spi-topcliff-pch: supports a spi mode setup and bit order setup by IO control
[zen-stable.git] / drivers / pci / hotplug / cpqphp_ctrl.c
blobe43908d9b5dfedaa822195409ad548301fbc4e8a
1 /*
2 * Compaq Hot Plug Controller Driver
4 * Copyright (C) 1995,2001 Compaq Computer Corporation
5 * Copyright (C) 2001 Greg Kroah-Hartman (greg@kroah.com)
6 * Copyright (C) 2001 IBM Corp.
8 * All rights reserved.
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or (at
13 * your option) any later version.
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
18 * NON INFRINGEMENT. See the GNU General Public License for more
19 * details.
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
25 * Send feedback to <greg@kroah.com>
29 #include <linux/module.h>
30 #include <linux/kernel.h>
31 #include <linux/types.h>
32 #include <linux/slab.h>
33 #include <linux/workqueue.h>
34 #include <linux/interrupt.h>
35 #include <linux/delay.h>
36 #include <linux/wait.h>
37 #include <linux/pci.h>
38 #include <linux/pci_hotplug.h>
39 #include <linux/kthread.h>
40 #include "cpqphp.h"
42 static u32 configure_new_device(struct controller* ctrl, struct pci_func *func,
43 u8 behind_bridge, struct resource_lists *resources);
44 static int configure_new_function(struct controller* ctrl, struct pci_func *func,
45 u8 behind_bridge, struct resource_lists *resources);
46 static void interrupt_event_handler(struct controller *ctrl);
49 static struct task_struct *cpqhp_event_thread;
50 static unsigned long pushbutton_pending; /* = 0 */
52 /* delay is in jiffies to wait for */
53 static void long_delay(int delay)
56 * XXX(hch): if someone is bored please convert all callers
57 * to call msleep_interruptible directly. They really want
58 * to specify timeouts in natural units and spend a lot of
59 * effort converting them to jiffies..
61 msleep_interruptible(jiffies_to_msecs(delay));
65 /* FIXME: The following line needs to be somewhere else... */
66 #define WRONG_BUS_FREQUENCY 0x07
67 static u8 handle_switch_change(u8 change, struct controller * ctrl)
69 int hp_slot;
70 u8 rc = 0;
71 u16 temp_word;
72 struct pci_func *func;
73 struct event_info *taskInfo;
75 if (!change)
76 return 0;
78 /* Switch Change */
79 dbg("cpqsbd: Switch interrupt received.\n");
81 for (hp_slot = 0; hp_slot < 6; hp_slot++) {
82 if (change & (0x1L << hp_slot)) {
84 * this one changed.
86 func = cpqhp_slot_find(ctrl->bus,
87 (hp_slot + ctrl->slot_device_offset), 0);
89 /* this is the structure that tells the worker thread
90 * what to do
92 taskInfo = &(ctrl->event_queue[ctrl->next_event]);
93 ctrl->next_event = (ctrl->next_event + 1) % 10;
94 taskInfo->hp_slot = hp_slot;
96 rc++;
98 temp_word = ctrl->ctrl_int_comp >> 16;
99 func->presence_save = (temp_word >> hp_slot) & 0x01;
100 func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
102 if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
104 * Switch opened
107 func->switch_save = 0;
109 taskInfo->event_type = INT_SWITCH_OPEN;
110 } else {
112 * Switch closed
115 func->switch_save = 0x10;
117 taskInfo->event_type = INT_SWITCH_CLOSE;
122 return rc;
126 * cpqhp_find_slot - find the struct slot of given device
127 * @ctrl: scan lots of this controller
128 * @device: the device id to find
130 static struct slot *cpqhp_find_slot(struct controller *ctrl, u8 device)
132 struct slot *slot = ctrl->slot;
134 while (slot && (slot->device != device))
135 slot = slot->next;
137 return slot;
141 static u8 handle_presence_change(u16 change, struct controller * ctrl)
143 int hp_slot;
144 u8 rc = 0;
145 u8 temp_byte;
146 u16 temp_word;
147 struct pci_func *func;
148 struct event_info *taskInfo;
149 struct slot *p_slot;
151 if (!change)
152 return 0;
155 * Presence Change
157 dbg("cpqsbd: Presence/Notify input change.\n");
158 dbg(" Changed bits are 0x%4.4x\n", change );
160 for (hp_slot = 0; hp_slot < 6; hp_slot++) {
161 if (change & (0x0101 << hp_slot)) {
163 * this one changed.
165 func = cpqhp_slot_find(ctrl->bus,
166 (hp_slot + ctrl->slot_device_offset), 0);
168 taskInfo = &(ctrl->event_queue[ctrl->next_event]);
169 ctrl->next_event = (ctrl->next_event + 1) % 10;
170 taskInfo->hp_slot = hp_slot;
172 rc++;
174 p_slot = cpqhp_find_slot(ctrl, hp_slot + (readb(ctrl->hpc_reg + SLOT_MASK) >> 4));
175 if (!p_slot)
176 return 0;
178 /* If the switch closed, must be a button
179 * If not in button mode, nevermind
181 if (func->switch_save && (ctrl->push_button == 1)) {
182 temp_word = ctrl->ctrl_int_comp >> 16;
183 temp_byte = (temp_word >> hp_slot) & 0x01;
184 temp_byte |= (temp_word >> (hp_slot + 7)) & 0x02;
186 if (temp_byte != func->presence_save) {
188 * button Pressed (doesn't do anything)
190 dbg("hp_slot %d button pressed\n", hp_slot);
191 taskInfo->event_type = INT_BUTTON_PRESS;
192 } else {
194 * button Released - TAKE ACTION!!!!
196 dbg("hp_slot %d button released\n", hp_slot);
197 taskInfo->event_type = INT_BUTTON_RELEASE;
199 /* Cancel if we are still blinking */
200 if ((p_slot->state == BLINKINGON_STATE)
201 || (p_slot->state == BLINKINGOFF_STATE)) {
202 taskInfo->event_type = INT_BUTTON_CANCEL;
203 dbg("hp_slot %d button cancel\n", hp_slot);
204 } else if ((p_slot->state == POWERON_STATE)
205 || (p_slot->state == POWEROFF_STATE)) {
206 /* info(msg_button_ignore, p_slot->number); */
207 taskInfo->event_type = INT_BUTTON_IGNORE;
208 dbg("hp_slot %d button ignore\n", hp_slot);
211 } else {
212 /* Switch is open, assume a presence change
213 * Save the presence state
215 temp_word = ctrl->ctrl_int_comp >> 16;
216 func->presence_save = (temp_word >> hp_slot) & 0x01;
217 func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
219 if ((!(ctrl->ctrl_int_comp & (0x010000 << hp_slot))) ||
220 (!(ctrl->ctrl_int_comp & (0x01000000 << hp_slot)))) {
221 /* Present */
222 taskInfo->event_type = INT_PRESENCE_ON;
223 } else {
224 /* Not Present */
225 taskInfo->event_type = INT_PRESENCE_OFF;
231 return rc;
235 static u8 handle_power_fault(u8 change, struct controller * ctrl)
237 int hp_slot;
238 u8 rc = 0;
239 struct pci_func *func;
240 struct event_info *taskInfo;
242 if (!change)
243 return 0;
246 * power fault
249 info("power fault interrupt\n");
251 for (hp_slot = 0; hp_slot < 6; hp_slot++) {
252 if (change & (0x01 << hp_slot)) {
254 * this one changed.
256 func = cpqhp_slot_find(ctrl->bus,
257 (hp_slot + ctrl->slot_device_offset), 0);
259 taskInfo = &(ctrl->event_queue[ctrl->next_event]);
260 ctrl->next_event = (ctrl->next_event + 1) % 10;
261 taskInfo->hp_slot = hp_slot;
263 rc++;
265 if (ctrl->ctrl_int_comp & (0x00000100 << hp_slot)) {
267 * power fault Cleared
269 func->status = 0x00;
271 taskInfo->event_type = INT_POWER_FAULT_CLEAR;
272 } else {
274 * power fault
276 taskInfo->event_type = INT_POWER_FAULT;
278 if (ctrl->rev < 4) {
279 amber_LED_on (ctrl, hp_slot);
280 green_LED_off (ctrl, hp_slot);
281 set_SOGO (ctrl);
283 /* this is a fatal condition, we want
284 * to crash the machine to protect from
285 * data corruption. simulated_NMI
286 * shouldn't ever return */
287 /* FIXME
288 simulated_NMI(hp_slot, ctrl); */
290 /* The following code causes a software
291 * crash just in case simulated_NMI did
292 * return */
293 /*FIXME
294 panic(msg_power_fault); */
295 } else {
296 /* set power fault status for this board */
297 func->status = 0xFF;
298 info("power fault bit %x set\n", hp_slot);
304 return rc;
309 * sort_by_size - sort nodes on the list by their length, smallest first.
310 * @head: list to sort
312 static int sort_by_size(struct pci_resource **head)
314 struct pci_resource *current_res;
315 struct pci_resource *next_res;
316 int out_of_order = 1;
318 if (!(*head))
319 return 1;
321 if (!((*head)->next))
322 return 0;
324 while (out_of_order) {
325 out_of_order = 0;
327 /* Special case for swapping list head */
328 if (((*head)->next) &&
329 ((*head)->length > (*head)->next->length)) {
330 out_of_order++;
331 current_res = *head;
332 *head = (*head)->next;
333 current_res->next = (*head)->next;
334 (*head)->next = current_res;
337 current_res = *head;
339 while (current_res->next && current_res->next->next) {
340 if (current_res->next->length > current_res->next->next->length) {
341 out_of_order++;
342 next_res = current_res->next;
343 current_res->next = current_res->next->next;
344 current_res = current_res->next;
345 next_res->next = current_res->next;
346 current_res->next = next_res;
347 } else
348 current_res = current_res->next;
350 } /* End of out_of_order loop */
352 return 0;
357 * sort_by_max_size - sort nodes on the list by their length, largest first.
358 * @head: list to sort
360 static int sort_by_max_size(struct pci_resource **head)
362 struct pci_resource *current_res;
363 struct pci_resource *next_res;
364 int out_of_order = 1;
366 if (!(*head))
367 return 1;
369 if (!((*head)->next))
370 return 0;
372 while (out_of_order) {
373 out_of_order = 0;
375 /* Special case for swapping list head */
376 if (((*head)->next) &&
377 ((*head)->length < (*head)->next->length)) {
378 out_of_order++;
379 current_res = *head;
380 *head = (*head)->next;
381 current_res->next = (*head)->next;
382 (*head)->next = current_res;
385 current_res = *head;
387 while (current_res->next && current_res->next->next) {
388 if (current_res->next->length < current_res->next->next->length) {
389 out_of_order++;
390 next_res = current_res->next;
391 current_res->next = current_res->next->next;
392 current_res = current_res->next;
393 next_res->next = current_res->next;
394 current_res->next = next_res;
395 } else
396 current_res = current_res->next;
398 } /* End of out_of_order loop */
400 return 0;
405 * do_pre_bridge_resource_split - find node of resources that are unused
406 * @head: new list head
407 * @orig_head: original list head
408 * @alignment: max node size (?)
410 static struct pci_resource *do_pre_bridge_resource_split(struct pci_resource **head,
411 struct pci_resource **orig_head, u32 alignment)
413 struct pci_resource *prevnode = NULL;
414 struct pci_resource *node;
415 struct pci_resource *split_node;
416 u32 rc;
417 u32 temp_dword;
418 dbg("do_pre_bridge_resource_split\n");
420 if (!(*head) || !(*orig_head))
421 return NULL;
423 rc = cpqhp_resource_sort_and_combine(head);
425 if (rc)
426 return NULL;
428 if ((*head)->base != (*orig_head)->base)
429 return NULL;
431 if ((*head)->length == (*orig_head)->length)
432 return NULL;
435 /* If we got here, there the bridge requires some of the resource, but
436 * we may be able to split some off of the front
439 node = *head;
441 if (node->length & (alignment -1)) {
442 /* this one isn't an aligned length, so we'll make a new entry
443 * and split it up.
445 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
447 if (!split_node)
448 return NULL;
450 temp_dword = (node->length | (alignment-1)) + 1 - alignment;
452 split_node->base = node->base;
453 split_node->length = temp_dword;
455 node->length -= temp_dword;
456 node->base += split_node->length;
458 /* Put it in the list */
459 *head = split_node;
460 split_node->next = node;
463 if (node->length < alignment)
464 return NULL;
466 /* Now unlink it */
467 if (*head == node) {
468 *head = node->next;
469 } else {
470 prevnode = *head;
471 while (prevnode->next != node)
472 prevnode = prevnode->next;
474 prevnode->next = node->next;
476 node->next = NULL;
478 return node;
483 * do_bridge_resource_split - find one node of resources that aren't in use
484 * @head: list head
485 * @alignment: max node size (?)
487 static struct pci_resource *do_bridge_resource_split(struct pci_resource **head, u32 alignment)
489 struct pci_resource *prevnode = NULL;
490 struct pci_resource *node;
491 u32 rc;
492 u32 temp_dword;
494 rc = cpqhp_resource_sort_and_combine(head);
496 if (rc)
497 return NULL;
499 node = *head;
501 while (node->next) {
502 prevnode = node;
503 node = node->next;
504 kfree(prevnode);
507 if (node->length < alignment)
508 goto error;
510 if (node->base & (alignment - 1)) {
511 /* Short circuit if adjusted size is too small */
512 temp_dword = (node->base | (alignment-1)) + 1;
513 if ((node->length - (temp_dword - node->base)) < alignment)
514 goto error;
516 node->length -= (temp_dword - node->base);
517 node->base = temp_dword;
520 if (node->length & (alignment - 1))
521 /* There's stuff in use after this node */
522 goto error;
524 return node;
525 error:
526 kfree(node);
527 return NULL;
532 * get_io_resource - find first node of given size not in ISA aliasing window.
533 * @head: list to search
534 * @size: size of node to find, must be a power of two.
536 * Description: This function sorts the resource list by size and then returns
537 * returns the first node of "size" length that is not in the ISA aliasing
538 * window. If it finds a node larger than "size" it will split it up.
540 static struct pci_resource *get_io_resource(struct pci_resource **head, u32 size)
542 struct pci_resource *prevnode;
543 struct pci_resource *node;
544 struct pci_resource *split_node;
545 u32 temp_dword;
547 if (!(*head))
548 return NULL;
550 if (cpqhp_resource_sort_and_combine(head))
551 return NULL;
553 if (sort_by_size(head))
554 return NULL;
556 for (node = *head; node; node = node->next) {
557 if (node->length < size)
558 continue;
560 if (node->base & (size - 1)) {
561 /* this one isn't base aligned properly
562 * so we'll make a new entry and split it up
564 temp_dword = (node->base | (size-1)) + 1;
566 /* Short circuit if adjusted size is too small */
567 if ((node->length - (temp_dword - node->base)) < size)
568 continue;
570 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
572 if (!split_node)
573 return NULL;
575 split_node->base = node->base;
576 split_node->length = temp_dword - node->base;
577 node->base = temp_dword;
578 node->length -= split_node->length;
580 /* Put it in the list */
581 split_node->next = node->next;
582 node->next = split_node;
583 } /* End of non-aligned base */
585 /* Don't need to check if too small since we already did */
586 if (node->length > size) {
587 /* this one is longer than we need
588 * so we'll make a new entry and split it up
590 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
592 if (!split_node)
593 return NULL;
595 split_node->base = node->base + size;
596 split_node->length = node->length - size;
597 node->length = size;
599 /* Put it in the list */
600 split_node->next = node->next;
601 node->next = split_node;
602 } /* End of too big on top end */
604 /* For IO make sure it's not in the ISA aliasing space */
605 if (node->base & 0x300L)
606 continue;
608 /* If we got here, then it is the right size
609 * Now take it out of the list and break
611 if (*head == node) {
612 *head = node->next;
613 } else {
614 prevnode = *head;
615 while (prevnode->next != node)
616 prevnode = prevnode->next;
618 prevnode->next = node->next;
620 node->next = NULL;
621 break;
624 return node;
629 * get_max_resource - get largest node which has at least the given size.
630 * @head: the list to search the node in
631 * @size: the minimum size of the node to find
633 * Description: Gets the largest node that is at least "size" big from the
634 * list pointed to by head. It aligns the node on top and bottom
635 * to "size" alignment before returning it.
637 static struct pci_resource *get_max_resource(struct pci_resource **head, u32 size)
639 struct pci_resource *max;
640 struct pci_resource *temp;
641 struct pci_resource *split_node;
642 u32 temp_dword;
644 if (cpqhp_resource_sort_and_combine(head))
645 return NULL;
647 if (sort_by_max_size(head))
648 return NULL;
650 for (max = *head; max; max = max->next) {
651 /* If not big enough we could probably just bail,
652 * instead we'll continue to the next.
654 if (max->length < size)
655 continue;
657 if (max->base & (size - 1)) {
658 /* this one isn't base aligned properly
659 * so we'll make a new entry and split it up
661 temp_dword = (max->base | (size-1)) + 1;
663 /* Short circuit if adjusted size is too small */
664 if ((max->length - (temp_dword - max->base)) < size)
665 continue;
667 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
669 if (!split_node)
670 return NULL;
672 split_node->base = max->base;
673 split_node->length = temp_dword - max->base;
674 max->base = temp_dword;
675 max->length -= split_node->length;
677 split_node->next = max->next;
678 max->next = split_node;
681 if ((max->base + max->length) & (size - 1)) {
682 /* this one isn't end aligned properly at the top
683 * so we'll make a new entry and split it up
685 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
687 if (!split_node)
688 return NULL;
689 temp_dword = ((max->base + max->length) & ~(size - 1));
690 split_node->base = temp_dword;
691 split_node->length = max->length + max->base
692 - split_node->base;
693 max->length -= split_node->length;
695 split_node->next = max->next;
696 max->next = split_node;
699 /* Make sure it didn't shrink too much when we aligned it */
700 if (max->length < size)
701 continue;
703 /* Now take it out of the list */
704 temp = *head;
705 if (temp == max) {
706 *head = max->next;
707 } else {
708 while (temp && temp->next != max) {
709 temp = temp->next;
712 temp->next = max->next;
715 max->next = NULL;
716 break;
719 return max;
724 * get_resource - find resource of given size and split up larger ones.
725 * @head: the list to search for resources
726 * @size: the size limit to use
728 * Description: This function sorts the resource list by size and then
729 * returns the first node of "size" length. If it finds a node
730 * larger than "size" it will split it up.
732 * size must be a power of two.
734 static struct pci_resource *get_resource(struct pci_resource **head, u32 size)
736 struct pci_resource *prevnode;
737 struct pci_resource *node;
738 struct pci_resource *split_node;
739 u32 temp_dword;
741 if (cpqhp_resource_sort_and_combine(head))
742 return NULL;
744 if (sort_by_size(head))
745 return NULL;
747 for (node = *head; node; node = node->next) {
748 dbg("%s: req_size =%x node=%p, base=%x, length=%x\n",
749 __func__, size, node, node->base, node->length);
750 if (node->length < size)
751 continue;
753 if (node->base & (size - 1)) {
754 dbg("%s: not aligned\n", __func__);
755 /* this one isn't base aligned properly
756 * so we'll make a new entry and split it up
758 temp_dword = (node->base | (size-1)) + 1;
760 /* Short circuit if adjusted size is too small */
761 if ((node->length - (temp_dword - node->base)) < size)
762 continue;
764 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
766 if (!split_node)
767 return NULL;
769 split_node->base = node->base;
770 split_node->length = temp_dword - node->base;
771 node->base = temp_dword;
772 node->length -= split_node->length;
774 split_node->next = node->next;
775 node->next = split_node;
776 } /* End of non-aligned base */
778 /* Don't need to check if too small since we already did */
779 if (node->length > size) {
780 dbg("%s: too big\n", __func__);
781 /* this one is longer than we need
782 * so we'll make a new entry and split it up
784 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
786 if (!split_node)
787 return NULL;
789 split_node->base = node->base + size;
790 split_node->length = node->length - size;
791 node->length = size;
793 /* Put it in the list */
794 split_node->next = node->next;
795 node->next = split_node;
796 } /* End of too big on top end */
798 dbg("%s: got one!!!\n", __func__);
799 /* If we got here, then it is the right size
800 * Now take it out of the list */
801 if (*head == node) {
802 *head = node->next;
803 } else {
804 prevnode = *head;
805 while (prevnode->next != node)
806 prevnode = prevnode->next;
808 prevnode->next = node->next;
810 node->next = NULL;
811 break;
813 return node;
818 * cpqhp_resource_sort_and_combine - sort nodes by base addresses and clean up
819 * @head: the list to sort and clean up
821 * Description: Sorts all of the nodes in the list in ascending order by
822 * their base addresses. Also does garbage collection by
823 * combining adjacent nodes.
825 * Returns %0 if success.
827 int cpqhp_resource_sort_and_combine(struct pci_resource **head)
829 struct pci_resource *node1;
830 struct pci_resource *node2;
831 int out_of_order = 1;
833 dbg("%s: head = %p, *head = %p\n", __func__, head, *head);
835 if (!(*head))
836 return 1;
838 dbg("*head->next = %p\n",(*head)->next);
840 if (!(*head)->next)
841 return 0; /* only one item on the list, already sorted! */
843 dbg("*head->base = 0x%x\n",(*head)->base);
844 dbg("*head->next->base = 0x%x\n",(*head)->next->base);
845 while (out_of_order) {
846 out_of_order = 0;
848 /* Special case for swapping list head */
849 if (((*head)->next) &&
850 ((*head)->base > (*head)->next->base)) {
851 node1 = *head;
852 (*head) = (*head)->next;
853 node1->next = (*head)->next;
854 (*head)->next = node1;
855 out_of_order++;
858 node1 = (*head);
860 while (node1->next && node1->next->next) {
861 if (node1->next->base > node1->next->next->base) {
862 out_of_order++;
863 node2 = node1->next;
864 node1->next = node1->next->next;
865 node1 = node1->next;
866 node2->next = node1->next;
867 node1->next = node2;
868 } else
869 node1 = node1->next;
871 } /* End of out_of_order loop */
873 node1 = *head;
875 while (node1 && node1->next) {
876 if ((node1->base + node1->length) == node1->next->base) {
877 /* Combine */
878 dbg("8..\n");
879 node1->length += node1->next->length;
880 node2 = node1->next;
881 node1->next = node1->next->next;
882 kfree(node2);
883 } else
884 node1 = node1->next;
887 return 0;
891 irqreturn_t cpqhp_ctrl_intr(int IRQ, void *data)
893 struct controller *ctrl = data;
894 u8 schedule_flag = 0;
895 u8 reset;
896 u16 misc;
897 u32 Diff;
898 u32 temp_dword;
901 misc = readw(ctrl->hpc_reg + MISC);
903 * Check to see if it was our interrupt
905 if (!(misc & 0x000C)) {
906 return IRQ_NONE;
909 if (misc & 0x0004) {
911 * Serial Output interrupt Pending
914 /* Clear the interrupt */
915 misc |= 0x0004;
916 writew(misc, ctrl->hpc_reg + MISC);
918 /* Read to clear posted writes */
919 misc = readw(ctrl->hpc_reg + MISC);
921 dbg ("%s - waking up\n", __func__);
922 wake_up_interruptible(&ctrl->queue);
925 if (misc & 0x0008) {
926 /* General-interrupt-input interrupt Pending */
927 Diff = readl(ctrl->hpc_reg + INT_INPUT_CLEAR) ^ ctrl->ctrl_int_comp;
929 ctrl->ctrl_int_comp = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
931 /* Clear the interrupt */
932 writel(Diff, ctrl->hpc_reg + INT_INPUT_CLEAR);
934 /* Read it back to clear any posted writes */
935 temp_dword = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
937 if (!Diff)
938 /* Clear all interrupts */
939 writel(0xFFFFFFFF, ctrl->hpc_reg + INT_INPUT_CLEAR);
941 schedule_flag += handle_switch_change((u8)(Diff & 0xFFL), ctrl);
942 schedule_flag += handle_presence_change((u16)((Diff & 0xFFFF0000L) >> 16), ctrl);
943 schedule_flag += handle_power_fault((u8)((Diff & 0xFF00L) >> 8), ctrl);
946 reset = readb(ctrl->hpc_reg + RESET_FREQ_MODE);
947 if (reset & 0x40) {
948 /* Bus reset has completed */
949 reset &= 0xCF;
950 writeb(reset, ctrl->hpc_reg + RESET_FREQ_MODE);
951 reset = readb(ctrl->hpc_reg + RESET_FREQ_MODE);
952 wake_up_interruptible(&ctrl->queue);
955 if (schedule_flag) {
956 wake_up_process(cpqhp_event_thread);
957 dbg("Waking even thread");
959 return IRQ_HANDLED;
964 * cpqhp_slot_create - Creates a node and adds it to the proper bus.
965 * @busnumber: bus where new node is to be located
967 * Returns pointer to the new node or %NULL if unsuccessful.
969 struct pci_func *cpqhp_slot_create(u8 busnumber)
971 struct pci_func *new_slot;
972 struct pci_func *next;
974 new_slot = kzalloc(sizeof(*new_slot), GFP_KERNEL);
975 if (new_slot == NULL)
976 return new_slot;
978 new_slot->next = NULL;
979 new_slot->configured = 1;
981 if (cpqhp_slot_list[busnumber] == NULL) {
982 cpqhp_slot_list[busnumber] = new_slot;
983 } else {
984 next = cpqhp_slot_list[busnumber];
985 while (next->next != NULL)
986 next = next->next;
987 next->next = new_slot;
989 return new_slot;
994 * slot_remove - Removes a node from the linked list of slots.
995 * @old_slot: slot to remove
997 * Returns %0 if successful, !0 otherwise.
999 static int slot_remove(struct pci_func * old_slot)
1001 struct pci_func *next;
1003 if (old_slot == NULL)
1004 return 1;
1006 next = cpqhp_slot_list[old_slot->bus];
1007 if (next == NULL)
1008 return 1;
1010 if (next == old_slot) {
1011 cpqhp_slot_list[old_slot->bus] = old_slot->next;
1012 cpqhp_destroy_board_resources(old_slot);
1013 kfree(old_slot);
1014 return 0;
1017 while ((next->next != old_slot) && (next->next != NULL))
1018 next = next->next;
1020 if (next->next == old_slot) {
1021 next->next = old_slot->next;
1022 cpqhp_destroy_board_resources(old_slot);
1023 kfree(old_slot);
1024 return 0;
1025 } else
1026 return 2;
1031 * bridge_slot_remove - Removes a node from the linked list of slots.
1032 * @bridge: bridge to remove
1034 * Returns %0 if successful, !0 otherwise.
1036 static int bridge_slot_remove(struct pci_func *bridge)
1038 u8 subordinateBus, secondaryBus;
1039 u8 tempBus;
1040 struct pci_func *next;
1042 secondaryBus = (bridge->config_space[0x06] >> 8) & 0xFF;
1043 subordinateBus = (bridge->config_space[0x06] >> 16) & 0xFF;
1045 for (tempBus = secondaryBus; tempBus <= subordinateBus; tempBus++) {
1046 next = cpqhp_slot_list[tempBus];
1048 while (!slot_remove(next))
1049 next = cpqhp_slot_list[tempBus];
1052 next = cpqhp_slot_list[bridge->bus];
1054 if (next == NULL)
1055 return 1;
1057 if (next == bridge) {
1058 cpqhp_slot_list[bridge->bus] = bridge->next;
1059 goto out;
1062 while ((next->next != bridge) && (next->next != NULL))
1063 next = next->next;
1065 if (next->next != bridge)
1066 return 2;
1067 next->next = bridge->next;
1068 out:
1069 kfree(bridge);
1070 return 0;
1075 * cpqhp_slot_find - Looks for a node by bus, and device, multiple functions accessed
1076 * @bus: bus to find
1077 * @device: device to find
1078 * @index: is %0 for first function found, %1 for the second...
1080 * Returns pointer to the node if successful, %NULL otherwise.
1082 struct pci_func *cpqhp_slot_find(u8 bus, u8 device, u8 index)
1084 int found = -1;
1085 struct pci_func *func;
1087 func = cpqhp_slot_list[bus];
1089 if ((func == NULL) || ((func->device == device) && (index == 0)))
1090 return func;
1092 if (func->device == device)
1093 found++;
1095 while (func->next != NULL) {
1096 func = func->next;
1098 if (func->device == device)
1099 found++;
1101 if (found == index)
1102 return func;
1105 return NULL;
1109 /* DJZ: I don't think is_bridge will work as is.
1110 * FIXME */
1111 static int is_bridge(struct pci_func * func)
1113 /* Check the header type */
1114 if (((func->config_space[0x03] >> 16) & 0xFF) == 0x01)
1115 return 1;
1116 else
1117 return 0;
1122 * set_controller_speed - set the frequency and/or mode of a specific controller segment.
1123 * @ctrl: controller to change frequency/mode for.
1124 * @adapter_speed: the speed of the adapter we want to match.
1125 * @hp_slot: the slot number where the adapter is installed.
1127 * Returns %0 if we successfully change frequency and/or mode to match the
1128 * adapter speed.
1130 static u8 set_controller_speed(struct controller *ctrl, u8 adapter_speed, u8 hp_slot)
1132 struct slot *slot;
1133 struct pci_bus *bus = ctrl->pci_bus;
1134 u8 reg;
1135 u8 slot_power = readb(ctrl->hpc_reg + SLOT_POWER);
1136 u16 reg16;
1137 u32 leds = readl(ctrl->hpc_reg + LED_CONTROL);
1139 if (bus->cur_bus_speed == adapter_speed)
1140 return 0;
1142 /* We don't allow freq/mode changes if we find another adapter running
1143 * in another slot on this controller
1145 for(slot = ctrl->slot; slot; slot = slot->next) {
1146 if (slot->device == (hp_slot + ctrl->slot_device_offset))
1147 continue;
1148 if (!slot->hotplug_slot || !slot->hotplug_slot->info)
1149 continue;
1150 if (slot->hotplug_slot->info->adapter_status == 0)
1151 continue;
1152 /* If another adapter is running on the same segment but at a
1153 * lower speed/mode, we allow the new adapter to function at
1154 * this rate if supported
1156 if (bus->cur_bus_speed < adapter_speed)
1157 return 0;
1159 return 1;
1162 /* If the controller doesn't support freq/mode changes and the
1163 * controller is running at a higher mode, we bail
1165 if ((bus->cur_bus_speed > adapter_speed) && (!ctrl->pcix_speed_capability))
1166 return 1;
1168 /* But we allow the adapter to run at a lower rate if possible */
1169 if ((bus->cur_bus_speed < adapter_speed) && (!ctrl->pcix_speed_capability))
1170 return 0;
1172 /* We try to set the max speed supported by both the adapter and
1173 * controller
1175 if (bus->max_bus_speed < adapter_speed) {
1176 if (bus->cur_bus_speed == bus->max_bus_speed)
1177 return 0;
1178 adapter_speed = bus->max_bus_speed;
1181 writel(0x0L, ctrl->hpc_reg + LED_CONTROL);
1182 writeb(0x00, ctrl->hpc_reg + SLOT_ENABLE);
1184 set_SOGO(ctrl);
1185 wait_for_ctrl_irq(ctrl);
1187 if (adapter_speed != PCI_SPEED_133MHz_PCIX)
1188 reg = 0xF5;
1189 else
1190 reg = 0xF4;
1191 pci_write_config_byte(ctrl->pci_dev, 0x41, reg);
1193 reg16 = readw(ctrl->hpc_reg + NEXT_CURR_FREQ);
1194 reg16 &= ~0x000F;
1195 switch(adapter_speed) {
1196 case(PCI_SPEED_133MHz_PCIX):
1197 reg = 0x75;
1198 reg16 |= 0xB;
1199 break;
1200 case(PCI_SPEED_100MHz_PCIX):
1201 reg = 0x74;
1202 reg16 |= 0xA;
1203 break;
1204 case(PCI_SPEED_66MHz_PCIX):
1205 reg = 0x73;
1206 reg16 |= 0x9;
1207 break;
1208 case(PCI_SPEED_66MHz):
1209 reg = 0x73;
1210 reg16 |= 0x1;
1211 break;
1212 default: /* 33MHz PCI 2.2 */
1213 reg = 0x71;
1214 break;
1217 reg16 |= 0xB << 12;
1218 writew(reg16, ctrl->hpc_reg + NEXT_CURR_FREQ);
1220 mdelay(5);
1222 /* Reenable interrupts */
1223 writel(0, ctrl->hpc_reg + INT_MASK);
1225 pci_write_config_byte(ctrl->pci_dev, 0x41, reg);
1227 /* Restart state machine */
1228 reg = ~0xF;
1229 pci_read_config_byte(ctrl->pci_dev, 0x43, &reg);
1230 pci_write_config_byte(ctrl->pci_dev, 0x43, reg);
1232 /* Only if mode change...*/
1233 if (((bus->cur_bus_speed == PCI_SPEED_66MHz) && (adapter_speed == PCI_SPEED_66MHz_PCIX)) ||
1234 ((bus->cur_bus_speed == PCI_SPEED_66MHz_PCIX) && (adapter_speed == PCI_SPEED_66MHz)))
1235 set_SOGO(ctrl);
1237 wait_for_ctrl_irq(ctrl);
1238 mdelay(1100);
1240 /* Restore LED/Slot state */
1241 writel(leds, ctrl->hpc_reg + LED_CONTROL);
1242 writeb(slot_power, ctrl->hpc_reg + SLOT_ENABLE);
1244 set_SOGO(ctrl);
1245 wait_for_ctrl_irq(ctrl);
1247 bus->cur_bus_speed = adapter_speed;
1248 slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
1250 info("Successfully changed frequency/mode for adapter in slot %d\n",
1251 slot->number);
1252 return 0;
1255 /* the following routines constitute the bulk of the
1256 * hotplug controller logic
1261 * board_replaced - Called after a board has been replaced in the system.
1262 * @func: PCI device/function information
1263 * @ctrl: hotplug controller
1265 * This is only used if we don't have resources for hot add.
1266 * Turns power on for the board.
1267 * Checks to see if board is the same.
1268 * If board is same, reconfigures it.
1269 * If board isn't same, turns it back off.
1271 static u32 board_replaced(struct pci_func *func, struct controller *ctrl)
1273 struct pci_bus *bus = ctrl->pci_bus;
1274 u8 hp_slot;
1275 u8 temp_byte;
1276 u8 adapter_speed;
1277 u32 rc = 0;
1279 hp_slot = func->device - ctrl->slot_device_offset;
1282 * The switch is open.
1284 if (readl(ctrl->hpc_reg + INT_INPUT_CLEAR) & (0x01L << hp_slot))
1285 rc = INTERLOCK_OPEN;
1287 * The board is already on
1289 else if (is_slot_enabled (ctrl, hp_slot))
1290 rc = CARD_FUNCTIONING;
1291 else {
1292 mutex_lock(&ctrl->crit_sect);
1294 /* turn on board without attaching to the bus */
1295 enable_slot_power (ctrl, hp_slot);
1297 set_SOGO(ctrl);
1299 /* Wait for SOBS to be unset */
1300 wait_for_ctrl_irq (ctrl);
1302 /* Change bits in slot power register to force another shift out
1303 * NOTE: this is to work around the timer bug */
1304 temp_byte = readb(ctrl->hpc_reg + SLOT_POWER);
1305 writeb(0x00, ctrl->hpc_reg + SLOT_POWER);
1306 writeb(temp_byte, ctrl->hpc_reg + SLOT_POWER);
1308 set_SOGO(ctrl);
1310 /* Wait for SOBS to be unset */
1311 wait_for_ctrl_irq (ctrl);
1313 adapter_speed = get_adapter_speed(ctrl, hp_slot);
1314 if (bus->cur_bus_speed != adapter_speed)
1315 if (set_controller_speed(ctrl, adapter_speed, hp_slot))
1316 rc = WRONG_BUS_FREQUENCY;
1318 /* turn off board without attaching to the bus */
1319 disable_slot_power (ctrl, hp_slot);
1321 set_SOGO(ctrl);
1323 /* Wait for SOBS to be unset */
1324 wait_for_ctrl_irq (ctrl);
1326 mutex_unlock(&ctrl->crit_sect);
1328 if (rc)
1329 return rc;
1331 mutex_lock(&ctrl->crit_sect);
1333 slot_enable (ctrl, hp_slot);
1334 green_LED_blink (ctrl, hp_slot);
1336 amber_LED_off (ctrl, hp_slot);
1338 set_SOGO(ctrl);
1340 /* Wait for SOBS to be unset */
1341 wait_for_ctrl_irq (ctrl);
1343 mutex_unlock(&ctrl->crit_sect);
1345 /* Wait for ~1 second because of hot plug spec */
1346 long_delay(1*HZ);
1348 /* Check for a power fault */
1349 if (func->status == 0xFF) {
1350 /* power fault occurred, but it was benign */
1351 rc = POWER_FAILURE;
1352 func->status = 0;
1353 } else
1354 rc = cpqhp_valid_replace(ctrl, func);
1356 if (!rc) {
1357 /* It must be the same board */
1359 rc = cpqhp_configure_board(ctrl, func);
1361 /* If configuration fails, turn it off
1362 * Get slot won't work for devices behind
1363 * bridges, but in this case it will always be
1364 * called for the "base" bus/dev/func of an
1365 * adapter.
1368 mutex_lock(&ctrl->crit_sect);
1370 amber_LED_on (ctrl, hp_slot);
1371 green_LED_off (ctrl, hp_slot);
1372 slot_disable (ctrl, hp_slot);
1374 set_SOGO(ctrl);
1376 /* Wait for SOBS to be unset */
1377 wait_for_ctrl_irq (ctrl);
1379 mutex_unlock(&ctrl->crit_sect);
1381 if (rc)
1382 return rc;
1383 else
1384 return 1;
1386 } else {
1387 /* Something is wrong
1389 * Get slot won't work for devices behind bridges, but
1390 * in this case it will always be called for the "base"
1391 * bus/dev/func of an adapter.
1394 mutex_lock(&ctrl->crit_sect);
1396 amber_LED_on (ctrl, hp_slot);
1397 green_LED_off (ctrl, hp_slot);
1398 slot_disable (ctrl, hp_slot);
1400 set_SOGO(ctrl);
1402 /* Wait for SOBS to be unset */
1403 wait_for_ctrl_irq (ctrl);
1405 mutex_unlock(&ctrl->crit_sect);
1409 return rc;
1415 * board_added - Called after a board has been added to the system.
1416 * @func: PCI device/function info
1417 * @ctrl: hotplug controller
1419 * Turns power on for the board.
1420 * Configures board.
1422 static u32 board_added(struct pci_func *func, struct controller *ctrl)
1424 u8 hp_slot;
1425 u8 temp_byte;
1426 u8 adapter_speed;
1427 int index;
1428 u32 temp_register = 0xFFFFFFFF;
1429 u32 rc = 0;
1430 struct pci_func *new_slot = NULL;
1431 struct pci_bus *bus = ctrl->pci_bus;
1432 struct slot *p_slot;
1433 struct resource_lists res_lists;
1435 hp_slot = func->device - ctrl->slot_device_offset;
1436 dbg("%s: func->device, slot_offset, hp_slot = %d, %d ,%d\n",
1437 __func__, func->device, ctrl->slot_device_offset, hp_slot);
1439 mutex_lock(&ctrl->crit_sect);
1441 /* turn on board without attaching to the bus */
1442 enable_slot_power(ctrl, hp_slot);
1444 set_SOGO(ctrl);
1446 /* Wait for SOBS to be unset */
1447 wait_for_ctrl_irq (ctrl);
1449 /* Change bits in slot power register to force another shift out
1450 * NOTE: this is to work around the timer bug
1452 temp_byte = readb(ctrl->hpc_reg + SLOT_POWER);
1453 writeb(0x00, ctrl->hpc_reg + SLOT_POWER);
1454 writeb(temp_byte, ctrl->hpc_reg + SLOT_POWER);
1456 set_SOGO(ctrl);
1458 /* Wait for SOBS to be unset */
1459 wait_for_ctrl_irq (ctrl);
1461 adapter_speed = get_adapter_speed(ctrl, hp_slot);
1462 if (bus->cur_bus_speed != adapter_speed)
1463 if (set_controller_speed(ctrl, adapter_speed, hp_slot))
1464 rc = WRONG_BUS_FREQUENCY;
1466 /* turn off board without attaching to the bus */
1467 disable_slot_power (ctrl, hp_slot);
1469 set_SOGO(ctrl);
1471 /* Wait for SOBS to be unset */
1472 wait_for_ctrl_irq(ctrl);
1474 mutex_unlock(&ctrl->crit_sect);
1476 if (rc)
1477 return rc;
1479 p_slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
1481 /* turn on board and blink green LED */
1483 dbg("%s: before down\n", __func__);
1484 mutex_lock(&ctrl->crit_sect);
1485 dbg("%s: after down\n", __func__);
1487 dbg("%s: before slot_enable\n", __func__);
1488 slot_enable (ctrl, hp_slot);
1490 dbg("%s: before green_LED_blink\n", __func__);
1491 green_LED_blink (ctrl, hp_slot);
1493 dbg("%s: before amber_LED_blink\n", __func__);
1494 amber_LED_off (ctrl, hp_slot);
1496 dbg("%s: before set_SOGO\n", __func__);
1497 set_SOGO(ctrl);
1499 /* Wait for SOBS to be unset */
1500 dbg("%s: before wait_for_ctrl_irq\n", __func__);
1501 wait_for_ctrl_irq (ctrl);
1502 dbg("%s: after wait_for_ctrl_irq\n", __func__);
1504 dbg("%s: before up\n", __func__);
1505 mutex_unlock(&ctrl->crit_sect);
1506 dbg("%s: after up\n", __func__);
1508 /* Wait for ~1 second because of hot plug spec */
1509 dbg("%s: before long_delay\n", __func__);
1510 long_delay(1*HZ);
1511 dbg("%s: after long_delay\n", __func__);
1513 dbg("%s: func status = %x\n", __func__, func->status);
1514 /* Check for a power fault */
1515 if (func->status == 0xFF) {
1516 /* power fault occurred, but it was benign */
1517 temp_register = 0xFFFFFFFF;
1518 dbg("%s: temp register set to %x by power fault\n", __func__, temp_register);
1519 rc = POWER_FAILURE;
1520 func->status = 0;
1521 } else {
1522 /* Get vendor/device ID u32 */
1523 ctrl->pci_bus->number = func->bus;
1524 rc = pci_bus_read_config_dword (ctrl->pci_bus, PCI_DEVFN(func->device, func->function), PCI_VENDOR_ID, &temp_register);
1525 dbg("%s: pci_read_config_dword returns %d\n", __func__, rc);
1526 dbg("%s: temp_register is %x\n", __func__, temp_register);
1528 if (rc != 0) {
1529 /* Something's wrong here */
1530 temp_register = 0xFFFFFFFF;
1531 dbg("%s: temp register set to %x by error\n", __func__, temp_register);
1533 /* Preset return code. It will be changed later if things go okay. */
1534 rc = NO_ADAPTER_PRESENT;
1537 /* All F's is an empty slot or an invalid board */
1538 if (temp_register != 0xFFFFFFFF) {
1539 res_lists.io_head = ctrl->io_head;
1540 res_lists.mem_head = ctrl->mem_head;
1541 res_lists.p_mem_head = ctrl->p_mem_head;
1542 res_lists.bus_head = ctrl->bus_head;
1543 res_lists.irqs = NULL;
1545 rc = configure_new_device(ctrl, func, 0, &res_lists);
1547 dbg("%s: back from configure_new_device\n", __func__);
1548 ctrl->io_head = res_lists.io_head;
1549 ctrl->mem_head = res_lists.mem_head;
1550 ctrl->p_mem_head = res_lists.p_mem_head;
1551 ctrl->bus_head = res_lists.bus_head;
1553 cpqhp_resource_sort_and_combine(&(ctrl->mem_head));
1554 cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head));
1555 cpqhp_resource_sort_and_combine(&(ctrl->io_head));
1556 cpqhp_resource_sort_and_combine(&(ctrl->bus_head));
1558 if (rc) {
1559 mutex_lock(&ctrl->crit_sect);
1561 amber_LED_on (ctrl, hp_slot);
1562 green_LED_off (ctrl, hp_slot);
1563 slot_disable (ctrl, hp_slot);
1565 set_SOGO(ctrl);
1567 /* Wait for SOBS to be unset */
1568 wait_for_ctrl_irq (ctrl);
1570 mutex_unlock(&ctrl->crit_sect);
1571 return rc;
1572 } else {
1573 cpqhp_save_slot_config(ctrl, func);
1577 func->status = 0;
1578 func->switch_save = 0x10;
1579 func->is_a_board = 0x01;
1581 /* next, we will instantiate the linux pci_dev structures (with
1582 * appropriate driver notification, if already present) */
1583 dbg("%s: configure linux pci_dev structure\n", __func__);
1584 index = 0;
1585 do {
1586 new_slot = cpqhp_slot_find(ctrl->bus, func->device, index++);
1587 if (new_slot && !new_slot->pci_dev)
1588 cpqhp_configure_device(ctrl, new_slot);
1589 } while (new_slot);
1591 mutex_lock(&ctrl->crit_sect);
1593 green_LED_on (ctrl, hp_slot);
1595 set_SOGO(ctrl);
1597 /* Wait for SOBS to be unset */
1598 wait_for_ctrl_irq (ctrl);
1600 mutex_unlock(&ctrl->crit_sect);
1601 } else {
1602 mutex_lock(&ctrl->crit_sect);
1604 amber_LED_on (ctrl, hp_slot);
1605 green_LED_off (ctrl, hp_slot);
1606 slot_disable (ctrl, hp_slot);
1608 set_SOGO(ctrl);
1610 /* Wait for SOBS to be unset */
1611 wait_for_ctrl_irq (ctrl);
1613 mutex_unlock(&ctrl->crit_sect);
1615 return rc;
1617 return 0;
1622 * remove_board - Turns off slot and LEDs
1623 * @func: PCI device/function info
1624 * @replace_flag: whether replacing or adding a new device
1625 * @ctrl: target controller
1627 static u32 remove_board(struct pci_func * func, u32 replace_flag, struct controller * ctrl)
1629 int index;
1630 u8 skip = 0;
1631 u8 device;
1632 u8 hp_slot;
1633 u8 temp_byte;
1634 u32 rc;
1635 struct resource_lists res_lists;
1636 struct pci_func *temp_func;
1638 if (cpqhp_unconfigure_device(func))
1639 return 1;
1641 device = func->device;
1643 hp_slot = func->device - ctrl->slot_device_offset;
1644 dbg("In %s, hp_slot = %d\n", __func__, hp_slot);
1646 /* When we get here, it is safe to change base address registers.
1647 * We will attempt to save the base address register lengths */
1648 if (replace_flag || !ctrl->add_support)
1649 rc = cpqhp_save_base_addr_length(ctrl, func);
1650 else if (!func->bus_head && !func->mem_head &&
1651 !func->p_mem_head && !func->io_head) {
1652 /* Here we check to see if we've saved any of the board's
1653 * resources already. If so, we'll skip the attempt to
1654 * determine what's being used. */
1655 index = 0;
1656 temp_func = cpqhp_slot_find(func->bus, func->device, index++);
1657 while (temp_func) {
1658 if (temp_func->bus_head || temp_func->mem_head
1659 || temp_func->p_mem_head || temp_func->io_head) {
1660 skip = 1;
1661 break;
1663 temp_func = cpqhp_slot_find(temp_func->bus, temp_func->device, index++);
1666 if (!skip)
1667 rc = cpqhp_save_used_resources(ctrl, func);
1669 /* Change status to shutdown */
1670 if (func->is_a_board)
1671 func->status = 0x01;
1672 func->configured = 0;
1674 mutex_lock(&ctrl->crit_sect);
1676 green_LED_off (ctrl, hp_slot);
1677 slot_disable (ctrl, hp_slot);
1679 set_SOGO(ctrl);
1681 /* turn off SERR for slot */
1682 temp_byte = readb(ctrl->hpc_reg + SLOT_SERR);
1683 temp_byte &= ~(0x01 << hp_slot);
1684 writeb(temp_byte, ctrl->hpc_reg + SLOT_SERR);
1686 /* Wait for SOBS to be unset */
1687 wait_for_ctrl_irq (ctrl);
1689 mutex_unlock(&ctrl->crit_sect);
1691 if (!replace_flag && ctrl->add_support) {
1692 while (func) {
1693 res_lists.io_head = ctrl->io_head;
1694 res_lists.mem_head = ctrl->mem_head;
1695 res_lists.p_mem_head = ctrl->p_mem_head;
1696 res_lists.bus_head = ctrl->bus_head;
1698 cpqhp_return_board_resources(func, &res_lists);
1700 ctrl->io_head = res_lists.io_head;
1701 ctrl->mem_head = res_lists.mem_head;
1702 ctrl->p_mem_head = res_lists.p_mem_head;
1703 ctrl->bus_head = res_lists.bus_head;
1705 cpqhp_resource_sort_and_combine(&(ctrl->mem_head));
1706 cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head));
1707 cpqhp_resource_sort_and_combine(&(ctrl->io_head));
1708 cpqhp_resource_sort_and_combine(&(ctrl->bus_head));
1710 if (is_bridge(func)) {
1711 bridge_slot_remove(func);
1712 } else
1713 slot_remove(func);
1715 func = cpqhp_slot_find(ctrl->bus, device, 0);
1718 /* Setup slot structure with entry for empty slot */
1719 func = cpqhp_slot_create(ctrl->bus);
1721 if (func == NULL)
1722 return 1;
1724 func->bus = ctrl->bus;
1725 func->device = device;
1726 func->function = 0;
1727 func->configured = 0;
1728 func->switch_save = 0x10;
1729 func->is_a_board = 0;
1730 func->p_task_event = NULL;
1733 return 0;
1736 static void pushbutton_helper_thread(unsigned long data)
1738 pushbutton_pending = data;
1739 wake_up_process(cpqhp_event_thread);
1743 /* this is the main worker thread */
1744 static int event_thread(void* data)
1746 struct controller *ctrl;
1748 while (1) {
1749 dbg("!!!!event_thread sleeping\n");
1750 set_current_state(TASK_INTERRUPTIBLE);
1751 schedule();
1753 if (kthread_should_stop())
1754 break;
1755 /* Do stuff here */
1756 if (pushbutton_pending)
1757 cpqhp_pushbutton_thread(pushbutton_pending);
1758 else
1759 for (ctrl = cpqhp_ctrl_list; ctrl; ctrl=ctrl->next)
1760 interrupt_event_handler(ctrl);
1762 dbg("event_thread signals exit\n");
1763 return 0;
1766 int cpqhp_event_start_thread(void)
1768 cpqhp_event_thread = kthread_run(event_thread, NULL, "phpd_event");
1769 if (IS_ERR(cpqhp_event_thread)) {
1770 err ("Can't start up our event thread\n");
1771 return PTR_ERR(cpqhp_event_thread);
1774 return 0;
1778 void cpqhp_event_stop_thread(void)
1780 kthread_stop(cpqhp_event_thread);
1784 static int update_slot_info(struct controller *ctrl, struct slot *slot)
1786 struct hotplug_slot_info *info;
1787 int result;
1789 info = kmalloc(sizeof(*info), GFP_KERNEL);
1790 if (!info)
1791 return -ENOMEM;
1793 info->power_status = get_slot_enabled(ctrl, slot);
1794 info->attention_status = cpq_get_attention_status(ctrl, slot);
1795 info->latch_status = cpq_get_latch_status(ctrl, slot);
1796 info->adapter_status = get_presence_status(ctrl, slot);
1797 result = pci_hp_change_slot_info(slot->hotplug_slot, info);
1798 kfree (info);
1799 return result;
1802 static void interrupt_event_handler(struct controller *ctrl)
1804 int loop = 0;
1805 int change = 1;
1806 struct pci_func *func;
1807 u8 hp_slot;
1808 struct slot *p_slot;
1810 while (change) {
1811 change = 0;
1813 for (loop = 0; loop < 10; loop++) {
1814 /* dbg("loop %d\n", loop); */
1815 if (ctrl->event_queue[loop].event_type != 0) {
1816 hp_slot = ctrl->event_queue[loop].hp_slot;
1818 func = cpqhp_slot_find(ctrl->bus, (hp_slot + ctrl->slot_device_offset), 0);
1819 if (!func)
1820 return;
1822 p_slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
1823 if (!p_slot)
1824 return;
1826 dbg("hp_slot %d, func %p, p_slot %p\n",
1827 hp_slot, func, p_slot);
1829 if (ctrl->event_queue[loop].event_type == INT_BUTTON_PRESS) {
1830 dbg("button pressed\n");
1831 } else if (ctrl->event_queue[loop].event_type ==
1832 INT_BUTTON_CANCEL) {
1833 dbg("button cancel\n");
1834 del_timer(&p_slot->task_event);
1836 mutex_lock(&ctrl->crit_sect);
1838 if (p_slot->state == BLINKINGOFF_STATE) {
1839 /* slot is on */
1840 dbg("turn on green LED\n");
1841 green_LED_on (ctrl, hp_slot);
1842 } else if (p_slot->state == BLINKINGON_STATE) {
1843 /* slot is off */
1844 dbg("turn off green LED\n");
1845 green_LED_off (ctrl, hp_slot);
1848 info(msg_button_cancel, p_slot->number);
1850 p_slot->state = STATIC_STATE;
1852 amber_LED_off (ctrl, hp_slot);
1854 set_SOGO(ctrl);
1856 /* Wait for SOBS to be unset */
1857 wait_for_ctrl_irq (ctrl);
1859 mutex_unlock(&ctrl->crit_sect);
1861 /*** button Released (No action on press...) */
1862 else if (ctrl->event_queue[loop].event_type == INT_BUTTON_RELEASE) {
1863 dbg("button release\n");
1865 if (is_slot_enabled (ctrl, hp_slot)) {
1866 dbg("slot is on\n");
1867 p_slot->state = BLINKINGOFF_STATE;
1868 info(msg_button_off, p_slot->number);
1869 } else {
1870 dbg("slot is off\n");
1871 p_slot->state = BLINKINGON_STATE;
1872 info(msg_button_on, p_slot->number);
1874 mutex_lock(&ctrl->crit_sect);
1876 dbg("blink green LED and turn off amber\n");
1878 amber_LED_off (ctrl, hp_slot);
1879 green_LED_blink (ctrl, hp_slot);
1881 set_SOGO(ctrl);
1883 /* Wait for SOBS to be unset */
1884 wait_for_ctrl_irq (ctrl);
1886 mutex_unlock(&ctrl->crit_sect);
1887 init_timer(&p_slot->task_event);
1888 p_slot->hp_slot = hp_slot;
1889 p_slot->ctrl = ctrl;
1890 /* p_slot->physical_slot = physical_slot; */
1891 p_slot->task_event.expires = jiffies + 5 * HZ; /* 5 second delay */
1892 p_slot->task_event.function = pushbutton_helper_thread;
1893 p_slot->task_event.data = (u32) p_slot;
1895 dbg("add_timer p_slot = %p\n", p_slot);
1896 add_timer(&p_slot->task_event);
1898 /***********POWER FAULT */
1899 else if (ctrl->event_queue[loop].event_type == INT_POWER_FAULT) {
1900 dbg("power fault\n");
1901 } else {
1902 /* refresh notification */
1903 if (p_slot)
1904 update_slot_info(ctrl, p_slot);
1907 ctrl->event_queue[loop].event_type = 0;
1909 change = 1;
1911 } /* End of FOR loop */
1914 return;
1919 * cpqhp_pushbutton_thread - handle pushbutton events
1920 * @slot: target slot (struct)
1922 * Scheduled procedure to handle blocking stuff for the pushbuttons.
1923 * Handles all pending events and exits.
1925 void cpqhp_pushbutton_thread(unsigned long slot)
1927 u8 hp_slot;
1928 u8 device;
1929 struct pci_func *func;
1930 struct slot *p_slot = (struct slot *) slot;
1931 struct controller *ctrl = (struct controller *) p_slot->ctrl;
1933 pushbutton_pending = 0;
1934 hp_slot = p_slot->hp_slot;
1936 device = p_slot->device;
1938 if (is_slot_enabled(ctrl, hp_slot)) {
1939 p_slot->state = POWEROFF_STATE;
1940 /* power Down board */
1941 func = cpqhp_slot_find(p_slot->bus, p_slot->device, 0);
1942 dbg("In power_down_board, func = %p, ctrl = %p\n", func, ctrl);
1943 if (!func) {
1944 dbg("Error! func NULL in %s\n", __func__);
1945 return ;
1948 if (cpqhp_process_SS(ctrl, func) != 0) {
1949 amber_LED_on(ctrl, hp_slot);
1950 green_LED_on(ctrl, hp_slot);
1952 set_SOGO(ctrl);
1954 /* Wait for SOBS to be unset */
1955 wait_for_ctrl_irq(ctrl);
1958 p_slot->state = STATIC_STATE;
1959 } else {
1960 p_slot->state = POWERON_STATE;
1961 /* slot is off */
1963 func = cpqhp_slot_find(p_slot->bus, p_slot->device, 0);
1964 dbg("In add_board, func = %p, ctrl = %p\n", func, ctrl);
1965 if (!func) {
1966 dbg("Error! func NULL in %s\n", __func__);
1967 return ;
1970 if (ctrl != NULL) {
1971 if (cpqhp_process_SI(ctrl, func) != 0) {
1972 amber_LED_on(ctrl, hp_slot);
1973 green_LED_off(ctrl, hp_slot);
1975 set_SOGO(ctrl);
1977 /* Wait for SOBS to be unset */
1978 wait_for_ctrl_irq (ctrl);
1982 p_slot->state = STATIC_STATE;
1985 return;
1989 int cpqhp_process_SI(struct controller *ctrl, struct pci_func *func)
1991 u8 device, hp_slot;
1992 u16 temp_word;
1993 u32 tempdword;
1994 int rc;
1995 struct slot* p_slot;
1996 int physical_slot = 0;
1998 tempdword = 0;
2000 device = func->device;
2001 hp_slot = device - ctrl->slot_device_offset;
2002 p_slot = cpqhp_find_slot(ctrl, device);
2003 if (p_slot)
2004 physical_slot = p_slot->number;
2006 /* Check to see if the interlock is closed */
2007 tempdword = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
2009 if (tempdword & (0x01 << hp_slot)) {
2010 return 1;
2013 if (func->is_a_board) {
2014 rc = board_replaced(func, ctrl);
2015 } else {
2016 /* add board */
2017 slot_remove(func);
2019 func = cpqhp_slot_create(ctrl->bus);
2020 if (func == NULL)
2021 return 1;
2023 func->bus = ctrl->bus;
2024 func->device = device;
2025 func->function = 0;
2026 func->configured = 0;
2027 func->is_a_board = 1;
2029 /* We have to save the presence info for these slots */
2030 temp_word = ctrl->ctrl_int_comp >> 16;
2031 func->presence_save = (temp_word >> hp_slot) & 0x01;
2032 func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
2034 if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
2035 func->switch_save = 0;
2036 } else {
2037 func->switch_save = 0x10;
2040 rc = board_added(func, ctrl);
2041 if (rc) {
2042 if (is_bridge(func)) {
2043 bridge_slot_remove(func);
2044 } else
2045 slot_remove(func);
2047 /* Setup slot structure with entry for empty slot */
2048 func = cpqhp_slot_create(ctrl->bus);
2050 if (func == NULL)
2051 return 1;
2053 func->bus = ctrl->bus;
2054 func->device = device;
2055 func->function = 0;
2056 func->configured = 0;
2057 func->is_a_board = 0;
2059 /* We have to save the presence info for these slots */
2060 temp_word = ctrl->ctrl_int_comp >> 16;
2061 func->presence_save = (temp_word >> hp_slot) & 0x01;
2062 func->presence_save |=
2063 (temp_word >> (hp_slot + 7)) & 0x02;
2065 if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
2066 func->switch_save = 0;
2067 } else {
2068 func->switch_save = 0x10;
2073 if (rc) {
2074 dbg("%s: rc = %d\n", __func__, rc);
2077 if (p_slot)
2078 update_slot_info(ctrl, p_slot);
2080 return rc;
2084 int cpqhp_process_SS(struct controller *ctrl, struct pci_func *func)
2086 u8 device, class_code, header_type, BCR;
2087 u8 index = 0;
2088 u8 replace_flag;
2089 u32 rc = 0;
2090 unsigned int devfn;
2091 struct slot* p_slot;
2092 struct pci_bus *pci_bus = ctrl->pci_bus;
2093 int physical_slot=0;
2095 device = func->device;
2096 func = cpqhp_slot_find(ctrl->bus, device, index++);
2097 p_slot = cpqhp_find_slot(ctrl, device);
2098 if (p_slot) {
2099 physical_slot = p_slot->number;
2102 /* Make sure there are no video controllers here */
2103 while (func && !rc) {
2104 pci_bus->number = func->bus;
2105 devfn = PCI_DEVFN(func->device, func->function);
2107 /* Check the Class Code */
2108 rc = pci_bus_read_config_byte (pci_bus, devfn, 0x0B, &class_code);
2109 if (rc)
2110 return rc;
2112 if (class_code == PCI_BASE_CLASS_DISPLAY) {
2113 /* Display/Video adapter (not supported) */
2114 rc = REMOVE_NOT_SUPPORTED;
2115 } else {
2116 /* See if it's a bridge */
2117 rc = pci_bus_read_config_byte (pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
2118 if (rc)
2119 return rc;
2121 /* If it's a bridge, check the VGA Enable bit */
2122 if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
2123 rc = pci_bus_read_config_byte (pci_bus, devfn, PCI_BRIDGE_CONTROL, &BCR);
2124 if (rc)
2125 return rc;
2127 /* If the VGA Enable bit is set, remove isn't
2128 * supported */
2129 if (BCR & PCI_BRIDGE_CTL_VGA)
2130 rc = REMOVE_NOT_SUPPORTED;
2134 func = cpqhp_slot_find(ctrl->bus, device, index++);
2137 func = cpqhp_slot_find(ctrl->bus, device, 0);
2138 if ((func != NULL) && !rc) {
2139 /* FIXME: Replace flag should be passed into process_SS */
2140 replace_flag = !(ctrl->add_support);
2141 rc = remove_board(func, replace_flag, ctrl);
2142 } else if (!rc) {
2143 rc = 1;
2146 if (p_slot)
2147 update_slot_info(ctrl, p_slot);
2149 return rc;
2153 * switch_leds - switch the leds, go from one site to the other.
2154 * @ctrl: controller to use
2155 * @num_of_slots: number of slots to use
2156 * @work_LED: LED control value
2157 * @direction: 1 to start from the left side, 0 to start right.
2159 static void switch_leds(struct controller *ctrl, const int num_of_slots,
2160 u32 *work_LED, const int direction)
2162 int loop;
2164 for (loop = 0; loop < num_of_slots; loop++) {
2165 if (direction)
2166 *work_LED = *work_LED >> 1;
2167 else
2168 *work_LED = *work_LED << 1;
2169 writel(*work_LED, ctrl->hpc_reg + LED_CONTROL);
2171 set_SOGO(ctrl);
2173 /* Wait for SOGO interrupt */
2174 wait_for_ctrl_irq(ctrl);
2176 /* Get ready for next iteration */
2177 long_delay((2*HZ)/10);
2182 * cpqhp_hardware_test - runs hardware tests
2183 * @ctrl: target controller
2184 * @test_num: the number written to the "test" file in sysfs.
2186 * For hot plug ctrl folks to play with.
2188 int cpqhp_hardware_test(struct controller *ctrl, int test_num)
2190 u32 save_LED;
2191 u32 work_LED;
2192 int loop;
2193 int num_of_slots;
2195 num_of_slots = readb(ctrl->hpc_reg + SLOT_MASK) & 0x0f;
2197 switch (test_num) {
2198 case 1:
2199 /* Do stuff here! */
2201 /* Do that funky LED thing */
2202 /* so we can restore them later */
2203 save_LED = readl(ctrl->hpc_reg + LED_CONTROL);
2204 work_LED = 0x01010101;
2205 switch_leds(ctrl, num_of_slots, &work_LED, 0);
2206 switch_leds(ctrl, num_of_slots, &work_LED, 1);
2207 switch_leds(ctrl, num_of_slots, &work_LED, 0);
2208 switch_leds(ctrl, num_of_slots, &work_LED, 1);
2210 work_LED = 0x01010000;
2211 writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2212 switch_leds(ctrl, num_of_slots, &work_LED, 0);
2213 switch_leds(ctrl, num_of_slots, &work_LED, 1);
2214 work_LED = 0x00000101;
2215 writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2216 switch_leds(ctrl, num_of_slots, &work_LED, 0);
2217 switch_leds(ctrl, num_of_slots, &work_LED, 1);
2219 work_LED = 0x01010000;
2220 writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2221 for (loop = 0; loop < num_of_slots; loop++) {
2222 set_SOGO(ctrl);
2224 /* Wait for SOGO interrupt */
2225 wait_for_ctrl_irq (ctrl);
2227 /* Get ready for next iteration */
2228 long_delay((3*HZ)/10);
2229 work_LED = work_LED >> 16;
2230 writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2232 set_SOGO(ctrl);
2234 /* Wait for SOGO interrupt */
2235 wait_for_ctrl_irq (ctrl);
2237 /* Get ready for next iteration */
2238 long_delay((3*HZ)/10);
2239 work_LED = work_LED << 16;
2240 writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2241 work_LED = work_LED << 1;
2242 writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2245 /* put it back the way it was */
2246 writel(save_LED, ctrl->hpc_reg + LED_CONTROL);
2248 set_SOGO(ctrl);
2250 /* Wait for SOBS to be unset */
2251 wait_for_ctrl_irq (ctrl);
2252 break;
2253 case 2:
2254 /* Do other stuff here! */
2255 break;
2256 case 3:
2257 /* and more... */
2258 break;
2260 return 0;
2265 * configure_new_device - Configures the PCI header information of one board.
2266 * @ctrl: pointer to controller structure
2267 * @func: pointer to function structure
2268 * @behind_bridge: 1 if this is a recursive call, 0 if not
2269 * @resources: pointer to set of resource lists
2271 * Returns 0 if success.
2273 static u32 configure_new_device(struct controller * ctrl, struct pci_func * func,
2274 u8 behind_bridge, struct resource_lists * resources)
2276 u8 temp_byte, function, max_functions, stop_it;
2277 int rc;
2278 u32 ID;
2279 struct pci_func *new_slot;
2280 int index;
2282 new_slot = func;
2284 dbg("%s\n", __func__);
2285 /* Check for Multi-function device */
2286 ctrl->pci_bus->number = func->bus;
2287 rc = pci_bus_read_config_byte (ctrl->pci_bus, PCI_DEVFN(func->device, func->function), 0x0E, &temp_byte);
2288 if (rc) {
2289 dbg("%s: rc = %d\n", __func__, rc);
2290 return rc;
2293 if (temp_byte & 0x80) /* Multi-function device */
2294 max_functions = 8;
2295 else
2296 max_functions = 1;
2298 function = 0;
2300 do {
2301 rc = configure_new_function(ctrl, new_slot, behind_bridge, resources);
2303 if (rc) {
2304 dbg("configure_new_function failed %d\n",rc);
2305 index = 0;
2307 while (new_slot) {
2308 new_slot = cpqhp_slot_find(new_slot->bus, new_slot->device, index++);
2310 if (new_slot)
2311 cpqhp_return_board_resources(new_slot, resources);
2314 return rc;
2317 function++;
2319 stop_it = 0;
2321 /* The following loop skips to the next present function
2322 * and creates a board structure */
2324 while ((function < max_functions) && (!stop_it)) {
2325 pci_bus_read_config_dword (ctrl->pci_bus, PCI_DEVFN(func->device, function), 0x00, &ID);
2327 if (ID == 0xFFFFFFFF) {
2328 function++;
2329 } else {
2330 /* Setup slot structure. */
2331 new_slot = cpqhp_slot_create(func->bus);
2333 if (new_slot == NULL)
2334 return 1;
2336 new_slot->bus = func->bus;
2337 new_slot->device = func->device;
2338 new_slot->function = function;
2339 new_slot->is_a_board = 1;
2340 new_slot->status = 0;
2342 stop_it++;
2346 } while (function < max_functions);
2347 dbg("returning from configure_new_device\n");
2349 return 0;
2354 * Configuration logic that involves the hotplug data structures and
2355 * their bookkeeping
2360 * configure_new_function - Configures the PCI header information of one device
2361 * @ctrl: pointer to controller structure
2362 * @func: pointer to function structure
2363 * @behind_bridge: 1 if this is a recursive call, 0 if not
2364 * @resources: pointer to set of resource lists
2366 * Calls itself recursively for bridged devices.
2367 * Returns 0 if success.
2369 static int configure_new_function(struct controller *ctrl, struct pci_func *func,
2370 u8 behind_bridge,
2371 struct resource_lists *resources)
2373 int cloop;
2374 u8 IRQ = 0;
2375 u8 temp_byte;
2376 u8 device;
2377 u8 class_code;
2378 u16 command;
2379 u16 temp_word;
2380 u32 temp_dword;
2381 u32 rc;
2382 u32 temp_register;
2383 u32 base;
2384 u32 ID;
2385 unsigned int devfn;
2386 struct pci_resource *mem_node;
2387 struct pci_resource *p_mem_node;
2388 struct pci_resource *io_node;
2389 struct pci_resource *bus_node;
2390 struct pci_resource *hold_mem_node;
2391 struct pci_resource *hold_p_mem_node;
2392 struct pci_resource *hold_IO_node;
2393 struct pci_resource *hold_bus_node;
2394 struct irq_mapping irqs;
2395 struct pci_func *new_slot;
2396 struct pci_bus *pci_bus;
2397 struct resource_lists temp_resources;
2399 pci_bus = ctrl->pci_bus;
2400 pci_bus->number = func->bus;
2401 devfn = PCI_DEVFN(func->device, func->function);
2403 /* Check for Bridge */
2404 rc = pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &temp_byte);
2405 if (rc)
2406 return rc;
2408 if ((temp_byte & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
2409 /* set Primary bus */
2410 dbg("set Primary bus = %d\n", func->bus);
2411 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_PRIMARY_BUS, func->bus);
2412 if (rc)
2413 return rc;
2415 /* find range of busses to use */
2416 dbg("find ranges of buses to use\n");
2417 bus_node = get_max_resource(&(resources->bus_head), 1);
2419 /* If we don't have any busses to allocate, we can't continue */
2420 if (!bus_node)
2421 return -ENOMEM;
2423 /* set Secondary bus */
2424 temp_byte = bus_node->base;
2425 dbg("set Secondary bus = %d\n", bus_node->base);
2426 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SECONDARY_BUS, temp_byte);
2427 if (rc)
2428 return rc;
2430 /* set subordinate bus */
2431 temp_byte = bus_node->base + bus_node->length - 1;
2432 dbg("set subordinate bus = %d\n", bus_node->base + bus_node->length - 1);
2433 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SUBORDINATE_BUS, temp_byte);
2434 if (rc)
2435 return rc;
2437 /* set subordinate Latency Timer and base Latency Timer */
2438 temp_byte = 0x40;
2439 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SEC_LATENCY_TIMER, temp_byte);
2440 if (rc)
2441 return rc;
2442 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_LATENCY_TIMER, temp_byte);
2443 if (rc)
2444 return rc;
2446 /* set Cache Line size */
2447 temp_byte = 0x08;
2448 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_CACHE_LINE_SIZE, temp_byte);
2449 if (rc)
2450 return rc;
2452 /* Setup the IO, memory, and prefetchable windows */
2453 io_node = get_max_resource(&(resources->io_head), 0x1000);
2454 if (!io_node)
2455 return -ENOMEM;
2456 mem_node = get_max_resource(&(resources->mem_head), 0x100000);
2457 if (!mem_node)
2458 return -ENOMEM;
2459 p_mem_node = get_max_resource(&(resources->p_mem_head), 0x100000);
2460 if (!p_mem_node)
2461 return -ENOMEM;
2462 dbg("Setup the IO, memory, and prefetchable windows\n");
2463 dbg("io_node\n");
2464 dbg("(base, len, next) (%x, %x, %p)\n", io_node->base,
2465 io_node->length, io_node->next);
2466 dbg("mem_node\n");
2467 dbg("(base, len, next) (%x, %x, %p)\n", mem_node->base,
2468 mem_node->length, mem_node->next);
2469 dbg("p_mem_node\n");
2470 dbg("(base, len, next) (%x, %x, %p)\n", p_mem_node->base,
2471 p_mem_node->length, p_mem_node->next);
2473 /* set up the IRQ info */
2474 if (!resources->irqs) {
2475 irqs.barber_pole = 0;
2476 irqs.interrupt[0] = 0;
2477 irqs.interrupt[1] = 0;
2478 irqs.interrupt[2] = 0;
2479 irqs.interrupt[3] = 0;
2480 irqs.valid_INT = 0;
2481 } else {
2482 irqs.barber_pole = resources->irqs->barber_pole;
2483 irqs.interrupt[0] = resources->irqs->interrupt[0];
2484 irqs.interrupt[1] = resources->irqs->interrupt[1];
2485 irqs.interrupt[2] = resources->irqs->interrupt[2];
2486 irqs.interrupt[3] = resources->irqs->interrupt[3];
2487 irqs.valid_INT = resources->irqs->valid_INT;
2490 /* set up resource lists that are now aligned on top and bottom
2491 * for anything behind the bridge. */
2492 temp_resources.bus_head = bus_node;
2493 temp_resources.io_head = io_node;
2494 temp_resources.mem_head = mem_node;
2495 temp_resources.p_mem_head = p_mem_node;
2496 temp_resources.irqs = &irqs;
2498 /* Make copies of the nodes we are going to pass down so that
2499 * if there is a problem,we can just use these to free resources
2501 hold_bus_node = kmalloc(sizeof(*hold_bus_node), GFP_KERNEL);
2502 hold_IO_node = kmalloc(sizeof(*hold_IO_node), GFP_KERNEL);
2503 hold_mem_node = kmalloc(sizeof(*hold_mem_node), GFP_KERNEL);
2504 hold_p_mem_node = kmalloc(sizeof(*hold_p_mem_node), GFP_KERNEL);
2506 if (!hold_bus_node || !hold_IO_node || !hold_mem_node || !hold_p_mem_node) {
2507 kfree(hold_bus_node);
2508 kfree(hold_IO_node);
2509 kfree(hold_mem_node);
2510 kfree(hold_p_mem_node);
2512 return 1;
2515 memcpy(hold_bus_node, bus_node, sizeof(struct pci_resource));
2517 bus_node->base += 1;
2518 bus_node->length -= 1;
2519 bus_node->next = NULL;
2521 /* If we have IO resources copy them and fill in the bridge's
2522 * IO range registers */
2523 if (io_node) {
2524 memcpy(hold_IO_node, io_node, sizeof(struct pci_resource));
2525 io_node->next = NULL;
2527 /* set IO base and Limit registers */
2528 temp_byte = io_node->base >> 8;
2529 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_BASE, temp_byte);
2531 temp_byte = (io_node->base + io_node->length - 1) >> 8;
2532 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_LIMIT, temp_byte);
2533 } else {
2534 kfree(hold_IO_node);
2535 hold_IO_node = NULL;
2538 /* If we have memory resources copy them and fill in the
2539 * bridge's memory range registers. Otherwise, fill in the
2540 * range registers with values that disable them. */
2541 if (mem_node) {
2542 memcpy(hold_mem_node, mem_node, sizeof(struct pci_resource));
2543 mem_node->next = NULL;
2545 /* set Mem base and Limit registers */
2546 temp_word = mem_node->base >> 16;
2547 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_BASE, temp_word);
2549 temp_word = (mem_node->base + mem_node->length - 1) >> 16;
2550 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2551 } else {
2552 temp_word = 0xFFFF;
2553 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_BASE, temp_word);
2555 temp_word = 0x0000;
2556 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2558 kfree(hold_mem_node);
2559 hold_mem_node = NULL;
2562 memcpy(hold_p_mem_node, p_mem_node, sizeof(struct pci_resource));
2563 p_mem_node->next = NULL;
2565 /* set Pre Mem base and Limit registers */
2566 temp_word = p_mem_node->base >> 16;
2567 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_BASE, temp_word);
2569 temp_word = (p_mem_node->base + p_mem_node->length - 1) >> 16;
2570 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
2572 /* Adjust this to compensate for extra adjustment in first loop
2574 irqs.barber_pole--;
2576 rc = 0;
2578 /* Here we actually find the devices and configure them */
2579 for (device = 0; (device <= 0x1F) && !rc; device++) {
2580 irqs.barber_pole = (irqs.barber_pole + 1) & 0x03;
2582 ID = 0xFFFFFFFF;
2583 pci_bus->number = hold_bus_node->base;
2584 pci_bus_read_config_dword (pci_bus, PCI_DEVFN(device, 0), 0x00, &ID);
2585 pci_bus->number = func->bus;
2587 if (ID != 0xFFFFFFFF) { /* device present */
2588 /* Setup slot structure. */
2589 new_slot = cpqhp_slot_create(hold_bus_node->base);
2591 if (new_slot == NULL) {
2592 rc = -ENOMEM;
2593 continue;
2596 new_slot->bus = hold_bus_node->base;
2597 new_slot->device = device;
2598 new_slot->function = 0;
2599 new_slot->is_a_board = 1;
2600 new_slot->status = 0;
2602 rc = configure_new_device(ctrl, new_slot, 1, &temp_resources);
2603 dbg("configure_new_device rc=0x%x\n",rc);
2604 } /* End of IF (device in slot?) */
2605 } /* End of FOR loop */
2607 if (rc)
2608 goto free_and_out;
2609 /* save the interrupt routing information */
2610 if (resources->irqs) {
2611 resources->irqs->interrupt[0] = irqs.interrupt[0];
2612 resources->irqs->interrupt[1] = irqs.interrupt[1];
2613 resources->irqs->interrupt[2] = irqs.interrupt[2];
2614 resources->irqs->interrupt[3] = irqs.interrupt[3];
2615 resources->irqs->valid_INT = irqs.valid_INT;
2616 } else if (!behind_bridge) {
2617 /* We need to hook up the interrupts here */
2618 for (cloop = 0; cloop < 4; cloop++) {
2619 if (irqs.valid_INT & (0x01 << cloop)) {
2620 rc = cpqhp_set_irq(func->bus, func->device,
2621 cloop + 1, irqs.interrupt[cloop]);
2622 if (rc)
2623 goto free_and_out;
2625 } /* end of for loop */
2627 /* Return unused bus resources
2628 * First use the temporary node to store information for
2629 * the board */
2630 if (hold_bus_node && bus_node && temp_resources.bus_head) {
2631 hold_bus_node->length = bus_node->base - hold_bus_node->base;
2633 hold_bus_node->next = func->bus_head;
2634 func->bus_head = hold_bus_node;
2636 temp_byte = temp_resources.bus_head->base - 1;
2638 /* set subordinate bus */
2639 rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_SUBORDINATE_BUS, temp_byte);
2641 if (temp_resources.bus_head->length == 0) {
2642 kfree(temp_resources.bus_head);
2643 temp_resources.bus_head = NULL;
2644 } else {
2645 return_resource(&(resources->bus_head), temp_resources.bus_head);
2649 /* If we have IO space available and there is some left,
2650 * return the unused portion */
2651 if (hold_IO_node && temp_resources.io_head) {
2652 io_node = do_pre_bridge_resource_split(&(temp_resources.io_head),
2653 &hold_IO_node, 0x1000);
2655 /* Check if we were able to split something off */
2656 if (io_node) {
2657 hold_IO_node->base = io_node->base + io_node->length;
2659 temp_byte = (hold_IO_node->base) >> 8;
2660 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_IO_BASE, temp_byte);
2662 return_resource(&(resources->io_head), io_node);
2665 io_node = do_bridge_resource_split(&(temp_resources.io_head), 0x1000);
2667 /* Check if we were able to split something off */
2668 if (io_node) {
2669 /* First use the temporary node to store
2670 * information for the board */
2671 hold_IO_node->length = io_node->base - hold_IO_node->base;
2673 /* If we used any, add it to the board's list */
2674 if (hold_IO_node->length) {
2675 hold_IO_node->next = func->io_head;
2676 func->io_head = hold_IO_node;
2678 temp_byte = (io_node->base - 1) >> 8;
2679 rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_IO_LIMIT, temp_byte);
2681 return_resource(&(resources->io_head), io_node);
2682 } else {
2683 /* it doesn't need any IO */
2684 temp_word = 0x0000;
2685 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_IO_LIMIT, temp_word);
2687 return_resource(&(resources->io_head), io_node);
2688 kfree(hold_IO_node);
2690 } else {
2691 /* it used most of the range */
2692 hold_IO_node->next = func->io_head;
2693 func->io_head = hold_IO_node;
2695 } else if (hold_IO_node) {
2696 /* it used the whole range */
2697 hold_IO_node->next = func->io_head;
2698 func->io_head = hold_IO_node;
2700 /* If we have memory space available and there is some left,
2701 * return the unused portion */
2702 if (hold_mem_node && temp_resources.mem_head) {
2703 mem_node = do_pre_bridge_resource_split(&(temp_resources. mem_head),
2704 &hold_mem_node, 0x100000);
2706 /* Check if we were able to split something off */
2707 if (mem_node) {
2708 hold_mem_node->base = mem_node->base + mem_node->length;
2710 temp_word = (hold_mem_node->base) >> 16;
2711 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_MEMORY_BASE, temp_word);
2713 return_resource(&(resources->mem_head), mem_node);
2716 mem_node = do_bridge_resource_split(&(temp_resources.mem_head), 0x100000);
2718 /* Check if we were able to split something off */
2719 if (mem_node) {
2720 /* First use the temporary node to store
2721 * information for the board */
2722 hold_mem_node->length = mem_node->base - hold_mem_node->base;
2724 if (hold_mem_node->length) {
2725 hold_mem_node->next = func->mem_head;
2726 func->mem_head = hold_mem_node;
2728 /* configure end address */
2729 temp_word = (mem_node->base - 1) >> 16;
2730 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2732 /* Return unused resources to the pool */
2733 return_resource(&(resources->mem_head), mem_node);
2734 } else {
2735 /* it doesn't need any Mem */
2736 temp_word = 0x0000;
2737 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2739 return_resource(&(resources->mem_head), mem_node);
2740 kfree(hold_mem_node);
2742 } else {
2743 /* it used most of the range */
2744 hold_mem_node->next = func->mem_head;
2745 func->mem_head = hold_mem_node;
2747 } else if (hold_mem_node) {
2748 /* it used the whole range */
2749 hold_mem_node->next = func->mem_head;
2750 func->mem_head = hold_mem_node;
2752 /* If we have prefetchable memory space available and there
2753 * is some left at the end, return the unused portion */
2754 if (hold_p_mem_node && temp_resources.p_mem_head) {
2755 p_mem_node = do_pre_bridge_resource_split(&(temp_resources.p_mem_head),
2756 &hold_p_mem_node, 0x100000);
2758 /* Check if we were able to split something off */
2759 if (p_mem_node) {
2760 hold_p_mem_node->base = p_mem_node->base + p_mem_node->length;
2762 temp_word = (hold_p_mem_node->base) >> 16;
2763 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_BASE, temp_word);
2765 return_resource(&(resources->p_mem_head), p_mem_node);
2768 p_mem_node = do_bridge_resource_split(&(temp_resources.p_mem_head), 0x100000);
2770 /* Check if we were able to split something off */
2771 if (p_mem_node) {
2772 /* First use the temporary node to store
2773 * information for the board */
2774 hold_p_mem_node->length = p_mem_node->base - hold_p_mem_node->base;
2776 /* If we used any, add it to the board's list */
2777 if (hold_p_mem_node->length) {
2778 hold_p_mem_node->next = func->p_mem_head;
2779 func->p_mem_head = hold_p_mem_node;
2781 temp_word = (p_mem_node->base - 1) >> 16;
2782 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
2784 return_resource(&(resources->p_mem_head), p_mem_node);
2785 } else {
2786 /* it doesn't need any PMem */
2787 temp_word = 0x0000;
2788 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
2790 return_resource(&(resources->p_mem_head), p_mem_node);
2791 kfree(hold_p_mem_node);
2793 } else {
2794 /* it used the most of the range */
2795 hold_p_mem_node->next = func->p_mem_head;
2796 func->p_mem_head = hold_p_mem_node;
2798 } else if (hold_p_mem_node) {
2799 /* it used the whole range */
2800 hold_p_mem_node->next = func->p_mem_head;
2801 func->p_mem_head = hold_p_mem_node;
2803 /* We should be configuring an IRQ and the bridge's base address
2804 * registers if it needs them. Although we have never seen such
2805 * a device */
2807 /* enable card */
2808 command = 0x0157; /* = PCI_COMMAND_IO |
2809 * PCI_COMMAND_MEMORY |
2810 * PCI_COMMAND_MASTER |
2811 * PCI_COMMAND_INVALIDATE |
2812 * PCI_COMMAND_PARITY |
2813 * PCI_COMMAND_SERR */
2814 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_COMMAND, command);
2816 /* set Bridge Control Register */
2817 command = 0x07; /* = PCI_BRIDGE_CTL_PARITY |
2818 * PCI_BRIDGE_CTL_SERR |
2819 * PCI_BRIDGE_CTL_NO_ISA */
2820 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_BRIDGE_CONTROL, command);
2821 } else if ((temp_byte & 0x7F) == PCI_HEADER_TYPE_NORMAL) {
2822 /* Standard device */
2823 rc = pci_bus_read_config_byte (pci_bus, devfn, 0x0B, &class_code);
2825 if (class_code == PCI_BASE_CLASS_DISPLAY) {
2826 /* Display (video) adapter (not supported) */
2827 return DEVICE_TYPE_NOT_SUPPORTED;
2829 /* Figure out IO and memory needs */
2830 for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
2831 temp_register = 0xFFFFFFFF;
2833 dbg("CND: bus=%d, devfn=%d, offset=%d\n", pci_bus->number, devfn, cloop);
2834 rc = pci_bus_write_config_dword (pci_bus, devfn, cloop, temp_register);
2836 rc = pci_bus_read_config_dword (pci_bus, devfn, cloop, &temp_register);
2837 dbg("CND: base = 0x%x\n", temp_register);
2839 if (temp_register) { /* If this register is implemented */
2840 if ((temp_register & 0x03L) == 0x01) {
2841 /* Map IO */
2843 /* set base = amount of IO space */
2844 base = temp_register & 0xFFFFFFFC;
2845 base = ~base + 1;
2847 dbg("CND: length = 0x%x\n", base);
2848 io_node = get_io_resource(&(resources->io_head), base);
2849 dbg("Got io_node start = %8.8x, length = %8.8x next (%p)\n",
2850 io_node->base, io_node->length, io_node->next);
2851 dbg("func (%p) io_head (%p)\n", func, func->io_head);
2853 /* allocate the resource to the board */
2854 if (io_node) {
2855 base = io_node->base;
2857 io_node->next = func->io_head;
2858 func->io_head = io_node;
2859 } else
2860 return -ENOMEM;
2861 } else if ((temp_register & 0x0BL) == 0x08) {
2862 /* Map prefetchable memory */
2863 base = temp_register & 0xFFFFFFF0;
2864 base = ~base + 1;
2866 dbg("CND: length = 0x%x\n", base);
2867 p_mem_node = get_resource(&(resources->p_mem_head), base);
2869 /* allocate the resource to the board */
2870 if (p_mem_node) {
2871 base = p_mem_node->base;
2873 p_mem_node->next = func->p_mem_head;
2874 func->p_mem_head = p_mem_node;
2875 } else
2876 return -ENOMEM;
2877 } else if ((temp_register & 0x0BL) == 0x00) {
2878 /* Map memory */
2879 base = temp_register & 0xFFFFFFF0;
2880 base = ~base + 1;
2882 dbg("CND: length = 0x%x\n", base);
2883 mem_node = get_resource(&(resources->mem_head), base);
2885 /* allocate the resource to the board */
2886 if (mem_node) {
2887 base = mem_node->base;
2889 mem_node->next = func->mem_head;
2890 func->mem_head = mem_node;
2891 } else
2892 return -ENOMEM;
2893 } else if ((temp_register & 0x0BL) == 0x04) {
2894 /* Map memory */
2895 base = temp_register & 0xFFFFFFF0;
2896 base = ~base + 1;
2898 dbg("CND: length = 0x%x\n", base);
2899 mem_node = get_resource(&(resources->mem_head), base);
2901 /* allocate the resource to the board */
2902 if (mem_node) {
2903 base = mem_node->base;
2905 mem_node->next = func->mem_head;
2906 func->mem_head = mem_node;
2907 } else
2908 return -ENOMEM;
2909 } else if ((temp_register & 0x0BL) == 0x06) {
2910 /* Those bits are reserved, we can't handle this */
2911 return 1;
2912 } else {
2913 /* Requesting space below 1M */
2914 return NOT_ENOUGH_RESOURCES;
2917 rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, base);
2919 /* Check for 64-bit base */
2920 if ((temp_register & 0x07L) == 0x04) {
2921 cloop += 4;
2923 /* Upper 32 bits of address always zero
2924 * on today's systems */
2925 /* FIXME this is probably not true on
2926 * Alpha and ia64??? */
2927 base = 0;
2928 rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, base);
2931 } /* End of base register loop */
2932 if (cpqhp_legacy_mode) {
2933 /* Figure out which interrupt pin this function uses */
2934 rc = pci_bus_read_config_byte (pci_bus, devfn,
2935 PCI_INTERRUPT_PIN, &temp_byte);
2937 /* If this function needs an interrupt and we are behind
2938 * a bridge and the pin is tied to something that's
2939 * alread mapped, set this one the same */
2940 if (temp_byte && resources->irqs &&
2941 (resources->irqs->valid_INT &
2942 (0x01 << ((temp_byte + resources->irqs->barber_pole - 1) & 0x03)))) {
2943 /* We have to share with something already set up */
2944 IRQ = resources->irqs->interrupt[(temp_byte +
2945 resources->irqs->barber_pole - 1) & 0x03];
2946 } else {
2947 /* Program IRQ based on card type */
2948 rc = pci_bus_read_config_byte (pci_bus, devfn, 0x0B, &class_code);
2950 if (class_code == PCI_BASE_CLASS_STORAGE)
2951 IRQ = cpqhp_disk_irq;
2952 else
2953 IRQ = cpqhp_nic_irq;
2956 /* IRQ Line */
2957 rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_INTERRUPT_LINE, IRQ);
2960 if (!behind_bridge) {
2961 rc = cpqhp_set_irq(func->bus, func->device, temp_byte, IRQ);
2962 if (rc)
2963 return 1;
2964 } else {
2965 /* TBD - this code may also belong in the other clause
2966 * of this If statement */
2967 resources->irqs->interrupt[(temp_byte + resources->irqs->barber_pole - 1) & 0x03] = IRQ;
2968 resources->irqs->valid_INT |= 0x01 << (temp_byte + resources->irqs->barber_pole - 1) & 0x03;
2971 /* Latency Timer */
2972 temp_byte = 0x40;
2973 rc = pci_bus_write_config_byte(pci_bus, devfn,
2974 PCI_LATENCY_TIMER, temp_byte);
2976 /* Cache Line size */
2977 temp_byte = 0x08;
2978 rc = pci_bus_write_config_byte(pci_bus, devfn,
2979 PCI_CACHE_LINE_SIZE, temp_byte);
2981 /* disable ROM base Address */
2982 temp_dword = 0x00L;
2983 rc = pci_bus_write_config_word(pci_bus, devfn,
2984 PCI_ROM_ADDRESS, temp_dword);
2986 /* enable card */
2987 temp_word = 0x0157; /* = PCI_COMMAND_IO |
2988 * PCI_COMMAND_MEMORY |
2989 * PCI_COMMAND_MASTER |
2990 * PCI_COMMAND_INVALIDATE |
2991 * PCI_COMMAND_PARITY |
2992 * PCI_COMMAND_SERR */
2993 rc = pci_bus_write_config_word (pci_bus, devfn,
2994 PCI_COMMAND, temp_word);
2995 } else { /* End of Not-A-Bridge else */
2996 /* It's some strange type of PCI adapter (Cardbus?) */
2997 return DEVICE_TYPE_NOT_SUPPORTED;
3000 func->configured = 1;
3002 return 0;
3003 free_and_out:
3004 cpqhp_destroy_resource_list (&temp_resources);
3006 return_resource(&(resources-> bus_head), hold_bus_node);
3007 return_resource(&(resources-> io_head), hold_IO_node);
3008 return_resource(&(resources-> mem_head), hold_mem_node);
3009 return_resource(&(resources-> p_mem_head), hold_p_mem_node);
3010 return rc;