)
1852 rt2x00_set_field8(&rfcsr, RFCSR49_TX, RT5390_POWER_BOUND);
1853 else
1854 rt2x00_set_field8(&rfcsr, RFCSR49_TX, info->default_power1);
1855 rt2800_rfcsr_write(rt2x00dev, 49, rfcsr);
1857 rt2800_rfcsr_read(rt2x00dev, 1, &rfcsr);
1858 rt2x00_set_field8(&rfcsr, RFCSR1_RF_BLOCK_EN, 1);
1859 rt2x00_set_field8(&rfcsr, RFCSR1_PLL_PD, 1);
1860 rt2x00_set_field8(&rfcsr, RFCSR1_RX0_PD, 1);
1861 rt2x00_set_field8(&rfcsr, RFCSR1_TX0_PD, 1);
1862 rt2800_rfcsr_write(rt2x00dev, 1, rfcsr);
1864 rt2800_rfcsr_read(rt2x00dev, 17, &rfcsr);
1865 if (rt2x00dev->freq_offset > RT5390_FREQ_OFFSET_BOUND)
1866 rt2x00_set_field8(&rfcsr, RFCSR17_CODE,
1867 RT5390_FREQ_OFFSET_BOUND);
1868 else
1869 rt2x00_set_field8(&rfcsr, RFCSR17_CODE, rt2x00dev->freq_offset);
1870 rt2800_rfcsr_write(rt2x00dev, 17, rfcsr);
1872 if (rf->channel <= 14) {
1873 int idx = rf->channel-1;
1875 if (test_bit(CAPABILITY_BT_COEXIST, &rt2x00dev->cap_flags)) {
1876 if (rt2x00_rt_rev_gte(rt2x00dev, RT5390, REV_RT5390F)) {
1877 /* r55/r59 value array of channel 1~14 */
1878 static const char r55_bt_rev[] = {0x83, 0x83,
1879 0x83, 0x73, 0x73, 0x63, 0x53, 0x53,
1880 0x53, 0x43, 0x43, 0x43, 0x43, 0x43};
1881 static const char r59_bt_rev[] = {0x0e, 0x0e,
1882 0x0e, 0x0e, 0x0e, 0x0b, 0x0a, 0x09,
1883 0x07, 0x07, 0x07, 0x07, 0x07, 0x07};
1885 rt2800_rfcsr_write(rt2x00dev, 55,
1886 r55_bt_rev[idx]);
1887 rt2800_rfcsr_write(rt2x00dev, 59,
1888 r59_bt_rev[idx]);
1889 } else {
1890 static const char r59_bt[] = {0x8b, 0x8b, 0x8b,
1891 0x8b, 0x8b, 0x8b, 0x8b, 0x8a, 0x89,
1892 0x88, 0x88, 0x86, 0x85, 0x84};
1894 rt2800_rfcsr_write(rt2x00dev, 59, r59_bt[idx]);
1896 } else {
1897 if (rt2x00_rt_rev_gte(rt2x00dev, RT5390, REV_RT5390F)) {
1898 static const char r55_nonbt_rev[] = {0x23, 0x23,
1899 0x23, 0x23, 0x13, 0x13, 0x03, 0x03,
1900 0x03, 0x03, 0x03, 0x03, 0x03, 0x03};
1901 static const char r59_nonbt_rev[] = {0x07, 0x07,
1902 0x07, 0x07, 0x07, 0x07, 0x07, 0x07,
1903 0x07, 0x07, 0x06, 0x05, 0x04, 0x04};
1905 rt2800_rfcsr_write(rt2x00dev, 55,
1906 r55_nonbt_rev[idx]);
1907 rt2800_rfcsr_write(rt2x00dev, 59,
1908 r59_nonbt_rev[idx]);
1909 } else if (rt2x00_rt(rt2x00dev, RT5390)) {
1910 static const char r59_non_bt[] = {0x8f, 0x8f,
1911 0x8f, 0x8f, 0x8f, 0x8f, 0x8f, 0x8d,
1912 0x8a, 0x88, 0x88, 0x87, 0x87, 0x86};
1914 rt2800_rfcsr_write(rt2x00dev, 59,
1915 r59_non_bt[idx]);
1920 rt2800_rfcsr_read(rt2x00dev, 30, &rfcsr);
1921 rt2x00_set_field8(&rfcsr, RFCSR30_TX_H20M, 0);
1922 rt2x00_set_field8(&rfcsr, RFCSR30_RX_H20M, 0);
1923 rt2800_rfcsr_write(rt2x00dev, 30, rfcsr);
1925 rt2800_rfcsr_read(rt2x00dev, 3, &rfcsr);
1926 rt2x00_set_field8(&rfcsr, RFCSR30_RF_CALIBRATION, 1);
1927 rt2800_rfcsr_write(rt2x00dev, 3, rfcsr);
1930 static void rt2800_config_channel(struct rt2x00_dev *rt2x00dev,
1931 struct ieee80211_conf *conf,
1932 struct rf_channel *rf,
1933 struct channel_info *info)
1935 u32 reg;
1936 unsigned int tx_pin;
1937 u8 bbp;
1939 if (rf->channel <= 14) {
1940 info->default_power1 = TXPOWER_G_TO_DEV(info->default_power1);
1941 info->default_power2 = TXPOWER_G_TO_DEV(info->default_power2);
1942 } else {
1943 info->default_power1 = TXPOWER_A_TO_DEV(info->default_power1);
1944 info->default_power2 = TXPOWER_A_TO_DEV(info->default_power2);
1947 switch (rt2x00dev->chip.rf) {
1948 case RF2020:
1949 case RF3020:
1950 case RF3021:
1951 case RF3022:
1952 case RF3320:
1953 rt2800_config_channel_rf3xxx(rt2x00dev, conf, rf, info);
1954 break;
1955 case RF3052:
1956 rt2800_config_channel_rf3052(rt2x00dev, conf, rf, info);
1957 break;
1958 case RF5370:
1959 case RF5390:
1960 rt2800_config_channel_rf53xx(rt2x00dev, conf, rf, info);
1961 break;
1962 default:
1963 rt2800_config_channel_rf2xxx(rt2x00dev, conf, rf, info);
1967 * Change BBP settings
1969 rt2800_bbp_write(rt2x00dev, 62, 0x37 - rt2x00dev->lna_gain);
1970 rt2800_bbp_write(rt2x00dev, 63, 0x37 - rt2x00dev->lna_gain);
1971 rt2800_bbp_write(rt2x00dev, 64, 0x37 - rt2x00dev->lna_gain);
1972 rt2800_bbp_write(rt2x00dev, 86, 0);
1974 if (rf->channel <= 14) {
1975 if (!rt2x00_rt(rt2x00dev, RT5390)) {
1976 if (test_bit(CAPABILITY_EXTERNAL_LNA_BG,
1977 &rt2x00dev->cap_flags)) {
1978 rt2800_bbp_write(rt2x00dev, 82, 0x62);
1979 rt2800_bbp_write(rt2x00dev, 75, 0x46);
1980 } else {
1981 rt2800_bbp_write(rt2x00dev, 82, 0x84);
1982 rt2800_bbp_write(rt2x00dev, 75, 0x50);
1985 } else {
1986 if (rt2x00_rt(rt2x00dev, RT3572))
1987 rt2800_bbp_write(rt2x00dev, 82, 0x94);
1988 else
1989 rt2800_bbp_write(rt2x00dev, 82, 0xf2);
1991 if (test_bit(CAPABILITY_EXTERNAL_LNA_A, &rt2x00dev->cap_flags))
1992 rt2800_bbp_write(rt2x00dev, 75, 0x46);
1993 else
1994 rt2800_bbp_write(rt2x00dev, 75, 0x50);
1997 rt2800_register_read(rt2x00dev, TX_BAND_CFG, &reg);
1998 rt2x00_set_field32(&reg, TX_BAND_CFG_HT40_MINUS, conf_is_ht40_minus(conf));
1999 rt2x00_set_field32(&reg, TX_BAND_CFG_A, rf->channel > 14);
2000 rt2x00_set_field32(&reg, TX_BAND_CFG_BG, rf->channel <= 14);
2001 rt2800_register_write(rt2x00dev, TX_BAND_CFG, reg);
2003 if (rt2x00_rt(rt2x00dev, RT3572))
2004 rt2800_rfcsr_write(rt2x00dev, 8, 0);
2006 tx_pin = 0;
2008 /* Turn on unused PA or LNA when not using 1T or 1R */
2009 if (rt2x00dev->default_ant.tx_chain_num == 2) {
2010 rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_A1_EN,
2011 rf->channel > 14);
2012 rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_G1_EN,
2013 rf->channel <= 14);
2016 /* Turn on unused PA or LNA when not using 1T or 1R */
2017 if (rt2x00dev->default_ant.rx_chain_num == 2) {
2018 rt2x00_set_field32(&tx_pin, TX_PIN_CFG_LNA_PE_A1_EN, 1);
2019 rt2x00_set_field32(&tx_pin, TX_PIN_CFG_LNA_PE_G1_EN, 1);
2022 rt2x00_set_field32(&tx_pin, TX_PIN_CFG_LNA_PE_A0_EN, 1);
2023 rt2x00_set_field32(&tx_pin, TX_PIN_CFG_LNA_PE_G0_EN, 1);
2024 rt2x00_set_field32(&tx_pin, TX_PIN_CFG_RFTR_EN, 1);
2025 rt2x00_set_field32(&tx_pin, TX_PIN_CFG_TRSW_EN, 1);
2026 if (test_bit(CAPABILITY_BT_COEXIST, &rt2x00dev->cap_flags))
2027 rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_G0_EN, 1);
2028 else
2029 rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_G0_EN,
2030 rf->channel <= 14);
2031 rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_A0_EN, rf->channel > 14);
2033 rt2800_register_write(rt2x00dev, TX_PIN_CFG, tx_pin);
2035 if (rt2x00_rt(rt2x00dev, RT3572))
2036 rt2800_rfcsr_write(rt2x00dev, 8, 0x80);
2038 rt2800_bbp_read(rt2x00dev, 4, &bbp);
2039 rt2x00_set_field8(&bbp, BBP4_BANDWIDTH, 2 * conf_is_ht40(conf));
2040 rt2800_bbp_write(rt2x00dev, 4, bbp);
2042 rt2800_bbp_read(rt2x00dev, 3, &bbp);
2043 rt2x00_set_field8(&bbp, BBP3_HT40_MINUS, conf_is_ht40_minus(conf));
2044 rt2800_bbp_write(rt2x00dev, 3, bbp);
2046 if (rt2x00_rt_rev(rt2x00dev, RT2860, REV_RT2860C)) {
2047 if (conf_is_ht40(conf)) {
2048 rt2800_bbp_write(rt2x00dev, 69, 0x1a);
2049 rt2800_bbp_write(rt2x00dev, 70, 0x0a);
2050 rt2800_bbp_write(rt2x00dev, 73, 0x16);
2051 } else {
2052 rt2800_bbp_write(rt2x00dev, 69, 0x16);
2053 rt2800_bbp_write(rt2x00dev, 70, 0x08);
2054 rt2800_bbp_write(rt2x00dev, 73, 0x11);
2058 msleep(1);
2061 * Clear channel statistic counters
2063 rt2800_register_read(rt2x00dev, CH_IDLE_STA, &reg);
2064 rt2800_register_read(rt2x00dev, CH_BUSY_STA, &reg);
2065 rt2800_register_read(rt2x00dev, CH_BUSY_STA_SEC, &reg);
2068 static int rt2800_get_gain_calibration_delta(struct rt2x00_dev *rt2x00dev)
2070 u8 tssi_bounds[9];
2071 u8 current_tssi;
2072 u16 eeprom;
2073 u8 step;
2074 int i;
2077 * Read TSSI boundaries for temperature compensation from
2078 * the EEPROM.
2080 * Array idx 0 1 2 3 4 5 6 7 8
2081 * Matching Delta value -4 -3 -2 -1 0 +1 +2 +3 +4
2082 * Example TSSI bounds 0xF0 0xD0 0xB5 0xA0 0x88 0x45 0x25 0x15 0x00
2084 if (rt2x00dev->curr_band == IEEE80211_BAND_2GHZ) {
2085 rt2x00_eeprom_read(rt2x00dev, EEPROM_TSSI_BOUND_BG1, &eeprom);
2086 tssi_bounds[0] = rt2x00_get_field16(eeprom,
2087 EEPROM_TSSI_BOUND_BG1_MINUS4);
2088 tssi_bounds[1] = rt2x00_get_field16(eeprom,
2089 EEPROM_TSSI_BOUND_BG1_MINUS3);
2091 rt2x00_eeprom_read(rt2x00dev, EEPROM_TSSI_BOUND_BG2, &eeprom);
2092 tssi_bounds[2] = rt2x00_get_field16(eeprom,
2093 EEPROM_TSSI_BOUND_BG2_MINUS2);
2094 tssi_bounds[3] = rt2x00_get_field16(eeprom,
2095 EEPROM_TSSI_BOUND_BG2_MINUS1);
2097 rt2x00_eeprom_read(rt2x00dev, EEPROM_TSSI_BOUND_BG3, &eeprom);
2098 tssi_bounds[4] = rt2x00_get_field16(eeprom,
2099 EEPROM_TSSI_BOUND_BG3_REF);
2100 tssi_bounds[5] = rt2x00_get_field16(eeprom,
2101 EEPROM_TSSI_BOUND_BG3_PLUS1);
2103 rt2x00_eeprom_read(rt2x00dev, EEPROM_TSSI_BOUND_BG4, &eeprom);
2104 tssi_bounds[6] = rt2x00_get_field16(eeprom,
2105 EEPROM_TSSI_BOUND_BG4_PLUS2);
2106 tssi_bounds[7] = rt2x00_get_field16(eeprom,
2107 EEPROM_TSSI_BOUND_BG4_PLUS3);
2109 rt2x00_eeprom_read(rt2x00dev, EEPROM_TSSI_BOUND_BG5, &eeprom);
2110 tssi_bounds[8] = rt2x00_get_field16(eeprom,
2111 EEPROM_TSSI_BOUND_BG5_PLUS4);
2113 step = rt2x00_get_field16(eeprom,
2114 EEPROM_TSSI_BOUND_BG5_AGC_STEP);
2115 } else {
2116 rt2x00_eeprom_read(rt2x00dev, EEPROM_TSSI_BOUND_A1, &eeprom);
2117 tssi_bounds[0] = rt2x00_get_field16(eeprom,
2118 EEPROM_TSSI_BOUND_A1_MINUS4);
2119 tssi_bounds[1] = rt2x00_get_field16(eeprom,
2120 EEPROM_TSSI_BOUND_A1_MINUS3);
2122 rt2x00_eeprom_read(rt2x00dev, EEPROM_TSSI_BOUND_A2, &eeprom);
2123 tssi_bounds[2] = rt2x00_get_field16(eeprom,
2124 EEPROM_TSSI_BOUND_A2_MINUS2);
2125 tssi_bounds[3] = rt2x00_get_field16(eeprom,
2126 EEPROM_TSSI_BOUND_A2_MINUS1);
2128 rt2x00_eeprom_read(rt2x00dev, EEPROM_TSSI_BOUND_A3, &eeprom);
2129 tssi_bounds[4] = rt2x00_get_field16(eeprom,
2130 EEPROM_TSSI_BOUND_A3_REF);
2131 tssi_bounds[5] = rt2x00_get_field16(eeprom,
2132 EEPROM_TSSI_BOUND_A3_PLUS1);
2134 rt2x00_eeprom_read(rt2x00dev, EEPROM_TSSI_BOUND_A4, &eeprom);
2135 tssi_bounds[6] = rt2x00_get_field16(eeprom,
2136 EEPROM_TSSI_BOUND_A4_PLUS2);
2137 tssi_bounds[7] = rt2x00_get_field16(eeprom,
2138 EEPROM_TSSI_BOUND_A4_PLUS3);
2140 rt2x00_eeprom_read(rt2x00dev, EEPROM_TSSI_BOUND_A5, &eeprom);
2141 tssi_bounds[8] = rt2x00_get_field16(eeprom,
2142 EEPROM_TSSI_BOUND_A5_PLUS4);
2144 step = rt2x00_get_field16(eeprom,
2145 EEPROM_TSSI_BOUND_A5_AGC_STEP);
2149 * Check if temperature compensation is supported.
2151 if (tssi_bounds[4] == 0xff)
2152 return 0;
2155 * Read current TSSI (BBP 49).
2157 rt2800_bbp_read(rt2x00dev, 49, &current_tssi);
2160 * Compare TSSI value (BBP49) with the compensation boundaries
2161 * from the EEPROM and increase or decrease tx power.
2163 for (i = 0; i <= 3; i++) {
2164 if (current_tssi > tssi_bounds[i])
2165 break;
2168 if (i == 4) {
2169 for (i = 8; i >= 5; i--) {
2170 if (current_tssi < tssi_bounds[i])
2171 break;
2175 return (i - 4) * step;
2178 static int rt2800_get_txpower_bw_comp(struct rt2x00_dev *rt2x00dev,
2179 enum ieee80211_band band)
2181 u16 eeprom;
2182 u8 comp_en;
2183 u8 comp_type;
2184 int comp_value = 0;
2186 rt2x00_eeprom_read(rt2x00dev, EEPROM_TXPOWER_DELTA, &eeprom);
2189 * HT40 compensation not required.
2191 if (eeprom == 0xffff ||
2192 !test_bit(CONFIG_CHANNEL_HT40, &rt2x00dev->flags))
2193 return 0;
2195 if (band == IEEE80211_BAND_2GHZ) {
2196 comp_en = rt2x00_get_field16(eeprom,
2197 EEPROM_TXPOWER_DELTA_ENABLE_2G);
2198 if (comp_en) {
2199 comp_type = rt2x00_get_field16(eeprom,
2200 EEPROM_TXPOWER_DELTA_TYPE_2G);
2201 comp_value = rt2x00_get_field16(eeprom,
2202 EEPROM_TXPOWER_DELTA_VALUE_2G);
2203 if (!comp_type)
2204 comp_value = -comp_value;
2206 } else {
2207 comp_en = rt2x00_get_field16(eeprom,
2208 EEPROM_TXPOWER_DELTA_ENABLE_5G);
2209 if (comp_en) {
2210 comp_type = rt2x00_get_field16(eeprom,
2211 EEPROM_TXPOWER_DELTA_TYPE_5G);
2212 comp_value = rt2x00_get_field16(eeprom,
2213 EEPROM_TXPOWER_DELTA_VALUE_5G);
2214 if (!comp_type)
2215 comp_value = -comp_value;
2219 return comp_value;
2222 static u8 rt2800_compensate_txpower(struct rt2x00_dev *rt2x00dev, int is_rate_b,
2223 enum ieee80211_band band, int power_level,
2224 u8 txpower, int delta)
2226 u32 reg;
2227 u16 eeprom;
2228 u8 criterion;
2229 u8 eirp_txpower;
2230 u8 eirp_txpower_criterion;
2231 u8 reg_limit;
2233 if (!((band == IEEE80211_BAND_5GHZ) && is_rate_b))
2234 return txpower;
2236 if (test_bit(CAPABILITY_POWER_LIMIT, &rt2x00dev->cap_flags)) {
2238 * Check if eirp txpower exceed txpower_limit.
2239 * We use OFDM 6M as criterion and its eirp txpower
2240 * is stored at EEPROM_EIRP_MAX_TX_POWER.
2241 * .11b data rate need add additional 4dbm
2242 * when calculating eirp txpower.
2244 rt2800_register_read(rt2x00dev, TX_PWR_CFG_0, &reg);
2245 criterion = rt2x00_get_field32(reg, TX_PWR_CFG_0_6MBS);
2247 rt2x00_eeprom_read(rt2x00dev,
2248 EEPROM_EIRP_MAX_TX_POWER, &eeprom);
2250 if (band == IEEE80211_BAND_2GHZ)
2251 eirp_txpower_criterion = rt2x00_get_field16(eeprom,
2252 EEPROM_EIRP_MAX_TX_POWER_2GHZ);
2253 else
2254 eirp_txpower_criterion = rt2x00_get_field16(eeprom,
2255 EEPROM_EIRP_MAX_TX_POWER_5GHZ);
2257 eirp_txpower = eirp_txpower_criterion + (txpower - criterion) +
2258 (is_rate_b ? 4 : 0) + delta;
2260 reg_limit = (eirp_txpower > power_level) ?
2261 (eirp_txpower - power_level) : 0;
2262 } else
2263 reg_limit = 0;
2265 return txpower + delta - reg_limit;
2268 static void rt2800_config_txpower(struct rt2x00_dev *rt2x00dev,
2269 enum ieee80211_band band,
2270 int power_level)
2272 u8 txpower;
2273 u16 eeprom;
2274 int i, is_rate_b;
2275 u32 reg;
2276 u8 r1;
2277 u32 offset;
2278 int delta;
2281 * Calculate HT40 compensation delta
2283 delta = rt2800_get_txpower_bw_comp(rt2x00dev, band);
2286 * calculate temperature compensation delta
2288 delta += rt2800_get_gain_calibration_delta(rt2x00dev);
2291 * set to normal bbp tx power control mode: +/- 0dBm
2293 rt2800_bbp_read(rt2x00dev, 1, &r1);
2294 rt2x00_set_field8(&r1, BBP1_TX_POWER_CTRL, 0);
2295 rt2800_bbp_write(rt2x00dev, 1, r1);
2296 offset = TX_PWR_CFG_0;
2298 for (i = 0; i < EEPROM_TXPOWER_BYRATE_SIZE; i += 2) {
2299 /* just to be safe */
2300 if (offset > TX_PWR_CFG_4)
2301 break;
2303 rt2800_register_read(rt2x00dev, offset, &reg);
2305 /* read the next four txpower values */
2306 rt2x00_eeprom_read(rt2x00dev, EEPROM_TXPOWER_BYRATE + i,
2307 &eeprom);
2309 is_rate_b = i ? 0 : 1;
2311 * TX_PWR_CFG_0: 1MBS, TX_PWR_CFG_1: 24MBS,
2312 * TX_PWR_CFG_2: MCS4, TX_PWR_CFG_3: MCS12,
2313 * TX_PWR_CFG_4: unknown
2315 txpower = rt2x00_get_field16(eeprom,
2316 EEPROM_TXPOWER_BYRATE_RATE0);
2317 txpower = rt2800_compensate_txpower(rt2x00dev, is_rate_b, band,
2318 power_level, txpower, delta);
2319 rt2x00_set_field32(&reg, TX_PWR_CFG_RATE0, txpower);
2322 * TX_PWR_CFG_0: 2MBS, TX_PWR_CFG_1: 36MBS,
2323 * TX_PWR_CFG_2: MCS5, TX_PWR_CFG_3: MCS13,
2324 * TX_PWR_CFG_4: unknown
2326 txpower = rt2x00_get_field16(eeprom,
2327 EEPROM_TXPOWER_BYRATE_RATE1);
2328 txpower = rt2800_compensate_txpower(rt2x00dev, is_rate_b, band,
2329 power_level, txpower, delta);
2330 rt2x00_set_field32(&reg, TX_PWR_CFG_RATE1, txpower);
2333 * TX_PWR_CFG_0: 5.5MBS, TX_PWR_CFG_1: 48MBS,
2334 * TX_PWR_CFG_2: MCS6, TX_PWR_CFG_3: MCS14,
2335 * TX_PWR_CFG_4: unknown
2337 txpower = rt2x00_get_field16(eeprom,
2338 EEPROM_TXPOWER_BYRATE_RATE2);
2339 txpower = rt2800_compensate_txpower(rt2x00dev, is_rate_b, band,
2340 power_level, txpower, delta);
2341 rt2x00_set_field32(&reg, TX_PWR_CFG_RATE2, txpower);
2344 * TX_PWR_CFG_0: 11MBS, TX_PWR_CFG_1: 54MBS,
2345 * TX_PWR_CFG_2: MCS7, TX_PWR_CFG_3: MCS15,
2346 * TX_PWR_CFG_4: unknown
2348 txpower = rt2x00_get_field16(eeprom,
2349 EEPROM_TXPOWER_BYRATE_RATE3);
2350 txpower = rt2800_compensate_txpower(rt2x00dev, is_rate_b, band,
2351 power_level, txpower, delta);
2352 rt2x00_set_field32(&reg, TX_PWR_CFG_RATE3, txpower);
2354 /* read the next four txpower values */
2355 rt2x00_eeprom_read(rt2x00dev, EEPROM_TXPOWER_BYRATE + i + 1,
2356 &eeprom);
2358 is_rate_b = 0;
2360 * TX_PWR_CFG_0: 6MBS, TX_PWR_CFG_1: MCS0,
2361 * TX_PWR_CFG_2: MCS8, TX_PWR_CFG_3: unknown,
2362 * TX_PWR_CFG_4: unknown
2364 txpower = rt2x00_get_field16(eeprom,
2365 EEPROM_TXPOWER_BYRATE_RATE0);
2366 txpower = rt2800_compensate_txpower(rt2x00dev, is_rate_b, band,
2367 power_level, txpower, delta);
2368 rt2x00_set_field32(&reg, TX_PWR_CFG_RATE4, txpower);
2371 * TX_PWR_CFG_0: 9MBS, TX_PWR_CFG_1: MCS1,
2372 * TX_PWR_CFG_2: MCS9, TX_PWR_CFG_3: unknown,
2373 * TX_PWR_CFG_4: unknown
2375 txpower = rt2x00_get_field16(eeprom,
2376 EEPROM_TXPOWER_BYRATE_RATE1);
2377 txpower = rt2800_compensate_txpower(rt2x00dev, is_rate_b, band,
2378 power_level, txpower, delta);
2379 rt2x00_set_field32(&reg, TX_PWR_CFG_RATE5, txpower);
2382 * TX_PWR_CFG_0: 12MBS, TX_PWR_CFG_1: MCS2,
2383 * TX_PWR_CFG_2: MCS10, TX_PWR_CFG_3: unknown,
2384 * TX_PWR_CFG_4: unknown
2386 txpower = rt2x00_get_field16(eeprom,
2387 EEPROM_TXPOWER_BYRATE_RATE2);
2388 txpower = rt2800_compensate_txpower(rt2x00dev, is_rate_b, band,
2389 power_level, txpower, delta);
2390 rt2x00_set_field32(&reg, TX_PWR_CFG_RATE6, txpower);
2393 * TX_PWR_CFG_0: 18MBS, TX_PWR_CFG_1: MCS3,
2394 * TX_PWR_CFG_2: MCS11, TX_PWR_CFG_3: unknown,
2395 * TX_PWR_CFG_4: unknown
2397 txpower = rt2x00_get_field16(eeprom,
2398 EEPROM_TXPOWER_BYRATE_RATE3);
2399 txpower = rt2800_compensate_txpower(rt2x00dev, is_rate_b, band,
2400 power_level, txpower, delta);
2401 rt2x00_set_field32(&reg, TX_PWR_CFG_RATE7, txpower);
2403 rt2800_register_write(rt2x00dev, offset, reg);
2405 /* next TX_PWR_CFG register */
2406 offset += 4;
2410 void rt2800_gain_calibration(struct rt2x00_dev *rt2x00dev)
2412 rt2800_config_txpower(rt2x00dev, rt2x00dev->curr_band,
2413 rt2x00dev->tx_power);
2415 EXPORT_SYMBOL_GPL(rt2800_gain_calibration);
2417 static void rt2800_config_retry_limit(struct rt2x00_dev *rt2x00dev,
2418 struct rt2x00lib_conf *libconf)
2420 u32 reg;
2422 rt2800_register_read(rt2x00dev, TX_RTY_CFG, &reg);
2423 rt2x00_set_field32(&reg, TX_RTY_CFG_SHORT_RTY_LIMIT,
2424 libconf->conf->short_frame_max_tx_count);
2425 rt2x00_set_field32(&reg, TX_RTY_CFG_LONG_RTY_LIMIT,
2426 libconf->conf->long_frame_max_tx_count);
2427 rt2800_register_write(rt2x00dev, TX_RTY_CFG, reg);
2430 static void rt2800_config_ps(struct rt2x00_dev *rt2x00dev,
2431 struct rt2x00lib_conf *libconf)
2433 enum dev_state state =
2434 (libconf->conf->flags & IEEE80211_CONF_PS) ?
2435 STATE_SLEEP : STATE_AWAKE;
2436 u32 reg;
2438 if (state == STATE_SLEEP) {
2439 rt2800_register_write(rt2x00dev, AUTOWAKEUP_CFG, 0);
2441 rt2800_register_read(rt2x00dev, AUTOWAKEUP_CFG, &reg);
2442 rt2x00_set_field32(&reg, AUTOWAKEUP_CFG_AUTO_LEAD_TIME, 5);
2443 rt2x00_set_field32(&reg, AUTOWAKEUP_CFG_TBCN_BEFORE_WAKE,
2444 libconf->conf->listen_interval - 1);
2445 rt2x00_set_field32(&reg, AUTOWAKEUP_CFG_AUTOWAKE, 1);
2446 rt2800_register_write(rt2x00dev, AUTOWAKEUP_CFG, reg);
2448 rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
2449 } else {
2450 rt2800_register_read(rt2x00dev, AUTOWAKEUP_CFG, &reg);
2451 rt2x00_set_field32(&reg, AUTOWAKEUP_CFG_AUTO_LEAD_TIME, 0);
2452 rt2x00_set_field32(&reg, AUTOWAKEUP_CFG_TBCN_BEFORE_WAKE, 0);
2453 rt2x00_set_field32(&reg, AUTOWAKEUP_CFG_AUTOWAKE, 0);
2454 rt2800_register_write(rt2x00dev, AUTOWAKEUP_CFG, reg);
2456 rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
2460 void rt2800_config(struct rt2x00_dev *rt2x00dev,
2461 struct rt2x00lib_conf *libconf,
2462 const unsigned int flags)
2464 /* Always recalculate LNA gain before changing configuration */
2465 rt2800_config_lna_gain(rt2x00dev, libconf);
2467 if (flags & IEEE80211_CONF_CHANGE_CHANNEL) {
2468 rt2800_config_channel(rt2x00dev, libconf->conf,
2469 &libconf->rf, &libconf->channel);
2470 rt2800_config_txpower(rt2x00dev, libconf->conf->channel->band,
2471 libconf->conf->power_level);
2473 if (flags & IEEE80211_CONF_CHANGE_POWER)
2474 rt2800_config_txpower(rt2x00dev, libconf->conf->channel->band,
2475 libconf->conf->power_level);
2476 if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
2477 rt2800_config_retry_limit(rt2x00dev, libconf);
2478 if (flags & IEEE80211_CONF_CHANGE_PS)
2479 rt2800_config_ps(rt2x00dev, libconf);
2481 EXPORT_SYMBOL_GPL(rt2800_config);
2484 * Link tuning
2486 void rt2800_link_stats(struct rt2x00_dev *rt2x00dev, struct link_qual *qual)
2488 u32 reg;
2491 * Update FCS error count from register.
2493 rt2800_register_read(rt2x00dev, RX_STA_CNT0, &reg);
2494 qual->rx_failed = rt2x00_get_field32(reg, RX_STA_CNT0_CRC_ERR);
2496 EXPORT_SYMBOL_GPL(rt2800_link_stats);
2498 static u8 rt2800_get_default_vgc(struct rt2x00_dev *rt2x00dev)
2500 if (rt2x00dev->curr_band == IEEE80211_BAND_2GHZ) {
2501 if (rt2x00_rt(rt2x00dev, RT3070) ||
2502 rt2x00_rt(rt2x00dev, RT3071) ||
2503 rt2x00_rt(rt2x00dev, RT3090) ||
2504 rt2x00_rt(rt2x00dev, RT3390) ||
2505 rt2x00_rt(rt2x00dev, RT5390))
2506 return 0x1c + (2 * rt2x00dev->lna_gain);
2507 else
2508 return 0x2e + rt2x00dev->lna_gain;
2511 if (!test_bit(CONFIG_CHANNEL_HT40, &rt2x00dev->flags))
2512 return 0x32 + (rt2x00dev->lna_gain * 5) / 3;
2513 else
2514 return 0x3a + (rt2x00dev->lna_gain * 5) / 3;
2517 static inline void rt2800_set_vgc(struct rt2x00_dev *rt2x00dev,
2518 struct link_qual *qual, u8 vgc_level)
2520 if (qual->vgc_level != vgc_level) {
2521 rt2800_bbp_write(rt2x00dev, 66, vgc_level);
2522 qual->vgc_level = vgc_level;
2523 qual->vgc_level_reg = vgc_level;
2527 void rt2800_reset_tuner(struct rt2x00_dev *rt2x00dev, struct link_qual *qual)
2529 rt2800_set_vgc(rt2x00dev, qual, rt2800_get_default_vgc(rt2x00dev));
2531 EXPORT_SYMBOL_GPL(rt2800_reset_tuner);
2533 void rt2800_link_tuner(struct rt2x00_dev *rt2x00dev, struct link_qual *qual,
2534 const u32 count)
2536 if (rt2x00_rt_rev(rt2x00dev, RT2860, REV_RT2860C))
2537 return;
2540 * When RSSI is better then -80 increase VGC level with 0x10
2542 rt2800_set_vgc(rt2x00dev, qual,
2543 rt2800_get_default_vgc(rt2x00dev) +
2544 ((qual->rssi > -80) * 0x10));
2546 EXPORT_SYMBOL_GPL(rt2800_link_tuner);
2549 * Initialization functions.
2551 static int rt2800_init_registers(struct rt2x00_dev *rt2x00dev)
2553 u32 reg;
2554 u16 eeprom;
2555 unsigned int i;
2556 int ret;
2558 rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
2559 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
2560 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_DMA_BUSY, 0);
2561 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
2562 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_RX_DMA_BUSY, 0);
2563 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
2564 rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
2566 ret = rt2800_drv_init_registers(rt2x00dev);
2567 if (ret)
2568 return ret;
2570 rt2800_register_read(rt2x00dev, BCN_OFFSET0, &reg);
2571 rt2x00_set_field32(&reg, BCN_OFFSET0_BCN0, 0xe0); /* 0x3800 */
2572 rt2x00_set_field32(&reg, BCN_OFFSET0_BCN1, 0xe8); /* 0x3a00 */
2573 rt2x00_set_field32(&reg, BCN_OFFSET0_BCN2, 0xf0); /* 0x3c00 */
2574 rt2x00_set_field32(&reg, BCN_OFFSET0_BCN3, 0xf8); /* 0x3e00 */
2575 rt2800_register_write(rt2x00dev, BCN_OFFSET0, reg);
2577 rt2800_register_read(rt2x00dev, BCN_OFFSET1, &reg);
2578 rt2x00_set_field32(&reg, BCN_OFFSET1_BCN4, 0xc8); /* 0x3200 */
2579 rt2x00_set_field32(&reg, BCN_OFFSET1_BCN5, 0xd0); /* 0x3400 */
2580 rt2x00_set_field32(&reg, BCN_OFFSET1_BCN6, 0x77); /* 0x1dc0 */
2581 rt2x00_set_field32(&reg, BCN_OFFSET1_BCN7, 0x6f); /* 0x1bc0 */
2582 rt2800_register_write(rt2x00dev, BCN_OFFSET1, reg);
2584 rt2800_register_write(rt2x00dev, LEGACY_BASIC_RATE, 0x0000013f);
2585 rt2800_register_write(rt2x00dev, HT_BASIC_RATE, 0x00008003);
2587 rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, 0x00000000);
2589 rt2800_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
2590 rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_INTERVAL, 1600);
2591 rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 0);
2592 rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_SYNC, 0);
2593 rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 0);
2594 rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 0);
2595 rt2x00_set_field32(&reg, BCN_TIME_CFG_TX_TIME_COMPENSATE, 0);
2596 rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg);
2598 rt2800_config_filter(rt2x00dev, FIF_ALLMULTI);
2600 rt2800_register_read(rt2x00dev, BKOFF_SLOT_CFG, &reg);
2601 rt2x00_set_field32(&reg, BKOFF_SLOT_CFG_SLOT_TIME, 9);
2602 rt2x00_set_field32(&reg, BKOFF_SLOT_CFG_CC_DELAY_TIME, 2);
2603 rt2800_register_write(rt2x00dev, BKOFF_SLOT_CFG, reg);
2605 if (rt2x00_rt(rt2x00dev, RT3071) ||
2606 rt2x00_rt(rt2x00dev, RT3090) ||
2607 rt2x00_rt(rt2x00dev, RT3390)) {
2608 rt2800_register_write(rt2x00dev, TX_SW_CFG0, 0x00000400);
2609 rt2800_register_write(rt2x00dev, TX_SW_CFG1, 0x00000000);
2610 if (rt2x00_rt_rev_lt(rt2x00dev, RT3071, REV_RT3071E) ||
2611 rt2x00_rt_rev_lt(rt2x00dev, RT3090, REV_RT3090E) ||
2612 rt2x00_rt_rev_lt(rt2x00dev, RT3390, REV_RT3390E)) {
2613 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC_CONF1, &eeprom);
2614 if (rt2x00_get_field16(eeprom, EEPROM_NIC_CONF1_DAC_TEST))
2615 rt2800_register_write(rt2x00dev, TX_SW_CFG2,
2616 0x0000002c);
2617 else
2618 rt2800_register_write(rt2x00dev, TX_SW_CFG2,
2619 0x0000000f);
2620 } else {
2621 rt2800_register_write(rt2x00dev, TX_SW_CFG2, 0x00000000);
2623 } else if (rt2x00_rt(rt2x00dev, RT3070)) {
2624 rt2800_register_write(rt2x00dev, TX_SW_CFG0, 0x00000400);
2626 if (rt2x00_rt_rev_lt(rt2x00dev, RT3070, REV_RT3070F)) {
2627 rt2800_register_write(rt2x00dev, TX_SW_CFG1, 0x00000000);
2628 rt2800_register_write(rt2x00dev, TX_SW_CFG2, 0x0000002c);
2629 } else {
2630 rt2800_register_write(rt2x00dev, TX_SW_CFG1, 0x00080606);
2631 rt2800_register_write(rt2x00dev, TX_SW_CFG2, 0x00000000);
2633 } else if (rt2800_is_305x_soc(rt2x00dev)) {
2634 rt2800_register_write(rt2x00dev, TX_SW_CFG0, 0x00000400);
2635 rt2800_register_write(rt2x00dev, TX_SW_CFG1, 0x00000000);
2636 rt2800_register_write(rt2x00dev, TX_SW_CFG2, 0x00000030);
2637 } else if (rt2x00_rt(rt2x00dev, RT3572)) {
2638 rt2800_register_write(rt2x00dev, TX_SW_CFG0, 0x00000400);
2639 rt2800_register_write(rt2x00dev, TX_SW_CFG1, 0x00080606);
2640 } else if (rt2x00_rt(rt2x00dev, RT5390)) {
2641 rt2800_register_write(rt2x00dev, TX_SW_CFG0, 0x00000404);
2642 rt2800_register_write(rt2x00dev, TX_SW_CFG1, 0x00080606);
2643 rt2800_register_write(rt2x00dev, TX_SW_CFG2, 0x00000000);
2644 } else {
2645 rt2800_register_write(rt2x00dev, TX_SW_CFG0, 0x00000000);
2646 rt2800_register_write(rt2x00dev, TX_SW_CFG1, 0x00080606);
2649 rt2800_register_read(rt2x00dev, TX_LINK_CFG, &reg);
2650 rt2x00_set_field32(&reg, TX_LINK_CFG_REMOTE_MFB_LIFETIME, 32);
2651 rt2x00_set_field32(&reg, TX_LINK_CFG_MFB_ENABLE, 0);
2652 rt2x00_set_field32(&reg, TX_LINK_CFG_REMOTE_UMFS_ENABLE, 0);
2653 rt2x00_set_field32(&reg, TX_LINK_CFG_TX_MRQ_EN, 0);
2654 rt2x00_set_field32(&reg, TX_LINK_CFG_TX_RDG_EN, 0);
2655 rt2x00_set_field32(&reg, TX_LINK_CFG_TX_CF_ACK_EN, 1);
2656 rt2x00_set_field32(&reg, TX_LINK_CFG_REMOTE_MFB, 0);
2657 rt2x00_set_field32(&reg, TX_LINK_CFG_REMOTE_MFS, 0);
2658 rt2800_register_write(rt2x00dev, TX_LINK_CFG, reg);
2660 rt2800_register_read(rt2x00dev, TX_TIMEOUT_CFG, &reg);
2661 rt2x00_set_field32(&reg, TX_TIMEOUT_CFG_MPDU_LIFETIME, 9);
2662 rt2x00_set_field32(&reg, TX_TIMEOUT_CFG_RX_ACK_TIMEOUT, 32);
2663 rt2x00_set_field32(&reg, TX_TIMEOUT_CFG_TX_OP_TIMEOUT, 10);
2664 rt2800_register_write(rt2x00dev, TX_TIMEOUT_CFG, reg);
2666 rt2800_register_read(rt2x00dev, MAX_LEN_CFG, &reg);
2667 rt2x00_set_field32(&reg, MAX_LEN_CFG_MAX_MPDU, AGGREGATION_SIZE);
2668 if (rt2x00_rt_rev_gte(rt2x00dev, RT2872, REV_RT2872E) ||
2669 rt2x00_rt(rt2x00dev, RT2883) ||
2670 rt2x00_rt_rev_lt(rt2x00dev, RT3070, REV_RT3070E))
2671 rt2x00_set_field32(&reg, MAX_LEN_CFG_MAX_PSDU, 2);
2672 else
2673 rt2x00_set_field32(&reg, MAX_LEN_CFG_MAX_PSDU, 1);
2674 rt2x00_set_field32(&reg, MAX_LEN_CFG_MIN_PSDU, 0);
2675 rt2x00_set_field32(&reg, MAX_LEN_CFG_MIN_MPDU, 0);
2676 rt2800_register_write(rt2x00dev, MAX_LEN_CFG, reg);
2678 rt2800_register_read(rt2x00dev, LED_CFG, &reg);
2679 rt2x00_set_field32(&reg, LED_CFG_ON_PERIOD, 70);
2680 rt2x00_set_field32(&reg, LED_CFG_OFF_PERIOD, 30);
2681 rt2x00_set_field32(&reg, LED_CFG_SLOW_BLINK_PERIOD, 3);
2682 rt2x00_set_field32(&reg, LED_CFG_R_LED_MODE, 3);
2683 rt2x00_set_field32(&reg, LED_CFG_G_LED_MODE, 3);
2684 rt2x00_set_field32(&reg, LED_CFG_Y_LED_MODE, 3);
2685 rt2x00_set_field32(&reg, LED_CFG_LED_POLAR, 1);
2686 rt2800_register_write(rt2x00dev, LED_CFG, reg);
2688 rt2800_register_write(rt2x00dev, PBF_MAX_PCNT, 0x1f3fbf9f);
2690 rt2800_register_read(rt2x00dev, TX_RTY_CFG, &reg);
2691 rt2x00_set_field32(&reg, TX_RTY_CFG_SHORT_RTY_LIMIT, 15);
2692 rt2x00_set_field32(&reg, TX_RTY_CFG_LONG_RTY_LIMIT, 31);
2693 rt2x00_set_field32(&reg, TX_RTY_CFG_LONG_RTY_THRE, 2000);
2694 rt2x00_set_field32(&reg, TX_RTY_CFG_NON_AGG_RTY_MODE, 0);
2695 rt2x00_set_field32(&reg, TX_RTY_CFG_AGG_RTY_MODE, 0);
2696 rt2x00_set_field32(&reg, TX_RTY_CFG_TX_AUTO_FB_ENABLE, 1);
2697 rt2800_register_write(rt2x00dev, TX_RTY_CFG, reg);
2699 rt2800_register_read(rt2x00dev, AUTO_RSP_CFG, &reg);
2700 rt2x00_set_field32(&reg, AUTO_RSP_CFG_AUTORESPONDER, 1);
2701 rt2x00_set_field32(&reg, AUTO_RSP_CFG_BAC_ACK_POLICY, 1);
2702 rt2x00_set_field32(&reg, AUTO_RSP_CFG_CTS_40_MMODE, 0);
2703 rt2x00_set_field32(&reg, AUTO_RSP_CFG_CTS_40_MREF, 0);
2704 rt2x00_set_field32(&reg, AUTO_RSP_CFG_AR_PREAMBLE, 1);
2705 rt2x00_set_field32(&reg, AUTO_RSP_CFG_DUAL_CTS_EN, 0);
2706 rt2x00_set_field32(&reg, AUTO_RSP_CFG_ACK_CTS_PSM_BIT, 0);
2707 rt2800_register_write(rt2x00dev, AUTO_RSP_CFG, reg);
2709 rt2800_register_read(rt2x00dev, CCK_PROT_CFG, &reg);
2710 rt2x00_set_field32(&reg, CCK_PROT_CFG_PROTECT_RATE, 3);
2711 rt2x00_set_field32(&reg, CCK_PROT_CFG_PROTECT_CTRL, 0);
2712 rt2x00_set_field32(&reg, CCK_PROT_CFG_PROTECT_NAV_SHORT, 1);
2713 rt2x00_set_field32(&reg, CCK_PROT_CFG_TX_OP_ALLOW_CCK, 1);
2714 rt2x00_set_field32(&reg, CCK_PROT_CFG_TX_OP_ALLOW_OFDM, 1);
2715 rt2x00_set_field32(&reg, CCK_PROT_CFG_TX_OP_ALLOW_MM20, 1);
2716 rt2x00_set_field32(&reg, CCK_PROT_CFG_TX_OP_ALLOW_MM40, 0);
2717 rt2x00_set_field32(&reg, CCK_PROT_CFG_TX_OP_ALLOW_GF20, 1);
2718 rt2x00_set_field32(&reg, CCK_PROT_CFG_TX_OP_ALLOW_GF40, 0);
2719 rt2x00_set_field32(&reg, CCK_PROT_CFG_RTS_TH_EN, 1);
2720 rt2800_register_write(rt2x00dev, CCK_PROT_CFG, reg);
2722 rt2800_register_read(rt2x00dev, OFDM_PROT_CFG, &reg);
2723 rt2x00_set_field32(&reg, OFDM_PROT_CFG_PROTECT_RATE, 3);
2724 rt2x00_set_field32(&reg, OFDM_PROT_CFG_PROTECT_CTRL, 0);
2725 rt2x00_set_field32(&reg, OFDM_PROT_CFG_PROTECT_NAV_SHORT, 1);
2726 rt2x00_set_field32(&reg, OFDM_PROT_CFG_TX_OP_ALLOW_CCK, 1);
2727 rt2x00_set_field32(&reg, OFDM_PROT_CFG_TX_OP_ALLOW_OFDM, 1);
2728 rt2x00_set_field32(&reg, OFDM_PROT_CFG_TX_OP_ALLOW_MM20, 1);
2729 rt2x00_set_field32(&reg, OFDM_PROT_CFG_TX_OP_ALLOW_MM40, 0);
2730 rt2x00_set_field32(&reg, OFDM_PROT_CFG_TX_OP_ALLOW_GF20, 1);
2731 rt2x00_set_field32(&reg, OFDM_PROT_CFG_TX_OP_ALLOW_GF40, 0);
2732 rt2x00_set_field32(&reg, OFDM_PROT_CFG_RTS_TH_EN, 1);
2733 rt2800_register_write(rt2x00dev, OFDM_PROT_CFG, reg);
2735 rt2800_register_read(rt2x00dev, MM20_PROT_CFG, &reg);
2736 rt2x00_set_field32(&reg, MM20_PROT_CFG_PROTECT_RATE, 0x4004);
2737 rt2x00_set_field32(&reg, MM20_PROT_CFG_PROTECT_CTRL, 0);
2738 rt2x00_set_field32(&reg, MM20_PROT_CFG_PROTECT_NAV_SHORT, 1);
2739 rt2x00_set_field32(&reg, MM20_PROT_CFG_TX_OP_ALLOW_CCK, 1);
2740 rt2x00_set_field32(&reg, MM20_PROT_CFG_TX_OP_ALLOW_OFDM, 1);
2741 rt2x00_set_field32(&reg, MM20_PROT_CFG_TX_OP_ALLOW_MM20, 1);
2742 rt2x00_set_field32(&reg, MM20_PROT_CFG_TX_OP_ALLOW_MM40, 0);
2743 rt2x00_set_field32(&reg, MM20_PROT_CFG_TX_OP_ALLOW_GF20, 1);
2744 rt2x00_set_field32(&reg, MM20_PROT_CFG_TX_OP_ALLOW_GF40, 0);
2745 rt2x00_set_field32(&reg, MM20_PROT_CFG_RTS_TH_EN, 0);
2746 rt2800_register_write(rt2x00dev, MM20_PROT_CFG, reg);
2748 rt2800_register_read(rt2x00dev, MM40_PROT_CFG, &reg);
2749 rt2x00_set_field32(&reg, MM40_PROT_CFG_PROTECT_RATE, 0x4084);
2750 rt2x00_set_field32(&reg, MM40_PROT_CFG_PROTECT_CTRL, 0);
2751 rt2x00_set_field32(&reg, MM40_PROT_CFG_PROTECT_NAV_SHORT, 1);
2752 rt2x00_set_field32(&reg, MM40_PROT_CFG_TX_OP_ALLOW_CCK, 1);
2753 rt2x00_set_field32(&reg, MM40_PROT_CFG_TX_OP_ALLOW_OFDM, 1);
2754 rt2x00_set_field32(&reg, MM40_PROT_CFG_TX_OP_ALLOW_MM20, 1);
2755 rt2x00_set_field32(&reg, MM40_PROT_CFG_TX_OP_ALLOW_MM40, 1);
2756 rt2x00_set_field32(&reg, MM40_PROT_CFG_TX_OP_ALLOW_GF20, 1);
2757 rt2x00_set_field32(&reg, MM40_PROT_CFG_TX_OP_ALLOW_GF40, 1);
2758 rt2x00_set_field32(&reg, MM40_PROT_CFG_RTS_TH_EN, 0);
2759 rt2800_register_write(rt2x00dev, MM40_PROT_CFG, reg);
2761 rt2800_register_read(rt2x00dev, GF20_PROT_CFG, &reg);
2762 rt2x00_set_field32(&reg, GF20_PROT_CFG_PROTECT_RATE, 0x4004);
2763 rt2x00_set_field32(&reg, GF20_PROT_CFG_PROTECT_CTRL, 0);
2764 rt2x00_set_field32(&reg, GF20_PROT_CFG_PROTECT_NAV_SHORT, 1);
2765 rt2x00_set_field32(&reg, GF20_PROT_CFG_TX_OP_ALLOW_CCK, 1);
2766 rt2x00_set_field32(&reg, GF20_PROT_CFG_TX_OP_ALLOW_OFDM, 1);
2767 rt2x00_set_field32(&reg, GF20_PROT_CFG_TX_OP_ALLOW_MM20, 1);
2768 rt2x00_set_field32(&reg, GF20_PROT_CFG_TX_OP_ALLOW_MM40, 0);
2769 rt2x00_set_field32(&reg, GF20_PROT_CFG_TX_OP_ALLOW_GF20, 1);
2770 rt2x00_set_field32(&reg, GF20_PROT_CFG_TX_OP_ALLOW_GF40, 0);
2771 rt2x00_set_field32(&reg, GF20_PROT_CFG_RTS_TH_EN, 0);
2772 rt2800_register_write(rt2x00dev, GF20_PROT_CFG, reg);
2774 rt2800_register_read(rt2x00dev, GF40_PROT_CFG, &reg);
2775 rt2x00_set_field32(&reg, GF40_PROT_CFG_PROTECT_RATE, 0x4084);
2776 rt2x00_set_field32(&reg, GF40_PROT_CFG_PROTECT_CTRL, 0);
2777 rt2x00_set_field32(&reg, GF40_PROT_CFG_PROTECT_NAV_SHORT, 1);
2778 rt2x00_set_field32(&reg, GF40_PROT_CFG_TX_OP_ALLOW_CCK, 1);
2779 rt2x00_set_field32(&reg, GF40_PROT_CFG_TX_OP_ALLOW_OFDM, 1);
2780 rt2x00_set_field32(&reg, GF40_PROT_CFG_TX_OP_ALLOW_MM20, 1);
2781 rt2x00_set_field32(&reg, GF40_PROT_CFG_TX_OP_ALLOW_MM40, 1);
2782 rt2x00_set_field32(&reg, GF40_PROT_CFG_TX_OP_ALLOW_GF20, 1);
2783 rt2x00_set_field32(&reg, GF40_PROT_CFG_TX_OP_ALLOW_GF40, 1);
2784 rt2x00_set_field32(&reg, GF40_PROT_CFG_RTS_TH_EN, 0);
2785 rt2800_register_write(rt2x00dev, GF40_PROT_CFG, reg);
2787 if (rt2x00_is_usb(rt2x00dev)) {
2788 rt2800_register_write(rt2x00dev, PBF_CFG, 0xf40006);
2790 rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
2791 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
2792 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_DMA_BUSY, 0);
2793 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
2794 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_RX_DMA_BUSY, 0);
2795 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_WP_DMA_BURST_SIZE, 3);
2796 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 0);
2797 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_BIG_ENDIAN, 0);
2798 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_RX_HDR_SCATTER, 0);
2799 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_HDR_SEG_LEN, 0);
2800 rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
2804 * The legacy driver also sets TXOP_CTRL_CFG_RESERVED_TRUN_EN to 1
2805 * although it is reserved.
2807 rt2800_register_read(rt2x00dev, TXOP_CTRL_CFG, &reg);
2808 rt2x00_set_field32(&reg, TXOP_CTRL_CFG_TIMEOUT_TRUN_EN, 1);
2809 rt2x00_set_field32(&reg, TXOP_CTRL_CFG_AC_TRUN_EN, 1);
2810 rt2x00_set_field32(&reg, TXOP_CTRL_CFG_TXRATEGRP_TRUN_EN, 1);
2811 rt2x00_set_field32(&reg, TXOP_CTRL_CFG_USER_MODE_TRUN_EN, 1);
2812 rt2x00_set_field32(&reg, TXOP_CTRL_CFG_MIMO_PS_TRUN_EN, 1);
2813 rt2x00_set_field32(&reg, TXOP_CTRL_CFG_RESERVED_TRUN_EN, 1);
2814 rt2x00_set_field32(&reg, TXOP_CTRL_CFG_LSIG_TXOP_EN, 0);
2815 rt2x00_set_field32(&reg, TXOP_CTRL_CFG_EXT_CCA_EN, 0);
2816 rt2x00_set_field32(&reg, TXOP_CTRL_CFG_EXT_CCA_DLY, 88);
2817 rt2x00_set_field32(&reg, TXOP_CTRL_CFG_EXT_CWMIN, 0);
2818 rt2800_register_write(rt2x00dev, TXOP_CTRL_CFG, reg);
2820 rt2800_register_write(rt2x00dev, TXOP_HLDR_ET, 0x00000002);
2822 rt2800_register_read(rt2x00dev, TX_RTS_CFG, &reg);
2823 rt2x00_set_field32(&reg, TX_RTS_CFG_AUTO_RTS_RETRY_LIMIT, 32);
2824 rt2x00_set_field32(&reg, TX_RTS_CFG_RTS_THRES,
2825 IEEE80211_MAX_RTS_THRESHOLD);
2826 rt2x00_set_field32(&reg, TX_RTS_CFG_RTS_FBK_EN, 0);
2827 rt2800_register_write(rt2x00dev, TX_RTS_CFG, reg);
2829 rt2800_register_write(rt2x00dev, EXP_ACK_TIME, 0x002400ca);
2832 * Usually the CCK SIFS time should be set to 10 and the OFDM SIFS
2833 * time should be set to 16. However, the original Ralink driver uses
2834 * 16 for both and indeed using a value of 10 for CCK SIFS results in
2835 * connection problems with 11g + CTS protection. Hence, use the same
2836 * defaults as the Ralink driver: 16 for both, CCK and OFDM SIFS.
2838 rt2800_register_read(rt2x00dev, XIFS_TIME_CFG, &reg);
2839 rt2x00_set_field32(&reg, XIFS_TIME_CFG_CCKM_SIFS_TIME, 16);
2840 rt2x00_set_field32(&reg, XIFS_TIME_CFG_OFDM_SIFS_TIME, 16);
2841 rt2x00_set_field32(&reg, XIFS_TIME_CFG_OFDM_XIFS_TIME, 4);
2842 rt2x00_set_field32(&reg, XIFS_TIME_CFG_EIFS, 314);
2843 rt2x00_set_field32(&reg, XIFS_TIME_CFG_BB_RXEND_ENABLE, 1);
2844 rt2800_register_write(rt2x00dev, XIFS_TIME_CFG, reg);
2846 rt2800_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000003);
2849 * ASIC will keep garbage value after boot, clear encryption keys.
2851 for (i = 0; i < 4; i++)
2852 rt2800_register_write(rt2x00dev,
2853 SHARED_KEY_MODE_ENTRY(i), 0);
2855 for (i = 0; i < 256; i++) {
2856 rt2800_config_wcid(rt2x00dev, NULL, i);
2857 rt2800_delete_wcid_attr(rt2x00dev, i);
2858 rt2800_register_write(rt2x00dev, MAC_IVEIV_ENTRY(i), 0);
2862 * Clear all beacons
2864 rt2800_clear_beacon_register(rt2x00dev, HW_BEACON_BASE0);
2865 rt2800_clear_beacon_register(rt2x00dev, HW_BEACON_BASE1);
2866 rt2800_clear_beacon_register(rt2x00dev, HW_BEACON_BASE2);
2867 rt2800_clear_beacon_register(rt2x00dev, HW_BEACON_BASE3);
2868 rt2800_clear_beacon_register(rt2x00dev, HW_BEACON_BASE4);
2869 rt2800_clear_beacon_register(rt2x00dev, HW_BEACON_BASE5);
2870 rt2800_clear_beacon_register(rt2x00dev, HW_BEACON_BASE6);
2871 rt2800_clear_beacon_register(rt2x00dev, HW_BEACON_BASE7);
2873 if (rt2x00_is_usb(rt2x00dev)) {
2874 rt2800_register_read(rt2x00dev, US_CYC_CNT, &reg);
2875 rt2x00_set_field32(&reg, US_CYC_CNT_CLOCK_CYCLE, 30);
2876 rt2800_register_write(rt2x00dev, US_CYC_CNT, reg);
2877 } else if (rt2x00_is_pcie(rt2x00dev)) {
2878 rt2800_register_read(rt2x00dev, US_CYC_CNT, &reg);
2879 rt2x00_set_field32(&reg, US_CYC_CNT_CLOCK_CYCLE, 125);
2880 rt2800_register_write(rt2x00dev, US_CYC_CNT, reg);
2883 rt2800_register_read(rt2x00dev, HT_FBK_CFG0, &reg);
2884 rt2x00_set_field32(&reg, HT_FBK_CFG0_HTMCS0FBK, 0);
2885 rt2x00_set_field32(&reg, HT_FBK_CFG0_HTMCS1FBK, 0);
2886 rt2x00_set_field32(&reg, HT_FBK_CFG0_HTMCS2FBK, 1);
2887 rt2x00_set_field32(&reg, HT_FBK_CFG0_HTMCS3FBK, 2);
2888 rt2x00_set_field32(&reg, HT_FBK_CFG0_HTMCS4FBK, 3);
2889 rt2x00_set_field32(&reg, HT_FBK_CFG0_HTMCS5FBK, 4);
2890 rt2x00_set_field32(&reg, HT_FBK_CFG0_HTMCS6FBK, 5);
2891 rt2x00_set_field32(&reg, HT_FBK_CFG0_HTMCS7FBK, 6);
2892 rt2800_register_write(rt2x00dev, HT_FBK_CFG0, reg);
2894 rt2800_register_read(rt2x00dev, HT_FBK_CFG1, &reg);
2895 rt2x00_set_field32(&reg, HT_FBK_CFG1_HTMCS8FBK, 8);
2896 rt2x00_set_field32(&reg, HT_FBK_CFG1_HTMCS9FBK, 8);
2897 rt2x00_set_field32(&reg, HT_FBK_CFG1_HTMCS10FBK, 9);
2898 rt2x00_set_field32(&reg, HT_FBK_CFG1_HTMCS11FBK, 10);
2899 rt2x00_set_field32(&reg, HT_FBK_CFG1_HTMCS12FBK, 11);
2900 rt2x00_set_field32(&reg, HT_FBK_CFG1_HTMCS13FBK, 12);
2901 rt2x00_set_field32(&reg, HT_FBK_CFG1_HTMCS14FBK, 13);
2902 rt2x00_set_field32(&reg, HT_FBK_CFG1_HTMCS15FBK, 14);
2903 rt2800_register_write(rt2x00dev, HT_FBK_CFG1, reg);
2905 rt2800_register_read(rt2x00dev, LG_FBK_CFG0, &reg);
2906 rt2x00_set_field32(&reg, LG_FBK_CFG0_OFDMMCS0FBK, 8);
2907 rt2x00_set_field32(&reg, LG_FBK_CFG0_OFDMMCS1FBK, 8);
2908 rt2x00_set_field32(&reg, LG_FBK_CFG0_OFDMMCS2FBK, 9);
2909 rt2x00_set_field32(&reg, LG_FBK_CFG0_OFDMMCS3FBK, 10);
2910 rt2x00_set_field32(&reg, LG_FBK_CFG0_OFDMMCS4FBK, 11);
2911 rt2x00_set_field32(&reg, LG_FBK_CFG0_OFDMMCS5FBK, 12);
2912 rt2x00_set_field32(&reg, LG_FBK_CFG0_OFDMMCS6FBK, 13);
2913 rt2x00_set_field32(&reg, LG_FBK_CFG0_OFDMMCS7FBK, 14);
2914 rt2800_register_write(rt2x00dev, LG_FBK_CFG0, reg);
2916 rt2800_register_read(rt2x00dev, LG_FBK_CFG1, &reg);
2917 rt2x00_set_field32(&reg, LG_FBK_CFG0_CCKMCS0FBK, 0);
2918 rt2x00_set_field32(&reg, LG_FBK_CFG0_CCKMCS1FBK, 0);
2919 rt2x00_set_field32(&reg, LG_FBK_CFG0_CCKMCS2FBK, 1);
2920 rt2x00_set_field32(&reg, LG_FBK_CFG0_CCKMCS3FBK, 2);
2921 rt2800_register_write(rt2x00dev, LG_FBK_CFG1, reg);
2924 * Do not force the BA window size, we use the TXWI to set it
2926 rt2800_register_read(rt2x00dev, AMPDU_BA_WINSIZE, &reg);
2927 rt2x00_set_field32(&reg, AMPDU_BA_WINSIZE_FORCE_WINSIZE_ENABLE, 0);
2928 rt2x00_set_field32(&reg, AMPDU_BA_WINSIZE_FORCE_WINSIZE, 0);
2929 rt2800_register_write(rt2x00dev, AMPDU_BA_WINSIZE, reg);
2932 * We must clear the error counters.
2933 * These registers are cleared on read,
2934 * so we may pass a useless variable to store the value.
2936 rt2800_register_read(rt2x00dev, RX_STA_CNT0, &reg);
2937 rt2800_register_read(rt2x00dev, RX_STA_CNT1, &reg);
2938 rt2800_register_read(rt2x00dev, RX_STA_CNT2, &reg);
2939 rt2800_register_read(rt2x00dev, TX_STA_CNT0, &reg);
2940 rt2800_register_read(rt2x00dev, TX_STA_CNT1, &reg);
2941 rt2800_register_read(rt2x00dev, TX_STA_CNT2, &reg);
2944 * Setup leadtime for pre tbtt interrupt to 6ms
2946 rt2800_register_read(rt2x00dev, INT_TIMER_CFG, &reg);
2947 rt2x00_set_field32(&reg, INT_TIMER_CFG_PRE_TBTT_TIMER, 6 << 4);
2948 rt2800_register_write(rt2x00dev, INT_TIMER_CFG, reg);
2951 * Set up channel statistics timer
2953 rt2800_register_read(rt2x00dev, CH_TIME_CFG, &reg);
2954 rt2x00_set_field32(&reg, CH_TIME_CFG_EIFS_BUSY, 1);
2955 rt2x00_set_field32(&reg, CH_TIME_CFG_NAV_BUSY, 1);
2956 rt2x00_set_field32(&reg, CH_TIME_CFG_RX_BUSY, 1);
2957 rt2x00_set_field32(&reg, CH_TIME_CFG_TX_BUSY, 1);
2958 rt2x00_set_field32(&reg, CH_TIME_CFG_TMR_EN, 1);
2959 rt2800_register_write(rt2x00dev, CH_TIME_CFG, reg);
2961 return 0;
2964 static int rt2800_wait_bbp_rf_ready(struct rt2x00_dev *rt2x00dev)
2966 unsigned int i;
2967 u32 reg;
2969 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
2970 rt2800_register_read(rt2x00dev, MAC_STATUS_CFG, &reg);
2971 if (!rt2x00_get_field32(reg, MAC_STATUS_CFG_BBP_RF_BUSY))
2972 return 0;
2974 udelay(REGISTER_BUSY_DELAY);
2977 ERROR(rt2x00dev, "BBP/RF register access failed, aborting.\n");
2978 return -EACCES;
2981 static int rt2800_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
2983 unsigned int i;
2984 u8 value;
2987 * BBP was enabled after firmware was loaded,
2988 * but we need to reactivate it now.
2990 rt2800_register_write(rt2x00dev, H2M_BBP_AGENT, 0);
2991 rt2800_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
2992 msleep(1);
2994 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
2995 rt2800_bbp_read(rt2x00dev, 0, &value);
2996 if ((value != 0xff) && (value != 0x00))
2997 return 0;
2998 udelay(REGISTER_BUSY_DELAY);
3001 ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
3002 return -EACCES;
3005 static int rt2800_init_bbp(struct rt2x00_dev *rt2x00dev)
3007 unsigned int i;
3008 u16 eeprom;
3009 u8 reg_id;
3010 u8 value;
3012 if (unlikely(rt2800_wait_bbp_rf_ready(rt2x00dev) ||
3013 rt2800_wait_bbp_ready(rt2x00dev)))
3014 return -EACCES;
3016 if (rt2x00_rt(rt2x00dev, RT5390)) {
3017 rt2800_bbp_read(rt2x00dev, 4, &value);
3018 rt2x00_set_field8(&value, BBP4_MAC_IF_CTRL, 1);
3019 rt2800_bbp_write(rt2x00dev, 4, value);
3022 if (rt2800_is_305x_soc(rt2x00dev) ||
3023 rt2x00_rt(rt2x00dev, RT3572) ||
3024 rt2x00_rt(rt2x00dev, RT5390))
3025 rt2800_bbp_write(rt2x00dev, 31, 0x08);
3027 rt2800_bbp_write(rt2x00dev, 65, 0x2c);
3028 rt2800_bbp_write(rt2x00dev, 66, 0x38);
3030 if (rt2x00_rt(rt2x00dev, RT5390))
3031 rt2800_bbp_write(rt2x00dev, 68, 0x0b);
3033 if (rt2x00_rt_rev(rt2x00dev, RT2860, REV_RT2860C)) {
3034 rt2800_bbp_write(rt2x00dev, 69, 0x16);
3035 rt2800_bbp_write(rt2x00dev, 73, 0x12);
3036 } else if (rt2x00_rt(rt2x00dev, RT5390)) {
3037 rt2800_bbp_write(rt2x00dev, 69, 0x12);
3038 rt2800_bbp_write(rt2x00dev, 73, 0x13);
3039 rt2800_bbp_write(rt2x00dev, 75, 0x46);
3040 rt2800_bbp_write(rt2x00dev, 76, 0x28);
3041 rt2800_bbp_write(rt2x00dev, 77, 0x59);
3042 } else {
3043 rt2800_bbp_write(rt2x00dev, 69, 0x12);
3044 rt2800_bbp_write(rt2x00dev, 73, 0x10);
3047 rt2800_bbp_write(rt2x00dev, 70, 0x0a);
3049 if (rt2x00_rt(rt2x00dev, RT3070) ||
3050 rt2x00_rt(rt2x00dev, RT3071) ||
3051 rt2x00_rt(rt2x00dev, RT3090) ||
3052 rt2x00_rt(rt2x00dev, RT3390) ||
3053 rt2x00_rt(rt2x00dev, RT3572) ||
3054 rt2x00_rt(rt2x00dev, RT5390)) {
3055 rt2800_bbp_write(rt2x00dev, 79, 0x13);
3056 rt2800_bbp_write(rt2x00dev, 80, 0x05);
3057 rt2800_bbp_write(rt2x00dev, 81, 0x33);
3058 } else if (rt2800_is_305x_soc(rt2x00dev)) {
3059 rt2800_bbp_write(rt2x00dev, 78, 0x0e);
3060 rt2800_bbp_write(rt2x00dev, 80, 0x08);
3061 } else {
3062 rt2800_bbp_write(rt2x00dev, 81, 0x37);
3065 rt2800_bbp_write(rt2x00dev, 82, 0x62);
3066 if (rt2x00_rt(rt2x00dev, RT5390))
3067 rt2800_bbp_write(rt2x00dev, 83, 0x7a);
3068 else
3069 rt2800_bbp_write(rt2x00dev, 83, 0x6a);
3071 if (rt2x00_rt_rev(rt2x00dev, RT2860, REV_RT2860D))
3072 rt2800_bbp_write(rt2x00dev, 84, 0x19);
3073 else if (rt2x00_rt(rt2x00dev, RT5390))
3074 rt2800_bbp_write(rt2x00dev, 84, 0x9a);
3075 else
3076 rt2800_bbp_write(rt2x00dev, 84, 0x99);
3078 if (rt2x00_rt(rt2x00dev, RT5390))
3079 rt2800_bbp_write(rt2x00dev, 86, 0x38);
3080 else
3081 rt2800_bbp_write(rt2x00dev, 86, 0x00);
3083 rt2800_bbp_write(rt2x00dev, 91, 0x04);
3085 if (rt2x00_rt(rt2x00dev, RT5390))
3086 rt2800_bbp_write(rt2x00dev, 92, 0x02);
3087 else
3088 rt2800_bbp_write(rt2x00dev, 92, 0x00);
3090 if (rt2x00_rt_rev_gte(rt2x00dev, RT3070, REV_RT3070F) ||
3091 rt2x00_rt_rev_gte(rt2x00dev, RT3071, REV_RT3071E) ||
3092 rt2x00_rt_rev_gte(rt2x00dev, RT3090, REV_RT3090E) ||
3093 rt2x00_rt_rev_gte(rt2x00dev, RT3390, REV_RT3390E) ||
3094 rt2x00_rt(rt2x00dev, RT3572) ||
3095 rt2x00_rt(rt2x00dev, RT5390) ||
3096 rt2800_is_305x_soc(rt2x00dev))
3097 rt2800_bbp_write(rt2x00dev, 103, 0xc0);
3098 else
3099 rt2800_bbp_write(rt2x00dev, 103, 0x00);
3101 if (rt2x00_rt(rt2x00dev, RT5390))
3102 rt2800_bbp_write(rt2x00dev, 104, 0x92);
3104 if (rt2800_is_305x_soc(rt2x00dev))
3105 rt2800_bbp_write(rt2x00dev, 105, 0x01);
3106 else if (rt2x00_rt(rt2x00dev, RT5390))
3107 rt2800_bbp_write(rt2x00dev, 105, 0x3c);
3108 else
3109 rt2800_bbp_write(rt2x00dev, 105, 0x05);
3111 if (rt2x00_rt(rt2x00dev, RT5390))
3112 rt2800_bbp_write(rt2x00dev, 106, 0x03);
3113 else
3114 rt2800_bbp_write(rt2x00dev, 106, 0x35);
3116 if (rt2x00_rt(rt2x00dev, RT5390))
3117 rt2800_bbp_write(rt2x00dev, 128, 0x12);
3119 if (rt2x00_rt(rt2x00dev, RT3071) ||
3120 rt2x00_rt(rt2x00dev, RT3090) ||
3121 rt2x00_rt(rt2x00dev, RT3390) ||
3122 rt2x00_rt(rt2x00dev, RT3572) ||
3123 rt2x00_rt(rt2x00dev, RT5390)) {
3124 rt2800_bbp_read(rt2x00dev, 138, &value);
3126 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC_CONF0, &eeprom);
3127 if (rt2x00_get_field16(eeprom, EEPROM_NIC_CONF0_TXPATH) == 1)
3128 value |= 0x20;
3129 if (rt2x00_get_field16(eeprom, EEPROM_NIC_CONF0_RXPATH) == 1)
3130 value &= ~0x02;
3132 rt2800_bbp_write(rt2x00dev, 138, value);
3135 if (rt2x00_rt(rt2x00dev, RT5390)) {
3136 int ant, div_mode;
3138 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC_CONF1, &eeprom);
3139 div_mode = rt2x00_get_field16(eeprom,
3140 EEPROM_NIC_CONF1_ANT_DIVERSITY);
3141 ant = (div_mode == 3) ? 1 : 0;
3143 /* check if this is a Bluetooth combo card */
3144 if (test_bit(CAPABILITY_BT_COEXIST, &rt2x00dev->cap_flags)) {
3145 u32 reg;
3147 rt2800_register_read(rt2x00dev, GPIO_CTRL_CFG, &reg);
3148 rt2x00_set_field32(&reg, GPIO_CTRL_CFG_GPIOD_BIT3, 0);
3149 rt2x00_set_field32(&reg, GPIO_CTRL_CFG_GPIOD_BIT6, 0);
3150 rt2x00_set_field32(&reg, GPIO_CTRL_CFG_BIT3, 0);
3151 rt2x00_set_field32(&reg, GPIO_CTRL_CFG_BIT6, 0);
3152 if (ant == 0)
3153 rt2x00_set_field32(&reg, GPIO_CTRL_CFG_BIT3, 1);
3154 else if (ant == 1)
3155 rt2x00_set_field32(&reg, GPIO_CTRL_CFG_BIT6, 1);
3156 rt2800_register_write(rt2x00dev, GPIO_CTRL_CFG, reg);
3159 rt2800_bbp_read(rt2x00dev, 152, &value);
3160 if (ant == 0)
3161 rt2x00_set_field8(&value, BBP152_RX_DEFAULT_ANT, 1);
3162 else
3163 rt2x00_set_field8(&value, BBP152_RX_DEFAULT_ANT, 0);
3164 rt2800_bbp_write(rt2x00dev, 152, value);
3166 /* Init frequency calibration */
3167 rt2800_bbp_write(rt2x00dev, 142, 1);
3168 rt2800_bbp_write(rt2x00dev, 143, 57);
3171 for (i = 0; i < EEPROM_BBP_SIZE; i++) {
3172 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
3174 if (eeprom != 0xffff && eeprom != 0x0000) {
3175 reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
3176 value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
3177 rt2800_bbp_write(rt2x00dev, reg_id, value);
3181 return 0;
3184 static u8 rt2800_init_rx_filter(struct rt2x00_dev *rt2x00dev,
3185 bool bw40, u8 rfcsr24, u8 filter_target)
3187 unsigned int i;
3188 u8 bbp;
3189 u8 rfcsr;
3190 u8 passband;
3191 u8 stopband;
3192 u8 overtuned = 0;
3194 rt2800_rfcsr_write(rt2x00dev, 24, rfcsr24);
3196 rt2800_bbp_read(rt2x00dev, 4, &bbp);
3197 rt2x00_set_field8(&bbp, BBP4_BANDWIDTH, 2 * bw40);
3198 rt2800_bbp_write(rt2x00dev, 4, bbp);
3200 rt2800_rfcsr_read(rt2x00dev, 31, &rfcsr);
3201 rt2x00_set_field8(&rfcsr, RFCSR31_RX_H20M, bw40);
3202 rt2800_rfcsr_write(rt2x00dev, 31, rfcsr);
3204 rt2800_rfcsr_read(rt2x00dev, 22, &rfcsr);
3205 rt2x00_set_field8(&rfcsr, RFCSR22_BASEBAND_LOOPBACK, 1);
3206 rt2800_rfcsr_write(rt2x00dev, 22, rfcsr);
3209 * Set power & frequency of passband test tone
3211 rt2800_bbp_write(rt2x00dev, 24, 0);
3213 for (i = 0; i < 100; i++) {
3214 rt2800_bbp_write(rt2x00dev, 25, 0x90);
3215 msleep(1);
3217 rt2800_bbp_read(rt2x00dev, 55, &passband);
3218 if (passband)
3219 break;
3223 * Set power & frequency of stopband test tone
3225 rt2800_bbp_write(rt2x00dev, 24, 0x06);
3227 for (i = 0; i < 100; i++) {
3228 rt2800_bbp_write(rt2x00dev, 25, 0x90);
3229 msleep(1);
3231 rt2800_bbp_read(rt2x00dev, 55, &stopband);
3233 if ((passband - stopband) <= filter_target) {
3234 rfcsr24++;
3235 overtuned += ((passband - stopband) == filter_target);
3236 } else
3237 break;
3239 rt2800_rfcsr_write(rt2x00dev, 24, rfcsr24);
3242 rfcsr24 -= !!overtuned;
3244 rt2800_rfcsr_write(rt2x00dev, 24, rfcsr24);
3245 return rfcsr24;
3248 static int rt2800_init_rfcsr(struct rt2x00_dev *rt2x00dev)
3250 u8 rfcsr;
3251 u8 bbp;
3252 u32 reg;
3253 u16 eeprom;
3255 if (!rt2x00_rt(rt2x00dev, RT3070) &&
3256 !rt2x00_rt(rt2x00dev, RT3071) &&
3257 !rt2x00_rt(rt2x00dev, RT3090) &&
3258 !rt2x00_rt(rt2x00dev, RT3390) &&
3259 !rt2x00_rt(rt2x00dev, RT3572) &&
3260 !rt2x00_rt(rt2x00dev, RT5390) &&
3261 !rt2800_is_305x_soc(rt2x00dev))
3262 return 0;
3265 * Init RF calibration.
3267 if (rt2x00_rt(rt2x00dev, RT5390)) {
3268 rt2800_rfcsr_read(rt2x00dev, 2, &rfcsr);
3269 rt2x00_set_field8(&rfcsr, RFCSR2_RESCAL_EN, 1);
3270 rt2800_rfcsr_write(rt2x00dev, 2, rfcsr);
3271 msleep(1);
3272 rt2x00_set_field8(&rfcsr, RFCSR2_RESCAL_EN, 0);
3273 rt2800_rfcsr_write(rt2x00dev, 2, rfcsr);
3274 } else {
3275 rt2800_rfcsr_read(rt2x00dev, 30, &rfcsr);
3276 rt2x00_set_field8(&rfcsr, RFCSR30_RF_CALIBRATION, 1);
3277 rt2800_rfcsr_write(rt2x00dev, 30, rfcsr);
3278 msleep(1);
3279 rt2x00_set_field8(&rfcsr, RFCSR30_RF_CALIBRATION, 0);
3280 rt2800_rfcsr_write(rt2x00dev, 30, rfcsr);
3283 if (rt2x00_rt(rt2x00dev, RT3070) ||
3284 rt2x00_rt(rt2x00dev, RT3071) ||
3285 rt2x00_rt(rt2x00dev, RT3090)) {
3286 rt2800_rfcsr_write(rt2x00dev, 4, 0x40);
3287 rt2800_rfcsr_write(rt2x00dev, 5, 0x03);
3288 rt2800_rfcsr_write(rt2x00dev, 6, 0x02);
3289 rt2800_rfcsr_write(rt2x00dev, 7, 0x60);
3290 rt2800_rfcsr_write(rt2x00dev, 9, 0x0f);
3291 rt2800_rfcsr_write(rt2x00dev, 10, 0x41);
3292 rt2800_rfcsr_write(rt2x00dev, 11, 0x21);
3293 rt2800_rfcsr_write(rt2x00dev, 12, 0x7b);
3294 rt2800_rfcsr_write(rt2x00dev, 14, 0x90);
3295 rt2800_rfcsr_write(rt2x00dev, 15, 0x58);
3296 rt2800_rfcsr_write(rt2x00dev, 16, 0xb3);
3297 rt2800_rfcsr_write(rt2x00dev, 17, 0x92);
3298 rt2800_rfcsr_write(rt2x00dev, 18, 0x2c);
3299 rt2800_rfcsr_write(rt2x00dev, 19, 0x02);
3300 rt2800_rfcsr_write(rt2x00dev, 20, 0xba);
3301 rt2800_rfcsr_write(rt2x00dev, 21, 0xdb);
3302 rt2800_rfcsr_write(rt2x00dev, 24, 0x16);
3303 rt2800_rfcsr_write(rt2x00dev, 25, 0x01);
3304 rt2800_rfcsr_write(rt2x00dev, 29, 0x1f);
3305 } else if (rt2x00_rt(rt2x00dev, RT3390)) {
3306 rt2800_rfcsr_write(rt2x00dev, 0, 0xa0);
3307 rt2800_rfcsr_write(rt2x00dev, 1, 0xe1);
3308 rt2800_rfcsr_write(rt2x00dev, 2, 0xf1);
3309 rt2800_rfcsr_write(rt2x00dev, 3, 0x62);
3310 rt2800_rfcsr_write(rt2x00dev, 4, 0x40);
3311 rt2800_rfcsr_write(rt2x00dev, 5, 0x8b);
3312 rt2800_rfcsr_write(rt2x00dev, 6, 0x42);
3313 rt2800_rfcsr_write(rt2x00dev, 7, 0x34);
3314 rt2800_rfcsr_write(rt2x00dev, 8, 0x00);
3315 rt2800_rfcsr_write(rt2x00dev, 9, 0xc0);
3316 rt2800_rfcsr_write(rt2x00dev, 10, 0x61);
3317 rt2800_rfcsr_write(rt2x00dev, 11, 0x21);
3318 rt2800_rfcsr_write(rt2x00dev, 12, 0x3b);
3319 rt2800_rfcsr_write(rt2x00dev, 13, 0xe0);
3320 rt2800_rfcsr_write(rt2x00dev, 14, 0x90);
3321 rt2800_rfcsr_write(rt2x00dev, 15, 0x53);
3322 rt2800_rfcsr_write(rt2x00dev, 16, 0xe0);
3323 rt2800_rfcsr_write(rt2x00dev, 17, 0x94);
3324 rt2800_rfcsr_write(rt2x00dev, 18, 0x5c);
3325 rt2800_rfcsr_write(rt2x00dev, 19, 0x4a);
3326 rt2800_rfcsr_write(rt2x00dev, 20, 0xb2);
3327 rt2800_rfcsr_write(rt2x00dev, 21, 0xf6);
3328 rt2800_rfcsr_write(rt2x00dev, 22, 0x00);
3329 rt2800_rfcsr_write(rt2x00dev, 23, 0x14);
3330 rt2800_rfcsr_write(rt2x00dev, 24, 0x08);
3331 rt2800_rfcsr_write(rt2x00dev, 25, 0x3d);
3332 rt2800_rfcsr_write(rt2x00dev, 26, 0x85);
3333 rt2800_rfcsr_write(rt2x00dev, 27, 0x00);
3334 rt2800_rfcsr_write(rt2x00dev, 28, 0x41);
3335 rt2800_rfcsr_write(rt2x00dev, 29, 0x8f);
3336 rt2800_rfcsr_write(rt2x00dev, 30, 0x20);
3337 rt2800_rfcsr_write(rt2x00dev, 31, 0x0f);
3338 } else if (rt2x00_rt(rt2x00dev, RT3572)) {
3339 rt2800_rfcsr_write(rt2x00dev, 0, 0x70);
3340 rt2800_rfcsr_write(rt2x00dev, 1, 0x81);
3341 rt2800_rfcsr_write(rt2x00dev, 2, 0xf1);
3342 rt2800_rfcsr_write(rt2x00dev, 3, 0x02);
3343 rt2800_rfcsr_write(rt2x00dev, 4, 0x4c);
3344 rt2800_rfcsr_write(rt2x00dev, 5, 0x05);
3345 rt2800_rfcsr_write(rt2x00dev, 6, 0x4a);
3346 rt2800_rfcsr_write(rt2x00dev, 7, 0xd8);
3347 rt2800_rfcsr_write(rt2x00dev, 9, 0xc3);
3348 rt2800_rfcsr_write(rt2x00dev, 10, 0xf1);
3349 rt2800_rfcsr_write(rt2x00dev, 11, 0xb9);
3350 rt2800_rfcsr_write(rt2x00dev, 12, 0x70);
3351 rt2800_rfcsr_write(rt2x00dev, 13, 0x65);
3352 rt2800_rfcsr_write(rt2x00dev, 14, 0xa0);
3353 rt2800_rfcsr_write(rt2x00dev, 15, 0x53);
3354 rt2800_rfcsr_write(rt2x00dev, 16, 0x4c);
3355 rt2800_rfcsr_write(rt2x00dev, 17, 0x23);
3356 rt2800_rfcsr_write(rt2x00dev, 18, 0xac);
3357 rt2800_rfcsr_write(rt2x00dev, 19, 0x93);
3358 rt2800_rfcsr_write(rt2x00dev, 20, 0xb3);
3359 rt2800_rfcsr_write(rt2x00dev, 21, 0xd0);
3360 rt2800_rfcsr_write(rt2x00dev, 22, 0x00);
3361 rt2800_rfcsr_write(rt2x00dev, 23, 0x3c);
3362 rt2800_rfcsr_write(rt2x00dev, 24, 0x16);
3363 rt2800_rfcsr_write(rt2x00dev, 25, 0x15);
3364 rt2800_rfcsr_write(rt2x00dev, 26, 0x85);
3365 rt2800_rfcsr_write(rt2x00dev, 27, 0x00);
3366 rt2800_rfcsr_write(rt2x00dev, 28, 0x00);
3367 rt2800_rfcsr_write(rt2x00dev, 29, 0x9b);
3368 rt2800_rfcsr_write(rt2x00dev, 30, 0x09);
3369 rt2800_rfcsr_write(rt2x00dev, 31, 0x10);
3370 } else if (rt2800_is_305x_soc(rt2x00dev)) {
3371 rt2800_rfcsr_write(rt2x00dev, 0, 0x50);
3372 rt2800_rfcsr_write(rt2x00dev, 1, 0x01);
3373 rt2800_rfcsr_write(rt2x00dev, 2, 0xf7);
3374 rt2800_rfcsr_write(rt2x00dev, 3, 0x75);
3375 rt2800_rfcsr_write(rt2x00dev, 4, 0x40);
3376 rt2800_rfcsr_write(rt2x00dev, 5, 0x03);
3377 rt2800_rfcsr_write(rt2x00dev, 6, 0x02);
3378 rt2800_rfcsr_write(rt2x00dev, 7, 0x50);
3379 rt2800_rfcsr_write(rt2x00dev, 8, 0x39);
3380 rt2800_rfcsr_write(rt2x00dev, 9, 0x0f);
3381 rt2800_rfcsr_write(rt2x00dev, 10, 0x60);
3382 rt2800_rfcsr_write(rt2x00dev, 11, 0x21);
3383 rt2800_rfcsr_write(rt2x00dev, 12, 0x75);
3384 rt2800_rfcsr_write(rt2x00dev, 13, 0x75);
3385 rt2800_rfcsr_write(rt2x00dev, 14, 0x90);
3386 rt2800_rfcsr_write(rt2x00dev, 15, 0x58);
3387 rt2800_rfcsr_write(rt2x00dev, 16, 0xb3);
3388 rt2800_rfcsr_write(rt2x00dev, 17, 0x92);
3389 rt2800_rfcsr_write(rt2x00dev, 18, 0x2c);
3390 rt2800_rfcsr_write(rt2x00dev, 19, 0x02);
3391 rt2800_rfcsr_write(rt2x00dev, 20, 0xba);
3392 rt2800_rfcsr_write(rt2x00dev, 21, 0xdb);
3393 rt2800_rfcsr_write(rt2x00dev, 22, 0x00);
3394 rt2800_rfcsr_write(rt2x00dev, 23, 0x31);
3395 rt2800_rfcsr_write(rt2x00dev, 24, 0x08);
3396 rt2800_rfcsr_write(rt2x00dev, 25, 0x01);
3397 rt2800_rfcsr_write(rt2x00dev, 26, 0x25);
3398 rt2800_rfcsr_write(rt2x00dev, 27, 0x23);
3399 rt2800_rfcsr_write(rt2x00dev, 28, 0x13);
3400 rt2800_rfcsr_write(rt2x00dev, 29, 0x83);
3401 rt2800_rfcsr_write(rt2x00dev, 30, 0x00);
3402 rt2800_rfcsr_write(rt2x00dev, 31, 0x00);
3403 return 0;
3404 } else if (rt2x00_rt(rt2x00dev, RT5390)) {
3405 rt2800_rfcsr_write(rt2x00dev, 1, 0x0f);
3406 rt2800_rfcsr_write(rt2x00dev, 2, 0x80);
3407 rt2800_rfcsr_write(rt2x00dev, 3, 0x88);
3408 rt2800_rfcsr_write(rt2x00dev, 5, 0x10);
3409 if (rt2x00_rt_rev_gte(rt2x00dev, RT5390, REV_RT5390F))
3410 rt2800_rfcsr_write(rt2x00dev, 6, 0xe0);
3411 else
3412 rt2800_rfcsr_write(rt2x00dev, 6, 0xa0);
3413 rt2800_rfcsr_write(rt2x00dev, 7, 0x00);
3414 rt2800_rfcsr_write(rt2x00dev, 10, 0x53);
3415 rt2800_rfcsr_write(rt2x00dev, 11, 0x4a);
3416 rt2800_rfcsr_write(rt2x00dev, 12, 0xc6);
3417 rt2800_rfcsr_write(rt2x00dev, 13, 0x9f);
3418 rt2800_rfcsr_write(rt2x00dev, 14, 0x00);
3419 rt2800_rfcsr_write(rt2x00dev, 15, 0x00);
3420 rt2800_rfcsr_write(rt2x00dev, 16, 0x00);
3421 rt2800_rfcsr_write(rt2x00dev, 18, 0x03);
3422 rt2800_rfcsr_write(rt2x00dev, 19, 0x00);
3424 rt2800_rfcsr_write(rt2x00dev, 20, 0x00);
3425 rt2800_rfcsr_write(rt2x00dev, 21, 0x00);
3426 rt2800_rfcsr_write(rt2x00dev, 22, 0x20);
3427 rt2800_rfcsr_write(rt2x00dev, 23, 0x00);
3428 rt2800_rfcsr_write(rt2x00dev, 24, 0x00);
3429 if (rt2x00_rt_rev_gte(rt2x00dev, RT5390, REV_RT5390F))
3430 rt2800_rfcsr_write(rt2x00dev, 25, 0x80);
3431 else
3432 rt2800_rfcsr_write(rt2x00dev, 25, 0xc0);
3433 rt2800_rfcsr_write(rt2x00dev, 26, 0x00);
3434 rt2800_rfcsr_write(rt2x00dev, 27, 0x09);
3435 rt2800_rfcsr_write(rt2x00dev, 28, 0x00);
3436 rt2800_rfcsr_write(rt2x00dev, 29, 0x10);
3438 rt2800_rfcsr_write(rt2x00dev, 30, 0x00);
3439 rt2800_rfcsr_write(rt2x00dev, 31, 0x80);
3440 rt2800_rfcsr_write(rt2x00dev, 32, 0x80);
3441 rt2800_rfcsr_write(rt2x00dev, 33, 0x00);
3442 rt2800_rfcsr_write(rt2x00dev, 34, 0x07);
3443 rt2800_rfcsr_write(rt2x00dev, 35, 0x12);
3444 rt2800_rfcsr_write(rt2x00dev, 36, 0x00);
3445 rt2800_rfcsr_write(rt2x00dev, 37, 0x08);
3446 rt2800_rfcsr_write(rt2x00dev, 38, 0x85);
3447 rt2800_rfcsr_write(rt2x00dev, 39, 0x1b);
3449 if (rt2x00_rt_rev_gte(rt2x00dev, RT5390, REV_RT5390F))
3450 rt2800_rfcsr_write(rt2x00dev, 40, 0x0b);
3451 else
3452 rt2800_rfcsr_write(rt2x00dev, 40, 0x4b);
3453 rt2800_rfcsr_write(rt2x00dev, 41, 0xbb);
3454 rt2800_rfcsr_write(rt2x00dev, 42, 0xd2);
3455 rt2800_rfcsr_write(rt2x00dev, 43, 0x9a);
3456 rt2800_rfcsr_write(rt2x00dev, 44, 0x0e);
3457 rt2800_rfcsr_write(rt2x00dev, 45, 0xa2);
3458 if (rt2x00_rt_rev_gte(rt2x00dev, RT5390, REV_RT5390F))
3459 rt2800_rfcsr_write(rt2x00dev, 46, 0x73);
3460 else
3461 rt2800_rfcsr_write(rt2x00dev, 46, 0x7b);
3462 rt2800_rfcsr_write(rt2x00dev, 47, 0x00);
3463 rt2800_rfcsr_write(rt2x00dev, 48, 0x10);
3464 rt2800_rfcsr_write(rt2x00dev, 49, 0x94);
3466 rt2800_rfcsr_write(rt2x00dev, 52, 0x38);
3467 if (rt2x00_rt_rev_gte(rt2x00dev, RT5390, REV_RT5390F))
3468 rt2800_rfcsr_write(rt2x00dev, 53, 0x00);
3469 else
3470 rt2800_rfcsr_write(rt2x00dev, 53, 0x84);
3471 rt2800_rfcsr_write(rt2x00dev, 54, 0x78);
3472 rt2800_rfcsr_write(rt2x00dev, 55, 0x44);
3473 rt2800_rfcsr_write(rt2x00dev, 56, 0x22);
3474 rt2800_rfcsr_write(rt2x00dev, 57, 0x80);
3475 rt2800_rfcsr_write(rt2x00dev, 58, 0x7f);
3476 rt2800_rfcsr_write(rt2x00dev, 59, 0x63);
3478 rt2800_rfcsr_write(rt2x00dev, 60, 0x45);
3479 if (rt2x00_rt_rev_gte(rt2x00dev, RT5390, REV_RT5390F))
3480 rt2800_rfcsr_write(rt2x00dev, 61, 0xd1);
3481 else
3482 rt2800_rfcsr_write(rt2x00dev, 61, 0xdd);
3483 rt2800_rfcsr_write(rt2x00dev, 62, 0x00);
3484 rt2800_rfcsr_write(rt2x00dev, 63, 0x00);
3487 if (rt2x00_rt_rev_lt(rt2x00dev, RT3070, REV_RT3070F)) {
3488 rt2800_register_read(rt2x00dev, LDO_CFG0, &reg);
3489 rt2x00_set_field32(&reg, LDO_CFG0_BGSEL, 1);
3490 rt2x00_set_field32(&reg, LDO_CFG0_LDO_CORE_VLEVEL, 3);
3491 rt2800_register_write(rt2x00dev, LDO_CFG0, reg);
3492 } else if (rt2x00_rt(rt2x00dev, RT3071) ||
3493 rt2x00_rt(rt2x00dev, RT3090)) {
3494 rt2800_rfcsr_write(rt2x00dev, 31, 0x14);
3496 rt2800_rfcsr_read(rt2x00dev, 6, &rfcsr);
3497 rt2x00_set_field8(&rfcsr, RFCSR6_R2, 1);
3498 rt2800_rfcsr_write(rt2x00dev, 6, rfcsr);
3500 rt2800_register_read(rt2x00dev, LDO_CFG0, &reg);
3501 rt2x00_set_field32(&reg, LDO_CFG0_BGSEL, 1);
3502 if (rt2x00_rt_rev_lt(rt2x00dev, RT3071, REV_RT3071E) ||
3503 rt2x00_rt_rev_lt(rt2x00dev, RT3090, REV_RT3090E)) {
3504 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC_CONF1, &eeprom);
3505 if (rt2x00_get_field16(eeprom, EEPROM_NIC_CONF1_DAC_TEST))
3506 rt2x00_set_field32(&reg, LDO_CFG0_LDO_CORE_VLEVEL, 3);
3507 else
3508 rt2x00_set_field32(&reg, LDO_CFG0_LDO_CORE_VLEVEL, 0);
3510 rt2800_register_write(rt2x00dev, LDO_CFG0, reg);
3512 rt2800_register_read(rt2x00dev, GPIO_SWITCH, &reg);
3513 rt2x00_set_field32(&reg, GPIO_SWITCH_5, 0);
3514 rt2800_register_write(rt2x00dev, GPIO_SWITCH, reg);
3515 } else if (rt2x00_rt(rt2x00dev, RT3390)) {
3516 rt2800_register_read(rt2x00dev, GPIO_SWITCH, &reg);
3517 rt2x00_set_field32(&reg, GPIO_SWITCH_5, 0);
3518 rt2800_register_write(rt2x00dev, GPIO_SWITCH, reg);
3519 } else if (rt2x00_rt(rt2x00dev, RT3572)) {
3520 rt2800_rfcsr_read(rt2x00dev, 6, &rfcsr);
3521 rt2x00_set_field8(&rfcsr, RFCSR6_R2, 1);
3522 rt2800_rfcsr_write(rt2x00dev, 6, rfcsr);
3524 rt2800_register_read(rt2x00dev, LDO_CFG0, &reg);
3525 rt2x00_set_field32(&reg, LDO_CFG0_LDO_CORE_VLEVEL, 3);
3526 rt2x00_set_field32(&reg, LDO_CFG0_BGSEL, 1);
3527 rt2800_register_write(rt2x00dev, LDO_CFG0, reg);
3528 msleep(1);
3529 rt2800_register_read(rt2x00dev, LDO_CFG0, &reg);
3530 rt2x00_set_field32(&reg, LDO_CFG0_BGSEL, 1);
3531 rt2800_register_write(rt2x00dev, LDO_CFG0, reg);
3535 * Set RX Filter calibration for 20MHz and 40MHz
3537 if (rt2x00_rt(rt2x00dev, RT3070)) {
3538 rt2x00dev->calibration[0] =
3539 rt2800_init_rx_filter(rt2x00dev, false, 0x07, 0x16);
3540 rt2x00dev->calibration[1] =
3541 rt2800_init_rx_filter(rt2x00dev, true, 0x27, 0x19);
3542 } else if (rt2x00_rt(rt2x00dev, RT3071) ||
3543 rt2x00_rt(rt2x00dev, RT3090) ||
3544 rt2x00_rt(rt2x00dev, RT3390) ||
3545 rt2x00_rt(rt2x00dev, RT3572)) {
3546 rt2x00dev->calibration[0] =
3547 rt2800_init_rx_filter(rt2x00dev, false, 0x07, 0x13);
3548 rt2x00dev->calibration[1] =
3549 rt2800_init_rx_filter(rt2x00dev, true, 0x27, 0x15);
3552 if (!rt2x00_rt(rt2x00dev, RT5390)) {
3554 * Set back to initial state
3556 rt2800_bbp_write(rt2x00dev, 24, 0);
3558 rt2800_rfcsr_read(rt2x00dev, 22, &rfcsr);
3559 rt2x00_set_field8(&rfcsr, RFCSR22_BASEBAND_LOOPBACK, 0);
3560 rt2800_rfcsr_write(rt2x00dev, 22, rfcsr);
3563 * Set BBP back to BW20
3565 rt2800_bbp_read(rt2x00dev, 4, &bbp);
3566 rt2x00_set_field8(&bbp, BBP4_BANDWIDTH, 0);
3567 rt2800_bbp_write(rt2x00dev, 4, bbp);
3570 if (rt2x00_rt_rev_lt(rt2x00dev, RT3070, REV_RT3070F) ||
3571 rt2x00_rt_rev_lt(rt2x00dev, RT3071, REV_RT3071E) ||
3572 rt2x00_rt_rev_lt(rt2x00dev, RT3090, REV_RT3090E) ||
3573 rt2x00_rt_rev_lt(rt2x00dev, RT3390, REV_RT3390E))
3574 rt2800_rfcsr_write(rt2x00dev, 27, 0x03);
3576 rt2800_register_read(rt2x00dev, OPT_14_CSR, &reg);
3577 rt2x00_set_field32(&reg, OPT_14_CSR_BIT0, 1);
3578 rt2800_register_write(rt2x00dev, OPT_14_CSR, reg);
3580 if (!rt2x00_rt(rt2x00dev, RT5390)) {
3581 rt2800_rfcsr_read(rt2x00dev, 17, &rfcsr);
3582 rt2x00_set_field8(&rfcsr, RFCSR17_TX_LO1_EN, 0);
3583 if (rt2x00_rt(rt2x00dev, RT3070) ||
3584 rt2x00_rt_rev_lt(rt2x00dev, RT3071, REV_RT3071E) ||
3585 rt2x00_rt_rev_lt(rt2x00dev, RT3090, REV_RT3090E) ||
3586 rt2x00_rt_rev_lt(rt2x00dev, RT3390, REV_RT3390E)) {
3587 if (!test_bit(CAPABILITY_EXTERNAL_LNA_BG,
3588 &rt2x00dev->cap_flags))
3589 rt2x00_set_field8(&rfcsr, RFCSR17_R, 1);
3591 rt2x00_eeprom_read(rt2x00dev, EEPROM_TXMIXER_GAIN_BG, &eeprom);
3592 if (rt2x00_get_field16(eeprom, EEPROM_TXMIXER_GAIN_BG_VAL) >= 1)
3593 rt2x00_set_field8(&rfcsr, RFCSR17_TXMIXER_GAIN,
3594 rt2x00_get_field16(eeprom,
3595 EEPROM_TXMIXER_GAIN_BG_VAL));
3596 rt2800_rfcsr_write(rt2x00dev, 17, rfcsr);
3599 if (rt2x00_rt(rt2x00dev, RT3090)) {
3600 rt2800_bbp_read(rt2x00dev, 138, &bbp);
3602 /* Turn off unused DAC1 and ADC1 to reduce power consumption */
3603 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC_CONF0, &eeprom);
3604 if (rt2x00_get_field16(eeprom, EEPROM_NIC_CONF0_RXPATH) == 1)
3605 rt2x00_set_field8(&bbp, BBP138_RX_ADC1, 0);
3606 if (rt2x00_get_field16(eeprom, EEPROM_NIC_CONF0_TXPATH) == 1)
3607 rt2x00_set_field8(&bbp, BBP138_TX_DAC1, 1);
3609 rt2800_bbp_write(rt2x00dev, 138, bbp);
3612 if (rt2x00_rt(rt2x00dev, RT3071) ||
3613 rt2x00_rt(rt2x00dev, RT3090) ||
3614 rt2x00_rt(rt2x00dev, RT3390)) {
3615 rt2800_rfcsr_read(rt2x00dev, 1, &rfcsr);
3616 rt2x00_set_field8(&rfcsr, RFCSR1_RF_BLOCK_EN, 1);
3617 rt2x00_set_field8(&rfcsr, RFCSR1_RX0_PD, 0);
3618 rt2x00_set_field8(&rfcsr, RFCSR1_TX0_PD, 0);
3619 rt2x00_set_field8(&rfcsr, RFCSR1_RX1_PD, 1);
3620 rt2x00_set_field8(&rfcsr, RFCSR1_TX1_PD, 1);
3621 rt2800_rfcsr_write(rt2x00dev, 1, rfcsr);
3623 rt2800_rfcsr_read(rt2x00dev, 15, &rfcsr);
3624 rt2x00_set_field8(&rfcsr, RFCSR15_TX_LO2_EN, 0);
3625 rt2800_rfcsr_write(rt2x00dev, 15, rfcsr);
3627 rt2800_rfcsr_read(rt2x00dev, 20, &rfcsr);
3628 rt2x00_set_field8(&rfcsr, RFCSR20_RX_LO1_EN, 0);
3629 rt2800_rfcsr_write(rt2x00dev, 20, rfcsr);
3631 rt2800_rfcsr_read(rt2x00dev, 21, &rfcsr);
3632 rt2x00_set_field8(&rfcsr, RFCSR21_RX_LO2_EN, 0);
3633 rt2800_rfcsr_write(rt2x00dev, 21, rfcsr);
3636 if (rt2x00_rt(rt2x00dev, RT3070)) {
3637 rt2800_rfcsr_read(rt2x00dev, 27, &rfcsr);
3638 if (rt2x00_rt_rev_lt(rt2x00dev, RT3070, REV_RT3070F))
3639 rt2x00_set_field8(&rfcsr, RFCSR27_R1, 3);
3640 else
3641 rt2x00_set_field8(&rfcsr, RFCSR27_R1, 0);
3642 rt2x00_set_field8(&rfcsr, RFCSR27_R2, 0);
3643 rt2x00_set_field8(&rfcsr, RFCSR27_R3, 0);
3644 rt2x00_set_field8(&rfcsr, RFCSR27_R4, 0);
3645 rt2800_rfcsr_write(rt2x00dev, 27, rfcsr);
3648 if (rt2x00_rt(rt2x00dev, RT5390)) {
3649 rt2800_rfcsr_read(rt2x00dev, 38, &rfcsr);
3650 rt2x00_set_field8(&rfcsr, RFCSR38_RX_LO1_EN, 0);
3651 rt2800_rfcsr_write(rt2x00dev, 38, rfcsr);
3653 rt2800_rfcsr_read(rt2x00dev, 39, &rfcsr);
3654 rt2x00_set_field8(&rfcsr, RFCSR39_RX_LO2_EN, 0);
3655 rt2800_rfcsr_write(rt2x00dev, 39, rfcsr);
3657 rt2800_rfcsr_read(rt2x00dev, 30, &rfcsr);
3658 rt2x00_set_field8(&rfcsr, RFCSR30_RX_VCM, 2);
3659 rt2800_rfcsr_write(rt2x00dev, 30, rfcsr);
3662 return 0;
3665 int rt2800_enable_radio(struct rt2x00_dev *rt2x00dev)
3667 u32 reg;
3668 u16 word;
3671 * Initialize all registers.
3673 if (unlikely(rt2800_wait_wpdma_ready(rt2x00dev) ||
3674 rt2800_init_registers(rt2x00dev) ||
3675 rt2800_init_bbp(rt2x00dev) ||
3676 rt2800_init_rfcsr(rt2x00dev)))
3677 return -EIO;
3680 * Send signal to firmware during boot time.
3682 rt2800_mcu_request(rt2x00dev, MCU_BOOT_SIGNAL, 0, 0, 0);
3684 if (rt2x00_is_usb(rt2x00dev) &&
3685 (rt2x00_rt(rt2x00dev, RT3070) ||
3686 rt2x00_rt(rt2x00dev, RT3071) ||
3687 rt2x00_rt(rt2x00dev, RT3572))) {
3688 udelay(200);
3689 rt2800_mcu_request(rt2x00dev, MCU_CURRENT, 0, 0, 0);
3690 udelay(10);
3694 * Enable RX.
3696 rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
3697 rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_TX, 1);
3698 rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 0);
3699 rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
3701 udelay(50);
3703 rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
3704 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 1);
3705 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 1);
3706 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_WP_DMA_BURST_SIZE, 2);
3707 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
3708 rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
3710 rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
3711 rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_TX, 1);
3712 rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 1);
3713 rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
3716 * Initialize LED control
3718 rt2x00_eeprom_read(rt2x00dev, EEPROM_LED_AG_CONF, &word);
3719 rt2800_mcu_request(rt2x00dev, MCU_LED_AG_CONF, 0xff,
3720 word & 0xff, (word >> 8) & 0xff);
3722 rt2x00_eeprom_read(rt2x00dev, EEPROM_LED_ACT_CONF, &word);
3723 rt2800_mcu_request(rt2x00dev, MCU_LED_ACT_CONF, 0xff,
3724 word & 0xff, (word >> 8) & 0xff);
3726 rt2x00_eeprom_read(rt2x00dev, EEPROM_LED_POLARITY, &word);
3727 rt2800_mcu_request(rt2x00dev, MCU_LED_LED_POLARITY, 0xff,
3728 word & 0xff, (word >> 8) & 0xff);
3730 return 0;
3732 EXPORT_SYMBOL_GPL(rt2800_enable_radio);
3734 void rt2800_disable_radio(struct rt2x00_dev *rt2x00dev)
3736 u32 reg;
3738 rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
3739 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
3740 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
3741 rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
3743 /* Wait for DMA, ignore error */
3744 rt2800_wait_wpdma_ready(rt2x00dev);
3746 rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
3747 rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_TX, 0);
3748 rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 0);
3749 rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
3751 EXPORT_SYMBOL_GPL(rt2800_disable_radio);
3753 int rt2800_efuse_detect(struct rt2x00_dev *rt2x00dev)
3755 u32 reg;
3757 rt2800_register_read(rt2x00dev, EFUSE_CTRL, &reg);
3759 return rt2x00_get_field32(reg, EFUSE_CTRL_PRESENT);
3761 EXPORT_SYMBOL_GPL(rt2800_efuse_detect);
3763 static void rt2800_efuse_read(struct rt2x00_dev *rt2x00dev, unsigned int i)
3765 u32 reg;
3767 mutex_lock(&rt2x00dev->csr_mutex);
3769 rt2800_register_read_lock(rt2x00dev, EFUSE_CTRL, &reg);
3770 rt2x00_set_field32(&reg, EFUSE_CTRL_ADDRESS_IN, i);
3771 rt2x00_set_field32(&reg, EFUSE_CTRL_MODE, 0);
3772 rt2x00_set_field32(&reg, EFUSE_CTRL_KICK, 1);
3773 rt2800_register_write_lock(rt2x00dev, EFUSE_CTRL, reg);
3775 /* Wait until the EEPROM has been loaded */
3776 rt2800_regbusy_read(rt2x00dev, EFUSE_CTRL, EFUSE_CTRL_KICK, &reg);
3778 /* Apparently the data is read from end to start */
3779 rt2800_register_read_lock(rt2x00dev, EFUSE_DATA3, &reg);
3780 /* The returned value is in CPU order, but eeprom is le */
3781 *(u32 *)&rt2x00dev->eeprom[i] = cpu_to_le32(reg);
3782 rt2800_register_read_lock(rt2x00dev, EFUSE_DATA2, &reg);
3783 *(u32 *)&rt2x00dev->eeprom[i + 2] = cpu_to_le32(reg);
3784 rt2800_register_read_lock(rt2x00dev, EFUSE_DATA1, &reg);
3785 *(u32 *)&rt2x00dev->eeprom[i + 4] = cpu_to_le32(reg);
3786 rt2800_register_read_lock(rt2x00dev, EFUSE_DATA0, &reg);
3787 *(u32 *)&rt2x00dev->eeprom[i + 6] = cpu_to_le32(reg);
3789 mutex_unlock(&rt2x00dev->csr_mutex);
3792 void rt2800_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
3794 unsigned int i;
3796 for (i = 0; i < EEPROM_SIZE / sizeof(u16); i += 8)
3797 rt2800_efuse_read(rt2x00dev, i);
3799 EXPORT_SYMBOL_GPL(rt2800_read_eeprom_efuse);
3801 int rt2800_validate_eeprom(struct rt2x00_dev *rt2x00dev)
3803 u16 word;
3804 u8 *mac;
3805 u8 default_lna_gain;
3808 * Start validation of the data that has been read.
3810 mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
3811 if (!is_valid_ether_addr(mac)) {
3812 random_ether_addr(mac);
3813 EEPROM(rt2x00dev, "MAC: %pM\n", mac);
3816 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC_CONF0, &word);
3817 if (word == 0xffff) {
3818 rt2x00_set_field16(&word, EEPROM_NIC_CONF0_RXPATH, 2);
3819 rt2x00_set_field16(&word, EEPROM_NIC_CONF0_TXPATH, 1);
3820 rt2x00_set_field16(&word, EEPROM_NIC_CONF0_RF_TYPE, RF2820);
3821 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC_CONF0, word);
3822 EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
3823 } else if (rt2x00_rt(rt2x00dev, RT2860) ||
3824 rt2x00_rt(rt2x00dev, RT2872)) {
3826 * There is a max of 2 RX streams for RT28x0 series
3828 if (rt2x00_get_field16(word, EEPROM_NIC_CONF0_RXPATH) > 2)
3829 rt2x00_set_field16(&word, EEPROM_NIC_CONF0_RXPATH, 2);
3830 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC_CONF0, word);
3833 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC_CONF1, &word);
3834 if (word == 0xffff) {
3835 rt2x00_set_field16(&word, EEPROM_NIC_CONF1_HW_RADIO, 0);
3836 rt2x00_set_field16(&word, EEPROM_NIC_CONF1_EXTERNAL_TX_ALC, 0);
3837 rt2x00_set_field16(&word, EEPROM_NIC_CONF1_EXTERNAL_LNA_2G, 0);
3838 rt2x00_set_field16(&word, EEPROM_NIC_CONF1_EXTERNAL_LNA_5G, 0);
3839 rt2x00_set_field16(&word, EEPROM_NIC_CONF1_CARDBUS_ACCEL, 0);
3840 rt2x00_set_field16(&word, EEPROM_NIC_CONF1_BW40M_SB_2G, 0);
3841 rt2x00_set_field16(&word, EEPROM_NIC_CONF1_BW40M_SB_5G, 0);
3842 rt2x00_set_field16(&word, EEPROM_NIC_CONF1_WPS_PBC, 0);
3843 rt2x00_set_field16(&word, EEPROM_NIC_CONF1_BW40M_2G, 0);
3844 rt2x00_set_field16(&word, EEPROM_NIC_CONF1_BW40M_5G, 0);
3845 rt2x00_set_field16(&word, EEPROM_NIC_CONF1_BROADBAND_EXT_LNA, 0);
3846 rt2x00_set_field16(&word, EEPROM_NIC_CONF1_ANT_DIVERSITY, 0);
3847 rt2x00_set_field16(&word, EEPROM_NIC_CONF1_INTERNAL_TX_ALC, 0);
3848 rt2x00_set_field16(&word, EEPROM_NIC_CONF1_BT_COEXIST, 0);
3849 rt2x00_set_field16(&word, EEPROM_NIC_CONF1_DAC_TEST, 0);
3850 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC_CONF1, word);
3851 EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
3854 rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &word);
3855 if ((word & 0x00ff) == 0x00ff) {
3856 rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0);
3857 rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
3858 EEPROM(rt2x00dev, "Freq: 0x%04x\n", word);
3860 if ((word & 0xff00) == 0xff00) {
3861 rt2x00_set_field16(&word, EEPROM_FREQ_LED_MODE,
3862 LED_MODE_TXRX_ACTIVITY);
3863 rt2x00_set_field16(&word, EEPROM_FREQ_LED_POLARITY, 0);
3864 rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
3865 rt2x00_eeprom_write(rt2x00dev, EEPROM_LED_AG_CONF, 0x5555);
3866 rt2x00_eeprom_write(rt2x00dev, EEPROM_LED_ACT_CONF, 0x2221);
3867 rt2x00_eeprom_write(rt2x00dev, EEPROM_LED_POLARITY, 0xa9f8);
3868 EEPROM(rt2x00dev, "Led Mode: 0x%04x\n", word);
3872 * During the LNA validation we are going to use
3873 * lna0 as correct value. Note that EEPROM_LNA
3874 * is never validated.
3876 rt2x00_eeprom_read(rt2x00dev, EEPROM_LNA, &word);
3877 default_lna_gain = rt2x00_get_field16(word, EEPROM_LNA_A0);
3879 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_BG, &word);
3880 if (abs(rt2x00_get_field16(word, EEPROM_RSSI_BG_OFFSET0)) > 10)
3881 rt2x00_set_field16(&word, EEPROM_RSSI_BG_OFFSET0, 0);
3882 if (abs(rt2x00_get_field16(word, EEPROM_RSSI_BG_OFFSET1)) > 10)
3883 rt2x00_set_field16(&word, EEPROM_RSSI_BG_OFFSET1, 0);
3884 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_BG, word);
3886 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_BG2, &word);
3887 if (abs(rt2x00_get_field16(word, EEPROM_RSSI_BG2_OFFSET2)) > 10)
3888 rt2x00_set_field16(&word, EEPROM_RSSI_BG2_OFFSET2, 0);
3889 if (rt2x00_get_field16(word, EEPROM_RSSI_BG2_LNA_A1) == 0x00 ||
3890 rt2x00_get_field16(word, EEPROM_RSSI_BG2_LNA_A1) == 0xff)
3891 rt2x00_set_field16(&word, EEPROM_RSSI_BG2_LNA_A1,
3892 default_lna_gain);
3893 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_BG2, word);
3895 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_A, &word);
3896 if (abs(rt2x00_get_field16(word, EEPROM_RSSI_A_OFFSET0)) > 10)
3897 rt2x00_set_field16(&word, EEPROM_RSSI_A_OFFSET0, 0);
3898 if (abs(rt2x00_get_field16(word, EEPROM_RSSI_A_OFFSET1)) > 10)
3899 rt2x00_set_field16(&word, EEPROM_RSSI_A_OFFSET1, 0);
3900 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_A, word);
3902 rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_A2, &word);
3903 if (abs(rt2x00_get_field16(word, EEPROM_RSSI_A2_OFFSET2)) > 10)
3904 rt2x00_set_field16(&word, EEPROM_RSSI_A2_OFFSET2, 0);
3905 if (rt2x00_get_field16(word, EEPROM_RSSI_A2_LNA_A2) == 0x00 ||
3906 rt2x00_get_field16(word, EEPROM_RSSI_A2_LNA_A2) == 0xff)
3907 rt2x00_set_field16(&word, EEPROM_RSSI_A2_LNA_A2,
3908 default_lna_gain);
3909 rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_A2, word);
3911 return 0;
3913 EXPORT_SYMBOL_GPL(rt2800_validate_eeprom);
3915 int rt2800_init_eeprom(struct rt2x00_dev *rt2x00dev)
3917 u32 reg;
3918 u16 value;
3919 u16 eeprom;
3922 * Read EEPROM word for configuration.
3924 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC_CONF0, &eeprom);
3927 * Identify RF chipset by EEPROM value
3928 * RT28xx/RT30xx: defined in "EEPROM_NIC_CONF0_RF_TYPE" field
3929 * RT53xx: defined in "EEPROM_CHIP_ID" field
3931 rt2800_register_read(rt2x00dev, MAC_CSR0, &reg);
3932 if (rt2x00_get_field32(reg, MAC_CSR0_CHIPSET) == RT5390)
3933 rt2x00_eeprom_read(rt2x00dev, EEPROM_CHIP_ID, &value);
3934 else
3935 value = rt2x00_get_field16(eeprom, EEPROM_NIC_CONF0_RF_TYPE);
3937 rt2x00_set_chip(rt2x00dev, rt2x00_get_field32(reg, MAC_CSR0_CHIPSET),
3938 value, rt2x00_get_field32(reg, MAC_CSR0_REVISION));
3940 switch (rt2x00dev->chip.rt) {
3941 case RT2860:
3942 case RT2872:
3943 case RT2883:
3944 case RT3070:
3945 case RT3071:
3946 case RT3090:
3947 case RT3390:
3948 case RT3572:
3949 case RT5390:
3950 break;
3951 default:
3952 ERROR(rt2x00dev, "Invalid RT chipset detected.\n");
3953 return -ENODEV;
3956 switch (rt2x00dev->chip.rf) {
3957 case RF2820:
3958 case RF2850:
3959 case RF2720:
3960 case RF2750:
3961 case RF3020:
3962 case RF2020:
3963 case RF3021:
3964 case RF3022:
3965 case RF3052:
3966 case RF3320:
3967 case RF5370:
3968 case RF5390:
3969 break;
3970 default:
3971 ERROR(rt2x00dev, "Invalid RF chipset 0x%x detected.\n",
3972 rt2x00dev->chip.rf);
3973 return -ENODEV;
3977 * Identify default antenna configuration.
3979 rt2x00dev->default_ant.tx_chain_num =
3980 rt2x00_get_field16(eeprom, EEPROM_NIC_CONF0_TXPATH);
3981 rt2x00dev->default_ant.rx_chain_num =
3982 rt2x00_get_field16(eeprom, EEPROM_NIC_CONF0_RXPATH);
3984 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC_CONF1, &eeprom);
3986 if (rt2x00_rt(rt2x00dev, RT3070) ||
3987 rt2x00_rt(rt2x00dev, RT3090) ||
3988 rt2x00_rt(rt2x00dev, RT3390)) {
3989 value = rt2x00_get_field16(eeprom,
3990 EEPROM_NIC_CONF1_ANT_DIVERSITY);
3991 switch (value) {
3992 case 0:
3993 case 1:
3994 case 2:
3995 rt2x00dev->default_ant.tx = ANTENNA_A;
3996 rt2x00dev->default_ant.rx = ANTENNA_A;
3997 break;
3998 case 3:
3999 rt2x00dev->default_ant.tx = ANTENNA_A;
4000 rt2x00dev->default_ant.rx = ANTENNA_B;
4001 break;
4003 } else {
4004 rt2x00dev->default_ant.tx = ANTENNA_A;
4005 rt2x00dev->default_ant.rx = ANTENNA_A;
4009 * Determine external LNA informations.
4011 if (rt2x00_get_field16(eeprom, EEPROM_NIC_CONF1_EXTERNAL_LNA_5G))
4012 __set_bit(CAPABILITY_EXTERNAL_LNA_A, &rt2x00dev->cap_flags);
4013 if (rt2x00_get_field16(eeprom, EEPROM_NIC_CONF1_EXTERNAL_LNA_2G))
4014 __set_bit(CAPABILITY_EXTERNAL_LNA_BG, &rt2x00dev->cap_flags);
4017 * Detect if this device has an hardware controlled radio.
4019 if (rt2x00_get_field16(eeprom, EEPROM_NIC_CONF1_HW_RADIO))
4020 __set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags);
4023 * Detect if this device has Bluetooth co-existence.
4025 if (rt2x00_get_field16(eeprom, EEPROM_NIC_CONF1_BT_COEXIST))
4026 __set_bit(CAPABILITY_BT_COEXIST, &rt2x00dev->cap_flags);
4029 * Read frequency offset and RF programming sequence.
4031 rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom);
4032 rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET);
4035 * Store led settings, for correct led behaviour.
4037 #ifdef CONFIG_RT2X00_LIB_LEDS
4038 rt2800_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
4039 rt2800_init_led(rt2x00dev, &rt2x00dev->led_assoc, LED_TYPE_ASSOC);
4040 rt2800_init_led(rt2x00dev, &rt2x00dev->led_qual, LED_TYPE_QUALITY);
4042 rt2x00dev->led_mcu_reg = eeprom;
4043 #endif /* CONFIG_RT2X00_LIB_LEDS */
4046 * Check if support EIRP tx power limit feature.
4048 rt2x00_eeprom_read(rt2x00dev, EEPROM_EIRP_MAX_TX_POWER, &eeprom);
4050 if (rt2x00_get_field16(eeprom, EEPROM_EIRP_MAX_TX_POWER_2GHZ) <
4051 EIRP_MAX_TX_POWER_LIMIT)
4052 __set_bit(CAPABILITY_POWER_LIMIT, &rt2x00dev->cap_flags);
4054 return 0;
4056 EXPORT_SYMBOL_GPL(rt2800_init_eeprom);
4059 * RF value list for rt28xx
4060 * Supports: 2.4 GHz (all) & 5.2 GHz (RF2850 & RF2750)
4062 static const struct rf_channel rf_vals[] = {
4063 { 1, 0x18402ecc, 0x184c0786, 0x1816b455, 0x1800510b },
4064 { 2, 0x18402ecc, 0x184c0786, 0x18168a55, 0x1800519f },
4065 { 3, 0x18402ecc, 0x184c078a, 0x18168a55, 0x1800518b },
4066 { 4, 0x18402ecc, 0x184c078a, 0x18168a55, 0x1800519f },
4067 { 5, 0x18402ecc, 0x184c078e, 0x18168a55, 0x1800518b },
4068 { 6, 0x18402ecc, 0x184c078e, 0x18168a55, 0x1800519f },
4069 { 7, 0x18402ecc, 0x184c0792, 0x18168a55, 0x1800518b },
4070 { 8, 0x18402ecc, 0x184c0792, 0x18168a55, 0x1800519f },
4071 { 9, 0x18402ecc, 0x184c0796, 0x18168a55, 0x1800518b },
4072 { 10, 0x18402ecc, 0x184c0796, 0x18168a55, 0x1800519f },
4073 { 11, 0x18402ecc, 0x184c079a, 0x18168a55, 0x1800518b },
4074 { 12, 0x18402ecc, 0x184c079a, 0x18168a55, 0x1800519f },
4075 { 13, 0x18402ecc, 0x184c079e, 0x18168a55, 0x1800518b },
4076 { 14, 0x18402ecc, 0x184c07a2, 0x18168a55, 0x18005193 },
4078 /* 802.11 UNI / HyperLan 2 */
4079 { 36, 0x18402ecc, 0x184c099a, 0x18158a55, 0x180ed1a3 },
4080 { 38, 0x18402ecc, 0x184c099e, 0x18158a55, 0x180ed193 },
4081 { 40, 0x18402ec8, 0x184c0682, 0x18158a55, 0x180ed183 },
4082 { 44, 0x18402ec8, 0x184c0682, 0x18158a55, 0x180ed1a3 },
4083 { 46, 0x18402ec8, 0x184c0686, 0x18158a55, 0x180ed18b },
4084 { 48, 0x18402ec8, 0x184c0686, 0x18158a55, 0x180ed19b },
4085 { 52, 0x18402ec8, 0x184c068a, 0x18158a55, 0x180ed193 },
4086 { 54, 0x18402ec8, 0x184c068a, 0x18158a55, 0x180ed1a3 },
4087 { 56, 0x18402ec8, 0x184c068e, 0x18158a55, 0x180ed18b },
4088 { 60, 0x18402ec8, 0x184c0692, 0x18158a55, 0x180ed183 },
4089 { 62, 0x18402ec8, 0x184c0692, 0x18158a55, 0x180ed193 },
4090 { 64, 0x18402ec8, 0x184c0692, 0x18158a55, 0x180ed1a3 },
4092 /* 802.11 HyperLan 2 */
4093 { 100, 0x18402ec8, 0x184c06b2, 0x18178a55, 0x180ed783 },
4094 { 102, 0x18402ec8, 0x184c06b2, 0x18578a55, 0x180ed793 },
4095 { 104, 0x18402ec8, 0x185c06b2, 0x18578a55, 0x180ed1a3 },
4096 { 108, 0x18402ecc, 0x185c0a32, 0x18578a55, 0x180ed193 },
4097 { 110, 0x18402ecc, 0x184c0a36, 0x18178a55, 0x180ed183 },
4098 { 112, 0x18402ecc, 0x184c0a36, 0x18178a55, 0x180ed19b },
4099 { 116, 0x18402ecc, 0x184c0a3a, 0x18178a55, 0x180ed1a3 },
4100 { 118, 0x18402ecc, 0x184c0a3e, 0x18178a55, 0x180ed193 },
4101 { 120, 0x18402ec4, 0x184c0382, 0x18178a55, 0x180ed183 },
4102 { 124, 0x18402ec4, 0x184c0382, 0x18178a55, 0x180ed193 },
4103 { 126, 0x18402ec4, 0x184c0382, 0x18178a55, 0x180ed15b },
4104 { 128, 0x18402ec4, 0x184c0382, 0x18178a55, 0x180ed1a3 },
4105 { 132, 0x18402ec4, 0x184c0386, 0x18178a55, 0x180ed18b },
4106 { 134, 0x18402ec4, 0x184c0386, 0x18178a55, 0x180ed193 },
4107 { 136, 0x18402ec4, 0x184c0386, 0x18178a55, 0x180ed19b },
4108 { 140, 0x18402ec4, 0x184c038a, 0x18178a55, 0x180ed183 },
4110 /* 802.11 UNII */
4111 { 149, 0x18402ec4, 0x184c038a, 0x18178a55, 0x180ed1a7 },
4112 { 151, 0x18402ec4, 0x184c038e, 0x18178a55, 0x180ed187 },
4113 { 153, 0x18402ec4, 0x184c038e, 0x18178a55, 0x180ed18f },
4114 { 157, 0x18402ec4, 0x184c038e, 0x18178a55, 0x180ed19f },
4115 { 159, 0x18402ec4, 0x184c038e, 0x18178a55, 0x180ed1a7 },
4116 { 161, 0x18402ec4, 0x184c0392, 0x18178a55, 0x180ed187 },
4117 { 165, 0x18402ec4, 0x184c0392, 0x18178a55, 0x180ed197 },
4118 { 167, 0x18402ec4, 0x184c03d2, 0x18179855, 0x1815531f },
4119 { 169, 0x18402ec4, 0x184c03d2, 0x18179855, 0x18155327 },
4120 { 171, 0x18402ec4, 0x184c03d6, 0x18179855, 0x18155307 },
4121 { 173, 0x18402ec4, 0x184c03d6, 0x18179855, 0x1815530f },
4123 /* 802.11 Japan */
4124 { 184, 0x15002ccc, 0x1500491e, 0x1509be55, 0x150c0a0b },
4125 { 188, 0x15002ccc, 0x15004922, 0x1509be55, 0x150c0a13 },
4126 { 192, 0x15002ccc, 0x15004926, 0x1509be55, 0x150c0a1b },
4127 { 196, 0x15002ccc, 0x1500492a, 0x1509be55, 0x150c0a23 },
4128 { 208, 0x15002ccc, 0x1500493a, 0x1509be55, 0x150c0a13 },
4129 { 212, 0x15002ccc, 0x1500493e, 0x1509be55, 0x150c0a1b },
4130 { 216, 0x15002ccc, 0x15004982, 0x1509be55, 0x150c0a23 },
4134 * RF value list for rt3xxx
4135 * Supports: 2.4 GHz (all) & 5.2 GHz (RF3052)
4137 static const struct rf_channel rf_vals_3x[] = {
4138 {1, 241, 2, 2 },
4139 {2, 241, 2, 7 },
4140 {3, 242, 2, 2 },
4141 {4, 242, 2, 7 },
4142 {5, 243, 2, 2 },
4143 {6, 243, 2, 7 },
4144 {7, 244, 2, 2 },
4145 {8, 244, 2, 7 },
4146 {9, 245, 2, 2 },
4147 {10, 245, 2, 7 },
4148 {11, 246, 2, 2 },
4149 {12, 246, 2, 7 },
4150 {13, 247, 2, 2 },
4151 {14, 248, 2, 4 },
4153 /* 802.11 UNI / HyperLan 2 */
4154 {36, 0x56, 0, 4},
4155 {38, 0x56, 0, 6},
4156 {40, 0x56, 0, 8},
4157 {44, 0x57, 0, 0},
4158 {46, 0x57, 0, 2},
4159 {48, 0x57, 0, 4},
4160 {52, 0x57, 0, 8},
4161 {54, 0x57, 0, 10},
4162 {56, 0x58, 0, 0},
4163 {60, 0x58, 0, 4},
4164 {62, 0x58, 0, 6},
4165 {64, 0x58, 0, 8},
4167 /* 802.11 HyperLan 2 */
4168 {100, 0x5b, 0, 8},
4169 {102, 0x5b, 0, 10},
4170 {104, 0x5c, 0, 0},
4171 {108, 0x5c, 0, 4},
4172 {110, 0x5c, 0, 6},
4173 {112, 0x5c, 0, 8},
4174 {116, 0x5d, 0, 0},
4175 {118, 0x5d, 0, 2},
4176 {120, 0x5d, 0, 4},
4177 {124, 0x5d, 0, 8},
4178 {126, 0x5d, 0, 10},
4179 {128, 0x5e, 0, 0},
4180 {132, 0x5e, 0, 4},
4181 {134, 0x5e, 0, 6},
4182 {136, 0x5e, 0, 8},
4183 {140, 0x5f, 0, 0},
4185 /* 802.11 UNII */
4186 {149, 0x5f, 0, 9},
4187 {151, 0x5f, 0, 11},
4188 {153, 0x60, 0, 1},
4189 {157, 0x60, 0, 5},
4190 {159, 0x60, 0, 7},
4191 {161, 0x60, 0, 9},
4192 {165, 0x61, 0, 1},
4193 {167, 0x61, 0, 3},
4194 {169, 0x61, 0, 5},
4195 {171, 0x61, 0, 7},
4196 {173, 0x61, 0, 9},
4199 int rt2800_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
4201 struct hw_mode_spec *spec = &rt2x00dev->spec;
4202 struct channel_info *info;
4203 char *default_power1;
4204 char *default_power2;
4205 unsigned int i;
4206 u16 eeprom;
4209 * Disable powersaving as default on PCI devices.
4211 if (rt2x00_is_pci(rt2x00dev) || rt2x00_is_soc(rt2x00dev))
4212 rt2x00dev->hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT;
4215 * Initialize all hw fields.
4217 rt2x00dev->hw->flags =
4218 IEEE80211_HW_SIGNAL_DBM |
4219 IEEE80211_HW_SUPPORTS_PS |
4220 IEEE80211_HW_PS_NULLFUNC_STACK |
4221 IEEE80211_HW_AMPDU_AGGREGATION;
4223 * Don't set IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING for USB devices
4224 * unless we are capable of sending the buffered frames out after the
4225 * DTIM transmission using rt2x00lib_beacondone. This will send out
4226 * multicast and broadcast traffic immediately instead of buffering it
4227 * infinitly and thus dropping it after some time.
4229 if (!rt2x00_is_usb(rt2x00dev))
4230 rt2x00dev->hw->flags |=
4231 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING;
4233 SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
4234 SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
4235 rt2x00_eeprom_addr(rt2x00dev,
4236 EEPROM_MAC_ADDR_0));
4239 * As rt2800 has a global fallback table we cannot specify
4240 * more then one tx rate per frame but since the hw will
4241 * try several rates (based on the fallback table) we should
4242 * initialize max_report_rates to the maximum number of rates
4243 * we are going to try. Otherwise mac80211 will truncate our
4244 * reported tx rates and the rc algortihm will end up with
4245 * incorrect data.
4247 rt2x00dev->hw->max_rates = 1;
4248 rt2x00dev->hw->max_report_rates = 7;
4249 rt2x00dev->hw->max_rate_tries = 1;
4251 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC_CONF0, &eeprom);
4254 * Initialize hw_mode information.
4256 spec->supported_bands = SUPPORT_BAND_2GHZ;
4257 spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
4259 if (rt2x00_rf(rt2x00dev, RF2820) ||
4260 rt2x00_rf(rt2x00dev, RF2720)) {
4261 spec->num_channels = 14;
4262 spec->channels = rf_vals;
4263 } else if (rt2x00_rf(rt2x00dev, RF2850) ||
4264 rt2x00_rf(rt2x00dev, RF2750)) {
4265 spec->supported_bands |= SUPPORT_BAND_5GHZ;
4266 spec->num_channels = ARRAY_SIZE(rf_vals);
4267 spec->channels = rf_vals;
4268 } else if (rt2x00_rf(rt2x00dev, RF3020) ||
4269 rt2x00_rf(rt2x00dev, RF2020) ||
4270 rt2x00_rf(rt2x00dev, RF3021) ||
4271 rt2x00_rf(rt2x00dev, RF3022) ||
4272 rt2x00_rf(rt2x00dev, RF3320) ||
4273 rt2x00_rf(rt2x00dev, RF5370) ||
4274 rt2x00_rf(rt2x00dev, RF5390)) {
4275 spec->num_channels = 14;
4276 spec->channels = rf_vals_3x;
4277 } else if (rt2x00_rf(rt2x00dev, RF3052)) {
4278 spec->supported_bands |= SUPPORT_BAND_5GHZ;
4279 spec->num_channels = ARRAY_SIZE(rf_vals_3x);
4280 spec->channels = rf_vals_3x;
4284 * Initialize HT information.
4286 if (!rt2x00_rf(rt2x00dev, RF2020))
4287 spec->ht.ht_supported = true;
4288 else
4289 spec->ht.ht_supported = false;
4291 spec->ht.cap =
4292 IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
4293 IEEE80211_HT_CAP_GRN_FLD |
4294 IEEE80211_HT_CAP_SGI_20 |
4295 IEEE80211_HT_CAP_SGI_40;
4297 if (rt2x00_get_field16(eeprom, EEPROM_NIC_CONF0_TXPATH) >= 2)
4298 spec->ht.cap |= IEEE80211_HT_CAP_TX_STBC;
4300 spec->ht.cap |=
4301 rt2x00_get_field16(eeprom, EEPROM_NIC_CONF0_RXPATH) <<
4302 IEEE80211_HT_CAP_RX_STBC_SHIFT;
4304 spec->ht.ampdu_factor = 3;
4305 spec->ht.ampdu_density = 4;
4306 spec->ht.mcs.tx_params =
4307 IEEE80211_HT_MCS_TX_DEFINED |
4308 IEEE80211_HT_MCS_TX_RX_DIFF |
4309 ((rt2x00_get_field16(eeprom, EEPROM_NIC_CONF0_TXPATH) - 1) <<
4310 IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT);
4312 switch (rt2x00_get_field16(eeprom, EEPROM_NIC_CONF0_RXPATH)) {
4313 case 3:
4314 spec->ht.mcs.rx_mask[2] = 0xff;
4315 case 2:
4316 spec->ht.mcs.rx_mask[1] = 0xff;
4317 case 1:
4318 spec->ht.mcs.rx_mask[0] = 0xff;
4319 spec->ht.mcs.rx_mask[4] = 0x1; /* MCS32 */
4320 break;
4324 * Create channel information array
4326 info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
4327 if (!info)
4328 return -ENOMEM;
4330 spec->channels_info = info;
4332 default_power1 = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_BG1);
4333 default_power2 = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_BG2);
4335 for (i = 0; i < 14; i++) {
4336 info[i].default_power1 = default_power1[i];
4337 info[i].default_power2 = default_power2[i];
4340 if (spec->num_channels > 14) {
4341 default_power1 = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A1);
4342 default_power2 = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A2);
4344 for (i = 14; i < spec->num_channels; i++) {
4345 info[i].default_power1 = default_power1[i];
4346 info[i].default_power2 = default_power2[i];
4350 return 0;
4352 EXPORT_SYMBOL_GPL(rt2800_probe_hw_mode);
4355 * IEEE80211 stack callback functions.
4357 void rt2800_get_tkip_seq(struct ieee80211_hw *hw, u8 hw_key_idx, u32 *iv32,
4358 u16 *iv16)
4360 struct rt2x00_dev *rt2x00dev = hw->priv;
4361 struct mac_iveiv_entry iveiv_entry;
4362 u32 offset;
4364 offset = MAC_IVEIV_ENTRY(hw_key_idx);
4365 rt2800_register_multiread(rt2x00dev, offset,
4366 &iveiv_entry, sizeof(iveiv_entry));
4368 memcpy(iv16, &iveiv_entry.iv[0], sizeof(*iv16));
4369 memcpy(iv32, &iveiv_entry.iv[4], sizeof(*iv32));
4371 EXPORT_SYMBOL_GPL(rt2800_get_tkip_seq);
4373 int rt2800_set_rts_threshold(struct ieee80211_hw *hw, u32 value)
4375 struct rt2x00_dev *rt2x00dev = hw->priv;
4376 u32 reg;
4377 bool enabled = (value < IEEE80211_MAX_RTS_THRESHOLD);
4379 rt2800_register_read(rt2x00dev, TX_RTS_CFG, &reg);
4380 rt2x00_set_field32(&reg, TX_RTS_CFG_RTS_THRES, value);
4381 rt2800_register_write(rt2x00dev, TX_RTS_CFG, reg);
4383 rt2800_register_read(rt2x00dev, CCK_PROT_CFG, &reg);
4384 rt2x00_set_field32(&reg, CCK_PROT_CFG_RTS_TH_EN, enabled);
4385 rt2800_register_write(rt2x00dev, CCK_PROT_CFG, reg);
4387 rt2800_register_read(rt2x00dev, OFDM_PROT_CFG, &reg);
4388 rt2x00_set_field32(&reg, OFDM_PROT_CFG_RTS_TH_EN, enabled);
4389 rt2800_register_write(rt2x00dev, OFDM_PROT_CFG, reg);
4391 rt2800_register_read(rt2x00dev, MM20_PROT_CFG, &reg);
4392 rt2x00_set_field32(&reg, MM20_PROT_CFG_RTS_TH_EN, enabled);
4393 rt2800_register_write(rt2x00dev, MM20_PROT_CFG, reg);
4395 rt2800_register_read(rt2x00dev, MM40_PROT_CFG, &reg);
4396 rt2x00_set_field32(&reg, MM40_PROT_CFG_RTS_TH_EN, enabled);
4397 rt2800_register_write(rt2x00dev, MM40_PROT_CFG, reg);
4399 rt2800_register_read(rt2x00dev, GF20_PROT_CFG, &reg);
4400 rt2x00_set_field32(&reg, GF20_PROT_CFG_RTS_TH_EN, enabled);
4401 rt2800_register_write(rt2x00dev, GF20_PROT_CFG, reg);
4403 rt2800_register_read(rt2x00dev, GF40_PROT_CFG, &reg);
4404 rt2x00_set_field32(&reg, GF40_PROT_CFG_RTS_TH_EN, enabled);
4405 rt2800_register_write(rt2x00dev, GF40_PROT_CFG, reg);
4407 return 0;
4409 EXPORT_SYMBOL_GPL(rt2800_set_rts_threshold);
4411 int rt2800_conf_tx(struct ieee80211_hw *hw,
4412 struct ieee80211_vif *vif, u16 queue_idx,
4413 const struct ieee80211_tx_queue_params *params)
4415 struct rt2x00_dev *rt2x00dev = hw->priv;
4416 struct data_queue *queue;
4417 struct rt2x00_field32 field;
4418 int retval;
4419 u32 reg;
4420 u32 offset;
4423 * First pass the configuration through rt2x00lib, that will
4424 * update the queue settings and validate the input. After that
4425 * we are free to update the registers based on the value
4426 * in the queue parameter.
4428 retval = rt2x00mac_conf_tx(hw, vif, queue_idx, params);
4429 if (retval)
4430 return retval;
4433 * We only need to perform additional register initialization
4434 * for WMM queues/
4436 if (queue_idx >= 4)
4437 return 0;
4439 queue = rt2x00queue_get_tx_queue(rt2x00dev, queue_idx);
4441 /* Update WMM TXOP register */
4442 offset = WMM_TXOP0_CFG + (sizeof(u32) * (!!(queue_idx & 2)));
4443 field.bit_offset = (queue_idx & 1) * 16;
4444 field.bit_mask = 0xffff << field.bit_offset;
4446 rt2800_register_read(rt2x00dev, offset, &reg);
4447 rt2x00_set_field32(&reg, field, queue->txop);
4448 rt2800_register_write(rt2x00dev, offset, reg);
4450 /* Update WMM registers */
4451 field.bit_offset = queue_idx * 4;
4452 field.bit_mask = 0xf << field.bit_offset;
4454 rt2800_register_read(rt2x00dev, WMM_AIFSN_CFG, &reg);
4455 rt2x00_set_field32(&reg, field, queue->aifs);
4456 rt2800_register_write(rt2x00dev, WMM_AIFSN_CFG, reg);
4458 rt2800_register_read(rt2x00dev, WMM_CWMIN_CFG, &reg);
4459 rt2x00_set_field32(&reg, field, queue->cw_min);
4460 rt2800_register_write(rt2x00dev, WMM_CWMIN_CFG, reg);
4462 rt2800_register_read(rt2x00dev, WMM_CWMAX_CFG, &reg);
4463 rt2x00_set_field32(&reg, field, queue->cw_max);
4464 rt2800_register_write(rt2x00dev, WMM_CWMAX_CFG, reg);
4466 /* Update EDCA registers */
4467 offset = EDCA_AC0_CFG + (sizeof(u32) * queue_idx);
4469 rt2800_register_read(rt2x00dev, offset, &reg);
4470 rt2x00_set_field32(&reg, EDCA_AC0_CFG_TX_OP, queue->txop);
4471 rt2x00_set_field32(&reg, EDCA_AC0_CFG_AIFSN, queue->aifs);
4472 rt2x00_set_field32(&reg, EDCA_AC0_CFG_CWMIN, queue->cw_min);
4473 rt2x00_set_field32(&reg, EDCA_AC0_CFG_CWMAX, queue->cw_max);
4474 rt2800_register_write(rt2x00dev, offset, reg);
4476 return 0;
4478 EXPORT_SYMBOL_GPL(rt2800_conf_tx);
4480 u64 rt2800_get_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
4482 struct rt2x00_dev *rt2x00dev = hw->priv;
4483 u64 tsf;
4484 u32 reg;
4486 rt2800_register_read(rt2x00dev, TSF_TIMER_DW1, &reg);
4487 tsf = (u64) rt2x00_get_field32(reg, TSF_TIMER_DW1_HIGH_WORD) << 32;
4488 rt2800_register_read(rt2x00dev, TSF_TIMER_DW0, &reg);
4489 tsf |= rt2x00_get_field32(reg, TSF_TIMER_DW0_LOW_WORD);
4491 return tsf;
4493 EXPORT_SYMBOL_GPL(rt2800_get_tsf);
4495 int rt2800_ampdu_action(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
4496 enum ieee80211_ampdu_mlme_action action,
4497 struct ieee80211_sta *sta, u16 tid, u16 *ssn,
4498 u8 buf_size)
4500 struct rt2x00_sta *sta_priv = (struct rt2x00_sta *)sta->drv_priv;
4501 int ret = 0;
4504 * Don't allow aggregation for stations the hardware isn't aware
4505 * of because tx status reports for frames to an unknown station
4506 * always contain wcid=255 and thus we can't distinguish between
4507 * multiple stations which leads to unwanted situations when the
4508 * hw reorders frames due to aggregation.
4510 if (sta_priv->wcid < 0)
4511 return 1;
4513 switch (action) {
4514 case IEEE80211_AMPDU_RX_START:
4515 case IEEE80211_AMPDU_RX_STOP:
4517 * The hw itself takes care of setting up BlockAck mechanisms.
4518 * So, we only have to allow mac80211 to nagotiate a BlockAck
4519 * agreement. Once that is done, the hw will BlockAck incoming
4520 * AMPDUs without further setup.
4522 break;
4523 case IEEE80211_AMPDU_TX_START:
4524 ieee80211_start_tx_ba_cb_irqsafe(vif, sta->addr, tid);
4525 break;
4526 case IEEE80211_AMPDU_TX_STOP:
4527 ieee80211_stop_tx_ba_cb_irqsafe(vif, sta->addr, tid);
4528 break;
4529 case IEEE80211_AMPDU_TX_OPERATIONAL:
4530 break;
4531 default:
4532 WARNING((struct rt2x00_dev *)hw->priv, "Unknown AMPDU action\n");
4535 return ret;
4537 EXPORT_SYMBOL_GPL(rt2800_ampdu_action);
4539 int rt2800_get_survey(struct ieee80211_hw *hw, int idx,
4540 struct survey_info *survey)
4542 struct rt2x00_dev *rt2x00dev = hw->priv;
4543 struct ieee80211_conf *conf = &hw->conf;
4544 u32 idle, busy, busy_ext;
4546 if (idx != 0)
4547 return -ENOENT;
4549 survey->channel = conf->channel;
4551 rt2800_register_read(rt2x00dev, CH_IDLE_STA, &idle);
4552 rt2800_register_read(rt2x00dev, CH_BUSY_STA, &busy);
4553 rt2800_register_read(rt2x00dev, CH_BUSY_STA_SEC, &busy_ext);
4555 if (idle || busy) {
4556 survey->filled = SURVEY_INFO_CHANNEL_TIME |
4557 SURVEY_INFO_CHANNEL_TIME_BUSY |
4558 SURVEY_INFO_CHANNEL_TIME_EXT_BUSY;
4560 survey->channel_time = (idle + busy) / 1000;
4561 survey->channel_time_busy = busy / 1000;
4562 survey->channel_time_ext_busy = busy_ext / 1000;
4565 if (!(hw->conf.flags & IEEE80211_CONF_OFFCHANNEL))
4566 survey->filled |= SURVEY_INFO_IN_USE;
4568 return 0;
4571 EXPORT_SYMBOL_GPL(rt2800_get_survey);
4573 MODULE_AUTHOR(DRV_PROJECT ", Bartlomiej Zolnierkiewicz");
4574 MODULE_VERSION(DRV_VERSION);
4575 MODULE_DESCRIPTION("Ralink RT2800 library");
4576 MODULE_LICENSE("GPL");