2 Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
3 Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
4 <http://rt2x00.serialmonkey.com>
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the
18 Free Software Foundation, Inc.,
19 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
24 Abstract: rt2x00 generic device routines.
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/slab.h>
30 #include <linux/log2.h>
33 #include "rt2x00lib.h"
38 u32
rt2x00lib_get_bssidx(struct rt2x00_dev
*rt2x00dev
,
39 struct ieee80211_vif
*vif
)
42 * When in STA mode, bssidx is always 0 otherwise local_address[5]
43 * contains the bss number, see BSS_ID_MASK comments for details.
45 if (rt2x00dev
->intf_sta_count
)
47 return vif
->addr
[5] & (rt2x00dev
->ops
->max_ap_intf
- 1);
49 EXPORT_SYMBOL_GPL(rt2x00lib_get_bssidx
);
52 * Radio control handlers.
54 int rt2x00lib_enable_radio(struct rt2x00_dev
*rt2x00dev
)
59 * Don't enable the radio twice.
60 * And check if the hardware button has been disabled.
62 if (test_bit(DEVICE_STATE_ENABLED_RADIO
, &rt2x00dev
->flags
))
66 * Initialize all data queues.
68 rt2x00queue_init_queues(rt2x00dev
);
74 rt2x00dev
->ops
->lib
->set_device_state(rt2x00dev
, STATE_RADIO_ON
);
78 rt2x00dev
->ops
->lib
->set_device_state(rt2x00dev
, STATE_RADIO_IRQ_ON
);
80 rt2x00leds_led_radio(rt2x00dev
, true);
81 rt2x00led_led_activity(rt2x00dev
, true);
83 set_bit(DEVICE_STATE_ENABLED_RADIO
, &rt2x00dev
->flags
);
88 rt2x00queue_start_queues(rt2x00dev
);
89 rt2x00link_start_tuner(rt2x00dev
);
90 rt2x00link_start_agc(rt2x00dev
);
93 * Start watchdog monitoring.
95 rt2x00link_start_watchdog(rt2x00dev
);
100 void rt2x00lib_disable_radio(struct rt2x00_dev
*rt2x00dev
)
102 if (!test_and_clear_bit(DEVICE_STATE_ENABLED_RADIO
, &rt2x00dev
->flags
))
106 * Stop watchdog monitoring.
108 rt2x00link_stop_watchdog(rt2x00dev
);
113 rt2x00link_stop_agc(rt2x00dev
);
114 rt2x00link_stop_tuner(rt2x00dev
);
115 rt2x00queue_stop_queues(rt2x00dev
);
116 rt2x00queue_flush_queues(rt2x00dev
, true);
121 rt2x00dev
->ops
->lib
->set_device_state(rt2x00dev
, STATE_RADIO_OFF
);
122 rt2x00dev
->ops
->lib
->set_device_state(rt2x00dev
, STATE_RADIO_IRQ_OFF
);
123 rt2x00led_led_activity(rt2x00dev
, false);
124 rt2x00leds_led_radio(rt2x00dev
, false);
127 static void rt2x00lib_intf_scheduled_iter(void *data
, u8
*mac
,
128 struct ieee80211_vif
*vif
)
130 struct rt2x00_dev
*rt2x00dev
= data
;
131 struct rt2x00_intf
*intf
= vif_to_intf(vif
);
134 * It is possible the radio was disabled while the work had been
135 * scheduled. If that happens we should return here immediately,
136 * note that in the spinlock protected area above the delayed_flags
137 * have been cleared correctly.
139 if (!test_bit(DEVICE_STATE_ENABLED_RADIO
, &rt2x00dev
->flags
))
142 if (test_and_clear_bit(DELAYED_UPDATE_BEACON
, &intf
->delayed_flags
))
143 rt2x00queue_update_beacon(rt2x00dev
, vif
);
146 static void rt2x00lib_intf_scheduled(struct work_struct
*work
)
148 struct rt2x00_dev
*rt2x00dev
=
149 container_of(work
, struct rt2x00_dev
, intf_work
);
152 * Iterate over each interface and perform the
153 * requested configurations.
155 ieee80211_iterate_active_interfaces(rt2x00dev
->hw
,
156 rt2x00lib_intf_scheduled_iter
,
160 static void rt2x00lib_autowakeup(struct work_struct
*work
)
162 struct rt2x00_dev
*rt2x00dev
=
163 container_of(work
, struct rt2x00_dev
, autowakeup_work
.work
);
165 if (!test_bit(DEVICE_STATE_PRESENT
, &rt2x00dev
->flags
))
168 if (rt2x00dev
->ops
->lib
->set_device_state(rt2x00dev
, STATE_AWAKE
))
169 ERROR(rt2x00dev
, "Device failed to wakeup.\n");
170 clear_bit(CONFIG_POWERSAVING
, &rt2x00dev
->flags
);
174 * Interrupt context handlers.
176 static void rt2x00lib_bc_buffer_iter(void *data
, u8
*mac
,
177 struct ieee80211_vif
*vif
)
179 struct rt2x00_dev
*rt2x00dev
= data
;
183 * Only AP mode interfaces do broad- and multicast buffering
185 if (vif
->type
!= NL80211_IFTYPE_AP
)
189 * Send out buffered broad- and multicast frames
191 skb
= ieee80211_get_buffered_bc(rt2x00dev
->hw
, vif
);
193 rt2x00mac_tx(rt2x00dev
->hw
, skb
);
194 skb
= ieee80211_get_buffered_bc(rt2x00dev
->hw
, vif
);
198 static void rt2x00lib_beaconupdate_iter(void *data
, u8
*mac
,
199 struct ieee80211_vif
*vif
)
201 struct rt2x00_dev
*rt2x00dev
= data
;
203 if (vif
->type
!= NL80211_IFTYPE_AP
&&
204 vif
->type
!= NL80211_IFTYPE_ADHOC
&&
205 vif
->type
!= NL80211_IFTYPE_MESH_POINT
&&
206 vif
->type
!= NL80211_IFTYPE_WDS
)
210 * Update the beacon without locking. This is safe on PCI devices
211 * as they only update the beacon periodically here. This should
212 * never be called for USB devices.
214 WARN_ON(rt2x00_is_usb(rt2x00dev
));
215 rt2x00queue_update_beacon_locked(rt2x00dev
, vif
);
218 void rt2x00lib_beacondone(struct rt2x00_dev
*rt2x00dev
)
220 if (!test_bit(DEVICE_STATE_ENABLED_RADIO
, &rt2x00dev
->flags
))
223 /* send buffered bc/mc frames out for every bssid */
224 ieee80211_iterate_active_interfaces_atomic(rt2x00dev
->hw
,
225 rt2x00lib_bc_buffer_iter
,
228 * Devices with pre tbtt interrupt don't need to update the beacon
229 * here as they will fetch the next beacon directly prior to
232 if (test_bit(CAPABILITY_PRE_TBTT_INTERRUPT
, &rt2x00dev
->cap_flags
))
235 /* fetch next beacon */
236 ieee80211_iterate_active_interfaces_atomic(rt2x00dev
->hw
,
237 rt2x00lib_beaconupdate_iter
,
240 EXPORT_SYMBOL_GPL(rt2x00lib_beacondone
);
242 void rt2x00lib_pretbtt(struct rt2x00_dev
*rt2x00dev
)
244 if (!test_bit(DEVICE_STATE_ENABLED_RADIO
, &rt2x00dev
->flags
))
247 /* fetch next beacon */
248 ieee80211_iterate_active_interfaces_atomic(rt2x00dev
->hw
,
249 rt2x00lib_beaconupdate_iter
,
252 EXPORT_SYMBOL_GPL(rt2x00lib_pretbtt
);
254 void rt2x00lib_dmastart(struct queue_entry
*entry
)
256 set_bit(ENTRY_OWNER_DEVICE_DATA
, &entry
->flags
);
257 rt2x00queue_index_inc(entry
, Q_INDEX
);
259 EXPORT_SYMBOL_GPL(rt2x00lib_dmastart
);
261 void rt2x00lib_dmadone(struct queue_entry
*entry
)
263 set_bit(ENTRY_DATA_STATUS_PENDING
, &entry
->flags
);
264 clear_bit(ENTRY_OWNER_DEVICE_DATA
, &entry
->flags
);
265 rt2x00queue_index_inc(entry
, Q_INDEX_DMA_DONE
);
267 EXPORT_SYMBOL_GPL(rt2x00lib_dmadone
);
269 void rt2x00lib_txdone(struct queue_entry
*entry
,
270 struct txdone_entry_desc
*txdesc
)
272 struct rt2x00_dev
*rt2x00dev
= entry
->queue
->rt2x00dev
;
273 struct ieee80211_tx_info
*tx_info
= IEEE80211_SKB_CB(entry
->skb
);
274 struct skb_frame_desc
*skbdesc
= get_skb_frame_desc(entry
->skb
);
275 unsigned int header_length
, i
;
276 u8 rate_idx
, rate_flags
, retry_rates
;
277 u8 skbdesc_flags
= skbdesc
->flags
;
283 rt2x00queue_unmap_skb(entry
);
286 * Remove the extra tx headroom from the skb.
288 skb_pull(entry
->skb
, rt2x00dev
->ops
->extra_tx_headroom
);
291 * Signal that the TX descriptor is no longer in the skb.
293 skbdesc
->flags
&= ~SKBDESC_DESC_IN_SKB
;
296 * Determine the length of 802.11 header.
298 header_length
= ieee80211_get_hdrlen_from_skb(entry
->skb
);
301 * Remove L2 padding which was added during
303 if (test_bit(REQUIRE_L2PAD
, &rt2x00dev
->cap_flags
))
304 rt2x00queue_remove_l2pad(entry
->skb
, header_length
);
307 * If the IV/EIV data was stripped from the frame before it was
308 * passed to the hardware, we should now reinsert it again because
309 * mac80211 will expect the same data to be present it the
310 * frame as it was passed to us.
312 if (test_bit(CAPABILITY_HW_CRYPTO
, &rt2x00dev
->cap_flags
))
313 rt2x00crypto_tx_insert_iv(entry
->skb
, header_length
);
316 * Send frame to debugfs immediately, after this call is completed
317 * we are going to overwrite the skb->cb array.
319 rt2x00debug_dump_frame(rt2x00dev
, DUMP_FRAME_TXDONE
, entry
->skb
);
322 * Determine if the frame has been successfully transmitted.
325 test_bit(TXDONE_SUCCESS
, &txdesc
->flags
) ||
326 test_bit(TXDONE_UNKNOWN
, &txdesc
->flags
);
329 * Update TX statistics.
331 rt2x00dev
->link
.qual
.tx_success
+= success
;
332 rt2x00dev
->link
.qual
.tx_failed
+= !success
;
334 rate_idx
= skbdesc
->tx_rate_idx
;
335 rate_flags
= skbdesc
->tx_rate_flags
;
336 retry_rates
= test_bit(TXDONE_FALLBACK
, &txdesc
->flags
) ?
337 (txdesc
->retry
+ 1) : 1;
340 * Initialize TX status
342 memset(&tx_info
->status
, 0, sizeof(tx_info
->status
));
343 tx_info
->status
.ack_signal
= 0;
346 * Frame was send with retries, hardware tried
347 * different rates to send out the frame, at each
348 * retry it lowered the rate 1 step except when the
349 * lowest rate was used.
351 for (i
= 0; i
< retry_rates
&& i
< IEEE80211_TX_MAX_RATES
; i
++) {
352 tx_info
->status
.rates
[i
].idx
= rate_idx
- i
;
353 tx_info
->status
.rates
[i
].flags
= rate_flags
;
355 if (rate_idx
- i
== 0) {
357 * The lowest rate (index 0) was used until the
358 * number of max retries was reached.
360 tx_info
->status
.rates
[i
].count
= retry_rates
- i
;
364 tx_info
->status
.rates
[i
].count
= 1;
366 if (i
< (IEEE80211_TX_MAX_RATES
- 1))
367 tx_info
->status
.rates
[i
].idx
= -1; /* terminate */
369 if (!(tx_info
->flags
& IEEE80211_TX_CTL_NO_ACK
)) {
371 tx_info
->flags
|= IEEE80211_TX_STAT_ACK
;
373 rt2x00dev
->low_level_stats
.dot11ACKFailureCount
++;
377 * Every single frame has it's own tx status, hence report
378 * every frame as ampdu of size 1.
380 * TODO: if we can find out how many frames were aggregated
381 * by the hw we could provide the real ampdu_len to mac80211
382 * which would allow the rc algorithm to better decide on
383 * which rates are suitable.
385 if (test_bit(TXDONE_AMPDU
, &txdesc
->flags
) ||
386 tx_info
->flags
& IEEE80211_TX_CTL_AMPDU
) {
387 tx_info
->flags
|= IEEE80211_TX_STAT_AMPDU
;
388 tx_info
->status
.ampdu_len
= 1;
389 tx_info
->status
.ampdu_ack_len
= success
? 1 : 0;
392 tx_info
->flags
|= IEEE80211_TX_STAT_AMPDU_NO_BACK
;
395 if (rate_flags
& IEEE80211_TX_RC_USE_RTS_CTS
) {
397 rt2x00dev
->low_level_stats
.dot11RTSSuccessCount
++;
399 rt2x00dev
->low_level_stats
.dot11RTSFailureCount
++;
403 * Only send the status report to mac80211 when it's a frame
404 * that originated in mac80211. If this was a extra frame coming
405 * through a mac80211 library call (RTS/CTS) then we should not
406 * send the status report back.
408 if (!(skbdesc_flags
& SKBDESC_NOT_MAC80211
)) {
409 if (test_bit(REQUIRE_TASKLET_CONTEXT
, &rt2x00dev
->cap_flags
))
410 ieee80211_tx_status(rt2x00dev
->hw
, entry
->skb
);
412 ieee80211_tx_status_ni(rt2x00dev
->hw
, entry
->skb
);
414 dev_kfree_skb_any(entry
->skb
);
417 * Make this entry available for reuse.
422 rt2x00dev
->ops
->lib
->clear_entry(entry
);
424 rt2x00queue_index_inc(entry
, Q_INDEX_DONE
);
427 * If the data queue was below the threshold before the txdone
428 * handler we must make sure the packet queue in the mac80211 stack
429 * is reenabled when the txdone handler has finished. This has to be
430 * serialized with rt2x00mac_tx(), otherwise we can wake up queue
431 * before it was stopped.
433 spin_lock_bh(&entry
->queue
->tx_lock
);
434 if (!rt2x00queue_threshold(entry
->queue
))
435 rt2x00queue_unpause_queue(entry
->queue
);
436 spin_unlock_bh(&entry
->queue
->tx_lock
);
438 EXPORT_SYMBOL_GPL(rt2x00lib_txdone
);
440 void rt2x00lib_txdone_noinfo(struct queue_entry
*entry
, u32 status
)
442 struct txdone_entry_desc txdesc
;
445 __set_bit(status
, &txdesc
.flags
);
448 rt2x00lib_txdone(entry
, &txdesc
);
450 EXPORT_SYMBOL_GPL(rt2x00lib_txdone_noinfo
);
452 static u8
*rt2x00lib_find_ie(u8
*data
, unsigned int len
, u8 ie
)
454 struct ieee80211_mgmt
*mgmt
= (void *)data
;
457 pos
= (u8
*)mgmt
->u
.beacon
.variable
;
460 if (pos
+ 2 + pos
[1] > end
)
472 static void rt2x00lib_sleep(struct work_struct
*work
)
474 struct rt2x00_dev
*rt2x00dev
=
475 container_of(work
, struct rt2x00_dev
, sleep_work
);
477 if (!test_bit(DEVICE_STATE_PRESENT
, &rt2x00dev
->flags
))
481 * Check again is powersaving is enabled, to prevent races from delayed
484 if (!test_bit(CONFIG_POWERSAVING
, &rt2x00dev
->flags
))
485 rt2x00lib_config(rt2x00dev
, &rt2x00dev
->hw
->conf
,
486 IEEE80211_CONF_CHANGE_PS
);
489 static void rt2x00lib_rxdone_check_ps(struct rt2x00_dev
*rt2x00dev
,
491 struct rxdone_entry_desc
*rxdesc
)
493 struct ieee80211_hdr
*hdr
= (void *) skb
->data
;
494 struct ieee80211_tim_ie
*tim_ie
;
499 /* If this is not a beacon, or if mac80211 has no powersaving
500 * configured, or if the device is already in powersaving mode
501 * we can exit now. */
502 if (likely(!ieee80211_is_beacon(hdr
->frame_control
) ||
503 !(rt2x00dev
->hw
->conf
.flags
& IEEE80211_CONF_PS
)))
506 /* min. beacon length + FCS_LEN */
507 if (skb
->len
<= 40 + FCS_LEN
)
510 /* and only beacons from the associated BSSID, please */
511 if (!(rxdesc
->dev_flags
& RXDONE_MY_BSS
) ||
515 rt2x00dev
->last_beacon
= jiffies
;
517 tim
= rt2x00lib_find_ie(skb
->data
, skb
->len
- FCS_LEN
, WLAN_EID_TIM
);
521 if (tim
[1] < sizeof(*tim_ie
))
525 tim_ie
= (struct ieee80211_tim_ie
*) &tim
[2];
527 /* Check whenever the PHY can be turned off again. */
529 /* 1. What about buffered unicast traffic for our AID? */
530 cam
= ieee80211_check_tim(tim_ie
, tim_len
, rt2x00dev
->aid
);
532 /* 2. Maybe the AP wants to send multicast/broadcast data? */
533 cam
|= (tim_ie
->bitmap_ctrl
& 0x01);
535 if (!cam
&& !test_bit(CONFIG_POWERSAVING
, &rt2x00dev
->flags
))
536 queue_work(rt2x00dev
->workqueue
, &rt2x00dev
->sleep_work
);
539 static int rt2x00lib_rxdone_read_signal(struct rt2x00_dev
*rt2x00dev
,
540 struct rxdone_entry_desc
*rxdesc
)
542 struct ieee80211_supported_band
*sband
;
543 const struct rt2x00_rate
*rate
;
545 int signal
= rxdesc
->signal
;
546 int type
= (rxdesc
->dev_flags
& RXDONE_SIGNAL_MASK
);
548 switch (rxdesc
->rate_mode
) {
552 * For non-HT rates the MCS value needs to contain the
553 * actually used rate modulation (CCK or OFDM).
555 if (rxdesc
->dev_flags
& RXDONE_SIGNAL_MCS
)
556 signal
= RATE_MCS(rxdesc
->rate_mode
, signal
);
558 sband
= &rt2x00dev
->bands
[rt2x00dev
->curr_band
];
559 for (i
= 0; i
< sband
->n_bitrates
; i
++) {
560 rate
= rt2x00_get_rate(sband
->bitrates
[i
].hw_value
);
561 if (((type
== RXDONE_SIGNAL_PLCP
) &&
562 (rate
->plcp
== signal
)) ||
563 ((type
== RXDONE_SIGNAL_BITRATE
) &&
564 (rate
->bitrate
== signal
)) ||
565 ((type
== RXDONE_SIGNAL_MCS
) &&
566 (rate
->mcs
== signal
))) {
571 case RATE_MODE_HT_MIX
:
572 case RATE_MODE_HT_GREENFIELD
:
573 if (signal
>= 0 && signal
<= 76)
580 WARNING(rt2x00dev
, "Frame received with unrecognized signal, "
581 "mode=0x%.4x, signal=0x%.4x, type=%d.\n",
582 rxdesc
->rate_mode
, signal
, type
);
586 void rt2x00lib_rxdone(struct queue_entry
*entry
)
588 struct rt2x00_dev
*rt2x00dev
= entry
->queue
->rt2x00dev
;
589 struct rxdone_entry_desc rxdesc
;
591 struct ieee80211_rx_status
*rx_status
;
592 unsigned int header_length
;
595 if (!test_bit(DEVICE_STATE_PRESENT
, &rt2x00dev
->flags
) ||
596 !test_bit(DEVICE_STATE_ENABLED_RADIO
, &rt2x00dev
->flags
))
599 if (test_bit(ENTRY_DATA_IO_FAILED
, &entry
->flags
))
603 * Allocate a new sk_buffer. If no new buffer available, drop the
604 * received frame and reuse the existing buffer.
606 skb
= rt2x00queue_alloc_rxskb(entry
);
613 rt2x00queue_unmap_skb(entry
);
616 * Extract the RXD details.
618 memset(&rxdesc
, 0, sizeof(rxdesc
));
619 rt2x00dev
->ops
->lib
->fill_rxdone(entry
, &rxdesc
);
622 * Check for valid size in case we get corrupted descriptor from
625 if (unlikely(rxdesc
.size
== 0 ||
626 rxdesc
.size
> entry
->queue
->data_size
)) {
627 WARNING(rt2x00dev
, "Wrong frame size %d max %d.\n",
628 rxdesc
.size
, entry
->queue
->data_size
);
629 dev_kfree_skb(entry
->skb
);
634 * The data behind the ieee80211 header must be
635 * aligned on a 4 byte boundary.
637 header_length
= ieee80211_get_hdrlen_from_skb(entry
->skb
);
640 * Hardware might have stripped the IV/EIV/ICV data,
641 * in that case it is possible that the data was
642 * provided separately (through hardware descriptor)
643 * in which case we should reinsert the data into the frame.
645 if ((rxdesc
.dev_flags
& RXDONE_CRYPTO_IV
) &&
646 (rxdesc
.flags
& RX_FLAG_IV_STRIPPED
))
647 rt2x00crypto_rx_insert_iv(entry
->skb
, header_length
,
649 else if (header_length
&&
650 (rxdesc
.size
> header_length
) &&
651 (rxdesc
.dev_flags
& RXDONE_L2PAD
))
652 rt2x00queue_remove_l2pad(entry
->skb
, header_length
);
654 /* Trim buffer to correct size */
655 skb_trim(entry
->skb
, rxdesc
.size
);
658 * Translate the signal to the correct bitrate index.
660 rate_idx
= rt2x00lib_rxdone_read_signal(rt2x00dev
, &rxdesc
);
661 if (rxdesc
.rate_mode
== RATE_MODE_HT_MIX
||
662 rxdesc
.rate_mode
== RATE_MODE_HT_GREENFIELD
)
663 rxdesc
.flags
|= RX_FLAG_HT
;
666 * Check if this is a beacon, and more frames have been
667 * buffered while we were in powersaving mode.
669 rt2x00lib_rxdone_check_ps(rt2x00dev
, entry
->skb
, &rxdesc
);
672 * Update extra components
674 rt2x00link_update_stats(rt2x00dev
, entry
->skb
, &rxdesc
);
675 rt2x00debug_update_crypto(rt2x00dev
, &rxdesc
);
676 rt2x00debug_dump_frame(rt2x00dev
, DUMP_FRAME_RXDONE
, entry
->skb
);
679 * Initialize RX status information, and send frame
682 rx_status
= IEEE80211_SKB_RXCB(entry
->skb
);
683 rx_status
->mactime
= rxdesc
.timestamp
;
684 rx_status
->band
= rt2x00dev
->curr_band
;
685 rx_status
->freq
= rt2x00dev
->curr_freq
;
686 rx_status
->rate_idx
= rate_idx
;
687 rx_status
->signal
= rxdesc
.rssi
;
688 rx_status
->flag
= rxdesc
.flags
;
689 rx_status
->antenna
= rt2x00dev
->link
.ant
.active
.rx
;
691 ieee80211_rx_ni(rt2x00dev
->hw
, entry
->skb
);
695 * Replace the skb with the freshly allocated one.
701 rt2x00queue_index_inc(entry
, Q_INDEX_DONE
);
702 if (test_bit(DEVICE_STATE_PRESENT
, &rt2x00dev
->flags
) &&
703 test_bit(DEVICE_STATE_ENABLED_RADIO
, &rt2x00dev
->flags
))
704 rt2x00dev
->ops
->lib
->clear_entry(entry
);
706 EXPORT_SYMBOL_GPL(rt2x00lib_rxdone
);
709 * Driver initialization handlers.
711 const struct rt2x00_rate rt2x00_supported_rates
[12] = {
713 .flags
= DEV_RATE_CCK
,
717 .mcs
= RATE_MCS(RATE_MODE_CCK
, 0),
720 .flags
= DEV_RATE_CCK
| DEV_RATE_SHORT_PREAMBLE
,
724 .mcs
= RATE_MCS(RATE_MODE_CCK
, 1),
727 .flags
= DEV_RATE_CCK
| DEV_RATE_SHORT_PREAMBLE
,
731 .mcs
= RATE_MCS(RATE_MODE_CCK
, 2),
734 .flags
= DEV_RATE_CCK
| DEV_RATE_SHORT_PREAMBLE
,
738 .mcs
= RATE_MCS(RATE_MODE_CCK
, 3),
741 .flags
= DEV_RATE_OFDM
,
745 .mcs
= RATE_MCS(RATE_MODE_OFDM
, 0),
748 .flags
= DEV_RATE_OFDM
,
752 .mcs
= RATE_MCS(RATE_MODE_OFDM
, 1),
755 .flags
= DEV_RATE_OFDM
,
759 .mcs
= RATE_MCS(RATE_MODE_OFDM
, 2),
762 .flags
= DEV_RATE_OFDM
,
766 .mcs
= RATE_MCS(RATE_MODE_OFDM
, 3),
769 .flags
= DEV_RATE_OFDM
,
773 .mcs
= RATE_MCS(RATE_MODE_OFDM
, 4),
776 .flags
= DEV_RATE_OFDM
,
780 .mcs
= RATE_MCS(RATE_MODE_OFDM
, 5),
783 .flags
= DEV_RATE_OFDM
,
787 .mcs
= RATE_MCS(RATE_MODE_OFDM
, 6),
790 .flags
= DEV_RATE_OFDM
,
794 .mcs
= RATE_MCS(RATE_MODE_OFDM
, 7),
798 static void rt2x00lib_channel(struct ieee80211_channel
*entry
,
799 const int channel
, const int tx_power
,
802 /* XXX: this assumption about the band is wrong for 802.11j */
803 entry
->band
= channel
<= 14 ? IEEE80211_BAND_2GHZ
: IEEE80211_BAND_5GHZ
;
804 entry
->center_freq
= ieee80211_channel_to_frequency(channel
,
806 entry
->hw_value
= value
;
807 entry
->max_power
= tx_power
;
808 entry
->max_antenna_gain
= 0xff;
811 static void rt2x00lib_rate(struct ieee80211_rate
*entry
,
812 const u16 index
, const struct rt2x00_rate
*rate
)
815 entry
->bitrate
= rate
->bitrate
;
816 entry
->hw_value
= index
;
817 entry
->hw_value_short
= index
;
819 if (rate
->flags
& DEV_RATE_SHORT_PREAMBLE
)
820 entry
->flags
|= IEEE80211_RATE_SHORT_PREAMBLE
;
823 static int rt2x00lib_probe_hw_modes(struct rt2x00_dev
*rt2x00dev
,
824 struct hw_mode_spec
*spec
)
826 struct ieee80211_hw
*hw
= rt2x00dev
->hw
;
827 struct ieee80211_channel
*channels
;
828 struct ieee80211_rate
*rates
;
829 unsigned int num_rates
;
833 if (spec
->supported_rates
& SUPPORT_RATE_CCK
)
835 if (spec
->supported_rates
& SUPPORT_RATE_OFDM
)
838 channels
= kcalloc(spec
->num_channels
, sizeof(*channels
), GFP_KERNEL
);
842 rates
= kcalloc(num_rates
, sizeof(*rates
), GFP_KERNEL
);
844 goto exit_free_channels
;
847 * Initialize Rate list.
849 for (i
= 0; i
< num_rates
; i
++)
850 rt2x00lib_rate(&rates
[i
], i
, rt2x00_get_rate(i
));
853 * Initialize Channel list.
855 for (i
= 0; i
< spec
->num_channels
; i
++) {
856 rt2x00lib_channel(&channels
[i
],
857 spec
->channels
[i
].channel
,
858 spec
->channels_info
[i
].max_power
, i
);
862 * Intitialize 802.11b, 802.11g
866 if (spec
->supported_bands
& SUPPORT_BAND_2GHZ
) {
867 rt2x00dev
->bands
[IEEE80211_BAND_2GHZ
].n_channels
= 14;
868 rt2x00dev
->bands
[IEEE80211_BAND_2GHZ
].n_bitrates
= num_rates
;
869 rt2x00dev
->bands
[IEEE80211_BAND_2GHZ
].channels
= channels
;
870 rt2x00dev
->bands
[IEEE80211_BAND_2GHZ
].bitrates
= rates
;
871 hw
->wiphy
->bands
[IEEE80211_BAND_2GHZ
] =
872 &rt2x00dev
->bands
[IEEE80211_BAND_2GHZ
];
873 memcpy(&rt2x00dev
->bands
[IEEE80211_BAND_2GHZ
].ht_cap
,
874 &spec
->ht
, sizeof(spec
->ht
));
878 * Intitialize 802.11a
880 * Channels: OFDM, UNII, HiperLAN2.
882 if (spec
->supported_bands
& SUPPORT_BAND_5GHZ
) {
883 rt2x00dev
->bands
[IEEE80211_BAND_5GHZ
].n_channels
=
884 spec
->num_channels
- 14;
885 rt2x00dev
->bands
[IEEE80211_BAND_5GHZ
].n_bitrates
=
887 rt2x00dev
->bands
[IEEE80211_BAND_5GHZ
].channels
= &channels
[14];
888 rt2x00dev
->bands
[IEEE80211_BAND_5GHZ
].bitrates
= &rates
[4];
889 hw
->wiphy
->bands
[IEEE80211_BAND_5GHZ
] =
890 &rt2x00dev
->bands
[IEEE80211_BAND_5GHZ
];
891 memcpy(&rt2x00dev
->bands
[IEEE80211_BAND_5GHZ
].ht_cap
,
892 &spec
->ht
, sizeof(spec
->ht
));
899 ERROR(rt2x00dev
, "Allocation ieee80211 modes failed.\n");
903 static void rt2x00lib_remove_hw(struct rt2x00_dev
*rt2x00dev
)
905 if (test_bit(DEVICE_STATE_REGISTERED_HW
, &rt2x00dev
->flags
))
906 ieee80211_unregister_hw(rt2x00dev
->hw
);
908 if (likely(rt2x00dev
->hw
->wiphy
->bands
[IEEE80211_BAND_2GHZ
])) {
909 kfree(rt2x00dev
->hw
->wiphy
->bands
[IEEE80211_BAND_2GHZ
]->channels
);
910 kfree(rt2x00dev
->hw
->wiphy
->bands
[IEEE80211_BAND_2GHZ
]->bitrates
);
911 rt2x00dev
->hw
->wiphy
->bands
[IEEE80211_BAND_2GHZ
] = NULL
;
912 rt2x00dev
->hw
->wiphy
->bands
[IEEE80211_BAND_5GHZ
] = NULL
;
915 kfree(rt2x00dev
->spec
.channels_info
);
918 static int rt2x00lib_probe_hw(struct rt2x00_dev
*rt2x00dev
)
920 struct hw_mode_spec
*spec
= &rt2x00dev
->spec
;
923 if (test_bit(DEVICE_STATE_REGISTERED_HW
, &rt2x00dev
->flags
))
927 * Initialize HW modes.
929 status
= rt2x00lib_probe_hw_modes(rt2x00dev
, spec
);
934 * Initialize HW fields.
936 rt2x00dev
->hw
->queues
= rt2x00dev
->ops
->tx_queues
;
939 * Initialize extra TX headroom required.
941 rt2x00dev
->hw
->extra_tx_headroom
=
942 max_t(unsigned int, IEEE80211_TX_STATUS_HEADROOM
,
943 rt2x00dev
->ops
->extra_tx_headroom
);
946 * Take TX headroom required for alignment into account.
948 if (test_bit(REQUIRE_L2PAD
, &rt2x00dev
->cap_flags
))
949 rt2x00dev
->hw
->extra_tx_headroom
+= RT2X00_L2PAD_SIZE
;
950 else if (test_bit(REQUIRE_DMA
, &rt2x00dev
->cap_flags
))
951 rt2x00dev
->hw
->extra_tx_headroom
+= RT2X00_ALIGN_SIZE
;
954 * Tell mac80211 about the size of our private STA structure.
956 rt2x00dev
->hw
->sta_data_size
= sizeof(struct rt2x00_sta
);
959 * Allocate tx status FIFO for driver use.
961 if (test_bit(REQUIRE_TXSTATUS_FIFO
, &rt2x00dev
->cap_flags
)) {
963 * Allocate the txstatus fifo. In the worst case the tx
964 * status fifo has to hold the tx status of all entries
965 * in all tx queues. Hence, calculate the kfifo size as
966 * tx_queues * entry_num and round up to the nearest
970 roundup_pow_of_two(rt2x00dev
->ops
->tx_queues
*
971 rt2x00dev
->ops
->tx
->entry_num
*
974 status
= kfifo_alloc(&rt2x00dev
->txstatus_fifo
, kfifo_size
,
981 * Initialize tasklets if used by the driver. Tasklets are
982 * disabled until the interrupts are turned on. The driver
983 * has to handle that.
985 #define RT2X00_TASKLET_INIT(taskletname) \
986 if (rt2x00dev->ops->lib->taskletname) { \
987 tasklet_init(&rt2x00dev->taskletname, \
988 rt2x00dev->ops->lib->taskletname, \
989 (unsigned long)rt2x00dev); \
992 RT2X00_TASKLET_INIT(txstatus_tasklet
);
993 RT2X00_TASKLET_INIT(pretbtt_tasklet
);
994 RT2X00_TASKLET_INIT(tbtt_tasklet
);
995 RT2X00_TASKLET_INIT(rxdone_tasklet
);
996 RT2X00_TASKLET_INIT(autowake_tasklet
);
998 #undef RT2X00_TASKLET_INIT
1003 status
= ieee80211_register_hw(rt2x00dev
->hw
);
1007 set_bit(DEVICE_STATE_REGISTERED_HW
, &rt2x00dev
->flags
);
1013 * Initialization/uninitialization handlers.
1015 static void rt2x00lib_uninitialize(struct rt2x00_dev
*rt2x00dev
)
1017 if (!test_and_clear_bit(DEVICE_STATE_INITIALIZED
, &rt2x00dev
->flags
))
1021 * Unregister extra components.
1023 rt2x00rfkill_unregister(rt2x00dev
);
1026 * Allow the HW to uninitialize.
1028 rt2x00dev
->ops
->lib
->uninitialize(rt2x00dev
);
1031 * Free allocated queue entries.
1033 rt2x00queue_uninitialize(rt2x00dev
);
1036 static int rt2x00lib_initialize(struct rt2x00_dev
*rt2x00dev
)
1040 if (test_bit(DEVICE_STATE_INITIALIZED
, &rt2x00dev
->flags
))
1044 * Allocate all queue entries.
1046 status
= rt2x00queue_initialize(rt2x00dev
);
1051 * Initialize the device.
1053 status
= rt2x00dev
->ops
->lib
->initialize(rt2x00dev
);
1055 rt2x00queue_uninitialize(rt2x00dev
);
1059 set_bit(DEVICE_STATE_INITIALIZED
, &rt2x00dev
->flags
);
1062 * Register the extra components.
1064 rt2x00rfkill_register(rt2x00dev
);
1069 int rt2x00lib_start(struct rt2x00_dev
*rt2x00dev
)
1073 if (test_bit(DEVICE_STATE_STARTED
, &rt2x00dev
->flags
))
1077 * If this is the first interface which is added,
1078 * we should load the firmware now.
1080 retval
= rt2x00lib_load_firmware(rt2x00dev
);
1085 * Initialize the device.
1087 retval
= rt2x00lib_initialize(rt2x00dev
);
1091 rt2x00dev
->intf_ap_count
= 0;
1092 rt2x00dev
->intf_sta_count
= 0;
1093 rt2x00dev
->intf_associated
= 0;
1095 /* Enable the radio */
1096 retval
= rt2x00lib_enable_radio(rt2x00dev
);
1100 set_bit(DEVICE_STATE_STARTED
, &rt2x00dev
->flags
);
1105 void rt2x00lib_stop(struct rt2x00_dev
*rt2x00dev
)
1107 if (!test_and_clear_bit(DEVICE_STATE_STARTED
, &rt2x00dev
->flags
))
1111 * Perhaps we can add something smarter here,
1112 * but for now just disabling the radio should do.
1114 rt2x00lib_disable_radio(rt2x00dev
);
1116 rt2x00dev
->intf_ap_count
= 0;
1117 rt2x00dev
->intf_sta_count
= 0;
1118 rt2x00dev
->intf_associated
= 0;
1122 * driver allocation handlers.
1124 int rt2x00lib_probe_dev(struct rt2x00_dev
*rt2x00dev
)
1126 int retval
= -ENOMEM
;
1128 spin_lock_init(&rt2x00dev
->irqmask_lock
);
1129 mutex_init(&rt2x00dev
->csr_mutex
);
1131 set_bit(DEVICE_STATE_PRESENT
, &rt2x00dev
->flags
);
1134 * Make room for rt2x00_intf inside the per-interface
1135 * structure ieee80211_vif.
1137 rt2x00dev
->hw
->vif_data_size
= sizeof(struct rt2x00_intf
);
1140 * Determine which operating modes are supported, all modes
1141 * which require beaconing, depend on the availability of
1144 rt2x00dev
->hw
->wiphy
->interface_modes
= BIT(NL80211_IFTYPE_STATION
);
1145 if (rt2x00dev
->ops
->bcn
->entry_num
> 0)
1146 rt2x00dev
->hw
->wiphy
->interface_modes
|=
1147 BIT(NL80211_IFTYPE_ADHOC
) |
1148 BIT(NL80211_IFTYPE_AP
) |
1149 BIT(NL80211_IFTYPE_MESH_POINT
) |
1150 BIT(NL80211_IFTYPE_WDS
);
1155 rt2x00dev
->workqueue
=
1156 alloc_ordered_workqueue(wiphy_name(rt2x00dev
->hw
->wiphy
), 0);
1157 if (!rt2x00dev
->workqueue
) {
1162 INIT_WORK(&rt2x00dev
->intf_work
, rt2x00lib_intf_scheduled
);
1163 INIT_DELAYED_WORK(&rt2x00dev
->autowakeup_work
, rt2x00lib_autowakeup
);
1164 INIT_WORK(&rt2x00dev
->sleep_work
, rt2x00lib_sleep
);
1167 * Let the driver probe the device to detect the capabilities.
1169 retval
= rt2x00dev
->ops
->lib
->probe_hw(rt2x00dev
);
1171 ERROR(rt2x00dev
, "Failed to allocate device.\n");
1176 * Allocate queue array.
1178 retval
= rt2x00queue_allocate(rt2x00dev
);
1183 * Initialize ieee80211 structure.
1185 retval
= rt2x00lib_probe_hw(rt2x00dev
);
1187 ERROR(rt2x00dev
, "Failed to initialize hw.\n");
1192 * Register extra components.
1194 rt2x00link_register(rt2x00dev
);
1195 rt2x00leds_register(rt2x00dev
);
1196 rt2x00debug_register(rt2x00dev
);
1201 rt2x00lib_remove_dev(rt2x00dev
);
1205 EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev
);
1207 void rt2x00lib_remove_dev(struct rt2x00_dev
*rt2x00dev
)
1209 clear_bit(DEVICE_STATE_PRESENT
, &rt2x00dev
->flags
);
1214 rt2x00lib_disable_radio(rt2x00dev
);
1219 cancel_work_sync(&rt2x00dev
->intf_work
);
1220 cancel_delayed_work_sync(&rt2x00dev
->autowakeup_work
);
1221 cancel_work_sync(&rt2x00dev
->sleep_work
);
1222 if (rt2x00_is_usb(rt2x00dev
)) {
1223 del_timer_sync(&rt2x00dev
->txstatus_timer
);
1224 cancel_work_sync(&rt2x00dev
->rxdone_work
);
1225 cancel_work_sync(&rt2x00dev
->txdone_work
);
1227 if (rt2x00dev
->workqueue
)
1228 destroy_workqueue(rt2x00dev
->workqueue
);
1231 * Free the tx status fifo.
1233 kfifo_free(&rt2x00dev
->txstatus_fifo
);
1236 * Kill the tx status tasklet.
1238 tasklet_kill(&rt2x00dev
->txstatus_tasklet
);
1239 tasklet_kill(&rt2x00dev
->pretbtt_tasklet
);
1240 tasklet_kill(&rt2x00dev
->tbtt_tasklet
);
1241 tasklet_kill(&rt2x00dev
->rxdone_tasklet
);
1242 tasklet_kill(&rt2x00dev
->autowake_tasklet
);
1245 * Uninitialize device.
1247 rt2x00lib_uninitialize(rt2x00dev
);
1250 * Free extra components
1252 rt2x00debug_deregister(rt2x00dev
);
1253 rt2x00leds_unregister(rt2x00dev
);
1256 * Free ieee80211_hw memory.
1258 rt2x00lib_remove_hw(rt2x00dev
);
1261 * Free firmware image.
1263 rt2x00lib_free_firmware(rt2x00dev
);
1266 * Free queue structures.
1268 rt2x00queue_free(rt2x00dev
);
1270 EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev
);
1273 * Device state handlers
1276 int rt2x00lib_suspend(struct rt2x00_dev
*rt2x00dev
, pm_message_t state
)
1278 NOTICE(rt2x00dev
, "Going to sleep.\n");
1281 * Prevent mac80211 from accessing driver while suspended.
1283 if (!test_and_clear_bit(DEVICE_STATE_PRESENT
, &rt2x00dev
->flags
))
1287 * Cleanup as much as possible.
1289 rt2x00lib_uninitialize(rt2x00dev
);
1292 * Suspend/disable extra components.
1294 rt2x00leds_suspend(rt2x00dev
);
1295 rt2x00debug_deregister(rt2x00dev
);
1298 * Set device mode to sleep for power management,
1299 * on some hardware this call seems to consistently fail.
1300 * From the specifications it is hard to tell why it fails,
1301 * and if this is a "bad thing".
1302 * Overall it is safe to just ignore the failure and
1303 * continue suspending. The only downside is that the
1304 * device will not be in optimal power save mode, but with
1305 * the radio and the other components already disabled the
1306 * device is as good as disabled.
1308 if (rt2x00dev
->ops
->lib
->set_device_state(rt2x00dev
, STATE_SLEEP
))
1309 WARNING(rt2x00dev
, "Device failed to enter sleep state, "
1310 "continue suspending.\n");
1314 EXPORT_SYMBOL_GPL(rt2x00lib_suspend
);
1316 int rt2x00lib_resume(struct rt2x00_dev
*rt2x00dev
)
1318 NOTICE(rt2x00dev
, "Waking up.\n");
1321 * Restore/enable extra components.
1323 rt2x00debug_register(rt2x00dev
);
1324 rt2x00leds_resume(rt2x00dev
);
1327 * We are ready again to receive requests from mac80211.
1329 set_bit(DEVICE_STATE_PRESENT
, &rt2x00dev
->flags
);
1333 EXPORT_SYMBOL_GPL(rt2x00lib_resume
);
1334 #endif /* CONFIG_PM */
1337 * rt2x00lib module information.
1339 MODULE_AUTHOR(DRV_PROJECT
);
1340 MODULE_VERSION(DRV_VERSION
);
1341 MODULE_DESCRIPTION("rt2x00 library");
1342 MODULE_LICENSE("GPL");