spi-topcliff-pch: supports a spi mode setup and bit order setup by IO control
[zen-stable.git] / drivers / target / target_core_transport.c
blobcd5cd95812bbfdd0b5d57428224e596d3e129c86
1 /*******************************************************************************
2 * Filename: target_core_transport.c
4 * This file contains the Generic Target Engine Core.
6 * Copyright (c) 2002, 2003, 2004, 2005 PyX Technologies, Inc.
7 * Copyright (c) 2005, 2006, 2007 SBE, Inc.
8 * Copyright (c) 2007-2010 Rising Tide Systems
9 * Copyright (c) 2008-2010 Linux-iSCSI.org
11 * Nicholas A. Bellinger <nab@kernel.org>
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
27 ******************************************************************************/
29 #include <linux/net.h>
30 #include <linux/delay.h>
31 #include <linux/string.h>
32 #include <linux/timer.h>
33 #include <linux/slab.h>
34 #include <linux/blkdev.h>
35 #include <linux/spinlock.h>
36 #include <linux/kthread.h>
37 #include <linux/in.h>
38 #include <linux/cdrom.h>
39 #include <linux/module.h>
40 #include <asm/unaligned.h>
41 #include <net/sock.h>
42 #include <net/tcp.h>
43 #include <scsi/scsi.h>
44 #include <scsi/scsi_cmnd.h>
45 #include <scsi/scsi_tcq.h>
47 #include <target/target_core_base.h>
48 #include <target/target_core_backend.h>
49 #include <target/target_core_fabric.h>
50 #include <target/target_core_configfs.h>
52 #include "target_core_internal.h"
53 #include "target_core_alua.h"
54 #include "target_core_pr.h"
55 #include "target_core_ua.h"
57 static int sub_api_initialized;
59 static struct workqueue_struct *target_completion_wq;
60 static struct kmem_cache *se_sess_cache;
61 struct kmem_cache *se_tmr_req_cache;
62 struct kmem_cache *se_ua_cache;
63 struct kmem_cache *t10_pr_reg_cache;
64 struct kmem_cache *t10_alua_lu_gp_cache;
65 struct kmem_cache *t10_alua_lu_gp_mem_cache;
66 struct kmem_cache *t10_alua_tg_pt_gp_cache;
67 struct kmem_cache *t10_alua_tg_pt_gp_mem_cache;
69 static int transport_generic_write_pending(struct se_cmd *);
70 static int transport_processing_thread(void *param);
71 static int __transport_execute_tasks(struct se_device *dev, struct se_cmd *);
72 static void transport_complete_task_attr(struct se_cmd *cmd);
73 static void transport_handle_queue_full(struct se_cmd *cmd,
74 struct se_device *dev);
75 static void transport_free_dev_tasks(struct se_cmd *cmd);
76 static int transport_generic_get_mem(struct se_cmd *cmd);
77 static void transport_put_cmd(struct se_cmd *cmd);
78 static void transport_remove_cmd_from_queue(struct se_cmd *cmd);
79 static int transport_set_sense_codes(struct se_cmd *cmd, u8 asc, u8 ascq);
80 static void transport_generic_request_failure(struct se_cmd *);
81 static void target_complete_ok_work(struct work_struct *work);
83 int init_se_kmem_caches(void)
85 se_tmr_req_cache = kmem_cache_create("se_tmr_cache",
86 sizeof(struct se_tmr_req), __alignof__(struct se_tmr_req),
87 0, NULL);
88 if (!se_tmr_req_cache) {
89 pr_err("kmem_cache_create() for struct se_tmr_req"
90 " failed\n");
91 goto out;
93 se_sess_cache = kmem_cache_create("se_sess_cache",
94 sizeof(struct se_session), __alignof__(struct se_session),
95 0, NULL);
96 if (!se_sess_cache) {
97 pr_err("kmem_cache_create() for struct se_session"
98 " failed\n");
99 goto out_free_tmr_req_cache;
101 se_ua_cache = kmem_cache_create("se_ua_cache",
102 sizeof(struct se_ua), __alignof__(struct se_ua),
103 0, NULL);
104 if (!se_ua_cache) {
105 pr_err("kmem_cache_create() for struct se_ua failed\n");
106 goto out_free_sess_cache;
108 t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
109 sizeof(struct t10_pr_registration),
110 __alignof__(struct t10_pr_registration), 0, NULL);
111 if (!t10_pr_reg_cache) {
112 pr_err("kmem_cache_create() for struct t10_pr_registration"
113 " failed\n");
114 goto out_free_ua_cache;
116 t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
117 sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
118 0, NULL);
119 if (!t10_alua_lu_gp_cache) {
120 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
121 " failed\n");
122 goto out_free_pr_reg_cache;
124 t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
125 sizeof(struct t10_alua_lu_gp_member),
126 __alignof__(struct t10_alua_lu_gp_member), 0, NULL);
127 if (!t10_alua_lu_gp_mem_cache) {
128 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
129 "cache failed\n");
130 goto out_free_lu_gp_cache;
132 t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
133 sizeof(struct t10_alua_tg_pt_gp),
134 __alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
135 if (!t10_alua_tg_pt_gp_cache) {
136 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
137 "cache failed\n");
138 goto out_free_lu_gp_mem_cache;
140 t10_alua_tg_pt_gp_mem_cache = kmem_cache_create(
141 "t10_alua_tg_pt_gp_mem_cache",
142 sizeof(struct t10_alua_tg_pt_gp_member),
143 __alignof__(struct t10_alua_tg_pt_gp_member),
144 0, NULL);
145 if (!t10_alua_tg_pt_gp_mem_cache) {
146 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
147 "mem_t failed\n");
148 goto out_free_tg_pt_gp_cache;
151 target_completion_wq = alloc_workqueue("target_completion",
152 WQ_MEM_RECLAIM, 0);
153 if (!target_completion_wq)
154 goto out_free_tg_pt_gp_mem_cache;
156 return 0;
158 out_free_tg_pt_gp_mem_cache:
159 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
160 out_free_tg_pt_gp_cache:
161 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
162 out_free_lu_gp_mem_cache:
163 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
164 out_free_lu_gp_cache:
165 kmem_cache_destroy(t10_alua_lu_gp_cache);
166 out_free_pr_reg_cache:
167 kmem_cache_destroy(t10_pr_reg_cache);
168 out_free_ua_cache:
169 kmem_cache_destroy(se_ua_cache);
170 out_free_sess_cache:
171 kmem_cache_destroy(se_sess_cache);
172 out_free_tmr_req_cache:
173 kmem_cache_destroy(se_tmr_req_cache);
174 out:
175 return -ENOMEM;
178 void release_se_kmem_caches(void)
180 destroy_workqueue(target_completion_wq);
181 kmem_cache_destroy(se_tmr_req_cache);
182 kmem_cache_destroy(se_sess_cache);
183 kmem_cache_destroy(se_ua_cache);
184 kmem_cache_destroy(t10_pr_reg_cache);
185 kmem_cache_destroy(t10_alua_lu_gp_cache);
186 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
187 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
188 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
191 /* This code ensures unique mib indexes are handed out. */
192 static DEFINE_SPINLOCK(scsi_mib_index_lock);
193 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
196 * Allocate a new row index for the entry type specified
198 u32 scsi_get_new_index(scsi_index_t type)
200 u32 new_index;
202 BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
204 spin_lock(&scsi_mib_index_lock);
205 new_index = ++scsi_mib_index[type];
206 spin_unlock(&scsi_mib_index_lock);
208 return new_index;
211 static void transport_init_queue_obj(struct se_queue_obj *qobj)
213 atomic_set(&qobj->queue_cnt, 0);
214 INIT_LIST_HEAD(&qobj->qobj_list);
215 init_waitqueue_head(&qobj->thread_wq);
216 spin_lock_init(&qobj->cmd_queue_lock);
219 void transport_subsystem_check_init(void)
221 int ret;
223 if (sub_api_initialized)
224 return;
226 ret = request_module("target_core_iblock");
227 if (ret != 0)
228 pr_err("Unable to load target_core_iblock\n");
230 ret = request_module("target_core_file");
231 if (ret != 0)
232 pr_err("Unable to load target_core_file\n");
234 ret = request_module("target_core_pscsi");
235 if (ret != 0)
236 pr_err("Unable to load target_core_pscsi\n");
238 ret = request_module("target_core_stgt");
239 if (ret != 0)
240 pr_err("Unable to load target_core_stgt\n");
242 sub_api_initialized = 1;
243 return;
246 struct se_session *transport_init_session(void)
248 struct se_session *se_sess;
250 se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
251 if (!se_sess) {
252 pr_err("Unable to allocate struct se_session from"
253 " se_sess_cache\n");
254 return ERR_PTR(-ENOMEM);
256 INIT_LIST_HEAD(&se_sess->sess_list);
257 INIT_LIST_HEAD(&se_sess->sess_acl_list);
258 INIT_LIST_HEAD(&se_sess->sess_cmd_list);
259 INIT_LIST_HEAD(&se_sess->sess_wait_list);
260 spin_lock_init(&se_sess->sess_cmd_lock);
262 return se_sess;
264 EXPORT_SYMBOL(transport_init_session);
267 * Called with spin_lock_bh(&struct se_portal_group->session_lock called.
269 void __transport_register_session(
270 struct se_portal_group *se_tpg,
271 struct se_node_acl *se_nacl,
272 struct se_session *se_sess,
273 void *fabric_sess_ptr)
275 unsigned char buf[PR_REG_ISID_LEN];
277 se_sess->se_tpg = se_tpg;
278 se_sess->fabric_sess_ptr = fabric_sess_ptr;
280 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
282 * Only set for struct se_session's that will actually be moving I/O.
283 * eg: *NOT* discovery sessions.
285 if (se_nacl) {
287 * If the fabric module supports an ISID based TransportID,
288 * save this value in binary from the fabric I_T Nexus now.
290 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
291 memset(&buf[0], 0, PR_REG_ISID_LEN);
292 se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
293 &buf[0], PR_REG_ISID_LEN);
294 se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
296 spin_lock_irq(&se_nacl->nacl_sess_lock);
298 * The se_nacl->nacl_sess pointer will be set to the
299 * last active I_T Nexus for each struct se_node_acl.
301 se_nacl->nacl_sess = se_sess;
303 list_add_tail(&se_sess->sess_acl_list,
304 &se_nacl->acl_sess_list);
305 spin_unlock_irq(&se_nacl->nacl_sess_lock);
307 list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
309 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
310 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
312 EXPORT_SYMBOL(__transport_register_session);
314 void transport_register_session(
315 struct se_portal_group *se_tpg,
316 struct se_node_acl *se_nacl,
317 struct se_session *se_sess,
318 void *fabric_sess_ptr)
320 spin_lock_bh(&se_tpg->session_lock);
321 __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
322 spin_unlock_bh(&se_tpg->session_lock);
324 EXPORT_SYMBOL(transport_register_session);
326 void transport_deregister_session_configfs(struct se_session *se_sess)
328 struct se_node_acl *se_nacl;
329 unsigned long flags;
331 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
333 se_nacl = se_sess->se_node_acl;
334 if (se_nacl) {
335 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
336 list_del(&se_sess->sess_acl_list);
338 * If the session list is empty, then clear the pointer.
339 * Otherwise, set the struct se_session pointer from the tail
340 * element of the per struct se_node_acl active session list.
342 if (list_empty(&se_nacl->acl_sess_list))
343 se_nacl->nacl_sess = NULL;
344 else {
345 se_nacl->nacl_sess = container_of(
346 se_nacl->acl_sess_list.prev,
347 struct se_session, sess_acl_list);
349 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
352 EXPORT_SYMBOL(transport_deregister_session_configfs);
354 void transport_free_session(struct se_session *se_sess)
356 kmem_cache_free(se_sess_cache, se_sess);
358 EXPORT_SYMBOL(transport_free_session);
360 void transport_deregister_session(struct se_session *se_sess)
362 struct se_portal_group *se_tpg = se_sess->se_tpg;
363 struct se_node_acl *se_nacl;
364 unsigned long flags;
366 if (!se_tpg) {
367 transport_free_session(se_sess);
368 return;
371 spin_lock_irqsave(&se_tpg->session_lock, flags);
372 list_del(&se_sess->sess_list);
373 se_sess->se_tpg = NULL;
374 se_sess->fabric_sess_ptr = NULL;
375 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
378 * Determine if we need to do extra work for this initiator node's
379 * struct se_node_acl if it had been previously dynamically generated.
381 se_nacl = se_sess->se_node_acl;
382 if (se_nacl) {
383 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
384 if (se_nacl->dynamic_node_acl) {
385 if (!se_tpg->se_tpg_tfo->tpg_check_demo_mode_cache(
386 se_tpg)) {
387 list_del(&se_nacl->acl_list);
388 se_tpg->num_node_acls--;
389 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
391 core_tpg_wait_for_nacl_pr_ref(se_nacl);
392 core_free_device_list_for_node(se_nacl, se_tpg);
393 se_tpg->se_tpg_tfo->tpg_release_fabric_acl(se_tpg,
394 se_nacl);
395 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
398 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
401 transport_free_session(se_sess);
403 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
404 se_tpg->se_tpg_tfo->get_fabric_name());
406 EXPORT_SYMBOL(transport_deregister_session);
409 * Called with cmd->t_state_lock held.
411 static void transport_all_task_dev_remove_state(struct se_cmd *cmd)
413 struct se_device *dev = cmd->se_dev;
414 struct se_task *task;
415 unsigned long flags;
417 if (!dev)
418 return;
420 list_for_each_entry(task, &cmd->t_task_list, t_list) {
421 if (task->task_flags & TF_ACTIVE)
422 continue;
424 spin_lock_irqsave(&dev->execute_task_lock, flags);
425 if (task->t_state_active) {
426 pr_debug("Removed ITT: 0x%08x dev: %p task[%p]\n",
427 cmd->se_tfo->get_task_tag(cmd), dev, task);
429 list_del(&task->t_state_list);
430 atomic_dec(&cmd->t_task_cdbs_ex_left);
431 task->t_state_active = false;
433 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
438 /* transport_cmd_check_stop():
440 * 'transport_off = 1' determines if t_transport_active should be cleared.
441 * 'transport_off = 2' determines if task_dev_state should be removed.
443 * A non-zero u8 t_state sets cmd->t_state.
444 * Returns 1 when command is stopped, else 0.
446 static int transport_cmd_check_stop(
447 struct se_cmd *cmd,
448 int transport_off,
449 u8 t_state)
451 unsigned long flags;
453 spin_lock_irqsave(&cmd->t_state_lock, flags);
455 * Determine if IOCTL context caller in requesting the stopping of this
456 * command for LUN shutdown purposes.
458 if (atomic_read(&cmd->transport_lun_stop)) {
459 pr_debug("%s:%d atomic_read(&cmd->transport_lun_stop)"
460 " == TRUE for ITT: 0x%08x\n", __func__, __LINE__,
461 cmd->se_tfo->get_task_tag(cmd));
463 atomic_set(&cmd->t_transport_active, 0);
464 if (transport_off == 2)
465 transport_all_task_dev_remove_state(cmd);
466 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
468 complete(&cmd->transport_lun_stop_comp);
469 return 1;
472 * Determine if frontend context caller is requesting the stopping of
473 * this command for frontend exceptions.
475 if (atomic_read(&cmd->t_transport_stop)) {
476 pr_debug("%s:%d atomic_read(&cmd->t_transport_stop) =="
477 " TRUE for ITT: 0x%08x\n", __func__, __LINE__,
478 cmd->se_tfo->get_task_tag(cmd));
480 if (transport_off == 2)
481 transport_all_task_dev_remove_state(cmd);
484 * Clear struct se_cmd->se_lun before the transport_off == 2 handoff
485 * to FE.
487 if (transport_off == 2)
488 cmd->se_lun = NULL;
489 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
491 complete(&cmd->t_transport_stop_comp);
492 return 1;
494 if (transport_off) {
495 atomic_set(&cmd->t_transport_active, 0);
496 if (transport_off == 2) {
497 transport_all_task_dev_remove_state(cmd);
499 * Clear struct se_cmd->se_lun before the transport_off == 2
500 * handoff to fabric module.
502 cmd->se_lun = NULL;
504 * Some fabric modules like tcm_loop can release
505 * their internally allocated I/O reference now and
506 * struct se_cmd now.
508 * Fabric modules are expected to return '1' here if the
509 * se_cmd being passed is released at this point,
510 * or zero if not being released.
512 if (cmd->se_tfo->check_stop_free != NULL) {
513 spin_unlock_irqrestore(
514 &cmd->t_state_lock, flags);
516 return cmd->se_tfo->check_stop_free(cmd);
519 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
521 return 0;
522 } else if (t_state)
523 cmd->t_state = t_state;
524 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
526 return 0;
529 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
531 return transport_cmd_check_stop(cmd, 2, 0);
534 static void transport_lun_remove_cmd(struct se_cmd *cmd)
536 struct se_lun *lun = cmd->se_lun;
537 unsigned long flags;
539 if (!lun)
540 return;
542 spin_lock_irqsave(&cmd->t_state_lock, flags);
543 if (!atomic_read(&cmd->transport_dev_active)) {
544 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
545 goto check_lun;
547 atomic_set(&cmd->transport_dev_active, 0);
548 transport_all_task_dev_remove_state(cmd);
549 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
552 check_lun:
553 spin_lock_irqsave(&lun->lun_cmd_lock, flags);
554 if (atomic_read(&cmd->transport_lun_active)) {
555 list_del(&cmd->se_lun_node);
556 atomic_set(&cmd->transport_lun_active, 0);
557 #if 0
558 pr_debug("Removed ITT: 0x%08x from LUN LIST[%d]\n"
559 cmd->se_tfo->get_task_tag(cmd), lun->unpacked_lun);
560 #endif
562 spin_unlock_irqrestore(&lun->lun_cmd_lock, flags);
565 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
567 if (!cmd->se_tmr_req)
568 transport_lun_remove_cmd(cmd);
570 if (transport_cmd_check_stop_to_fabric(cmd))
571 return;
572 if (remove) {
573 transport_remove_cmd_from_queue(cmd);
574 transport_put_cmd(cmd);
578 static void transport_add_cmd_to_queue(struct se_cmd *cmd, int t_state,
579 bool at_head)
581 struct se_device *dev = cmd->se_dev;
582 struct se_queue_obj *qobj = &dev->dev_queue_obj;
583 unsigned long flags;
585 if (t_state) {
586 spin_lock_irqsave(&cmd->t_state_lock, flags);
587 cmd->t_state = t_state;
588 atomic_set(&cmd->t_transport_active, 1);
589 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
592 spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
594 /* If the cmd is already on the list, remove it before we add it */
595 if (!list_empty(&cmd->se_queue_node))
596 list_del(&cmd->se_queue_node);
597 else
598 atomic_inc(&qobj->queue_cnt);
600 if (at_head)
601 list_add(&cmd->se_queue_node, &qobj->qobj_list);
602 else
603 list_add_tail(&cmd->se_queue_node, &qobj->qobj_list);
604 atomic_set(&cmd->t_transport_queue_active, 1);
605 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
607 wake_up_interruptible(&qobj->thread_wq);
610 static struct se_cmd *
611 transport_get_cmd_from_queue(struct se_queue_obj *qobj)
613 struct se_cmd *cmd;
614 unsigned long flags;
616 spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
617 if (list_empty(&qobj->qobj_list)) {
618 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
619 return NULL;
621 cmd = list_first_entry(&qobj->qobj_list, struct se_cmd, se_queue_node);
623 atomic_set(&cmd->t_transport_queue_active, 0);
625 list_del_init(&cmd->se_queue_node);
626 atomic_dec(&qobj->queue_cnt);
627 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
629 return cmd;
632 static void transport_remove_cmd_from_queue(struct se_cmd *cmd)
634 struct se_queue_obj *qobj = &cmd->se_dev->dev_queue_obj;
635 unsigned long flags;
637 spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
638 if (!atomic_read(&cmd->t_transport_queue_active)) {
639 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
640 return;
642 atomic_set(&cmd->t_transport_queue_active, 0);
643 atomic_dec(&qobj->queue_cnt);
644 list_del_init(&cmd->se_queue_node);
645 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
647 if (atomic_read(&cmd->t_transport_queue_active)) {
648 pr_err("ITT: 0x%08x t_transport_queue_active: %d\n",
649 cmd->se_tfo->get_task_tag(cmd),
650 atomic_read(&cmd->t_transport_queue_active));
655 * Completion function used by TCM subsystem plugins (such as FILEIO)
656 * for queueing up response from struct se_subsystem_api->do_task()
658 void transport_complete_sync_cache(struct se_cmd *cmd, int good)
660 struct se_task *task = list_entry(cmd->t_task_list.next,
661 struct se_task, t_list);
663 if (good) {
664 cmd->scsi_status = SAM_STAT_GOOD;
665 task->task_scsi_status = GOOD;
666 } else {
667 task->task_scsi_status = SAM_STAT_CHECK_CONDITION;
668 task->task_se_cmd->scsi_sense_reason =
669 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
673 transport_complete_task(task, good);
675 EXPORT_SYMBOL(transport_complete_sync_cache);
677 static void target_complete_failure_work(struct work_struct *work)
679 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
681 transport_generic_request_failure(cmd);
684 /* transport_complete_task():
686 * Called from interrupt and non interrupt context depending
687 * on the transport plugin.
689 void transport_complete_task(struct se_task *task, int success)
691 struct se_cmd *cmd = task->task_se_cmd;
692 struct se_device *dev = cmd->se_dev;
693 unsigned long flags;
695 spin_lock_irqsave(&cmd->t_state_lock, flags);
696 task->task_flags &= ~TF_ACTIVE;
699 * See if any sense data exists, if so set the TASK_SENSE flag.
700 * Also check for any other post completion work that needs to be
701 * done by the plugins.
703 if (dev && dev->transport->transport_complete) {
704 if (dev->transport->transport_complete(task) != 0) {
705 cmd->se_cmd_flags |= SCF_TRANSPORT_TASK_SENSE;
706 task->task_flags |= TF_HAS_SENSE;
707 success = 1;
712 * See if we are waiting for outstanding struct se_task
713 * to complete for an exception condition
715 if (task->task_flags & TF_REQUEST_STOP) {
716 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
717 complete(&task->task_stop_comp);
718 return;
721 if (!success)
722 cmd->t_tasks_failed = 1;
725 * Decrement the outstanding t_task_cdbs_left count. The last
726 * struct se_task from struct se_cmd will complete itself into the
727 * device queue depending upon int success.
729 if (!atomic_dec_and_test(&cmd->t_task_cdbs_left)) {
730 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
731 return;
734 if (cmd->t_tasks_failed) {
735 cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
736 INIT_WORK(&cmd->work, target_complete_failure_work);
737 } else {
738 atomic_set(&cmd->t_transport_complete, 1);
739 INIT_WORK(&cmd->work, target_complete_ok_work);
742 cmd->t_state = TRANSPORT_COMPLETE;
743 atomic_set(&cmd->t_transport_active, 1);
744 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
746 queue_work(target_completion_wq, &cmd->work);
748 EXPORT_SYMBOL(transport_complete_task);
751 * Called by transport_add_tasks_from_cmd() once a struct se_cmd's
752 * struct se_task list are ready to be added to the active execution list
753 * struct se_device
755 * Called with se_dev_t->execute_task_lock called.
757 static inline int transport_add_task_check_sam_attr(
758 struct se_task *task,
759 struct se_task *task_prev,
760 struct se_device *dev)
763 * No SAM Task attribute emulation enabled, add to tail of
764 * execution queue
766 if (dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED) {
767 list_add_tail(&task->t_execute_list, &dev->execute_task_list);
768 return 0;
771 * HEAD_OF_QUEUE attribute for received CDB, which means
772 * the first task that is associated with a struct se_cmd goes to
773 * head of the struct se_device->execute_task_list, and task_prev
774 * after that for each subsequent task
776 if (task->task_se_cmd->sam_task_attr == MSG_HEAD_TAG) {
777 list_add(&task->t_execute_list,
778 (task_prev != NULL) ?
779 &task_prev->t_execute_list :
780 &dev->execute_task_list);
782 pr_debug("Set HEAD_OF_QUEUE for task CDB: 0x%02x"
783 " in execution queue\n",
784 task->task_se_cmd->t_task_cdb[0]);
785 return 1;
788 * For ORDERED, SIMPLE or UNTAGGED attribute tasks once they have been
789 * transitioned from Dermant -> Active state, and are added to the end
790 * of the struct se_device->execute_task_list
792 list_add_tail(&task->t_execute_list, &dev->execute_task_list);
793 return 0;
796 /* __transport_add_task_to_execute_queue():
798 * Called with se_dev_t->execute_task_lock called.
800 static void __transport_add_task_to_execute_queue(
801 struct se_task *task,
802 struct se_task *task_prev,
803 struct se_device *dev)
805 int head_of_queue;
807 head_of_queue = transport_add_task_check_sam_attr(task, task_prev, dev);
808 atomic_inc(&dev->execute_tasks);
810 if (task->t_state_active)
811 return;
813 * Determine if this task needs to go to HEAD_OF_QUEUE for the
814 * state list as well. Running with SAM Task Attribute emulation
815 * will always return head_of_queue == 0 here
817 if (head_of_queue)
818 list_add(&task->t_state_list, (task_prev) ?
819 &task_prev->t_state_list :
820 &dev->state_task_list);
821 else
822 list_add_tail(&task->t_state_list, &dev->state_task_list);
824 task->t_state_active = true;
826 pr_debug("Added ITT: 0x%08x task[%p] to dev: %p\n",
827 task->task_se_cmd->se_tfo->get_task_tag(task->task_se_cmd),
828 task, dev);
831 static void transport_add_tasks_to_state_queue(struct se_cmd *cmd)
833 struct se_device *dev = cmd->se_dev;
834 struct se_task *task;
835 unsigned long flags;
837 spin_lock_irqsave(&cmd->t_state_lock, flags);
838 list_for_each_entry(task, &cmd->t_task_list, t_list) {
839 spin_lock(&dev->execute_task_lock);
840 if (!task->t_state_active) {
841 list_add_tail(&task->t_state_list,
842 &dev->state_task_list);
843 task->t_state_active = true;
845 pr_debug("Added ITT: 0x%08x task[%p] to dev: %p\n",
846 task->task_se_cmd->se_tfo->get_task_tag(
847 task->task_se_cmd), task, dev);
849 spin_unlock(&dev->execute_task_lock);
851 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
854 static void __transport_add_tasks_from_cmd(struct se_cmd *cmd)
856 struct se_device *dev = cmd->se_dev;
857 struct se_task *task, *task_prev = NULL;
859 list_for_each_entry(task, &cmd->t_task_list, t_list) {
860 if (!list_empty(&task->t_execute_list))
861 continue;
863 * __transport_add_task_to_execute_queue() handles the
864 * SAM Task Attribute emulation if enabled
866 __transport_add_task_to_execute_queue(task, task_prev, dev);
867 task_prev = task;
871 static void transport_add_tasks_from_cmd(struct se_cmd *cmd)
873 unsigned long flags;
874 struct se_device *dev = cmd->se_dev;
876 spin_lock_irqsave(&dev->execute_task_lock, flags);
877 __transport_add_tasks_from_cmd(cmd);
878 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
881 void __transport_remove_task_from_execute_queue(struct se_task *task,
882 struct se_device *dev)
884 list_del_init(&task->t_execute_list);
885 atomic_dec(&dev->execute_tasks);
888 static void transport_remove_task_from_execute_queue(
889 struct se_task *task,
890 struct se_device *dev)
892 unsigned long flags;
894 if (WARN_ON(list_empty(&task->t_execute_list)))
895 return;
897 spin_lock_irqsave(&dev->execute_task_lock, flags);
898 __transport_remove_task_from_execute_queue(task, dev);
899 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
903 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
906 static void target_qf_do_work(struct work_struct *work)
908 struct se_device *dev = container_of(work, struct se_device,
909 qf_work_queue);
910 LIST_HEAD(qf_cmd_list);
911 struct se_cmd *cmd, *cmd_tmp;
913 spin_lock_irq(&dev->qf_cmd_lock);
914 list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
915 spin_unlock_irq(&dev->qf_cmd_lock);
917 list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
918 list_del(&cmd->se_qf_node);
919 atomic_dec(&dev->dev_qf_count);
920 smp_mb__after_atomic_dec();
922 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
923 " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
924 (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
925 (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
926 : "UNKNOWN");
928 transport_add_cmd_to_queue(cmd, cmd->t_state, true);
932 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
934 switch (cmd->data_direction) {
935 case DMA_NONE:
936 return "NONE";
937 case DMA_FROM_DEVICE:
938 return "READ";
939 case DMA_TO_DEVICE:
940 return "WRITE";
941 case DMA_BIDIRECTIONAL:
942 return "BIDI";
943 default:
944 break;
947 return "UNKNOWN";
950 void transport_dump_dev_state(
951 struct se_device *dev,
952 char *b,
953 int *bl)
955 *bl += sprintf(b + *bl, "Status: ");
956 switch (dev->dev_status) {
957 case TRANSPORT_DEVICE_ACTIVATED:
958 *bl += sprintf(b + *bl, "ACTIVATED");
959 break;
960 case TRANSPORT_DEVICE_DEACTIVATED:
961 *bl += sprintf(b + *bl, "DEACTIVATED");
962 break;
963 case TRANSPORT_DEVICE_SHUTDOWN:
964 *bl += sprintf(b + *bl, "SHUTDOWN");
965 break;
966 case TRANSPORT_DEVICE_OFFLINE_ACTIVATED:
967 case TRANSPORT_DEVICE_OFFLINE_DEACTIVATED:
968 *bl += sprintf(b + *bl, "OFFLINE");
969 break;
970 default:
971 *bl += sprintf(b + *bl, "UNKNOWN=%d", dev->dev_status);
972 break;
975 *bl += sprintf(b + *bl, " Execute/Max Queue Depth: %d/%d",
976 atomic_read(&dev->execute_tasks), dev->queue_depth);
977 *bl += sprintf(b + *bl, " SectorSize: %u MaxSectors: %u\n",
978 dev->se_sub_dev->se_dev_attrib.block_size, dev->se_sub_dev->se_dev_attrib.max_sectors);
979 *bl += sprintf(b + *bl, " ");
982 void transport_dump_vpd_proto_id(
983 struct t10_vpd *vpd,
984 unsigned char *p_buf,
985 int p_buf_len)
987 unsigned char buf[VPD_TMP_BUF_SIZE];
988 int len;
990 memset(buf, 0, VPD_TMP_BUF_SIZE);
991 len = sprintf(buf, "T10 VPD Protocol Identifier: ");
993 switch (vpd->protocol_identifier) {
994 case 0x00:
995 sprintf(buf+len, "Fibre Channel\n");
996 break;
997 case 0x10:
998 sprintf(buf+len, "Parallel SCSI\n");
999 break;
1000 case 0x20:
1001 sprintf(buf+len, "SSA\n");
1002 break;
1003 case 0x30:
1004 sprintf(buf+len, "IEEE 1394\n");
1005 break;
1006 case 0x40:
1007 sprintf(buf+len, "SCSI Remote Direct Memory Access"
1008 " Protocol\n");
1009 break;
1010 case 0x50:
1011 sprintf(buf+len, "Internet SCSI (iSCSI)\n");
1012 break;
1013 case 0x60:
1014 sprintf(buf+len, "SAS Serial SCSI Protocol\n");
1015 break;
1016 case 0x70:
1017 sprintf(buf+len, "Automation/Drive Interface Transport"
1018 " Protocol\n");
1019 break;
1020 case 0x80:
1021 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
1022 break;
1023 default:
1024 sprintf(buf+len, "Unknown 0x%02x\n",
1025 vpd->protocol_identifier);
1026 break;
1029 if (p_buf)
1030 strncpy(p_buf, buf, p_buf_len);
1031 else
1032 pr_debug("%s", buf);
1035 void
1036 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
1039 * Check if the Protocol Identifier Valid (PIV) bit is set..
1041 * from spc3r23.pdf section 7.5.1
1043 if (page_83[1] & 0x80) {
1044 vpd->protocol_identifier = (page_83[0] & 0xf0);
1045 vpd->protocol_identifier_set = 1;
1046 transport_dump_vpd_proto_id(vpd, NULL, 0);
1049 EXPORT_SYMBOL(transport_set_vpd_proto_id);
1051 int transport_dump_vpd_assoc(
1052 struct t10_vpd *vpd,
1053 unsigned char *p_buf,
1054 int p_buf_len)
1056 unsigned char buf[VPD_TMP_BUF_SIZE];
1057 int ret = 0;
1058 int len;
1060 memset(buf, 0, VPD_TMP_BUF_SIZE);
1061 len = sprintf(buf, "T10 VPD Identifier Association: ");
1063 switch (vpd->association) {
1064 case 0x00:
1065 sprintf(buf+len, "addressed logical unit\n");
1066 break;
1067 case 0x10:
1068 sprintf(buf+len, "target port\n");
1069 break;
1070 case 0x20:
1071 sprintf(buf+len, "SCSI target device\n");
1072 break;
1073 default:
1074 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
1075 ret = -EINVAL;
1076 break;
1079 if (p_buf)
1080 strncpy(p_buf, buf, p_buf_len);
1081 else
1082 pr_debug("%s", buf);
1084 return ret;
1087 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
1090 * The VPD identification association..
1092 * from spc3r23.pdf Section 7.6.3.1 Table 297
1094 vpd->association = (page_83[1] & 0x30);
1095 return transport_dump_vpd_assoc(vpd, NULL, 0);
1097 EXPORT_SYMBOL(transport_set_vpd_assoc);
1099 int transport_dump_vpd_ident_type(
1100 struct t10_vpd *vpd,
1101 unsigned char *p_buf,
1102 int p_buf_len)
1104 unsigned char buf[VPD_TMP_BUF_SIZE];
1105 int ret = 0;
1106 int len;
1108 memset(buf, 0, VPD_TMP_BUF_SIZE);
1109 len = sprintf(buf, "T10 VPD Identifier Type: ");
1111 switch (vpd->device_identifier_type) {
1112 case 0x00:
1113 sprintf(buf+len, "Vendor specific\n");
1114 break;
1115 case 0x01:
1116 sprintf(buf+len, "T10 Vendor ID based\n");
1117 break;
1118 case 0x02:
1119 sprintf(buf+len, "EUI-64 based\n");
1120 break;
1121 case 0x03:
1122 sprintf(buf+len, "NAA\n");
1123 break;
1124 case 0x04:
1125 sprintf(buf+len, "Relative target port identifier\n");
1126 break;
1127 case 0x08:
1128 sprintf(buf+len, "SCSI name string\n");
1129 break;
1130 default:
1131 sprintf(buf+len, "Unsupported: 0x%02x\n",
1132 vpd->device_identifier_type);
1133 ret = -EINVAL;
1134 break;
1137 if (p_buf) {
1138 if (p_buf_len < strlen(buf)+1)
1139 return -EINVAL;
1140 strncpy(p_buf, buf, p_buf_len);
1141 } else {
1142 pr_debug("%s", buf);
1145 return ret;
1148 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
1151 * The VPD identifier type..
1153 * from spc3r23.pdf Section 7.6.3.1 Table 298
1155 vpd->device_identifier_type = (page_83[1] & 0x0f);
1156 return transport_dump_vpd_ident_type(vpd, NULL, 0);
1158 EXPORT_SYMBOL(transport_set_vpd_ident_type);
1160 int transport_dump_vpd_ident(
1161 struct t10_vpd *vpd,
1162 unsigned char *p_buf,
1163 int p_buf_len)
1165 unsigned char buf[VPD_TMP_BUF_SIZE];
1166 int ret = 0;
1168 memset(buf, 0, VPD_TMP_BUF_SIZE);
1170 switch (vpd->device_identifier_code_set) {
1171 case 0x01: /* Binary */
1172 sprintf(buf, "T10 VPD Binary Device Identifier: %s\n",
1173 &vpd->device_identifier[0]);
1174 break;
1175 case 0x02: /* ASCII */
1176 sprintf(buf, "T10 VPD ASCII Device Identifier: %s\n",
1177 &vpd->device_identifier[0]);
1178 break;
1179 case 0x03: /* UTF-8 */
1180 sprintf(buf, "T10 VPD UTF-8 Device Identifier: %s\n",
1181 &vpd->device_identifier[0]);
1182 break;
1183 default:
1184 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1185 " 0x%02x", vpd->device_identifier_code_set);
1186 ret = -EINVAL;
1187 break;
1190 if (p_buf)
1191 strncpy(p_buf, buf, p_buf_len);
1192 else
1193 pr_debug("%s", buf);
1195 return ret;
1199 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1201 static const char hex_str[] = "0123456789abcdef";
1202 int j = 0, i = 4; /* offset to start of the identifer */
1205 * The VPD Code Set (encoding)
1207 * from spc3r23.pdf Section 7.6.3.1 Table 296
1209 vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1210 switch (vpd->device_identifier_code_set) {
1211 case 0x01: /* Binary */
1212 vpd->device_identifier[j++] =
1213 hex_str[vpd->device_identifier_type];
1214 while (i < (4 + page_83[3])) {
1215 vpd->device_identifier[j++] =
1216 hex_str[(page_83[i] & 0xf0) >> 4];
1217 vpd->device_identifier[j++] =
1218 hex_str[page_83[i] & 0x0f];
1219 i++;
1221 break;
1222 case 0x02: /* ASCII */
1223 case 0x03: /* UTF-8 */
1224 while (i < (4 + page_83[3]))
1225 vpd->device_identifier[j++] = page_83[i++];
1226 break;
1227 default:
1228 break;
1231 return transport_dump_vpd_ident(vpd, NULL, 0);
1233 EXPORT_SYMBOL(transport_set_vpd_ident);
1235 static void core_setup_task_attr_emulation(struct se_device *dev)
1238 * If this device is from Target_Core_Mod/pSCSI, disable the
1239 * SAM Task Attribute emulation.
1241 * This is currently not available in upsream Linux/SCSI Target
1242 * mode code, and is assumed to be disabled while using TCM/pSCSI.
1244 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) {
1245 dev->dev_task_attr_type = SAM_TASK_ATTR_PASSTHROUGH;
1246 return;
1249 dev->dev_task_attr_type = SAM_TASK_ATTR_EMULATED;
1250 pr_debug("%s: Using SAM_TASK_ATTR_EMULATED for SPC: 0x%02x"
1251 " device\n", dev->transport->name,
1252 dev->transport->get_device_rev(dev));
1255 static void scsi_dump_inquiry(struct se_device *dev)
1257 struct t10_wwn *wwn = &dev->se_sub_dev->t10_wwn;
1258 char buf[17];
1259 int i, device_type;
1261 * Print Linux/SCSI style INQUIRY formatting to the kernel ring buffer
1263 for (i = 0; i < 8; i++)
1264 if (wwn->vendor[i] >= 0x20)
1265 buf[i] = wwn->vendor[i];
1266 else
1267 buf[i] = ' ';
1268 buf[i] = '\0';
1269 pr_debug(" Vendor: %s\n", buf);
1271 for (i = 0; i < 16; i++)
1272 if (wwn->model[i] >= 0x20)
1273 buf[i] = wwn->model[i];
1274 else
1275 buf[i] = ' ';
1276 buf[i] = '\0';
1277 pr_debug(" Model: %s\n", buf);
1279 for (i = 0; i < 4; i++)
1280 if (wwn->revision[i] >= 0x20)
1281 buf[i] = wwn->revision[i];
1282 else
1283 buf[i] = ' ';
1284 buf[i] = '\0';
1285 pr_debug(" Revision: %s\n", buf);
1287 device_type = dev->transport->get_device_type(dev);
1288 pr_debug(" Type: %s ", scsi_device_type(device_type));
1289 pr_debug(" ANSI SCSI revision: %02x\n",
1290 dev->transport->get_device_rev(dev));
1293 struct se_device *transport_add_device_to_core_hba(
1294 struct se_hba *hba,
1295 struct se_subsystem_api *transport,
1296 struct se_subsystem_dev *se_dev,
1297 u32 device_flags,
1298 void *transport_dev,
1299 struct se_dev_limits *dev_limits,
1300 const char *inquiry_prod,
1301 const char *inquiry_rev)
1303 int force_pt;
1304 struct se_device *dev;
1306 dev = kzalloc(sizeof(struct se_device), GFP_KERNEL);
1307 if (!dev) {
1308 pr_err("Unable to allocate memory for se_dev_t\n");
1309 return NULL;
1312 transport_init_queue_obj(&dev->dev_queue_obj);
1313 dev->dev_flags = device_flags;
1314 dev->dev_status |= TRANSPORT_DEVICE_DEACTIVATED;
1315 dev->dev_ptr = transport_dev;
1316 dev->se_hba = hba;
1317 dev->se_sub_dev = se_dev;
1318 dev->transport = transport;
1319 INIT_LIST_HEAD(&dev->dev_list);
1320 INIT_LIST_HEAD(&dev->dev_sep_list);
1321 INIT_LIST_HEAD(&dev->dev_tmr_list);
1322 INIT_LIST_HEAD(&dev->execute_task_list);
1323 INIT_LIST_HEAD(&dev->delayed_cmd_list);
1324 INIT_LIST_HEAD(&dev->state_task_list);
1325 INIT_LIST_HEAD(&dev->qf_cmd_list);
1326 spin_lock_init(&dev->execute_task_lock);
1327 spin_lock_init(&dev->delayed_cmd_lock);
1328 spin_lock_init(&dev->dev_reservation_lock);
1329 spin_lock_init(&dev->dev_status_lock);
1330 spin_lock_init(&dev->se_port_lock);
1331 spin_lock_init(&dev->se_tmr_lock);
1332 spin_lock_init(&dev->qf_cmd_lock);
1333 atomic_set(&dev->dev_ordered_id, 0);
1335 se_dev_set_default_attribs(dev, dev_limits);
1337 dev->dev_index = scsi_get_new_index(SCSI_DEVICE_INDEX);
1338 dev->creation_time = get_jiffies_64();
1339 spin_lock_init(&dev->stats_lock);
1341 spin_lock(&hba->device_lock);
1342 list_add_tail(&dev->dev_list, &hba->hba_dev_list);
1343 hba->dev_count++;
1344 spin_unlock(&hba->device_lock);
1346 * Setup the SAM Task Attribute emulation for struct se_device
1348 core_setup_task_attr_emulation(dev);
1350 * Force PR and ALUA passthrough emulation with internal object use.
1352 force_pt = (hba->hba_flags & HBA_FLAGS_INTERNAL_USE);
1354 * Setup the Reservations infrastructure for struct se_device
1356 core_setup_reservations(dev, force_pt);
1358 * Setup the Asymmetric Logical Unit Assignment for struct se_device
1360 if (core_setup_alua(dev, force_pt) < 0)
1361 goto out;
1364 * Startup the struct se_device processing thread
1366 dev->process_thread = kthread_run(transport_processing_thread, dev,
1367 "LIO_%s", dev->transport->name);
1368 if (IS_ERR(dev->process_thread)) {
1369 pr_err("Unable to create kthread: LIO_%s\n",
1370 dev->transport->name);
1371 goto out;
1374 * Setup work_queue for QUEUE_FULL
1376 INIT_WORK(&dev->qf_work_queue, target_qf_do_work);
1378 * Preload the initial INQUIRY const values if we are doing
1379 * anything virtual (IBLOCK, FILEIO, RAMDISK), but not for TCM/pSCSI
1380 * passthrough because this is being provided by the backend LLD.
1381 * This is required so that transport_get_inquiry() copies these
1382 * originals once back into DEV_T10_WWN(dev) for the virtual device
1383 * setup.
1385 if (dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) {
1386 if (!inquiry_prod || !inquiry_rev) {
1387 pr_err("All non TCM/pSCSI plugins require"
1388 " INQUIRY consts\n");
1389 goto out;
1392 strncpy(&dev->se_sub_dev->t10_wwn.vendor[0], "LIO-ORG", 8);
1393 strncpy(&dev->se_sub_dev->t10_wwn.model[0], inquiry_prod, 16);
1394 strncpy(&dev->se_sub_dev->t10_wwn.revision[0], inquiry_rev, 4);
1396 scsi_dump_inquiry(dev);
1398 return dev;
1399 out:
1400 kthread_stop(dev->process_thread);
1402 spin_lock(&hba->device_lock);
1403 list_del(&dev->dev_list);
1404 hba->dev_count--;
1405 spin_unlock(&hba->device_lock);
1407 se_release_vpd_for_dev(dev);
1409 kfree(dev);
1411 return NULL;
1413 EXPORT_SYMBOL(transport_add_device_to_core_hba);
1415 /* transport_generic_prepare_cdb():
1417 * Since the Initiator sees iSCSI devices as LUNs, the SCSI CDB will
1418 * contain the iSCSI LUN in bits 7-5 of byte 1 as per SAM-2.
1419 * The point of this is since we are mapping iSCSI LUNs to
1420 * SCSI Target IDs having a non-zero LUN in the CDB will throw the
1421 * devices and HBAs for a loop.
1423 static inline void transport_generic_prepare_cdb(
1424 unsigned char *cdb)
1426 switch (cdb[0]) {
1427 case READ_10: /* SBC - RDProtect */
1428 case READ_12: /* SBC - RDProtect */
1429 case READ_16: /* SBC - RDProtect */
1430 case SEND_DIAGNOSTIC: /* SPC - SELF-TEST Code */
1431 case VERIFY: /* SBC - VRProtect */
1432 case VERIFY_16: /* SBC - VRProtect */
1433 case WRITE_VERIFY: /* SBC - VRProtect */
1434 case WRITE_VERIFY_12: /* SBC - VRProtect */
1435 break;
1436 default:
1437 cdb[1] &= 0x1f; /* clear logical unit number */
1438 break;
1442 static struct se_task *
1443 transport_generic_get_task(struct se_cmd *cmd,
1444 enum dma_data_direction data_direction)
1446 struct se_task *task;
1447 struct se_device *dev = cmd->se_dev;
1449 task = dev->transport->alloc_task(cmd->t_task_cdb);
1450 if (!task) {
1451 pr_err("Unable to allocate struct se_task\n");
1452 return NULL;
1455 INIT_LIST_HEAD(&task->t_list);
1456 INIT_LIST_HEAD(&task->t_execute_list);
1457 INIT_LIST_HEAD(&task->t_state_list);
1458 init_completion(&task->task_stop_comp);
1459 task->task_se_cmd = cmd;
1460 task->task_data_direction = data_direction;
1462 return task;
1465 static int transport_generic_cmd_sequencer(struct se_cmd *, unsigned char *);
1468 * Used by fabric modules containing a local struct se_cmd within their
1469 * fabric dependent per I/O descriptor.
1471 void transport_init_se_cmd(
1472 struct se_cmd *cmd,
1473 struct target_core_fabric_ops *tfo,
1474 struct se_session *se_sess,
1475 u32 data_length,
1476 int data_direction,
1477 int task_attr,
1478 unsigned char *sense_buffer)
1480 INIT_LIST_HEAD(&cmd->se_lun_node);
1481 INIT_LIST_HEAD(&cmd->se_delayed_node);
1482 INIT_LIST_HEAD(&cmd->se_qf_node);
1483 INIT_LIST_HEAD(&cmd->se_queue_node);
1484 INIT_LIST_HEAD(&cmd->se_cmd_list);
1485 INIT_LIST_HEAD(&cmd->t_task_list);
1486 init_completion(&cmd->transport_lun_fe_stop_comp);
1487 init_completion(&cmd->transport_lun_stop_comp);
1488 init_completion(&cmd->t_transport_stop_comp);
1489 init_completion(&cmd->cmd_wait_comp);
1490 spin_lock_init(&cmd->t_state_lock);
1491 atomic_set(&cmd->transport_dev_active, 1);
1493 cmd->se_tfo = tfo;
1494 cmd->se_sess = se_sess;
1495 cmd->data_length = data_length;
1496 cmd->data_direction = data_direction;
1497 cmd->sam_task_attr = task_attr;
1498 cmd->sense_buffer = sense_buffer;
1500 EXPORT_SYMBOL(transport_init_se_cmd);
1502 static int transport_check_alloc_task_attr(struct se_cmd *cmd)
1505 * Check if SAM Task Attribute emulation is enabled for this
1506 * struct se_device storage object
1508 if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
1509 return 0;
1511 if (cmd->sam_task_attr == MSG_ACA_TAG) {
1512 pr_debug("SAM Task Attribute ACA"
1513 " emulation is not supported\n");
1514 return -EINVAL;
1517 * Used to determine when ORDERED commands should go from
1518 * Dormant to Active status.
1520 cmd->se_ordered_id = atomic_inc_return(&cmd->se_dev->dev_ordered_id);
1521 smp_mb__after_atomic_inc();
1522 pr_debug("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n",
1523 cmd->se_ordered_id, cmd->sam_task_attr,
1524 cmd->se_dev->transport->name);
1525 return 0;
1528 /* transport_generic_allocate_tasks():
1530 * Called from fabric RX Thread.
1532 int transport_generic_allocate_tasks(
1533 struct se_cmd *cmd,
1534 unsigned char *cdb)
1536 int ret;
1538 transport_generic_prepare_cdb(cdb);
1540 * Ensure that the received CDB is less than the max (252 + 8) bytes
1541 * for VARIABLE_LENGTH_CMD
1543 if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1544 pr_err("Received SCSI CDB with command_size: %d that"
1545 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1546 scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1547 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1548 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1549 return -EINVAL;
1552 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1553 * allocate the additional extended CDB buffer now.. Otherwise
1554 * setup the pointer from __t_task_cdb to t_task_cdb.
1556 if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1557 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1558 GFP_KERNEL);
1559 if (!cmd->t_task_cdb) {
1560 pr_err("Unable to allocate cmd->t_task_cdb"
1561 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1562 scsi_command_size(cdb),
1563 (unsigned long)sizeof(cmd->__t_task_cdb));
1564 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1565 cmd->scsi_sense_reason =
1566 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1567 return -ENOMEM;
1569 } else
1570 cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1572 * Copy the original CDB into cmd->
1574 memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1576 * Setup the received CDB based on SCSI defined opcodes and
1577 * perform unit attention, persistent reservations and ALUA
1578 * checks for virtual device backends. The cmd->t_task_cdb
1579 * pointer is expected to be setup before we reach this point.
1581 ret = transport_generic_cmd_sequencer(cmd, cdb);
1582 if (ret < 0)
1583 return ret;
1585 * Check for SAM Task Attribute Emulation
1587 if (transport_check_alloc_task_attr(cmd) < 0) {
1588 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1589 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1590 return -EINVAL;
1592 spin_lock(&cmd->se_lun->lun_sep_lock);
1593 if (cmd->se_lun->lun_sep)
1594 cmd->se_lun->lun_sep->sep_stats.cmd_pdus++;
1595 spin_unlock(&cmd->se_lun->lun_sep_lock);
1596 return 0;
1598 EXPORT_SYMBOL(transport_generic_allocate_tasks);
1601 * Used by fabric module frontends to queue tasks directly.
1602 * Many only be used from process context only
1604 int transport_handle_cdb_direct(
1605 struct se_cmd *cmd)
1607 int ret;
1609 if (!cmd->se_lun) {
1610 dump_stack();
1611 pr_err("cmd->se_lun is NULL\n");
1612 return -EINVAL;
1614 if (in_interrupt()) {
1615 dump_stack();
1616 pr_err("transport_generic_handle_cdb cannot be called"
1617 " from interrupt context\n");
1618 return -EINVAL;
1621 * Set TRANSPORT_NEW_CMD state and cmd->t_transport_active=1 following
1622 * transport_generic_handle_cdb*() -> transport_add_cmd_to_queue()
1623 * in existing usage to ensure that outstanding descriptors are handled
1624 * correctly during shutdown via transport_wait_for_tasks()
1626 * Also, we don't take cmd->t_state_lock here as we only expect
1627 * this to be called for initial descriptor submission.
1629 cmd->t_state = TRANSPORT_NEW_CMD;
1630 atomic_set(&cmd->t_transport_active, 1);
1632 * transport_generic_new_cmd() is already handling QUEUE_FULL,
1633 * so follow TRANSPORT_NEW_CMD processing thread context usage
1634 * and call transport_generic_request_failure() if necessary..
1636 ret = transport_generic_new_cmd(cmd);
1637 if (ret < 0)
1638 transport_generic_request_failure(cmd);
1640 return 0;
1642 EXPORT_SYMBOL(transport_handle_cdb_direct);
1645 * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
1647 * @se_cmd: command descriptor to submit
1648 * @se_sess: associated se_sess for endpoint
1649 * @cdb: pointer to SCSI CDB
1650 * @sense: pointer to SCSI sense buffer
1651 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1652 * @data_length: fabric expected data transfer length
1653 * @task_addr: SAM task attribute
1654 * @data_dir: DMA data direction
1655 * @flags: flags for command submission from target_sc_flags_tables
1657 * This may only be called from process context, and also currently
1658 * assumes internal allocation of fabric payload buffer by target-core.
1660 void target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
1661 unsigned char *cdb, unsigned char *sense, u32 unpacked_lun,
1662 u32 data_length, int task_attr, int data_dir, int flags)
1664 struct se_portal_group *se_tpg;
1665 int rc;
1667 se_tpg = se_sess->se_tpg;
1668 BUG_ON(!se_tpg);
1669 BUG_ON(se_cmd->se_tfo || se_cmd->se_sess);
1670 BUG_ON(in_interrupt());
1672 * Initialize se_cmd for target operation. From this point
1673 * exceptions are handled by sending exception status via
1674 * target_core_fabric_ops->queue_status() callback
1676 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1677 data_length, data_dir, task_attr, sense);
1679 * Obtain struct se_cmd->cmd_kref reference and add new cmd to
1680 * se_sess->sess_cmd_list. A second kref_get here is necessary
1681 * for fabrics using TARGET_SCF_ACK_KREF that expect a second
1682 * kref_put() to happen during fabric packet acknowledgement.
1684 target_get_sess_cmd(se_sess, se_cmd, (flags & TARGET_SCF_ACK_KREF));
1686 * Signal bidirectional data payloads to target-core
1688 if (flags & TARGET_SCF_BIDI_OP)
1689 se_cmd->se_cmd_flags |= SCF_BIDI;
1691 * Locate se_lun pointer and attach it to struct se_cmd
1693 if (transport_lookup_cmd_lun(se_cmd, unpacked_lun) < 0) {
1694 transport_send_check_condition_and_sense(se_cmd,
1695 se_cmd->scsi_sense_reason, 0);
1696 target_put_sess_cmd(se_sess, se_cmd);
1697 return;
1700 * Sanitize CDBs via transport_generic_cmd_sequencer() and
1701 * allocate the necessary tasks to complete the received CDB+data
1703 rc = transport_generic_allocate_tasks(se_cmd, cdb);
1704 if (rc != 0) {
1705 transport_generic_request_failure(se_cmd);
1706 return;
1709 * Dispatch se_cmd descriptor to se_lun->lun_se_dev backend
1710 * for immediate execution of READs, otherwise wait for
1711 * transport_generic_handle_data() to be called for WRITEs
1712 * when fabric has filled the incoming buffer.
1714 transport_handle_cdb_direct(se_cmd);
1715 return;
1717 EXPORT_SYMBOL(target_submit_cmd);
1720 * Used by fabric module frontends defining a TFO->new_cmd_map() caller
1721 * to queue up a newly setup se_cmd w/ TRANSPORT_NEW_CMD_MAP in order to
1722 * complete setup in TCM process context w/ TFO->new_cmd_map().
1724 int transport_generic_handle_cdb_map(
1725 struct se_cmd *cmd)
1727 if (!cmd->se_lun) {
1728 dump_stack();
1729 pr_err("cmd->se_lun is NULL\n");
1730 return -EINVAL;
1733 transport_add_cmd_to_queue(cmd, TRANSPORT_NEW_CMD_MAP, false);
1734 return 0;
1736 EXPORT_SYMBOL(transport_generic_handle_cdb_map);
1738 /* transport_generic_handle_data():
1742 int transport_generic_handle_data(
1743 struct se_cmd *cmd)
1746 * For the software fabric case, then we assume the nexus is being
1747 * failed/shutdown when signals are pending from the kthread context
1748 * caller, so we return a failure. For the HW target mode case running
1749 * in interrupt code, the signal_pending() check is skipped.
1751 if (!in_interrupt() && signal_pending(current))
1752 return -EPERM;
1754 * If the received CDB has aleady been ABORTED by the generic
1755 * target engine, we now call transport_check_aborted_status()
1756 * to queue any delated TASK_ABORTED status for the received CDB to the
1757 * fabric module as we are expecting no further incoming DATA OUT
1758 * sequences at this point.
1760 if (transport_check_aborted_status(cmd, 1) != 0)
1761 return 0;
1763 transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_WRITE, false);
1764 return 0;
1766 EXPORT_SYMBOL(transport_generic_handle_data);
1768 /* transport_generic_handle_tmr():
1772 int transport_generic_handle_tmr(
1773 struct se_cmd *cmd)
1775 transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_TMR, false);
1776 return 0;
1778 EXPORT_SYMBOL(transport_generic_handle_tmr);
1781 * If the task is active, request it to be stopped and sleep until it
1782 * has completed.
1784 bool target_stop_task(struct se_task *task, unsigned long *flags)
1786 struct se_cmd *cmd = task->task_se_cmd;
1787 bool was_active = false;
1789 if (task->task_flags & TF_ACTIVE) {
1790 task->task_flags |= TF_REQUEST_STOP;
1791 spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
1793 pr_debug("Task %p waiting to complete\n", task);
1794 wait_for_completion(&task->task_stop_comp);
1795 pr_debug("Task %p stopped successfully\n", task);
1797 spin_lock_irqsave(&cmd->t_state_lock, *flags);
1798 atomic_dec(&cmd->t_task_cdbs_left);
1799 task->task_flags &= ~(TF_ACTIVE | TF_REQUEST_STOP);
1800 was_active = true;
1803 return was_active;
1806 static int transport_stop_tasks_for_cmd(struct se_cmd *cmd)
1808 struct se_task *task, *task_tmp;
1809 unsigned long flags;
1810 int ret = 0;
1812 pr_debug("ITT[0x%08x] - Stopping tasks\n",
1813 cmd->se_tfo->get_task_tag(cmd));
1816 * No tasks remain in the execution queue
1818 spin_lock_irqsave(&cmd->t_state_lock, flags);
1819 list_for_each_entry_safe(task, task_tmp,
1820 &cmd->t_task_list, t_list) {
1821 pr_debug("Processing task %p\n", task);
1823 * If the struct se_task has not been sent and is not active,
1824 * remove the struct se_task from the execution queue.
1826 if (!(task->task_flags & (TF_ACTIVE | TF_SENT))) {
1827 spin_unlock_irqrestore(&cmd->t_state_lock,
1828 flags);
1829 transport_remove_task_from_execute_queue(task,
1830 cmd->se_dev);
1832 pr_debug("Task %p removed from execute queue\n", task);
1833 spin_lock_irqsave(&cmd->t_state_lock, flags);
1834 continue;
1837 if (!target_stop_task(task, &flags)) {
1838 pr_debug("Task %p - did nothing\n", task);
1839 ret++;
1842 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
1844 return ret;
1848 * Handle SAM-esque emulation for generic transport request failures.
1850 static void transport_generic_request_failure(struct se_cmd *cmd)
1852 int ret = 0;
1854 pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x"
1855 " CDB: 0x%02x\n", cmd, cmd->se_tfo->get_task_tag(cmd),
1856 cmd->t_task_cdb[0]);
1857 pr_debug("-----[ i_state: %d t_state: %d scsi_sense_reason: %d\n",
1858 cmd->se_tfo->get_cmd_state(cmd),
1859 cmd->t_state, cmd->scsi_sense_reason);
1860 pr_debug("-----[ t_tasks: %d t_task_cdbs_left: %d"
1861 " t_task_cdbs_sent: %d t_task_cdbs_ex_left: %d --"
1862 " t_transport_active: %d t_transport_stop: %d"
1863 " t_transport_sent: %d\n", cmd->t_task_list_num,
1864 atomic_read(&cmd->t_task_cdbs_left),
1865 atomic_read(&cmd->t_task_cdbs_sent),
1866 atomic_read(&cmd->t_task_cdbs_ex_left),
1867 atomic_read(&cmd->t_transport_active),
1868 atomic_read(&cmd->t_transport_stop),
1869 atomic_read(&cmd->t_transport_sent));
1872 * For SAM Task Attribute emulation for failed struct se_cmd
1874 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
1875 transport_complete_task_attr(cmd);
1877 switch (cmd->scsi_sense_reason) {
1878 case TCM_NON_EXISTENT_LUN:
1879 case TCM_UNSUPPORTED_SCSI_OPCODE:
1880 case TCM_INVALID_CDB_FIELD:
1881 case TCM_INVALID_PARAMETER_LIST:
1882 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
1883 case TCM_UNKNOWN_MODE_PAGE:
1884 case TCM_WRITE_PROTECTED:
1885 case TCM_CHECK_CONDITION_ABORT_CMD:
1886 case TCM_CHECK_CONDITION_UNIT_ATTENTION:
1887 case TCM_CHECK_CONDITION_NOT_READY:
1888 break;
1889 case TCM_RESERVATION_CONFLICT:
1891 * No SENSE Data payload for this case, set SCSI Status
1892 * and queue the response to $FABRIC_MOD.
1894 * Uses linux/include/scsi/scsi.h SAM status codes defs
1896 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1898 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1899 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1900 * CONFLICT STATUS.
1902 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1904 if (cmd->se_sess &&
1905 cmd->se_dev->se_sub_dev->se_dev_attrib.emulate_ua_intlck_ctrl == 2)
1906 core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
1907 cmd->orig_fe_lun, 0x2C,
1908 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
1910 ret = cmd->se_tfo->queue_status(cmd);
1911 if (ret == -EAGAIN || ret == -ENOMEM)
1912 goto queue_full;
1913 goto check_stop;
1914 default:
1915 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1916 cmd->t_task_cdb[0], cmd->scsi_sense_reason);
1917 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1918 break;
1921 * If a fabric does not define a cmd->se_tfo->new_cmd_map caller,
1922 * make the call to transport_send_check_condition_and_sense()
1923 * directly. Otherwise expect the fabric to make the call to
1924 * transport_send_check_condition_and_sense() after handling
1925 * possible unsoliticied write data payloads.
1927 ret = transport_send_check_condition_and_sense(cmd,
1928 cmd->scsi_sense_reason, 0);
1929 if (ret == -EAGAIN || ret == -ENOMEM)
1930 goto queue_full;
1932 check_stop:
1933 transport_lun_remove_cmd(cmd);
1934 if (!transport_cmd_check_stop_to_fabric(cmd))
1936 return;
1938 queue_full:
1939 cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
1940 transport_handle_queue_full(cmd, cmd->se_dev);
1943 static inline u32 transport_lba_21(unsigned char *cdb)
1945 return ((cdb[1] & 0x1f) << 16) | (cdb[2] << 8) | cdb[3];
1948 static inline u32 transport_lba_32(unsigned char *cdb)
1950 return (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
1953 static inline unsigned long long transport_lba_64(unsigned char *cdb)
1955 unsigned int __v1, __v2;
1957 __v1 = (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
1958 __v2 = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
1960 return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
1964 * For VARIABLE_LENGTH_CDB w/ 32 byte extended CDBs
1966 static inline unsigned long long transport_lba_64_ext(unsigned char *cdb)
1968 unsigned int __v1, __v2;
1970 __v1 = (cdb[12] << 24) | (cdb[13] << 16) | (cdb[14] << 8) | cdb[15];
1971 __v2 = (cdb[16] << 24) | (cdb[17] << 16) | (cdb[18] << 8) | cdb[19];
1973 return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
1976 static void transport_set_supported_SAM_opcode(struct se_cmd *se_cmd)
1978 unsigned long flags;
1980 spin_lock_irqsave(&se_cmd->t_state_lock, flags);
1981 se_cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
1982 spin_unlock_irqrestore(&se_cmd->t_state_lock, flags);
1986 * Called from Fabric Module context from transport_execute_tasks()
1988 * The return of this function determins if the tasks from struct se_cmd
1989 * get added to the execution queue in transport_execute_tasks(),
1990 * or are added to the delayed or ordered lists here.
1992 static inline int transport_execute_task_attr(struct se_cmd *cmd)
1994 if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
1995 return 1;
1997 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
1998 * to allow the passed struct se_cmd list of tasks to the front of the list.
2000 if (cmd->sam_task_attr == MSG_HEAD_TAG) {
2001 pr_debug("Added HEAD_OF_QUEUE for CDB:"
2002 " 0x%02x, se_ordered_id: %u\n",
2003 cmd->t_task_cdb[0],
2004 cmd->se_ordered_id);
2005 return 1;
2006 } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
2007 atomic_inc(&cmd->se_dev->dev_ordered_sync);
2008 smp_mb__after_atomic_inc();
2010 pr_debug("Added ORDERED for CDB: 0x%02x to ordered"
2011 " list, se_ordered_id: %u\n",
2012 cmd->t_task_cdb[0],
2013 cmd->se_ordered_id);
2015 * Add ORDERED command to tail of execution queue if
2016 * no other older commands exist that need to be
2017 * completed first.
2019 if (!atomic_read(&cmd->se_dev->simple_cmds))
2020 return 1;
2021 } else {
2023 * For SIMPLE and UNTAGGED Task Attribute commands
2025 atomic_inc(&cmd->se_dev->simple_cmds);
2026 smp_mb__after_atomic_inc();
2029 * Otherwise if one or more outstanding ORDERED task attribute exist,
2030 * add the dormant task(s) built for the passed struct se_cmd to the
2031 * execution queue and become in Active state for this struct se_device.
2033 if (atomic_read(&cmd->se_dev->dev_ordered_sync) != 0) {
2035 * Otherwise, add cmd w/ tasks to delayed cmd queue that
2036 * will be drained upon completion of HEAD_OF_QUEUE task.
2038 spin_lock(&cmd->se_dev->delayed_cmd_lock);
2039 cmd->se_cmd_flags |= SCF_DELAYED_CMD_FROM_SAM_ATTR;
2040 list_add_tail(&cmd->se_delayed_node,
2041 &cmd->se_dev->delayed_cmd_list);
2042 spin_unlock(&cmd->se_dev->delayed_cmd_lock);
2044 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to"
2045 " delayed CMD list, se_ordered_id: %u\n",
2046 cmd->t_task_cdb[0], cmd->sam_task_attr,
2047 cmd->se_ordered_id);
2049 * Return zero to let transport_execute_tasks() know
2050 * not to add the delayed tasks to the execution list.
2052 return 0;
2055 * Otherwise, no ORDERED task attributes exist..
2057 return 1;
2061 * Called from fabric module context in transport_generic_new_cmd() and
2062 * transport_generic_process_write()
2064 static int transport_execute_tasks(struct se_cmd *cmd)
2066 int add_tasks;
2067 struct se_device *se_dev = cmd->se_dev;
2069 * Call transport_cmd_check_stop() to see if a fabric exception
2070 * has occurred that prevents execution.
2072 if (!transport_cmd_check_stop(cmd, 0, TRANSPORT_PROCESSING)) {
2074 * Check for SAM Task Attribute emulation and HEAD_OF_QUEUE
2075 * attribute for the tasks of the received struct se_cmd CDB
2077 add_tasks = transport_execute_task_attr(cmd);
2078 if (!add_tasks)
2079 goto execute_tasks;
2081 * __transport_execute_tasks() -> __transport_add_tasks_from_cmd()
2082 * adds associated se_tasks while holding dev->execute_task_lock
2083 * before I/O dispath to avoid a double spinlock access.
2085 __transport_execute_tasks(se_dev, cmd);
2086 return 0;
2089 execute_tasks:
2090 __transport_execute_tasks(se_dev, NULL);
2091 return 0;
2095 * Called to check struct se_device tcq depth window, and once open pull struct se_task
2096 * from struct se_device->execute_task_list and
2098 * Called from transport_processing_thread()
2100 static int __transport_execute_tasks(struct se_device *dev, struct se_cmd *new_cmd)
2102 int error;
2103 struct se_cmd *cmd = NULL;
2104 struct se_task *task = NULL;
2105 unsigned long flags;
2107 check_depth:
2108 spin_lock_irq(&dev->execute_task_lock);
2109 if (new_cmd != NULL)
2110 __transport_add_tasks_from_cmd(new_cmd);
2112 if (list_empty(&dev->execute_task_list)) {
2113 spin_unlock_irq(&dev->execute_task_lock);
2114 return 0;
2116 task = list_first_entry(&dev->execute_task_list,
2117 struct se_task, t_execute_list);
2118 __transport_remove_task_from_execute_queue(task, dev);
2119 spin_unlock_irq(&dev->execute_task_lock);
2121 cmd = task->task_se_cmd;
2122 spin_lock_irqsave(&cmd->t_state_lock, flags);
2123 task->task_flags |= (TF_ACTIVE | TF_SENT);
2124 atomic_inc(&cmd->t_task_cdbs_sent);
2126 if (atomic_read(&cmd->t_task_cdbs_sent) ==
2127 cmd->t_task_list_num)
2128 atomic_set(&cmd->t_transport_sent, 1);
2130 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2132 if (cmd->execute_task)
2133 error = cmd->execute_task(task);
2134 else
2135 error = dev->transport->do_task(task);
2136 if (error != 0) {
2137 spin_lock_irqsave(&cmd->t_state_lock, flags);
2138 task->task_flags &= ~TF_ACTIVE;
2139 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2140 atomic_set(&cmd->t_transport_sent, 0);
2141 transport_stop_tasks_for_cmd(cmd);
2142 transport_generic_request_failure(cmd);
2145 new_cmd = NULL;
2146 goto check_depth;
2148 return 0;
2151 static inline u32 transport_get_sectors_6(
2152 unsigned char *cdb,
2153 struct se_cmd *cmd,
2154 int *ret)
2156 struct se_device *dev = cmd->se_dev;
2159 * Assume TYPE_DISK for non struct se_device objects.
2160 * Use 8-bit sector value.
2162 if (!dev)
2163 goto type_disk;
2166 * Use 24-bit allocation length for TYPE_TAPE.
2168 if (dev->transport->get_device_type(dev) == TYPE_TAPE)
2169 return (u32)(cdb[2] << 16) + (cdb[3] << 8) + cdb[4];
2172 * Everything else assume TYPE_DISK Sector CDB location.
2173 * Use 8-bit sector value. SBC-3 says:
2175 * A TRANSFER LENGTH field set to zero specifies that 256
2176 * logical blocks shall be written. Any other value
2177 * specifies the number of logical blocks that shall be
2178 * written.
2180 type_disk:
2181 return cdb[4] ? : 256;
2184 static inline u32 transport_get_sectors_10(
2185 unsigned char *cdb,
2186 struct se_cmd *cmd,
2187 int *ret)
2189 struct se_device *dev = cmd->se_dev;
2192 * Assume TYPE_DISK for non struct se_device objects.
2193 * Use 16-bit sector value.
2195 if (!dev)
2196 goto type_disk;
2199 * XXX_10 is not defined in SSC, throw an exception
2201 if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2202 *ret = -EINVAL;
2203 return 0;
2207 * Everything else assume TYPE_DISK Sector CDB location.
2208 * Use 16-bit sector value.
2210 type_disk:
2211 return (u32)(cdb[7] << 8) + cdb[8];
2214 static inline u32 transport_get_sectors_12(
2215 unsigned char *cdb,
2216 struct se_cmd *cmd,
2217 int *ret)
2219 struct se_device *dev = cmd->se_dev;
2222 * Assume TYPE_DISK for non struct se_device objects.
2223 * Use 32-bit sector value.
2225 if (!dev)
2226 goto type_disk;
2229 * XXX_12 is not defined in SSC, throw an exception
2231 if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2232 *ret = -EINVAL;
2233 return 0;
2237 * Everything else assume TYPE_DISK Sector CDB location.
2238 * Use 32-bit sector value.
2240 type_disk:
2241 return (u32)(cdb[6] << 24) + (cdb[7] << 16) + (cdb[8] << 8) + cdb[9];
2244 static inline u32 transport_get_sectors_16(
2245 unsigned char *cdb,
2246 struct se_cmd *cmd,
2247 int *ret)
2249 struct se_device *dev = cmd->se_dev;
2252 * Assume TYPE_DISK for non struct se_device objects.
2253 * Use 32-bit sector value.
2255 if (!dev)
2256 goto type_disk;
2259 * Use 24-bit allocation length for TYPE_TAPE.
2261 if (dev->transport->get_device_type(dev) == TYPE_TAPE)
2262 return (u32)(cdb[12] << 16) + (cdb[13] << 8) + cdb[14];
2264 type_disk:
2265 return (u32)(cdb[10] << 24) + (cdb[11] << 16) +
2266 (cdb[12] << 8) + cdb[13];
2270 * Used for VARIABLE_LENGTH_CDB WRITE_32 and READ_32 variants
2272 static inline u32 transport_get_sectors_32(
2273 unsigned char *cdb,
2274 struct se_cmd *cmd,
2275 int *ret)
2278 * Assume TYPE_DISK for non struct se_device objects.
2279 * Use 32-bit sector value.
2281 return (u32)(cdb[28] << 24) + (cdb[29] << 16) +
2282 (cdb[30] << 8) + cdb[31];
2286 static inline u32 transport_get_size(
2287 u32 sectors,
2288 unsigned char *cdb,
2289 struct se_cmd *cmd)
2291 struct se_device *dev = cmd->se_dev;
2293 if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2294 if (cdb[1] & 1) { /* sectors */
2295 return dev->se_sub_dev->se_dev_attrib.block_size * sectors;
2296 } else /* bytes */
2297 return sectors;
2299 #if 0
2300 pr_debug("Returning block_size: %u, sectors: %u == %u for"
2301 " %s object\n", dev->se_sub_dev->se_dev_attrib.block_size, sectors,
2302 dev->se_sub_dev->se_dev_attrib.block_size * sectors,
2303 dev->transport->name);
2304 #endif
2305 return dev->se_sub_dev->se_dev_attrib.block_size * sectors;
2308 static void transport_xor_callback(struct se_cmd *cmd)
2310 unsigned char *buf, *addr;
2311 struct scatterlist *sg;
2312 unsigned int offset;
2313 int i;
2314 int count;
2316 * From sbc3r22.pdf section 5.48 XDWRITEREAD (10) command
2318 * 1) read the specified logical block(s);
2319 * 2) transfer logical blocks from the data-out buffer;
2320 * 3) XOR the logical blocks transferred from the data-out buffer with
2321 * the logical blocks read, storing the resulting XOR data in a buffer;
2322 * 4) if the DISABLE WRITE bit is set to zero, then write the logical
2323 * blocks transferred from the data-out buffer; and
2324 * 5) transfer the resulting XOR data to the data-in buffer.
2326 buf = kmalloc(cmd->data_length, GFP_KERNEL);
2327 if (!buf) {
2328 pr_err("Unable to allocate xor_callback buf\n");
2329 return;
2332 * Copy the scatterlist WRITE buffer located at cmd->t_data_sg
2333 * into the locally allocated *buf
2335 sg_copy_to_buffer(cmd->t_data_sg,
2336 cmd->t_data_nents,
2337 buf,
2338 cmd->data_length);
2341 * Now perform the XOR against the BIDI read memory located at
2342 * cmd->t_mem_bidi_list
2345 offset = 0;
2346 for_each_sg(cmd->t_bidi_data_sg, sg, cmd->t_bidi_data_nents, count) {
2347 addr = kmap_atomic(sg_page(sg), KM_USER0);
2348 if (!addr)
2349 goto out;
2351 for (i = 0; i < sg->length; i++)
2352 *(addr + sg->offset + i) ^= *(buf + offset + i);
2354 offset += sg->length;
2355 kunmap_atomic(addr, KM_USER0);
2358 out:
2359 kfree(buf);
2363 * Used to obtain Sense Data from underlying Linux/SCSI struct scsi_cmnd
2365 static int transport_get_sense_data(struct se_cmd *cmd)
2367 unsigned char *buffer = cmd->sense_buffer, *sense_buffer = NULL;
2368 struct se_device *dev = cmd->se_dev;
2369 struct se_task *task = NULL, *task_tmp;
2370 unsigned long flags;
2371 u32 offset = 0;
2373 WARN_ON(!cmd->se_lun);
2375 if (!dev)
2376 return 0;
2378 spin_lock_irqsave(&cmd->t_state_lock, flags);
2379 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
2380 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2381 return 0;
2384 list_for_each_entry_safe(task, task_tmp,
2385 &cmd->t_task_list, t_list) {
2386 if (!(task->task_flags & TF_HAS_SENSE))
2387 continue;
2389 if (!dev->transport->get_sense_buffer) {
2390 pr_err("dev->transport->get_sense_buffer"
2391 " is NULL\n");
2392 continue;
2395 sense_buffer = dev->transport->get_sense_buffer(task);
2396 if (!sense_buffer) {
2397 pr_err("ITT[0x%08x]_TASK[%p]: Unable to locate"
2398 " sense buffer for task with sense\n",
2399 cmd->se_tfo->get_task_tag(cmd), task);
2400 continue;
2402 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2404 offset = cmd->se_tfo->set_fabric_sense_len(cmd,
2405 TRANSPORT_SENSE_BUFFER);
2407 memcpy(&buffer[offset], sense_buffer,
2408 TRANSPORT_SENSE_BUFFER);
2409 cmd->scsi_status = task->task_scsi_status;
2410 /* Automatically padded */
2411 cmd->scsi_sense_length =
2412 (TRANSPORT_SENSE_BUFFER + offset);
2414 pr_debug("HBA_[%u]_PLUG[%s]: Set SAM STATUS: 0x%02x"
2415 " and sense\n",
2416 dev->se_hba->hba_id, dev->transport->name,
2417 cmd->scsi_status);
2418 return 0;
2420 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2422 return -1;
2425 static inline long long transport_dev_end_lba(struct se_device *dev)
2427 return dev->transport->get_blocks(dev) + 1;
2430 static int transport_cmd_get_valid_sectors(struct se_cmd *cmd)
2432 struct se_device *dev = cmd->se_dev;
2433 u32 sectors;
2435 if (dev->transport->get_device_type(dev) != TYPE_DISK)
2436 return 0;
2438 sectors = (cmd->data_length / dev->se_sub_dev->se_dev_attrib.block_size);
2440 if ((cmd->t_task_lba + sectors) > transport_dev_end_lba(dev)) {
2441 pr_err("LBA: %llu Sectors: %u exceeds"
2442 " transport_dev_end_lba(): %llu\n",
2443 cmd->t_task_lba, sectors,
2444 transport_dev_end_lba(dev));
2445 return -EINVAL;
2448 return 0;
2451 static int target_check_write_same_discard(unsigned char *flags, struct se_device *dev)
2454 * Determine if the received WRITE_SAME is used to for direct
2455 * passthrough into Linux/SCSI with struct request via TCM/pSCSI
2456 * or we are signaling the use of internal WRITE_SAME + UNMAP=1
2457 * emulation for -> Linux/BLOCK disbard with TCM/IBLOCK code.
2459 int passthrough = (dev->transport->transport_type ==
2460 TRANSPORT_PLUGIN_PHBA_PDEV);
2462 if (!passthrough) {
2463 if ((flags[0] & 0x04) || (flags[0] & 0x02)) {
2464 pr_err("WRITE_SAME PBDATA and LBDATA"
2465 " bits not supported for Block Discard"
2466 " Emulation\n");
2467 return -ENOSYS;
2470 * Currently for the emulated case we only accept
2471 * tpws with the UNMAP=1 bit set.
2473 if (!(flags[0] & 0x08)) {
2474 pr_err("WRITE_SAME w/o UNMAP bit not"
2475 " supported for Block Discard Emulation\n");
2476 return -ENOSYS;
2480 return 0;
2483 /* transport_generic_cmd_sequencer():
2485 * Generic Command Sequencer that should work for most DAS transport
2486 * drivers.
2488 * Called from transport_generic_allocate_tasks() in the $FABRIC_MOD
2489 * RX Thread.
2491 * FIXME: Need to support other SCSI OPCODES where as well.
2493 static int transport_generic_cmd_sequencer(
2494 struct se_cmd *cmd,
2495 unsigned char *cdb)
2497 struct se_device *dev = cmd->se_dev;
2498 struct se_subsystem_dev *su_dev = dev->se_sub_dev;
2499 int ret = 0, sector_ret = 0, passthrough;
2500 u32 sectors = 0, size = 0, pr_reg_type = 0;
2501 u16 service_action;
2502 u8 alua_ascq = 0;
2504 * Check for an existing UNIT ATTENTION condition
2506 if (core_scsi3_ua_check(cmd, cdb) < 0) {
2507 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2508 cmd->scsi_sense_reason = TCM_CHECK_CONDITION_UNIT_ATTENTION;
2509 return -EINVAL;
2512 * Check status of Asymmetric Logical Unit Assignment port
2514 ret = su_dev->t10_alua.alua_state_check(cmd, cdb, &alua_ascq);
2515 if (ret != 0) {
2517 * Set SCSI additional sense code (ASC) to 'LUN Not Accessible';
2518 * The ALUA additional sense code qualifier (ASCQ) is determined
2519 * by the ALUA primary or secondary access state..
2521 if (ret > 0) {
2522 #if 0
2523 pr_debug("[%s]: ALUA TG Port not available,"
2524 " SenseKey: NOT_READY, ASC/ASCQ: 0x04/0x%02x\n",
2525 cmd->se_tfo->get_fabric_name(), alua_ascq);
2526 #endif
2527 transport_set_sense_codes(cmd, 0x04, alua_ascq);
2528 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2529 cmd->scsi_sense_reason = TCM_CHECK_CONDITION_NOT_READY;
2530 return -EINVAL;
2532 goto out_invalid_cdb_field;
2535 * Check status for SPC-3 Persistent Reservations
2537 if (su_dev->t10_pr.pr_ops.t10_reservation_check(cmd, &pr_reg_type) != 0) {
2538 if (su_dev->t10_pr.pr_ops.t10_seq_non_holder(
2539 cmd, cdb, pr_reg_type) != 0) {
2540 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2541 cmd->se_cmd_flags |= SCF_SCSI_RESERVATION_CONFLICT;
2542 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
2543 cmd->scsi_sense_reason = TCM_RESERVATION_CONFLICT;
2544 return -EBUSY;
2547 * This means the CDB is allowed for the SCSI Initiator port
2548 * when said port is *NOT* holding the legacy SPC-2 or
2549 * SPC-3 Persistent Reservation.
2554 * If we operate in passthrough mode we skip most CDB emulation and
2555 * instead hand the commands down to the physical SCSI device.
2557 passthrough =
2558 (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV);
2560 switch (cdb[0]) {
2561 case READ_6:
2562 sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
2563 if (sector_ret)
2564 goto out_unsupported_cdb;
2565 size = transport_get_size(sectors, cdb, cmd);
2566 cmd->t_task_lba = transport_lba_21(cdb);
2567 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2568 break;
2569 case READ_10:
2570 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2571 if (sector_ret)
2572 goto out_unsupported_cdb;
2573 size = transport_get_size(sectors, cdb, cmd);
2574 cmd->t_task_lba = transport_lba_32(cdb);
2575 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2576 break;
2577 case READ_12:
2578 sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
2579 if (sector_ret)
2580 goto out_unsupported_cdb;
2581 size = transport_get_size(sectors, cdb, cmd);
2582 cmd->t_task_lba = transport_lba_32(cdb);
2583 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2584 break;
2585 case READ_16:
2586 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2587 if (sector_ret)
2588 goto out_unsupported_cdb;
2589 size = transport_get_size(sectors, cdb, cmd);
2590 cmd->t_task_lba = transport_lba_64(cdb);
2591 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2592 break;
2593 case WRITE_6:
2594 sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
2595 if (sector_ret)
2596 goto out_unsupported_cdb;
2597 size = transport_get_size(sectors, cdb, cmd);
2598 cmd->t_task_lba = transport_lba_21(cdb);
2599 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2600 break;
2601 case WRITE_10:
2602 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2603 if (sector_ret)
2604 goto out_unsupported_cdb;
2605 size = transport_get_size(sectors, cdb, cmd);
2606 cmd->t_task_lba = transport_lba_32(cdb);
2607 if (cdb[1] & 0x8)
2608 cmd->se_cmd_flags |= SCF_FUA;
2609 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2610 break;
2611 case WRITE_12:
2612 sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
2613 if (sector_ret)
2614 goto out_unsupported_cdb;
2615 size = transport_get_size(sectors, cdb, cmd);
2616 cmd->t_task_lba = transport_lba_32(cdb);
2617 if (cdb[1] & 0x8)
2618 cmd->se_cmd_flags |= SCF_FUA;
2619 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2620 break;
2621 case WRITE_16:
2622 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2623 if (sector_ret)
2624 goto out_unsupported_cdb;
2625 size = transport_get_size(sectors, cdb, cmd);
2626 cmd->t_task_lba = transport_lba_64(cdb);
2627 if (cdb[1] & 0x8)
2628 cmd->se_cmd_flags |= SCF_FUA;
2629 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2630 break;
2631 case XDWRITEREAD_10:
2632 if ((cmd->data_direction != DMA_TO_DEVICE) ||
2633 !(cmd->se_cmd_flags & SCF_BIDI))
2634 goto out_invalid_cdb_field;
2635 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2636 if (sector_ret)
2637 goto out_unsupported_cdb;
2638 size = transport_get_size(sectors, cdb, cmd);
2639 cmd->t_task_lba = transport_lba_32(cdb);
2640 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2643 * Do now allow BIDI commands for passthrough mode.
2645 if (passthrough)
2646 goto out_unsupported_cdb;
2649 * Setup BIDI XOR callback to be run after I/O completion.
2651 cmd->transport_complete_callback = &transport_xor_callback;
2652 if (cdb[1] & 0x8)
2653 cmd->se_cmd_flags |= SCF_FUA;
2654 break;
2655 case VARIABLE_LENGTH_CMD:
2656 service_action = get_unaligned_be16(&cdb[8]);
2657 switch (service_action) {
2658 case XDWRITEREAD_32:
2659 sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
2660 if (sector_ret)
2661 goto out_unsupported_cdb;
2662 size = transport_get_size(sectors, cdb, cmd);
2664 * Use WRITE_32 and READ_32 opcodes for the emulated
2665 * XDWRITE_READ_32 logic.
2667 cmd->t_task_lba = transport_lba_64_ext(cdb);
2668 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2671 * Do now allow BIDI commands for passthrough mode.
2673 if (passthrough)
2674 goto out_unsupported_cdb;
2677 * Setup BIDI XOR callback to be run during after I/O
2678 * completion.
2680 cmd->transport_complete_callback = &transport_xor_callback;
2681 if (cdb[1] & 0x8)
2682 cmd->se_cmd_flags |= SCF_FUA;
2683 break;
2684 case WRITE_SAME_32:
2685 sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
2686 if (sector_ret)
2687 goto out_unsupported_cdb;
2689 if (sectors)
2690 size = transport_get_size(1, cdb, cmd);
2691 else {
2692 pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not"
2693 " supported\n");
2694 goto out_invalid_cdb_field;
2697 cmd->t_task_lba = get_unaligned_be64(&cdb[12]);
2698 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2700 if (target_check_write_same_discard(&cdb[10], dev) < 0)
2701 goto out_unsupported_cdb;
2702 if (!passthrough)
2703 cmd->execute_task = target_emulate_write_same;
2704 break;
2705 default:
2706 pr_err("VARIABLE_LENGTH_CMD service action"
2707 " 0x%04x not supported\n", service_action);
2708 goto out_unsupported_cdb;
2710 break;
2711 case MAINTENANCE_IN:
2712 if (dev->transport->get_device_type(dev) != TYPE_ROM) {
2713 /* MAINTENANCE_IN from SCC-2 */
2715 * Check for emulated MI_REPORT_TARGET_PGS.
2717 if (cdb[1] == MI_REPORT_TARGET_PGS &&
2718 su_dev->t10_alua.alua_type == SPC3_ALUA_EMULATED) {
2719 cmd->execute_task =
2720 target_emulate_report_target_port_groups;
2722 size = (cdb[6] << 24) | (cdb[7] << 16) |
2723 (cdb[8] << 8) | cdb[9];
2724 } else {
2725 /* GPCMD_SEND_KEY from multi media commands */
2726 size = (cdb[8] << 8) + cdb[9];
2728 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2729 break;
2730 case MODE_SELECT:
2731 size = cdb[4];
2732 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2733 break;
2734 case MODE_SELECT_10:
2735 size = (cdb[7] << 8) + cdb[8];
2736 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2737 break;
2738 case MODE_SENSE:
2739 size = cdb[4];
2740 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2741 if (!passthrough)
2742 cmd->execute_task = target_emulate_modesense;
2743 break;
2744 case MODE_SENSE_10:
2745 size = (cdb[7] << 8) + cdb[8];
2746 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2747 if (!passthrough)
2748 cmd->execute_task = target_emulate_modesense;
2749 break;
2750 case GPCMD_READ_BUFFER_CAPACITY:
2751 case GPCMD_SEND_OPC:
2752 case LOG_SELECT:
2753 case LOG_SENSE:
2754 size = (cdb[7] << 8) + cdb[8];
2755 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2756 break;
2757 case READ_BLOCK_LIMITS:
2758 size = READ_BLOCK_LEN;
2759 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2760 break;
2761 case GPCMD_GET_CONFIGURATION:
2762 case GPCMD_READ_FORMAT_CAPACITIES:
2763 case GPCMD_READ_DISC_INFO:
2764 case GPCMD_READ_TRACK_RZONE_INFO:
2765 size = (cdb[7] << 8) + cdb[8];
2766 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2767 break;
2768 case PERSISTENT_RESERVE_IN:
2769 if (su_dev->t10_pr.res_type == SPC3_PERSISTENT_RESERVATIONS)
2770 cmd->execute_task = target_scsi3_emulate_pr_in;
2771 size = (cdb[7] << 8) + cdb[8];
2772 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2773 break;
2774 case PERSISTENT_RESERVE_OUT:
2775 if (su_dev->t10_pr.res_type == SPC3_PERSISTENT_RESERVATIONS)
2776 cmd->execute_task = target_scsi3_emulate_pr_out;
2777 size = (cdb[7] << 8) + cdb[8];
2778 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2779 break;
2780 case GPCMD_MECHANISM_STATUS:
2781 case GPCMD_READ_DVD_STRUCTURE:
2782 size = (cdb[8] << 8) + cdb[9];
2783 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2784 break;
2785 case READ_POSITION:
2786 size = READ_POSITION_LEN;
2787 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2788 break;
2789 case MAINTENANCE_OUT:
2790 if (dev->transport->get_device_type(dev) != TYPE_ROM) {
2791 /* MAINTENANCE_OUT from SCC-2
2793 * Check for emulated MO_SET_TARGET_PGS.
2795 if (cdb[1] == MO_SET_TARGET_PGS &&
2796 su_dev->t10_alua.alua_type == SPC3_ALUA_EMULATED) {
2797 cmd->execute_task =
2798 target_emulate_set_target_port_groups;
2801 size = (cdb[6] << 24) | (cdb[7] << 16) |
2802 (cdb[8] << 8) | cdb[9];
2803 } else {
2804 /* GPCMD_REPORT_KEY from multi media commands */
2805 size = (cdb[8] << 8) + cdb[9];
2807 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2808 break;
2809 case INQUIRY:
2810 size = (cdb[3] << 8) + cdb[4];
2812 * Do implict HEAD_OF_QUEUE processing for INQUIRY.
2813 * See spc4r17 section 5.3
2815 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
2816 cmd->sam_task_attr = MSG_HEAD_TAG;
2817 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2818 if (!passthrough)
2819 cmd->execute_task = target_emulate_inquiry;
2820 break;
2821 case READ_BUFFER:
2822 size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
2823 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2824 break;
2825 case READ_CAPACITY:
2826 size = READ_CAP_LEN;
2827 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2828 if (!passthrough)
2829 cmd->execute_task = target_emulate_readcapacity;
2830 break;
2831 case READ_MEDIA_SERIAL_NUMBER:
2832 case SECURITY_PROTOCOL_IN:
2833 case SECURITY_PROTOCOL_OUT:
2834 size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
2835 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2836 break;
2837 case SERVICE_ACTION_IN:
2838 switch (cmd->t_task_cdb[1] & 0x1f) {
2839 case SAI_READ_CAPACITY_16:
2840 if (!passthrough)
2841 cmd->execute_task =
2842 target_emulate_readcapacity_16;
2843 break;
2844 default:
2845 if (passthrough)
2846 break;
2848 pr_err("Unsupported SA: 0x%02x\n",
2849 cmd->t_task_cdb[1] & 0x1f);
2850 goto out_unsupported_cdb;
2852 /*FALLTHROUGH*/
2853 case ACCESS_CONTROL_IN:
2854 case ACCESS_CONTROL_OUT:
2855 case EXTENDED_COPY:
2856 case READ_ATTRIBUTE:
2857 case RECEIVE_COPY_RESULTS:
2858 case WRITE_ATTRIBUTE:
2859 size = (cdb[10] << 24) | (cdb[11] << 16) |
2860 (cdb[12] << 8) | cdb[13];
2861 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2862 break;
2863 case RECEIVE_DIAGNOSTIC:
2864 case SEND_DIAGNOSTIC:
2865 size = (cdb[3] << 8) | cdb[4];
2866 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2867 break;
2868 /* #warning FIXME: Figure out correct GPCMD_READ_CD blocksize. */
2869 #if 0
2870 case GPCMD_READ_CD:
2871 sectors = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
2872 size = (2336 * sectors);
2873 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2874 break;
2875 #endif
2876 case READ_TOC:
2877 size = cdb[8];
2878 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2879 break;
2880 case REQUEST_SENSE:
2881 size = cdb[4];
2882 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2883 if (!passthrough)
2884 cmd->execute_task = target_emulate_request_sense;
2885 break;
2886 case READ_ELEMENT_STATUS:
2887 size = 65536 * cdb[7] + 256 * cdb[8] + cdb[9];
2888 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2889 break;
2890 case WRITE_BUFFER:
2891 size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
2892 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2893 break;
2894 case RESERVE:
2895 case RESERVE_10:
2897 * The SPC-2 RESERVE does not contain a size in the SCSI CDB.
2898 * Assume the passthrough or $FABRIC_MOD will tell us about it.
2900 if (cdb[0] == RESERVE_10)
2901 size = (cdb[7] << 8) | cdb[8];
2902 else
2903 size = cmd->data_length;
2906 * Setup the legacy emulated handler for SPC-2 and
2907 * >= SPC-3 compatible reservation handling (CRH=1)
2908 * Otherwise, we assume the underlying SCSI logic is
2909 * is running in SPC_PASSTHROUGH, and wants reservations
2910 * emulation disabled.
2912 if (su_dev->t10_pr.res_type != SPC_PASSTHROUGH)
2913 cmd->execute_task = target_scsi2_reservation_reserve;
2914 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
2915 break;
2916 case RELEASE:
2917 case RELEASE_10:
2919 * The SPC-2 RELEASE does not contain a size in the SCSI CDB.
2920 * Assume the passthrough or $FABRIC_MOD will tell us about it.
2922 if (cdb[0] == RELEASE_10)
2923 size = (cdb[7] << 8) | cdb[8];
2924 else
2925 size = cmd->data_length;
2927 if (su_dev->t10_pr.res_type != SPC_PASSTHROUGH)
2928 cmd->execute_task = target_scsi2_reservation_release;
2929 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
2930 break;
2931 case SYNCHRONIZE_CACHE:
2932 case 0x91: /* SYNCHRONIZE_CACHE_16: */
2934 * Extract LBA and range to be flushed for emulated SYNCHRONIZE_CACHE
2936 if (cdb[0] == SYNCHRONIZE_CACHE) {
2937 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2938 cmd->t_task_lba = transport_lba_32(cdb);
2939 } else {
2940 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2941 cmd->t_task_lba = transport_lba_64(cdb);
2943 if (sector_ret)
2944 goto out_unsupported_cdb;
2946 size = transport_get_size(sectors, cdb, cmd);
2947 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
2949 if (passthrough)
2950 break;
2953 * Check to ensure that LBA + Range does not exceed past end of
2954 * device for IBLOCK and FILEIO ->do_sync_cache() backend calls
2956 if ((cmd->t_task_lba != 0) || (sectors != 0)) {
2957 if (transport_cmd_get_valid_sectors(cmd) < 0)
2958 goto out_invalid_cdb_field;
2960 cmd->execute_task = target_emulate_synchronize_cache;
2961 break;
2962 case UNMAP:
2963 size = get_unaligned_be16(&cdb[7]);
2964 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2965 if (!passthrough)
2966 cmd->execute_task = target_emulate_unmap;
2967 break;
2968 case WRITE_SAME_16:
2969 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2970 if (sector_ret)
2971 goto out_unsupported_cdb;
2973 if (sectors)
2974 size = transport_get_size(1, cdb, cmd);
2975 else {
2976 pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
2977 goto out_invalid_cdb_field;
2980 cmd->t_task_lba = get_unaligned_be64(&cdb[2]);
2981 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2983 if (target_check_write_same_discard(&cdb[1], dev) < 0)
2984 goto out_unsupported_cdb;
2985 if (!passthrough)
2986 cmd->execute_task = target_emulate_write_same;
2987 break;
2988 case WRITE_SAME:
2989 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2990 if (sector_ret)
2991 goto out_unsupported_cdb;
2993 if (sectors)
2994 size = transport_get_size(1, cdb, cmd);
2995 else {
2996 pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
2997 goto out_invalid_cdb_field;
3000 cmd->t_task_lba = get_unaligned_be32(&cdb[2]);
3001 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3003 * Follow sbcr26 with WRITE_SAME (10) and check for the existence
3004 * of byte 1 bit 3 UNMAP instead of original reserved field
3006 if (target_check_write_same_discard(&cdb[1], dev) < 0)
3007 goto out_unsupported_cdb;
3008 if (!passthrough)
3009 cmd->execute_task = target_emulate_write_same;
3010 break;
3011 case ALLOW_MEDIUM_REMOVAL:
3012 case ERASE:
3013 case REZERO_UNIT:
3014 case SEEK_10:
3015 case SPACE:
3016 case START_STOP:
3017 case TEST_UNIT_READY:
3018 case VERIFY:
3019 case WRITE_FILEMARKS:
3020 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3021 if (!passthrough)
3022 cmd->execute_task = target_emulate_noop;
3023 break;
3024 case GPCMD_CLOSE_TRACK:
3025 case INITIALIZE_ELEMENT_STATUS:
3026 case GPCMD_LOAD_UNLOAD:
3027 case GPCMD_SET_SPEED:
3028 case MOVE_MEDIUM:
3029 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3030 break;
3031 case REPORT_LUNS:
3032 cmd->execute_task = target_report_luns;
3033 size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
3035 * Do implict HEAD_OF_QUEUE processing for REPORT_LUNS
3036 * See spc4r17 section 5.3
3038 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3039 cmd->sam_task_attr = MSG_HEAD_TAG;
3040 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3041 break;
3042 default:
3043 pr_warn("TARGET_CORE[%s]: Unsupported SCSI Opcode"
3044 " 0x%02x, sending CHECK_CONDITION.\n",
3045 cmd->se_tfo->get_fabric_name(), cdb[0]);
3046 goto out_unsupported_cdb;
3049 if (size != cmd->data_length) {
3050 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:"
3051 " %u does not match SCSI CDB Length: %u for SAM Opcode:"
3052 " 0x%02x\n", cmd->se_tfo->get_fabric_name(),
3053 cmd->data_length, size, cdb[0]);
3055 cmd->cmd_spdtl = size;
3057 if (cmd->data_direction == DMA_TO_DEVICE) {
3058 pr_err("Rejecting underflow/overflow"
3059 " WRITE data\n");
3060 goto out_invalid_cdb_field;
3063 * Reject READ_* or WRITE_* with overflow/underflow for
3064 * type SCF_SCSI_DATA_SG_IO_CDB.
3066 if (!ret && (dev->se_sub_dev->se_dev_attrib.block_size != 512)) {
3067 pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
3068 " CDB on non 512-byte sector setup subsystem"
3069 " plugin: %s\n", dev->transport->name);
3070 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
3071 goto out_invalid_cdb_field;
3074 if (size > cmd->data_length) {
3075 cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
3076 cmd->residual_count = (size - cmd->data_length);
3077 } else {
3078 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
3079 cmd->residual_count = (cmd->data_length - size);
3081 cmd->data_length = size;
3084 /* reject any command that we don't have a handler for */
3085 if (!(passthrough || cmd->execute_task ||
3086 (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB)))
3087 goto out_unsupported_cdb;
3089 transport_set_supported_SAM_opcode(cmd);
3090 return ret;
3092 out_unsupported_cdb:
3093 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3094 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
3095 return -EINVAL;
3096 out_invalid_cdb_field:
3097 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3098 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
3099 return -EINVAL;
3103 * Called from I/O completion to determine which dormant/delayed
3104 * and ordered cmds need to have their tasks added to the execution queue.
3106 static void transport_complete_task_attr(struct se_cmd *cmd)
3108 struct se_device *dev = cmd->se_dev;
3109 struct se_cmd *cmd_p, *cmd_tmp;
3110 int new_active_tasks = 0;
3112 if (cmd->sam_task_attr == MSG_SIMPLE_TAG) {
3113 atomic_dec(&dev->simple_cmds);
3114 smp_mb__after_atomic_dec();
3115 dev->dev_cur_ordered_id++;
3116 pr_debug("Incremented dev->dev_cur_ordered_id: %u for"
3117 " SIMPLE: %u\n", dev->dev_cur_ordered_id,
3118 cmd->se_ordered_id);
3119 } else if (cmd->sam_task_attr == MSG_HEAD_TAG) {
3120 dev->dev_cur_ordered_id++;
3121 pr_debug("Incremented dev_cur_ordered_id: %u for"
3122 " HEAD_OF_QUEUE: %u\n", dev->dev_cur_ordered_id,
3123 cmd->se_ordered_id);
3124 } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
3125 atomic_dec(&dev->dev_ordered_sync);
3126 smp_mb__after_atomic_dec();
3128 dev->dev_cur_ordered_id++;
3129 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED:"
3130 " %u\n", dev->dev_cur_ordered_id, cmd->se_ordered_id);
3133 * Process all commands up to the last received
3134 * ORDERED task attribute which requires another blocking
3135 * boundary
3137 spin_lock(&dev->delayed_cmd_lock);
3138 list_for_each_entry_safe(cmd_p, cmd_tmp,
3139 &dev->delayed_cmd_list, se_delayed_node) {
3141 list_del(&cmd_p->se_delayed_node);
3142 spin_unlock(&dev->delayed_cmd_lock);
3144 pr_debug("Calling add_tasks() for"
3145 " cmd_p: 0x%02x Task Attr: 0x%02x"
3146 " Dormant -> Active, se_ordered_id: %u\n",
3147 cmd_p->t_task_cdb[0],
3148 cmd_p->sam_task_attr, cmd_p->se_ordered_id);
3150 transport_add_tasks_from_cmd(cmd_p);
3151 new_active_tasks++;
3153 spin_lock(&dev->delayed_cmd_lock);
3154 if (cmd_p->sam_task_attr == MSG_ORDERED_TAG)
3155 break;
3157 spin_unlock(&dev->delayed_cmd_lock);
3159 * If new tasks have become active, wake up the transport thread
3160 * to do the processing of the Active tasks.
3162 if (new_active_tasks != 0)
3163 wake_up_interruptible(&dev->dev_queue_obj.thread_wq);
3166 static void transport_complete_qf(struct se_cmd *cmd)
3168 int ret = 0;
3170 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3171 transport_complete_task_attr(cmd);
3173 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
3174 ret = cmd->se_tfo->queue_status(cmd);
3175 if (ret)
3176 goto out;
3179 switch (cmd->data_direction) {
3180 case DMA_FROM_DEVICE:
3181 ret = cmd->se_tfo->queue_data_in(cmd);
3182 break;
3183 case DMA_TO_DEVICE:
3184 if (cmd->t_bidi_data_sg) {
3185 ret = cmd->se_tfo->queue_data_in(cmd);
3186 if (ret < 0)
3187 break;
3189 /* Fall through for DMA_TO_DEVICE */
3190 case DMA_NONE:
3191 ret = cmd->se_tfo->queue_status(cmd);
3192 break;
3193 default:
3194 break;
3197 out:
3198 if (ret < 0) {
3199 transport_handle_queue_full(cmd, cmd->se_dev);
3200 return;
3202 transport_lun_remove_cmd(cmd);
3203 transport_cmd_check_stop_to_fabric(cmd);
3206 static void transport_handle_queue_full(
3207 struct se_cmd *cmd,
3208 struct se_device *dev)
3210 spin_lock_irq(&dev->qf_cmd_lock);
3211 list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
3212 atomic_inc(&dev->dev_qf_count);
3213 smp_mb__after_atomic_inc();
3214 spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
3216 schedule_work(&cmd->se_dev->qf_work_queue);
3219 static void target_complete_ok_work(struct work_struct *work)
3221 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
3222 int reason = 0, ret;
3225 * Check if we need to move delayed/dormant tasks from cmds on the
3226 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
3227 * Attribute.
3229 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3230 transport_complete_task_attr(cmd);
3232 * Check to schedule QUEUE_FULL work, or execute an existing
3233 * cmd->transport_qf_callback()
3235 if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
3236 schedule_work(&cmd->se_dev->qf_work_queue);
3239 * Check if we need to retrieve a sense buffer from
3240 * the struct se_cmd in question.
3242 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
3243 if (transport_get_sense_data(cmd) < 0)
3244 reason = TCM_NON_EXISTENT_LUN;
3247 * Only set when an struct se_task->task_scsi_status returned
3248 * a non GOOD status.
3250 if (cmd->scsi_status) {
3251 ret = transport_send_check_condition_and_sense(
3252 cmd, reason, 1);
3253 if (ret == -EAGAIN || ret == -ENOMEM)
3254 goto queue_full;
3256 transport_lun_remove_cmd(cmd);
3257 transport_cmd_check_stop_to_fabric(cmd);
3258 return;
3262 * Check for a callback, used by amongst other things
3263 * XDWRITE_READ_10 emulation.
3265 if (cmd->transport_complete_callback)
3266 cmd->transport_complete_callback(cmd);
3268 switch (cmd->data_direction) {
3269 case DMA_FROM_DEVICE:
3270 spin_lock(&cmd->se_lun->lun_sep_lock);
3271 if (cmd->se_lun->lun_sep) {
3272 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
3273 cmd->data_length;
3275 spin_unlock(&cmd->se_lun->lun_sep_lock);
3277 ret = cmd->se_tfo->queue_data_in(cmd);
3278 if (ret == -EAGAIN || ret == -ENOMEM)
3279 goto queue_full;
3280 break;
3281 case DMA_TO_DEVICE:
3282 spin_lock(&cmd->se_lun->lun_sep_lock);
3283 if (cmd->se_lun->lun_sep) {
3284 cmd->se_lun->lun_sep->sep_stats.rx_data_octets +=
3285 cmd->data_length;
3287 spin_unlock(&cmd->se_lun->lun_sep_lock);
3289 * Check if we need to send READ payload for BIDI-COMMAND
3291 if (cmd->t_bidi_data_sg) {
3292 spin_lock(&cmd->se_lun->lun_sep_lock);
3293 if (cmd->se_lun->lun_sep) {
3294 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
3295 cmd->data_length;
3297 spin_unlock(&cmd->se_lun->lun_sep_lock);
3298 ret = cmd->se_tfo->queue_data_in(cmd);
3299 if (ret == -EAGAIN || ret == -ENOMEM)
3300 goto queue_full;
3301 break;
3303 /* Fall through for DMA_TO_DEVICE */
3304 case DMA_NONE:
3305 ret = cmd->se_tfo->queue_status(cmd);
3306 if (ret == -EAGAIN || ret == -ENOMEM)
3307 goto queue_full;
3308 break;
3309 default:
3310 break;
3313 transport_lun_remove_cmd(cmd);
3314 transport_cmd_check_stop_to_fabric(cmd);
3315 return;
3317 queue_full:
3318 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
3319 " data_direction: %d\n", cmd, cmd->data_direction);
3320 cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
3321 transport_handle_queue_full(cmd, cmd->se_dev);
3324 static void transport_free_dev_tasks(struct se_cmd *cmd)
3326 struct se_task *task, *task_tmp;
3327 unsigned long flags;
3328 LIST_HEAD(dispose_list);
3330 spin_lock_irqsave(&cmd->t_state_lock, flags);
3331 list_for_each_entry_safe(task, task_tmp,
3332 &cmd->t_task_list, t_list) {
3333 if (!(task->task_flags & TF_ACTIVE))
3334 list_move_tail(&task->t_list, &dispose_list);
3336 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3338 while (!list_empty(&dispose_list)) {
3339 task = list_first_entry(&dispose_list, struct se_task, t_list);
3341 if (task->task_sg != cmd->t_data_sg &&
3342 task->task_sg != cmd->t_bidi_data_sg)
3343 kfree(task->task_sg);
3345 list_del(&task->t_list);
3347 cmd->se_dev->transport->free_task(task);
3351 static inline void transport_free_sgl(struct scatterlist *sgl, int nents)
3353 struct scatterlist *sg;
3354 int count;
3356 for_each_sg(sgl, sg, nents, count)
3357 __free_page(sg_page(sg));
3359 kfree(sgl);
3362 static inline void transport_free_pages(struct se_cmd *cmd)
3364 if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC)
3365 return;
3367 transport_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
3368 cmd->t_data_sg = NULL;
3369 cmd->t_data_nents = 0;
3371 transport_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
3372 cmd->t_bidi_data_sg = NULL;
3373 cmd->t_bidi_data_nents = 0;
3377 * transport_release_cmd - free a command
3378 * @cmd: command to free
3380 * This routine unconditionally frees a command, and reference counting
3381 * or list removal must be done in the caller.
3383 static void transport_release_cmd(struct se_cmd *cmd)
3385 BUG_ON(!cmd->se_tfo);
3387 if (cmd->se_tmr_req)
3388 core_tmr_release_req(cmd->se_tmr_req);
3389 if (cmd->t_task_cdb != cmd->__t_task_cdb)
3390 kfree(cmd->t_task_cdb);
3392 * If this cmd has been setup with target_get_sess_cmd(), drop
3393 * the kref and call ->release_cmd() in kref callback.
3395 if (cmd->check_release != 0) {
3396 target_put_sess_cmd(cmd->se_sess, cmd);
3397 return;
3399 cmd->se_tfo->release_cmd(cmd);
3403 * transport_put_cmd - release a reference to a command
3404 * @cmd: command to release
3406 * This routine releases our reference to the command and frees it if possible.
3408 static void transport_put_cmd(struct se_cmd *cmd)
3410 unsigned long flags;
3411 int free_tasks = 0;
3413 spin_lock_irqsave(&cmd->t_state_lock, flags);
3414 if (atomic_read(&cmd->t_fe_count)) {
3415 if (!atomic_dec_and_test(&cmd->t_fe_count))
3416 goto out_busy;
3419 if (atomic_read(&cmd->t_se_count)) {
3420 if (!atomic_dec_and_test(&cmd->t_se_count))
3421 goto out_busy;
3424 if (atomic_read(&cmd->transport_dev_active)) {
3425 atomic_set(&cmd->transport_dev_active, 0);
3426 transport_all_task_dev_remove_state(cmd);
3427 free_tasks = 1;
3429 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3431 if (free_tasks != 0)
3432 transport_free_dev_tasks(cmd);
3434 transport_free_pages(cmd);
3435 transport_release_cmd(cmd);
3436 return;
3437 out_busy:
3438 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3442 * transport_generic_map_mem_to_cmd - Use fabric-alloced pages instead of
3443 * allocating in the core.
3444 * @cmd: Associated se_cmd descriptor
3445 * @mem: SGL style memory for TCM WRITE / READ
3446 * @sg_mem_num: Number of SGL elements
3447 * @mem_bidi_in: SGL style memory for TCM BIDI READ
3448 * @sg_mem_bidi_num: Number of BIDI READ SGL elements
3450 * Return: nonzero return cmd was rejected for -ENOMEM or inproper usage
3451 * of parameters.
3453 int transport_generic_map_mem_to_cmd(
3454 struct se_cmd *cmd,
3455 struct scatterlist *sgl,
3456 u32 sgl_count,
3457 struct scatterlist *sgl_bidi,
3458 u32 sgl_bidi_count)
3460 if (!sgl || !sgl_count)
3461 return 0;
3463 if ((cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) ||
3464 (cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB)) {
3466 * Reject SCSI data overflow with map_mem_to_cmd() as incoming
3467 * scatterlists already have been set to follow what the fabric
3468 * passes for the original expected data transfer length.
3470 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
3471 pr_warn("Rejecting SCSI DATA overflow for fabric using"
3472 " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
3473 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3474 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
3475 return -EINVAL;
3478 cmd->t_data_sg = sgl;
3479 cmd->t_data_nents = sgl_count;
3481 if (sgl_bidi && sgl_bidi_count) {
3482 cmd->t_bidi_data_sg = sgl_bidi;
3483 cmd->t_bidi_data_nents = sgl_bidi_count;
3485 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
3488 return 0;
3490 EXPORT_SYMBOL(transport_generic_map_mem_to_cmd);
3492 void *transport_kmap_data_sg(struct se_cmd *cmd)
3494 struct scatterlist *sg = cmd->t_data_sg;
3495 struct page **pages;
3496 int i;
3498 BUG_ON(!sg);
3500 * We need to take into account a possible offset here for fabrics like
3501 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
3502 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
3504 if (!cmd->t_data_nents)
3505 return NULL;
3506 else if (cmd->t_data_nents == 1)
3507 return kmap(sg_page(sg)) + sg->offset;
3509 /* >1 page. use vmap */
3510 pages = kmalloc(sizeof(*pages) * cmd->t_data_nents, GFP_KERNEL);
3511 if (!pages)
3512 return NULL;
3514 /* convert sg[] to pages[] */
3515 for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) {
3516 pages[i] = sg_page(sg);
3519 cmd->t_data_vmap = vmap(pages, cmd->t_data_nents, VM_MAP, PAGE_KERNEL);
3520 kfree(pages);
3521 if (!cmd->t_data_vmap)
3522 return NULL;
3524 return cmd->t_data_vmap + cmd->t_data_sg[0].offset;
3526 EXPORT_SYMBOL(transport_kmap_data_sg);
3528 void transport_kunmap_data_sg(struct se_cmd *cmd)
3530 if (!cmd->t_data_nents)
3531 return;
3532 else if (cmd->t_data_nents == 1)
3533 kunmap(sg_page(cmd->t_data_sg));
3535 vunmap(cmd->t_data_vmap);
3536 cmd->t_data_vmap = NULL;
3538 EXPORT_SYMBOL(transport_kunmap_data_sg);
3540 static int
3541 transport_generic_get_mem(struct se_cmd *cmd)
3543 u32 length = cmd->data_length;
3544 unsigned int nents;
3545 struct page *page;
3546 gfp_t zero_flag;
3547 int i = 0;
3549 nents = DIV_ROUND_UP(length, PAGE_SIZE);
3550 cmd->t_data_sg = kmalloc(sizeof(struct scatterlist) * nents, GFP_KERNEL);
3551 if (!cmd->t_data_sg)
3552 return -ENOMEM;
3554 cmd->t_data_nents = nents;
3555 sg_init_table(cmd->t_data_sg, nents);
3557 zero_flag = cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB ? 0 : __GFP_ZERO;
3559 while (length) {
3560 u32 page_len = min_t(u32, length, PAGE_SIZE);
3561 page = alloc_page(GFP_KERNEL | zero_flag);
3562 if (!page)
3563 goto out;
3565 sg_set_page(&cmd->t_data_sg[i], page, page_len, 0);
3566 length -= page_len;
3567 i++;
3569 return 0;
3571 out:
3572 while (i >= 0) {
3573 __free_page(sg_page(&cmd->t_data_sg[i]));
3574 i--;
3576 kfree(cmd->t_data_sg);
3577 cmd->t_data_sg = NULL;
3578 return -ENOMEM;
3581 /* Reduce sectors if they are too long for the device */
3582 static inline sector_t transport_limit_task_sectors(
3583 struct se_device *dev,
3584 unsigned long long lba,
3585 sector_t sectors)
3587 sectors = min_t(sector_t, sectors, dev->se_sub_dev->se_dev_attrib.max_sectors);
3589 if (dev->transport->get_device_type(dev) == TYPE_DISK)
3590 if ((lba + sectors) > transport_dev_end_lba(dev))
3591 sectors = ((transport_dev_end_lba(dev) - lba) + 1);
3593 return sectors;
3598 * This function can be used by HW target mode drivers to create a linked
3599 * scatterlist from all contiguously allocated struct se_task->task_sg[].
3600 * This is intended to be called during the completion path by TCM Core
3601 * when struct target_core_fabric_ops->check_task_sg_chaining is enabled.
3603 void transport_do_task_sg_chain(struct se_cmd *cmd)
3605 struct scatterlist *sg_first = NULL;
3606 struct scatterlist *sg_prev = NULL;
3607 int sg_prev_nents = 0;
3608 struct scatterlist *sg;
3609 struct se_task *task;
3610 u32 chained_nents = 0;
3611 int i;
3613 BUG_ON(!cmd->se_tfo->task_sg_chaining);
3616 * Walk the struct se_task list and setup scatterlist chains
3617 * for each contiguously allocated struct se_task->task_sg[].
3619 list_for_each_entry(task, &cmd->t_task_list, t_list) {
3620 if (!task->task_sg)
3621 continue;
3623 if (!sg_first) {
3624 sg_first = task->task_sg;
3625 chained_nents = task->task_sg_nents;
3626 } else {
3627 sg_chain(sg_prev, sg_prev_nents, task->task_sg);
3628 chained_nents += task->task_sg_nents;
3631 * For the padded tasks, use the extra SGL vector allocated
3632 * in transport_allocate_data_tasks() for the sg_prev_nents
3633 * offset into sg_chain() above.
3635 * We do not need the padding for the last task (or a single
3636 * task), but in that case we will never use the sg_prev_nents
3637 * value below which would be incorrect.
3639 sg_prev_nents = (task->task_sg_nents + 1);
3640 sg_prev = task->task_sg;
3643 * Setup the starting pointer and total t_tasks_sg_linked_no including
3644 * padding SGs for linking and to mark the end.
3646 cmd->t_tasks_sg_chained = sg_first;
3647 cmd->t_tasks_sg_chained_no = chained_nents;
3649 pr_debug("Setup cmd: %p cmd->t_tasks_sg_chained: %p and"
3650 " t_tasks_sg_chained_no: %u\n", cmd, cmd->t_tasks_sg_chained,
3651 cmd->t_tasks_sg_chained_no);
3653 for_each_sg(cmd->t_tasks_sg_chained, sg,
3654 cmd->t_tasks_sg_chained_no, i) {
3656 pr_debug("SG[%d]: %p page: %p length: %d offset: %d\n",
3657 i, sg, sg_page(sg), sg->length, sg->offset);
3658 if (sg_is_chain(sg))
3659 pr_debug("SG: %p sg_is_chain=1\n", sg);
3660 if (sg_is_last(sg))
3661 pr_debug("SG: %p sg_is_last=1\n", sg);
3664 EXPORT_SYMBOL(transport_do_task_sg_chain);
3667 * Break up cmd into chunks transport can handle
3669 static int
3670 transport_allocate_data_tasks(struct se_cmd *cmd,
3671 enum dma_data_direction data_direction,
3672 struct scatterlist *cmd_sg, unsigned int sgl_nents)
3674 struct se_device *dev = cmd->se_dev;
3675 int task_count, i;
3676 unsigned long long lba;
3677 sector_t sectors, dev_max_sectors;
3678 u32 sector_size;
3680 if (transport_cmd_get_valid_sectors(cmd) < 0)
3681 return -EINVAL;
3683 dev_max_sectors = dev->se_sub_dev->se_dev_attrib.max_sectors;
3684 sector_size = dev->se_sub_dev->se_dev_attrib.block_size;
3686 WARN_ON(cmd->data_length % sector_size);
3688 lba = cmd->t_task_lba;
3689 sectors = DIV_ROUND_UP(cmd->data_length, sector_size);
3690 task_count = DIV_ROUND_UP_SECTOR_T(sectors, dev_max_sectors);
3693 * If we need just a single task reuse the SG list in the command
3694 * and avoid a lot of work.
3696 if (task_count == 1) {
3697 struct se_task *task;
3698 unsigned long flags;
3700 task = transport_generic_get_task(cmd, data_direction);
3701 if (!task)
3702 return -ENOMEM;
3704 task->task_sg = cmd_sg;
3705 task->task_sg_nents = sgl_nents;
3707 task->task_lba = lba;
3708 task->task_sectors = sectors;
3709 task->task_size = task->task_sectors * sector_size;
3711 spin_lock_irqsave(&cmd->t_state_lock, flags);
3712 list_add_tail(&task->t_list, &cmd->t_task_list);
3713 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3715 return task_count;
3718 for (i = 0; i < task_count; i++) {
3719 struct se_task *task;
3720 unsigned int task_size, task_sg_nents_padded;
3721 struct scatterlist *sg;
3722 unsigned long flags;
3723 int count;
3725 task = transport_generic_get_task(cmd, data_direction);
3726 if (!task)
3727 return -ENOMEM;
3729 task->task_lba = lba;
3730 task->task_sectors = min(sectors, dev_max_sectors);
3731 task->task_size = task->task_sectors * sector_size;
3734 * This now assumes that passed sg_ents are in PAGE_SIZE chunks
3735 * in order to calculate the number per task SGL entries
3737 task->task_sg_nents = DIV_ROUND_UP(task->task_size, PAGE_SIZE);
3739 * Check if the fabric module driver is requesting that all
3740 * struct se_task->task_sg[] be chained together.. If so,
3741 * then allocate an extra padding SG entry for linking and
3742 * marking the end of the chained SGL for every task except
3743 * the last one for (task_count > 1) operation, or skipping
3744 * the extra padding for the (task_count == 1) case.
3746 if (cmd->se_tfo->task_sg_chaining && (i < (task_count - 1))) {
3747 task_sg_nents_padded = (task->task_sg_nents + 1);
3748 } else
3749 task_sg_nents_padded = task->task_sg_nents;
3751 task->task_sg = kmalloc(sizeof(struct scatterlist) *
3752 task_sg_nents_padded, GFP_KERNEL);
3753 if (!task->task_sg) {
3754 cmd->se_dev->transport->free_task(task);
3755 return -ENOMEM;
3758 sg_init_table(task->task_sg, task_sg_nents_padded);
3760 task_size = task->task_size;
3762 /* Build new sgl, only up to task_size */
3763 for_each_sg(task->task_sg, sg, task->task_sg_nents, count) {
3764 if (cmd_sg->length > task_size)
3765 break;
3767 *sg = *cmd_sg;
3768 task_size -= cmd_sg->length;
3769 cmd_sg = sg_next(cmd_sg);
3772 lba += task->task_sectors;
3773 sectors -= task->task_sectors;
3775 spin_lock_irqsave(&cmd->t_state_lock, flags);
3776 list_add_tail(&task->t_list, &cmd->t_task_list);
3777 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3780 return task_count;
3783 static int
3784 transport_allocate_control_task(struct se_cmd *cmd)
3786 struct se_task *task;
3787 unsigned long flags;
3789 /* Workaround for handling zero-length control CDBs */
3790 if ((cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB) &&
3791 !cmd->data_length)
3792 return 0;
3794 task = transport_generic_get_task(cmd, cmd->data_direction);
3795 if (!task)
3796 return -ENOMEM;
3798 task->task_sg = cmd->t_data_sg;
3799 task->task_size = cmd->data_length;
3800 task->task_sg_nents = cmd->t_data_nents;
3802 spin_lock_irqsave(&cmd->t_state_lock, flags);
3803 list_add_tail(&task->t_list, &cmd->t_task_list);
3804 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3806 /* Success! Return number of tasks allocated */
3807 return 1;
3811 * Allocate any required ressources to execute the command, and either place
3812 * it on the execution queue if possible. For writes we might not have the
3813 * payload yet, thus notify the fabric via a call to ->write_pending instead.
3815 int transport_generic_new_cmd(struct se_cmd *cmd)
3817 struct se_device *dev = cmd->se_dev;
3818 int task_cdbs, task_cdbs_bidi = 0;
3819 int set_counts = 1;
3820 int ret = 0;
3823 * Determine is the TCM fabric module has already allocated physical
3824 * memory, and is directly calling transport_generic_map_mem_to_cmd()
3825 * beforehand.
3827 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
3828 cmd->data_length) {
3829 ret = transport_generic_get_mem(cmd);
3830 if (ret < 0)
3831 goto out_fail;
3835 * For BIDI command set up the read tasks first.
3837 if (cmd->t_bidi_data_sg &&
3838 dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) {
3839 BUG_ON(!(cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB));
3841 task_cdbs_bidi = transport_allocate_data_tasks(cmd,
3842 DMA_FROM_DEVICE, cmd->t_bidi_data_sg,
3843 cmd->t_bidi_data_nents);
3844 if (task_cdbs_bidi <= 0)
3845 goto out_fail;
3847 atomic_inc(&cmd->t_fe_count);
3848 atomic_inc(&cmd->t_se_count);
3849 set_counts = 0;
3852 if (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) {
3853 task_cdbs = transport_allocate_data_tasks(cmd,
3854 cmd->data_direction, cmd->t_data_sg,
3855 cmd->t_data_nents);
3856 } else {
3857 task_cdbs = transport_allocate_control_task(cmd);
3860 if (task_cdbs < 0)
3861 goto out_fail;
3862 else if (!task_cdbs && (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB)) {
3863 cmd->t_state = TRANSPORT_COMPLETE;
3864 atomic_set(&cmd->t_transport_active, 1);
3866 if (cmd->t_task_cdb[0] == REQUEST_SENSE) {
3867 u8 ua_asc = 0, ua_ascq = 0;
3869 core_scsi3_ua_clear_for_request_sense(cmd,
3870 &ua_asc, &ua_ascq);
3873 INIT_WORK(&cmd->work, target_complete_ok_work);
3874 queue_work(target_completion_wq, &cmd->work);
3875 return 0;
3878 if (set_counts) {
3879 atomic_inc(&cmd->t_fe_count);
3880 atomic_inc(&cmd->t_se_count);
3883 cmd->t_task_list_num = (task_cdbs + task_cdbs_bidi);
3884 atomic_set(&cmd->t_task_cdbs_left, cmd->t_task_list_num);
3885 atomic_set(&cmd->t_task_cdbs_ex_left, cmd->t_task_list_num);
3888 * For WRITEs, let the fabric know its buffer is ready..
3889 * This WRITE struct se_cmd (and all of its associated struct se_task's)
3890 * will be added to the struct se_device execution queue after its WRITE
3891 * data has arrived. (ie: It gets handled by the transport processing
3892 * thread a second time)
3894 if (cmd->data_direction == DMA_TO_DEVICE) {
3895 transport_add_tasks_to_state_queue(cmd);
3896 return transport_generic_write_pending(cmd);
3899 * Everything else but a WRITE, add the struct se_cmd's struct se_task's
3900 * to the execution queue.
3902 transport_execute_tasks(cmd);
3903 return 0;
3905 out_fail:
3906 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3907 cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
3908 return -EINVAL;
3910 EXPORT_SYMBOL(transport_generic_new_cmd);
3912 /* transport_generic_process_write():
3916 void transport_generic_process_write(struct se_cmd *cmd)
3918 transport_execute_tasks(cmd);
3920 EXPORT_SYMBOL(transport_generic_process_write);
3922 static void transport_write_pending_qf(struct se_cmd *cmd)
3924 int ret;
3926 ret = cmd->se_tfo->write_pending(cmd);
3927 if (ret == -EAGAIN || ret == -ENOMEM) {
3928 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
3929 cmd);
3930 transport_handle_queue_full(cmd, cmd->se_dev);
3934 static int transport_generic_write_pending(struct se_cmd *cmd)
3936 unsigned long flags;
3937 int ret;
3939 spin_lock_irqsave(&cmd->t_state_lock, flags);
3940 cmd->t_state = TRANSPORT_WRITE_PENDING;
3941 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3944 * Clear the se_cmd for WRITE_PENDING status in order to set
3945 * cmd->t_transport_active=0 so that transport_generic_handle_data
3946 * can be called from HW target mode interrupt code. This is safe
3947 * to be called with transport_off=1 before the cmd->se_tfo->write_pending
3948 * because the se_cmd->se_lun pointer is not being cleared.
3950 transport_cmd_check_stop(cmd, 1, 0);
3953 * Call the fabric write_pending function here to let the
3954 * frontend know that WRITE buffers are ready.
3956 ret = cmd->se_tfo->write_pending(cmd);
3957 if (ret == -EAGAIN || ret == -ENOMEM)
3958 goto queue_full;
3959 else if (ret < 0)
3960 return ret;
3962 return 1;
3964 queue_full:
3965 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
3966 cmd->t_state = TRANSPORT_COMPLETE_QF_WP;
3967 transport_handle_queue_full(cmd, cmd->se_dev);
3968 return 0;
3971 void transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
3973 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) {
3974 if (wait_for_tasks && cmd->se_tmr_req)
3975 transport_wait_for_tasks(cmd);
3977 transport_release_cmd(cmd);
3978 } else {
3979 if (wait_for_tasks)
3980 transport_wait_for_tasks(cmd);
3982 core_dec_lacl_count(cmd->se_sess->se_node_acl, cmd);
3984 if (cmd->se_lun)
3985 transport_lun_remove_cmd(cmd);
3987 transport_free_dev_tasks(cmd);
3989 transport_put_cmd(cmd);
3992 EXPORT_SYMBOL(transport_generic_free_cmd);
3994 /* target_get_sess_cmd - Add command to active ->sess_cmd_list
3995 * @se_sess: session to reference
3996 * @se_cmd: command descriptor to add
3997 * @ack_kref: Signal that fabric will perform an ack target_put_sess_cmd()
3999 void target_get_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd,
4000 bool ack_kref)
4002 unsigned long flags;
4004 kref_init(&se_cmd->cmd_kref);
4006 * Add a second kref if the fabric caller is expecting to handle
4007 * fabric acknowledgement that requires two target_put_sess_cmd()
4008 * invocations before se_cmd descriptor release.
4010 if (ack_kref == true)
4011 kref_get(&se_cmd->cmd_kref);
4013 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
4014 list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list);
4015 se_cmd->check_release = 1;
4016 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
4018 EXPORT_SYMBOL(target_get_sess_cmd);
4020 static void target_release_cmd_kref(struct kref *kref)
4022 struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref);
4023 struct se_session *se_sess = se_cmd->se_sess;
4024 unsigned long flags;
4026 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
4027 if (list_empty(&se_cmd->se_cmd_list)) {
4028 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
4029 WARN_ON(1);
4030 return;
4032 if (se_sess->sess_tearing_down && se_cmd->cmd_wait_set) {
4033 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
4034 complete(&se_cmd->cmd_wait_comp);
4035 return;
4037 list_del(&se_cmd->se_cmd_list);
4038 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
4040 se_cmd->se_tfo->release_cmd(se_cmd);
4043 /* target_put_sess_cmd - Check for active I/O shutdown via kref_put
4044 * @se_sess: session to reference
4045 * @se_cmd: command descriptor to drop
4047 int target_put_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd)
4049 return kref_put(&se_cmd->cmd_kref, target_release_cmd_kref);
4051 EXPORT_SYMBOL(target_put_sess_cmd);
4053 /* target_splice_sess_cmd_list - Split active cmds into sess_wait_list
4054 * @se_sess: session to split
4056 void target_splice_sess_cmd_list(struct se_session *se_sess)
4058 struct se_cmd *se_cmd;
4059 unsigned long flags;
4061 WARN_ON(!list_empty(&se_sess->sess_wait_list));
4062 INIT_LIST_HEAD(&se_sess->sess_wait_list);
4064 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
4065 se_sess->sess_tearing_down = 1;
4067 list_splice_init(&se_sess->sess_cmd_list, &se_sess->sess_wait_list);
4069 list_for_each_entry(se_cmd, &se_sess->sess_wait_list, se_cmd_list)
4070 se_cmd->cmd_wait_set = 1;
4072 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
4074 EXPORT_SYMBOL(target_splice_sess_cmd_list);
4076 /* target_wait_for_sess_cmds - Wait for outstanding descriptors
4077 * @se_sess: session to wait for active I/O
4078 * @wait_for_tasks: Make extra transport_wait_for_tasks call
4080 void target_wait_for_sess_cmds(
4081 struct se_session *se_sess,
4082 int wait_for_tasks)
4084 struct se_cmd *se_cmd, *tmp_cmd;
4085 bool rc = false;
4087 list_for_each_entry_safe(se_cmd, tmp_cmd,
4088 &se_sess->sess_wait_list, se_cmd_list) {
4089 list_del(&se_cmd->se_cmd_list);
4091 pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:"
4092 " %d\n", se_cmd, se_cmd->t_state,
4093 se_cmd->se_tfo->get_cmd_state(se_cmd));
4095 if (wait_for_tasks) {
4096 pr_debug("Calling transport_wait_for_tasks se_cmd: %p t_state: %d,"
4097 " fabric state: %d\n", se_cmd, se_cmd->t_state,
4098 se_cmd->se_tfo->get_cmd_state(se_cmd));
4100 rc = transport_wait_for_tasks(se_cmd);
4102 pr_debug("After transport_wait_for_tasks se_cmd: %p t_state: %d,"
4103 " fabric state: %d\n", se_cmd, se_cmd->t_state,
4104 se_cmd->se_tfo->get_cmd_state(se_cmd));
4107 if (!rc) {
4108 wait_for_completion(&se_cmd->cmd_wait_comp);
4109 pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d"
4110 " fabric state: %d\n", se_cmd, se_cmd->t_state,
4111 se_cmd->se_tfo->get_cmd_state(se_cmd));
4114 se_cmd->se_tfo->release_cmd(se_cmd);
4117 EXPORT_SYMBOL(target_wait_for_sess_cmds);
4119 /* transport_lun_wait_for_tasks():
4121 * Called from ConfigFS context to stop the passed struct se_cmd to allow
4122 * an struct se_lun to be successfully shutdown.
4124 static int transport_lun_wait_for_tasks(struct se_cmd *cmd, struct se_lun *lun)
4126 unsigned long flags;
4127 int ret;
4129 * If the frontend has already requested this struct se_cmd to
4130 * be stopped, we can safely ignore this struct se_cmd.
4132 spin_lock_irqsave(&cmd->t_state_lock, flags);
4133 if (atomic_read(&cmd->t_transport_stop)) {
4134 atomic_set(&cmd->transport_lun_stop, 0);
4135 pr_debug("ConfigFS ITT[0x%08x] - t_transport_stop =="
4136 " TRUE, skipping\n", cmd->se_tfo->get_task_tag(cmd));
4137 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4138 transport_cmd_check_stop(cmd, 1, 0);
4139 return -EPERM;
4141 atomic_set(&cmd->transport_lun_fe_stop, 1);
4142 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4144 wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq);
4146 ret = transport_stop_tasks_for_cmd(cmd);
4148 pr_debug("ConfigFS: cmd: %p t_tasks: %d stop tasks ret:"
4149 " %d\n", cmd, cmd->t_task_list_num, ret);
4150 if (!ret) {
4151 pr_debug("ConfigFS: ITT[0x%08x] - stopping cmd....\n",
4152 cmd->se_tfo->get_task_tag(cmd));
4153 wait_for_completion(&cmd->transport_lun_stop_comp);
4154 pr_debug("ConfigFS: ITT[0x%08x] - stopped cmd....\n",
4155 cmd->se_tfo->get_task_tag(cmd));
4157 transport_remove_cmd_from_queue(cmd);
4159 return 0;
4162 static void __transport_clear_lun_from_sessions(struct se_lun *lun)
4164 struct se_cmd *cmd = NULL;
4165 unsigned long lun_flags, cmd_flags;
4167 * Do exception processing and return CHECK_CONDITION status to the
4168 * Initiator Port.
4170 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4171 while (!list_empty(&lun->lun_cmd_list)) {
4172 cmd = list_first_entry(&lun->lun_cmd_list,
4173 struct se_cmd, se_lun_node);
4174 list_del(&cmd->se_lun_node);
4176 atomic_set(&cmd->transport_lun_active, 0);
4178 * This will notify iscsi_target_transport.c:
4179 * transport_cmd_check_stop() that a LUN shutdown is in
4180 * progress for the iscsi_cmd_t.
4182 spin_lock(&cmd->t_state_lock);
4183 pr_debug("SE_LUN[%d] - Setting cmd->transport"
4184 "_lun_stop for ITT: 0x%08x\n",
4185 cmd->se_lun->unpacked_lun,
4186 cmd->se_tfo->get_task_tag(cmd));
4187 atomic_set(&cmd->transport_lun_stop, 1);
4188 spin_unlock(&cmd->t_state_lock);
4190 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
4192 if (!cmd->se_lun) {
4193 pr_err("ITT: 0x%08x, [i,t]_state: %u/%u\n",
4194 cmd->se_tfo->get_task_tag(cmd),
4195 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
4196 BUG();
4199 * If the Storage engine still owns the iscsi_cmd_t, determine
4200 * and/or stop its context.
4202 pr_debug("SE_LUN[%d] - ITT: 0x%08x before transport"
4203 "_lun_wait_for_tasks()\n", cmd->se_lun->unpacked_lun,
4204 cmd->se_tfo->get_task_tag(cmd));
4206 if (transport_lun_wait_for_tasks(cmd, cmd->se_lun) < 0) {
4207 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4208 continue;
4211 pr_debug("SE_LUN[%d] - ITT: 0x%08x after transport_lun"
4212 "_wait_for_tasks(): SUCCESS\n",
4213 cmd->se_lun->unpacked_lun,
4214 cmd->se_tfo->get_task_tag(cmd));
4216 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
4217 if (!atomic_read(&cmd->transport_dev_active)) {
4218 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4219 goto check_cond;
4221 atomic_set(&cmd->transport_dev_active, 0);
4222 transport_all_task_dev_remove_state(cmd);
4223 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4225 transport_free_dev_tasks(cmd);
4227 * The Storage engine stopped this struct se_cmd before it was
4228 * send to the fabric frontend for delivery back to the
4229 * Initiator Node. Return this SCSI CDB back with an
4230 * CHECK_CONDITION status.
4232 check_cond:
4233 transport_send_check_condition_and_sense(cmd,
4234 TCM_NON_EXISTENT_LUN, 0);
4236 * If the fabric frontend is waiting for this iscsi_cmd_t to
4237 * be released, notify the waiting thread now that LU has
4238 * finished accessing it.
4240 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
4241 if (atomic_read(&cmd->transport_lun_fe_stop)) {
4242 pr_debug("SE_LUN[%d] - Detected FE stop for"
4243 " struct se_cmd: %p ITT: 0x%08x\n",
4244 lun->unpacked_lun,
4245 cmd, cmd->se_tfo->get_task_tag(cmd));
4247 spin_unlock_irqrestore(&cmd->t_state_lock,
4248 cmd_flags);
4249 transport_cmd_check_stop(cmd, 1, 0);
4250 complete(&cmd->transport_lun_fe_stop_comp);
4251 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4252 continue;
4254 pr_debug("SE_LUN[%d] - ITT: 0x%08x finished processing\n",
4255 lun->unpacked_lun, cmd->se_tfo->get_task_tag(cmd));
4257 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4258 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4260 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
4263 static int transport_clear_lun_thread(void *p)
4265 struct se_lun *lun = p;
4267 __transport_clear_lun_from_sessions(lun);
4268 complete(&lun->lun_shutdown_comp);
4270 return 0;
4273 int transport_clear_lun_from_sessions(struct se_lun *lun)
4275 struct task_struct *kt;
4277 kt = kthread_run(transport_clear_lun_thread, lun,
4278 "tcm_cl_%u", lun->unpacked_lun);
4279 if (IS_ERR(kt)) {
4280 pr_err("Unable to start clear_lun thread\n");
4281 return PTR_ERR(kt);
4283 wait_for_completion(&lun->lun_shutdown_comp);
4285 return 0;
4289 * transport_wait_for_tasks - wait for completion to occur
4290 * @cmd: command to wait
4292 * Called from frontend fabric context to wait for storage engine
4293 * to pause and/or release frontend generated struct se_cmd.
4295 bool transport_wait_for_tasks(struct se_cmd *cmd)
4297 unsigned long flags;
4299 spin_lock_irqsave(&cmd->t_state_lock, flags);
4300 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) && !(cmd->se_tmr_req)) {
4301 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4302 return false;
4305 * Only perform a possible wait_for_tasks if SCF_SUPPORTED_SAM_OPCODE
4306 * has been set in transport_set_supported_SAM_opcode().
4308 if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) && !cmd->se_tmr_req) {
4309 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4310 return false;
4313 * If we are already stopped due to an external event (ie: LUN shutdown)
4314 * sleep until the connection can have the passed struct se_cmd back.
4315 * The cmd->transport_lun_stopped_sem will be upped by
4316 * transport_clear_lun_from_sessions() once the ConfigFS context caller
4317 * has completed its operation on the struct se_cmd.
4319 if (atomic_read(&cmd->transport_lun_stop)) {
4321 pr_debug("wait_for_tasks: Stopping"
4322 " wait_for_completion(&cmd->t_tasktransport_lun_fe"
4323 "_stop_comp); for ITT: 0x%08x\n",
4324 cmd->se_tfo->get_task_tag(cmd));
4326 * There is a special case for WRITES where a FE exception +
4327 * LUN shutdown means ConfigFS context is still sleeping on
4328 * transport_lun_stop_comp in transport_lun_wait_for_tasks().
4329 * We go ahead and up transport_lun_stop_comp just to be sure
4330 * here.
4332 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4333 complete(&cmd->transport_lun_stop_comp);
4334 wait_for_completion(&cmd->transport_lun_fe_stop_comp);
4335 spin_lock_irqsave(&cmd->t_state_lock, flags);
4337 transport_all_task_dev_remove_state(cmd);
4339 * At this point, the frontend who was the originator of this
4340 * struct se_cmd, now owns the structure and can be released through
4341 * normal means below.
4343 pr_debug("wait_for_tasks: Stopped"
4344 " wait_for_completion(&cmd->t_tasktransport_lun_fe_"
4345 "stop_comp); for ITT: 0x%08x\n",
4346 cmd->se_tfo->get_task_tag(cmd));
4348 atomic_set(&cmd->transport_lun_stop, 0);
4350 if (!atomic_read(&cmd->t_transport_active) ||
4351 atomic_read(&cmd->t_transport_aborted)) {
4352 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4353 return false;
4356 atomic_set(&cmd->t_transport_stop, 1);
4358 pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08x"
4359 " i_state: %d, t_state: %d, t_transport_stop = TRUE\n",
4360 cmd, cmd->se_tfo->get_task_tag(cmd),
4361 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
4363 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4365 wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq);
4367 wait_for_completion(&cmd->t_transport_stop_comp);
4369 spin_lock_irqsave(&cmd->t_state_lock, flags);
4370 atomic_set(&cmd->t_transport_active, 0);
4371 atomic_set(&cmd->t_transport_stop, 0);
4373 pr_debug("wait_for_tasks: Stopped wait_for_compltion("
4374 "&cmd->t_transport_stop_comp) for ITT: 0x%08x\n",
4375 cmd->se_tfo->get_task_tag(cmd));
4377 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4379 return true;
4381 EXPORT_SYMBOL(transport_wait_for_tasks);
4383 static int transport_get_sense_codes(
4384 struct se_cmd *cmd,
4385 u8 *asc,
4386 u8 *ascq)
4388 *asc = cmd->scsi_asc;
4389 *ascq = cmd->scsi_ascq;
4391 return 0;
4394 static int transport_set_sense_codes(
4395 struct se_cmd *cmd,
4396 u8 asc,
4397 u8 ascq)
4399 cmd->scsi_asc = asc;
4400 cmd->scsi_ascq = ascq;
4402 return 0;
4405 int transport_send_check_condition_and_sense(
4406 struct se_cmd *cmd,
4407 u8 reason,
4408 int from_transport)
4410 unsigned char *buffer = cmd->sense_buffer;
4411 unsigned long flags;
4412 int offset;
4413 u8 asc = 0, ascq = 0;
4415 spin_lock_irqsave(&cmd->t_state_lock, flags);
4416 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
4417 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4418 return 0;
4420 cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
4421 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4423 if (!reason && from_transport)
4424 goto after_reason;
4426 if (!from_transport)
4427 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
4429 * Data Segment and SenseLength of the fabric response PDU.
4431 * TRANSPORT_SENSE_BUFFER is now set to SCSI_SENSE_BUFFERSIZE
4432 * from include/scsi/scsi_cmnd.h
4434 offset = cmd->se_tfo->set_fabric_sense_len(cmd,
4435 TRANSPORT_SENSE_BUFFER);
4437 * Actual SENSE DATA, see SPC-3 7.23.2 SPC_SENSE_KEY_OFFSET uses
4438 * SENSE KEY values from include/scsi/scsi.h
4440 switch (reason) {
4441 case TCM_NON_EXISTENT_LUN:
4442 /* CURRENT ERROR */
4443 buffer[offset] = 0x70;
4444 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4445 /* ILLEGAL REQUEST */
4446 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4447 /* LOGICAL UNIT NOT SUPPORTED */
4448 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x25;
4449 break;
4450 case TCM_UNSUPPORTED_SCSI_OPCODE:
4451 case TCM_SECTOR_COUNT_TOO_MANY:
4452 /* CURRENT ERROR */
4453 buffer[offset] = 0x70;
4454 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4455 /* ILLEGAL REQUEST */
4456 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4457 /* INVALID COMMAND OPERATION CODE */
4458 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x20;
4459 break;
4460 case TCM_UNKNOWN_MODE_PAGE:
4461 /* CURRENT ERROR */
4462 buffer[offset] = 0x70;
4463 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4464 /* ILLEGAL REQUEST */
4465 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4466 /* INVALID FIELD IN CDB */
4467 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
4468 break;
4469 case TCM_CHECK_CONDITION_ABORT_CMD:
4470 /* CURRENT ERROR */
4471 buffer[offset] = 0x70;
4472 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4473 /* ABORTED COMMAND */
4474 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4475 /* BUS DEVICE RESET FUNCTION OCCURRED */
4476 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x29;
4477 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x03;
4478 break;
4479 case TCM_INCORRECT_AMOUNT_OF_DATA:
4480 /* CURRENT ERROR */
4481 buffer[offset] = 0x70;
4482 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4483 /* ABORTED COMMAND */
4484 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4485 /* WRITE ERROR */
4486 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
4487 /* NOT ENOUGH UNSOLICITED DATA */
4488 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0d;
4489 break;
4490 case TCM_INVALID_CDB_FIELD:
4491 /* CURRENT ERROR */
4492 buffer[offset] = 0x70;
4493 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4494 /* ILLEGAL REQUEST */
4495 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4496 /* INVALID FIELD IN CDB */
4497 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
4498 break;
4499 case TCM_INVALID_PARAMETER_LIST:
4500 /* CURRENT ERROR */
4501 buffer[offset] = 0x70;
4502 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4503 /* ILLEGAL REQUEST */
4504 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4505 /* INVALID FIELD IN PARAMETER LIST */
4506 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x26;
4507 break;
4508 case TCM_UNEXPECTED_UNSOLICITED_DATA:
4509 /* CURRENT ERROR */
4510 buffer[offset] = 0x70;
4511 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4512 /* ABORTED COMMAND */
4513 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4514 /* WRITE ERROR */
4515 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
4516 /* UNEXPECTED_UNSOLICITED_DATA */
4517 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0c;
4518 break;
4519 case TCM_SERVICE_CRC_ERROR:
4520 /* CURRENT ERROR */
4521 buffer[offset] = 0x70;
4522 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4523 /* ABORTED COMMAND */
4524 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4525 /* PROTOCOL SERVICE CRC ERROR */
4526 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x47;
4527 /* N/A */
4528 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x05;
4529 break;
4530 case TCM_SNACK_REJECTED:
4531 /* CURRENT ERROR */
4532 buffer[offset] = 0x70;
4533 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4534 /* ABORTED COMMAND */
4535 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4536 /* READ ERROR */
4537 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x11;
4538 /* FAILED RETRANSMISSION REQUEST */
4539 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x13;
4540 break;
4541 case TCM_WRITE_PROTECTED:
4542 /* CURRENT ERROR */
4543 buffer[offset] = 0x70;
4544 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4545 /* DATA PROTECT */
4546 buffer[offset+SPC_SENSE_KEY_OFFSET] = DATA_PROTECT;
4547 /* WRITE PROTECTED */
4548 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x27;
4549 break;
4550 case TCM_CHECK_CONDITION_UNIT_ATTENTION:
4551 /* CURRENT ERROR */
4552 buffer[offset] = 0x70;
4553 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4554 /* UNIT ATTENTION */
4555 buffer[offset+SPC_SENSE_KEY_OFFSET] = UNIT_ATTENTION;
4556 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
4557 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
4558 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
4559 break;
4560 case TCM_CHECK_CONDITION_NOT_READY:
4561 /* CURRENT ERROR */
4562 buffer[offset] = 0x70;
4563 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4564 /* Not Ready */
4565 buffer[offset+SPC_SENSE_KEY_OFFSET] = NOT_READY;
4566 transport_get_sense_codes(cmd, &asc, &ascq);
4567 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
4568 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
4569 break;
4570 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
4571 default:
4572 /* CURRENT ERROR */
4573 buffer[offset] = 0x70;
4574 buffer[offset+SPC_ADD_SENSE_LEN_OFFSET] = 10;
4575 /* ILLEGAL REQUEST */
4576 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4577 /* LOGICAL UNIT COMMUNICATION FAILURE */
4578 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x80;
4579 break;
4582 * This code uses linux/include/scsi/scsi.h SAM status codes!
4584 cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
4586 * Automatically padded, this value is encoded in the fabric's
4587 * data_length response PDU containing the SCSI defined sense data.
4589 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER + offset;
4591 after_reason:
4592 return cmd->se_tfo->queue_status(cmd);
4594 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
4596 int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
4598 int ret = 0;
4600 if (atomic_read(&cmd->t_transport_aborted) != 0) {
4601 if (!send_status ||
4602 (cmd->se_cmd_flags & SCF_SENT_DELAYED_TAS))
4603 return 1;
4604 #if 0
4605 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED"
4606 " status for CDB: 0x%02x ITT: 0x%08x\n",
4607 cmd->t_task_cdb[0],
4608 cmd->se_tfo->get_task_tag(cmd));
4609 #endif
4610 cmd->se_cmd_flags |= SCF_SENT_DELAYED_TAS;
4611 cmd->se_tfo->queue_status(cmd);
4612 ret = 1;
4614 return ret;
4616 EXPORT_SYMBOL(transport_check_aborted_status);
4618 void transport_send_task_abort(struct se_cmd *cmd)
4620 unsigned long flags;
4622 spin_lock_irqsave(&cmd->t_state_lock, flags);
4623 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
4624 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4625 return;
4627 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4630 * If there are still expected incoming fabric WRITEs, we wait
4631 * until until they have completed before sending a TASK_ABORTED
4632 * response. This response with TASK_ABORTED status will be
4633 * queued back to fabric module by transport_check_aborted_status().
4635 if (cmd->data_direction == DMA_TO_DEVICE) {
4636 if (cmd->se_tfo->write_pending_status(cmd) != 0) {
4637 atomic_inc(&cmd->t_transport_aborted);
4638 smp_mb__after_atomic_inc();
4641 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
4642 #if 0
4643 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x,"
4644 " ITT: 0x%08x\n", cmd->t_task_cdb[0],
4645 cmd->se_tfo->get_task_tag(cmd));
4646 #endif
4647 cmd->se_tfo->queue_status(cmd);
4650 static int transport_generic_do_tmr(struct se_cmd *cmd)
4652 struct se_device *dev = cmd->se_dev;
4653 struct se_tmr_req *tmr = cmd->se_tmr_req;
4654 int ret;
4656 switch (tmr->function) {
4657 case TMR_ABORT_TASK:
4658 tmr->response = TMR_FUNCTION_REJECTED;
4659 break;
4660 case TMR_ABORT_TASK_SET:
4661 case TMR_CLEAR_ACA:
4662 case TMR_CLEAR_TASK_SET:
4663 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
4664 break;
4665 case TMR_LUN_RESET:
4666 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
4667 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
4668 TMR_FUNCTION_REJECTED;
4669 break;
4670 case TMR_TARGET_WARM_RESET:
4671 tmr->response = TMR_FUNCTION_REJECTED;
4672 break;
4673 case TMR_TARGET_COLD_RESET:
4674 tmr->response = TMR_FUNCTION_REJECTED;
4675 break;
4676 default:
4677 pr_err("Uknown TMR function: 0x%02x.\n",
4678 tmr->function);
4679 tmr->response = TMR_FUNCTION_REJECTED;
4680 break;
4683 cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
4684 cmd->se_tfo->queue_tm_rsp(cmd);
4686 transport_cmd_check_stop_to_fabric(cmd);
4687 return 0;
4690 /* transport_processing_thread():
4694 static int transport_processing_thread(void *param)
4696 int ret;
4697 struct se_cmd *cmd;
4698 struct se_device *dev = param;
4700 while (!kthread_should_stop()) {
4701 ret = wait_event_interruptible(dev->dev_queue_obj.thread_wq,
4702 atomic_read(&dev->dev_queue_obj.queue_cnt) ||
4703 kthread_should_stop());
4704 if (ret < 0)
4705 goto out;
4707 get_cmd:
4708 cmd = transport_get_cmd_from_queue(&dev->dev_queue_obj);
4709 if (!cmd)
4710 continue;
4712 switch (cmd->t_state) {
4713 case TRANSPORT_NEW_CMD:
4714 BUG();
4715 break;
4716 case TRANSPORT_NEW_CMD_MAP:
4717 if (!cmd->se_tfo->new_cmd_map) {
4718 pr_err("cmd->se_tfo->new_cmd_map is"
4719 " NULL for TRANSPORT_NEW_CMD_MAP\n");
4720 BUG();
4722 ret = cmd->se_tfo->new_cmd_map(cmd);
4723 if (ret < 0) {
4724 transport_generic_request_failure(cmd);
4725 break;
4727 ret = transport_generic_new_cmd(cmd);
4728 if (ret < 0) {
4729 transport_generic_request_failure(cmd);
4730 break;
4732 break;
4733 case TRANSPORT_PROCESS_WRITE:
4734 transport_generic_process_write(cmd);
4735 break;
4736 case TRANSPORT_PROCESS_TMR:
4737 transport_generic_do_tmr(cmd);
4738 break;
4739 case TRANSPORT_COMPLETE_QF_WP:
4740 transport_write_pending_qf(cmd);
4741 break;
4742 case TRANSPORT_COMPLETE_QF_OK:
4743 transport_complete_qf(cmd);
4744 break;
4745 default:
4746 pr_err("Unknown t_state: %d for ITT: 0x%08x "
4747 "i_state: %d on SE LUN: %u\n",
4748 cmd->t_state,
4749 cmd->se_tfo->get_task_tag(cmd),
4750 cmd->se_tfo->get_cmd_state(cmd),
4751 cmd->se_lun->unpacked_lun);
4752 BUG();
4755 goto get_cmd;
4758 out:
4759 WARN_ON(!list_empty(&dev->state_task_list));
4760 WARN_ON(!list_empty(&dev->dev_queue_obj.qobj_list));
4761 dev->process_thread = NULL;
4762 return 0;