spi-topcliff-pch: supports a spi mode setup and bit order setup by IO control
[zen-stable.git] / fs / bio.c
blobb980ecde026a3a0e1fca405053572e93ba86c44d
1 /*
2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
13 * You should have received a copy of the GNU General Public Licens
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/mempool.h>
27 #include <linux/workqueue.h>
28 #include <scsi/sg.h> /* for struct sg_iovec */
30 #include <trace/events/block.h>
33 * Test patch to inline a certain number of bi_io_vec's inside the bio
34 * itself, to shrink a bio data allocation from two mempool calls to one
36 #define BIO_INLINE_VECS 4
38 static mempool_t *bio_split_pool __read_mostly;
41 * if you change this list, also change bvec_alloc or things will
42 * break badly! cannot be bigger than what you can fit into an
43 * unsigned short
45 #define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
46 static struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = {
47 BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
49 #undef BV
52 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
53 * IO code that does not need private memory pools.
55 struct bio_set *fs_bio_set;
58 * Our slab pool management
60 struct bio_slab {
61 struct kmem_cache *slab;
62 unsigned int slab_ref;
63 unsigned int slab_size;
64 char name[8];
66 static DEFINE_MUTEX(bio_slab_lock);
67 static struct bio_slab *bio_slabs;
68 static unsigned int bio_slab_nr, bio_slab_max;
70 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
72 unsigned int sz = sizeof(struct bio) + extra_size;
73 struct kmem_cache *slab = NULL;
74 struct bio_slab *bslab;
75 unsigned int i, entry = -1;
77 mutex_lock(&bio_slab_lock);
79 i = 0;
80 while (i < bio_slab_nr) {
81 bslab = &bio_slabs[i];
83 if (!bslab->slab && entry == -1)
84 entry = i;
85 else if (bslab->slab_size == sz) {
86 slab = bslab->slab;
87 bslab->slab_ref++;
88 break;
90 i++;
93 if (slab)
94 goto out_unlock;
96 if (bio_slab_nr == bio_slab_max && entry == -1) {
97 bio_slab_max <<= 1;
98 bio_slabs = krealloc(bio_slabs,
99 bio_slab_max * sizeof(struct bio_slab),
100 GFP_KERNEL);
101 if (!bio_slabs)
102 goto out_unlock;
104 if (entry == -1)
105 entry = bio_slab_nr++;
107 bslab = &bio_slabs[entry];
109 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
110 slab = kmem_cache_create(bslab->name, sz, 0, SLAB_HWCACHE_ALIGN, NULL);
111 if (!slab)
112 goto out_unlock;
114 printk(KERN_INFO "bio: create slab <%s> at %d\n", bslab->name, entry);
115 bslab->slab = slab;
116 bslab->slab_ref = 1;
117 bslab->slab_size = sz;
118 out_unlock:
119 mutex_unlock(&bio_slab_lock);
120 return slab;
123 static void bio_put_slab(struct bio_set *bs)
125 struct bio_slab *bslab = NULL;
126 unsigned int i;
128 mutex_lock(&bio_slab_lock);
130 for (i = 0; i < bio_slab_nr; i++) {
131 if (bs->bio_slab == bio_slabs[i].slab) {
132 bslab = &bio_slabs[i];
133 break;
137 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
138 goto out;
140 WARN_ON(!bslab->slab_ref);
142 if (--bslab->slab_ref)
143 goto out;
145 kmem_cache_destroy(bslab->slab);
146 bslab->slab = NULL;
148 out:
149 mutex_unlock(&bio_slab_lock);
152 unsigned int bvec_nr_vecs(unsigned short idx)
154 return bvec_slabs[idx].nr_vecs;
157 void bvec_free_bs(struct bio_set *bs, struct bio_vec *bv, unsigned int idx)
159 BIO_BUG_ON(idx >= BIOVEC_NR_POOLS);
161 if (idx == BIOVEC_MAX_IDX)
162 mempool_free(bv, bs->bvec_pool);
163 else {
164 struct biovec_slab *bvs = bvec_slabs + idx;
166 kmem_cache_free(bvs->slab, bv);
170 struct bio_vec *bvec_alloc_bs(gfp_t gfp_mask, int nr, unsigned long *idx,
171 struct bio_set *bs)
173 struct bio_vec *bvl;
176 * see comment near bvec_array define!
178 switch (nr) {
179 case 1:
180 *idx = 0;
181 break;
182 case 2 ... 4:
183 *idx = 1;
184 break;
185 case 5 ... 16:
186 *idx = 2;
187 break;
188 case 17 ... 64:
189 *idx = 3;
190 break;
191 case 65 ... 128:
192 *idx = 4;
193 break;
194 case 129 ... BIO_MAX_PAGES:
195 *idx = 5;
196 break;
197 default:
198 return NULL;
202 * idx now points to the pool we want to allocate from. only the
203 * 1-vec entry pool is mempool backed.
205 if (*idx == BIOVEC_MAX_IDX) {
206 fallback:
207 bvl = mempool_alloc(bs->bvec_pool, gfp_mask);
208 } else {
209 struct biovec_slab *bvs = bvec_slabs + *idx;
210 gfp_t __gfp_mask = gfp_mask & ~(__GFP_WAIT | __GFP_IO);
213 * Make this allocation restricted and don't dump info on
214 * allocation failures, since we'll fallback to the mempool
215 * in case of failure.
217 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
220 * Try a slab allocation. If this fails and __GFP_WAIT
221 * is set, retry with the 1-entry mempool
223 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
224 if (unlikely(!bvl && (gfp_mask & __GFP_WAIT))) {
225 *idx = BIOVEC_MAX_IDX;
226 goto fallback;
230 return bvl;
233 void bio_free(struct bio *bio, struct bio_set *bs)
235 void *p;
237 if (bio_has_allocated_vec(bio))
238 bvec_free_bs(bs, bio->bi_io_vec, BIO_POOL_IDX(bio));
240 if (bio_integrity(bio))
241 bio_integrity_free(bio, bs);
244 * If we have front padding, adjust the bio pointer before freeing
246 p = bio;
247 if (bs->front_pad)
248 p -= bs->front_pad;
250 mempool_free(p, bs->bio_pool);
252 EXPORT_SYMBOL(bio_free);
254 void bio_init(struct bio *bio)
256 memset(bio, 0, sizeof(*bio));
257 bio->bi_flags = 1 << BIO_UPTODATE;
258 atomic_set(&bio->bi_cnt, 1);
260 EXPORT_SYMBOL(bio_init);
263 * bio_alloc_bioset - allocate a bio for I/O
264 * @gfp_mask: the GFP_ mask given to the slab allocator
265 * @nr_iovecs: number of iovecs to pre-allocate
266 * @bs: the bio_set to allocate from.
268 * Description:
269 * bio_alloc_bioset will try its own mempool to satisfy the allocation.
270 * If %__GFP_WAIT is set then we will block on the internal pool waiting
271 * for a &struct bio to become free.
273 * Note that the caller must set ->bi_destructor on successful return
274 * of a bio, to do the appropriate freeing of the bio once the reference
275 * count drops to zero.
277 struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs)
279 unsigned long idx = BIO_POOL_NONE;
280 struct bio_vec *bvl = NULL;
281 struct bio *bio;
282 void *p;
284 p = mempool_alloc(bs->bio_pool, gfp_mask);
285 if (unlikely(!p))
286 return NULL;
287 bio = p + bs->front_pad;
289 bio_init(bio);
291 if (unlikely(!nr_iovecs))
292 goto out_set;
294 if (nr_iovecs <= BIO_INLINE_VECS) {
295 bvl = bio->bi_inline_vecs;
296 nr_iovecs = BIO_INLINE_VECS;
297 } else {
298 bvl = bvec_alloc_bs(gfp_mask, nr_iovecs, &idx, bs);
299 if (unlikely(!bvl))
300 goto err_free;
302 nr_iovecs = bvec_nr_vecs(idx);
304 out_set:
305 bio->bi_flags |= idx << BIO_POOL_OFFSET;
306 bio->bi_max_vecs = nr_iovecs;
307 bio->bi_io_vec = bvl;
308 return bio;
310 err_free:
311 mempool_free(p, bs->bio_pool);
312 return NULL;
314 EXPORT_SYMBOL(bio_alloc_bioset);
316 static void bio_fs_destructor(struct bio *bio)
318 bio_free(bio, fs_bio_set);
322 * bio_alloc - allocate a new bio, memory pool backed
323 * @gfp_mask: allocation mask to use
324 * @nr_iovecs: number of iovecs
326 * bio_alloc will allocate a bio and associated bio_vec array that can hold
327 * at least @nr_iovecs entries. Allocations will be done from the
328 * fs_bio_set. Also see @bio_alloc_bioset and @bio_kmalloc.
330 * If %__GFP_WAIT is set, then bio_alloc will always be able to allocate
331 * a bio. This is due to the mempool guarantees. To make this work, callers
332 * must never allocate more than 1 bio at a time from this pool. Callers
333 * that need to allocate more than 1 bio must always submit the previously
334 * allocated bio for IO before attempting to allocate a new one. Failure to
335 * do so can cause livelocks under memory pressure.
337 * RETURNS:
338 * Pointer to new bio on success, NULL on failure.
340 struct bio *bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
342 struct bio *bio = bio_alloc_bioset(gfp_mask, nr_iovecs, fs_bio_set);
344 if (bio)
345 bio->bi_destructor = bio_fs_destructor;
347 return bio;
349 EXPORT_SYMBOL(bio_alloc);
351 static void bio_kmalloc_destructor(struct bio *bio)
353 if (bio_integrity(bio))
354 bio_integrity_free(bio, fs_bio_set);
355 kfree(bio);
359 * bio_kmalloc - allocate a bio for I/O using kmalloc()
360 * @gfp_mask: the GFP_ mask given to the slab allocator
361 * @nr_iovecs: number of iovecs to pre-allocate
363 * Description:
364 * Allocate a new bio with @nr_iovecs bvecs. If @gfp_mask contains
365 * %__GFP_WAIT, the allocation is guaranteed to succeed.
368 struct bio *bio_kmalloc(gfp_t gfp_mask, unsigned int nr_iovecs)
370 struct bio *bio;
372 if (nr_iovecs > UIO_MAXIOV)
373 return NULL;
375 bio = kmalloc(sizeof(struct bio) + nr_iovecs * sizeof(struct bio_vec),
376 gfp_mask);
377 if (unlikely(!bio))
378 return NULL;
380 bio_init(bio);
381 bio->bi_flags |= BIO_POOL_NONE << BIO_POOL_OFFSET;
382 bio->bi_max_vecs = nr_iovecs;
383 bio->bi_io_vec = bio->bi_inline_vecs;
384 bio->bi_destructor = bio_kmalloc_destructor;
386 return bio;
388 EXPORT_SYMBOL(bio_kmalloc);
390 void zero_fill_bio(struct bio *bio)
392 unsigned long flags;
393 struct bio_vec *bv;
394 int i;
396 bio_for_each_segment(bv, bio, i) {
397 char *data = bvec_kmap_irq(bv, &flags);
398 memset(data, 0, bv->bv_len);
399 flush_dcache_page(bv->bv_page);
400 bvec_kunmap_irq(data, &flags);
403 EXPORT_SYMBOL(zero_fill_bio);
406 * bio_put - release a reference to a bio
407 * @bio: bio to release reference to
409 * Description:
410 * Put a reference to a &struct bio, either one you have gotten with
411 * bio_alloc, bio_get or bio_clone. The last put of a bio will free it.
413 void bio_put(struct bio *bio)
415 BIO_BUG_ON(!atomic_read(&bio->bi_cnt));
418 * last put frees it
420 if (atomic_dec_and_test(&bio->bi_cnt)) {
421 bio->bi_next = NULL;
422 bio->bi_destructor(bio);
425 EXPORT_SYMBOL(bio_put);
427 inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
429 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
430 blk_recount_segments(q, bio);
432 return bio->bi_phys_segments;
434 EXPORT_SYMBOL(bio_phys_segments);
437 * __bio_clone - clone a bio
438 * @bio: destination bio
439 * @bio_src: bio to clone
441 * Clone a &bio. Caller will own the returned bio, but not
442 * the actual data it points to. Reference count of returned
443 * bio will be one.
445 void __bio_clone(struct bio *bio, struct bio *bio_src)
447 memcpy(bio->bi_io_vec, bio_src->bi_io_vec,
448 bio_src->bi_max_vecs * sizeof(struct bio_vec));
451 * most users will be overriding ->bi_bdev with a new target,
452 * so we don't set nor calculate new physical/hw segment counts here
454 bio->bi_sector = bio_src->bi_sector;
455 bio->bi_bdev = bio_src->bi_bdev;
456 bio->bi_flags |= 1 << BIO_CLONED;
457 bio->bi_rw = bio_src->bi_rw;
458 bio->bi_vcnt = bio_src->bi_vcnt;
459 bio->bi_size = bio_src->bi_size;
460 bio->bi_idx = bio_src->bi_idx;
462 EXPORT_SYMBOL(__bio_clone);
465 * bio_clone - clone a bio
466 * @bio: bio to clone
467 * @gfp_mask: allocation priority
469 * Like __bio_clone, only also allocates the returned bio
471 struct bio *bio_clone(struct bio *bio, gfp_t gfp_mask)
473 struct bio *b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs, fs_bio_set);
475 if (!b)
476 return NULL;
478 b->bi_destructor = bio_fs_destructor;
479 __bio_clone(b, bio);
481 if (bio_integrity(bio)) {
482 int ret;
484 ret = bio_integrity_clone(b, bio, gfp_mask, fs_bio_set);
486 if (ret < 0) {
487 bio_put(b);
488 return NULL;
492 return b;
494 EXPORT_SYMBOL(bio_clone);
497 * bio_get_nr_vecs - return approx number of vecs
498 * @bdev: I/O target
500 * Return the approximate number of pages we can send to this target.
501 * There's no guarantee that you will be able to fit this number of pages
502 * into a bio, it does not account for dynamic restrictions that vary
503 * on offset.
505 int bio_get_nr_vecs(struct block_device *bdev)
507 struct request_queue *q = bdev_get_queue(bdev);
508 return min_t(unsigned,
509 queue_max_segments(q),
510 queue_max_sectors(q) / (PAGE_SIZE >> 9) + 1);
512 EXPORT_SYMBOL(bio_get_nr_vecs);
514 static int __bio_add_page(struct request_queue *q, struct bio *bio, struct page
515 *page, unsigned int len, unsigned int offset,
516 unsigned short max_sectors)
518 int retried_segments = 0;
519 struct bio_vec *bvec;
522 * cloned bio must not modify vec list
524 if (unlikely(bio_flagged(bio, BIO_CLONED)))
525 return 0;
527 if (((bio->bi_size + len) >> 9) > max_sectors)
528 return 0;
531 * For filesystems with a blocksize smaller than the pagesize
532 * we will often be called with the same page as last time and
533 * a consecutive offset. Optimize this special case.
535 if (bio->bi_vcnt > 0) {
536 struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
538 if (page == prev->bv_page &&
539 offset == prev->bv_offset + prev->bv_len) {
540 unsigned int prev_bv_len = prev->bv_len;
541 prev->bv_len += len;
543 if (q->merge_bvec_fn) {
544 struct bvec_merge_data bvm = {
545 /* prev_bvec is already charged in
546 bi_size, discharge it in order to
547 simulate merging updated prev_bvec
548 as new bvec. */
549 .bi_bdev = bio->bi_bdev,
550 .bi_sector = bio->bi_sector,
551 .bi_size = bio->bi_size - prev_bv_len,
552 .bi_rw = bio->bi_rw,
555 if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len) {
556 prev->bv_len -= len;
557 return 0;
561 goto done;
565 if (bio->bi_vcnt >= bio->bi_max_vecs)
566 return 0;
569 * we might lose a segment or two here, but rather that than
570 * make this too complex.
573 while (bio->bi_phys_segments >= queue_max_segments(q)) {
575 if (retried_segments)
576 return 0;
578 retried_segments = 1;
579 blk_recount_segments(q, bio);
583 * setup the new entry, we might clear it again later if we
584 * cannot add the page
586 bvec = &bio->bi_io_vec[bio->bi_vcnt];
587 bvec->bv_page = page;
588 bvec->bv_len = len;
589 bvec->bv_offset = offset;
592 * if queue has other restrictions (eg varying max sector size
593 * depending on offset), it can specify a merge_bvec_fn in the
594 * queue to get further control
596 if (q->merge_bvec_fn) {
597 struct bvec_merge_data bvm = {
598 .bi_bdev = bio->bi_bdev,
599 .bi_sector = bio->bi_sector,
600 .bi_size = bio->bi_size,
601 .bi_rw = bio->bi_rw,
605 * merge_bvec_fn() returns number of bytes it can accept
606 * at this offset
608 if (q->merge_bvec_fn(q, &bvm, bvec) < bvec->bv_len) {
609 bvec->bv_page = NULL;
610 bvec->bv_len = 0;
611 bvec->bv_offset = 0;
612 return 0;
616 /* If we may be able to merge these biovecs, force a recount */
617 if (bio->bi_vcnt && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
618 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
620 bio->bi_vcnt++;
621 bio->bi_phys_segments++;
622 done:
623 bio->bi_size += len;
624 return len;
628 * bio_add_pc_page - attempt to add page to bio
629 * @q: the target queue
630 * @bio: destination bio
631 * @page: page to add
632 * @len: vec entry length
633 * @offset: vec entry offset
635 * Attempt to add a page to the bio_vec maplist. This can fail for a
636 * number of reasons, such as the bio being full or target block device
637 * limitations. The target block device must allow bio's up to PAGE_SIZE,
638 * so it is always possible to add a single page to an empty bio.
640 * This should only be used by REQ_PC bios.
642 int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page *page,
643 unsigned int len, unsigned int offset)
645 return __bio_add_page(q, bio, page, len, offset,
646 queue_max_hw_sectors(q));
648 EXPORT_SYMBOL(bio_add_pc_page);
651 * bio_add_page - attempt to add page to bio
652 * @bio: destination bio
653 * @page: page to add
654 * @len: vec entry length
655 * @offset: vec entry offset
657 * Attempt to add a page to the bio_vec maplist. This can fail for a
658 * number of reasons, such as the bio being full or target block device
659 * limitations. The target block device must allow bio's up to PAGE_SIZE,
660 * so it is always possible to add a single page to an empty bio.
662 int bio_add_page(struct bio *bio, struct page *page, unsigned int len,
663 unsigned int offset)
665 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
666 return __bio_add_page(q, bio, page, len, offset, queue_max_sectors(q));
668 EXPORT_SYMBOL(bio_add_page);
670 struct bio_map_data {
671 struct bio_vec *iovecs;
672 struct sg_iovec *sgvecs;
673 int nr_sgvecs;
674 int is_our_pages;
677 static void bio_set_map_data(struct bio_map_data *bmd, struct bio *bio,
678 struct sg_iovec *iov, int iov_count,
679 int is_our_pages)
681 memcpy(bmd->iovecs, bio->bi_io_vec, sizeof(struct bio_vec) * bio->bi_vcnt);
682 memcpy(bmd->sgvecs, iov, sizeof(struct sg_iovec) * iov_count);
683 bmd->nr_sgvecs = iov_count;
684 bmd->is_our_pages = is_our_pages;
685 bio->bi_private = bmd;
688 static void bio_free_map_data(struct bio_map_data *bmd)
690 kfree(bmd->iovecs);
691 kfree(bmd->sgvecs);
692 kfree(bmd);
695 static struct bio_map_data *bio_alloc_map_data(int nr_segs,
696 unsigned int iov_count,
697 gfp_t gfp_mask)
699 struct bio_map_data *bmd;
701 if (iov_count > UIO_MAXIOV)
702 return NULL;
704 bmd = kmalloc(sizeof(*bmd), gfp_mask);
705 if (!bmd)
706 return NULL;
708 bmd->iovecs = kmalloc(sizeof(struct bio_vec) * nr_segs, gfp_mask);
709 if (!bmd->iovecs) {
710 kfree(bmd);
711 return NULL;
714 bmd->sgvecs = kmalloc(sizeof(struct sg_iovec) * iov_count, gfp_mask);
715 if (bmd->sgvecs)
716 return bmd;
718 kfree(bmd->iovecs);
719 kfree(bmd);
720 return NULL;
723 static int __bio_copy_iov(struct bio *bio, struct bio_vec *iovecs,
724 struct sg_iovec *iov, int iov_count,
725 int to_user, int from_user, int do_free_page)
727 int ret = 0, i;
728 struct bio_vec *bvec;
729 int iov_idx = 0;
730 unsigned int iov_off = 0;
732 __bio_for_each_segment(bvec, bio, i, 0) {
733 char *bv_addr = page_address(bvec->bv_page);
734 unsigned int bv_len = iovecs[i].bv_len;
736 while (bv_len && iov_idx < iov_count) {
737 unsigned int bytes;
738 char __user *iov_addr;
740 bytes = min_t(unsigned int,
741 iov[iov_idx].iov_len - iov_off, bv_len);
742 iov_addr = iov[iov_idx].iov_base + iov_off;
744 if (!ret) {
745 if (to_user)
746 ret = copy_to_user(iov_addr, bv_addr,
747 bytes);
749 if (from_user)
750 ret = copy_from_user(bv_addr, iov_addr,
751 bytes);
753 if (ret)
754 ret = -EFAULT;
757 bv_len -= bytes;
758 bv_addr += bytes;
759 iov_addr += bytes;
760 iov_off += bytes;
762 if (iov[iov_idx].iov_len == iov_off) {
763 iov_idx++;
764 iov_off = 0;
768 if (do_free_page)
769 __free_page(bvec->bv_page);
772 return ret;
776 * bio_uncopy_user - finish previously mapped bio
777 * @bio: bio being terminated
779 * Free pages allocated from bio_copy_user() and write back data
780 * to user space in case of a read.
782 int bio_uncopy_user(struct bio *bio)
784 struct bio_map_data *bmd = bio->bi_private;
785 int ret = 0;
787 if (!bio_flagged(bio, BIO_NULL_MAPPED))
788 ret = __bio_copy_iov(bio, bmd->iovecs, bmd->sgvecs,
789 bmd->nr_sgvecs, bio_data_dir(bio) == READ,
790 0, bmd->is_our_pages);
791 bio_free_map_data(bmd);
792 bio_put(bio);
793 return ret;
795 EXPORT_SYMBOL(bio_uncopy_user);
798 * bio_copy_user_iov - copy user data to bio
799 * @q: destination block queue
800 * @map_data: pointer to the rq_map_data holding pages (if necessary)
801 * @iov: the iovec.
802 * @iov_count: number of elements in the iovec
803 * @write_to_vm: bool indicating writing to pages or not
804 * @gfp_mask: memory allocation flags
806 * Prepares and returns a bio for indirect user io, bouncing data
807 * to/from kernel pages as necessary. Must be paired with
808 * call bio_uncopy_user() on io completion.
810 struct bio *bio_copy_user_iov(struct request_queue *q,
811 struct rq_map_data *map_data,
812 struct sg_iovec *iov, int iov_count,
813 int write_to_vm, gfp_t gfp_mask)
815 struct bio_map_data *bmd;
816 struct bio_vec *bvec;
817 struct page *page;
818 struct bio *bio;
819 int i, ret;
820 int nr_pages = 0;
821 unsigned int len = 0;
822 unsigned int offset = map_data ? map_data->offset & ~PAGE_MASK : 0;
824 for (i = 0; i < iov_count; i++) {
825 unsigned long uaddr;
826 unsigned long end;
827 unsigned long start;
829 uaddr = (unsigned long)iov[i].iov_base;
830 end = (uaddr + iov[i].iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
831 start = uaddr >> PAGE_SHIFT;
834 * Overflow, abort
836 if (end < start)
837 return ERR_PTR(-EINVAL);
839 nr_pages += end - start;
840 len += iov[i].iov_len;
843 if (offset)
844 nr_pages++;
846 bmd = bio_alloc_map_data(nr_pages, iov_count, gfp_mask);
847 if (!bmd)
848 return ERR_PTR(-ENOMEM);
850 ret = -ENOMEM;
851 bio = bio_kmalloc(gfp_mask, nr_pages);
852 if (!bio)
853 goto out_bmd;
855 if (!write_to_vm)
856 bio->bi_rw |= REQ_WRITE;
858 ret = 0;
860 if (map_data) {
861 nr_pages = 1 << map_data->page_order;
862 i = map_data->offset / PAGE_SIZE;
864 while (len) {
865 unsigned int bytes = PAGE_SIZE;
867 bytes -= offset;
869 if (bytes > len)
870 bytes = len;
872 if (map_data) {
873 if (i == map_data->nr_entries * nr_pages) {
874 ret = -ENOMEM;
875 break;
878 page = map_data->pages[i / nr_pages];
879 page += (i % nr_pages);
881 i++;
882 } else {
883 page = alloc_page(q->bounce_gfp | gfp_mask);
884 if (!page) {
885 ret = -ENOMEM;
886 break;
890 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
891 break;
893 len -= bytes;
894 offset = 0;
897 if (ret)
898 goto cleanup;
901 * success
903 if ((!write_to_vm && (!map_data || !map_data->null_mapped)) ||
904 (map_data && map_data->from_user)) {
905 ret = __bio_copy_iov(bio, bio->bi_io_vec, iov, iov_count, 0, 1, 0);
906 if (ret)
907 goto cleanup;
910 bio_set_map_data(bmd, bio, iov, iov_count, map_data ? 0 : 1);
911 return bio;
912 cleanup:
913 if (!map_data)
914 bio_for_each_segment(bvec, bio, i)
915 __free_page(bvec->bv_page);
917 bio_put(bio);
918 out_bmd:
919 bio_free_map_data(bmd);
920 return ERR_PTR(ret);
924 * bio_copy_user - copy user data to bio
925 * @q: destination block queue
926 * @map_data: pointer to the rq_map_data holding pages (if necessary)
927 * @uaddr: start of user address
928 * @len: length in bytes
929 * @write_to_vm: bool indicating writing to pages or not
930 * @gfp_mask: memory allocation flags
932 * Prepares and returns a bio for indirect user io, bouncing data
933 * to/from kernel pages as necessary. Must be paired with
934 * call bio_uncopy_user() on io completion.
936 struct bio *bio_copy_user(struct request_queue *q, struct rq_map_data *map_data,
937 unsigned long uaddr, unsigned int len,
938 int write_to_vm, gfp_t gfp_mask)
940 struct sg_iovec iov;
942 iov.iov_base = (void __user *)uaddr;
943 iov.iov_len = len;
945 return bio_copy_user_iov(q, map_data, &iov, 1, write_to_vm, gfp_mask);
947 EXPORT_SYMBOL(bio_copy_user);
949 static struct bio *__bio_map_user_iov(struct request_queue *q,
950 struct block_device *bdev,
951 struct sg_iovec *iov, int iov_count,
952 int write_to_vm, gfp_t gfp_mask)
954 int i, j;
955 int nr_pages = 0;
956 struct page **pages;
957 struct bio *bio;
958 int cur_page = 0;
959 int ret, offset;
961 for (i = 0; i < iov_count; i++) {
962 unsigned long uaddr = (unsigned long)iov[i].iov_base;
963 unsigned long len = iov[i].iov_len;
964 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
965 unsigned long start = uaddr >> PAGE_SHIFT;
968 * Overflow, abort
970 if (end < start)
971 return ERR_PTR(-EINVAL);
973 nr_pages += end - start;
975 * buffer must be aligned to at least hardsector size for now
977 if (uaddr & queue_dma_alignment(q))
978 return ERR_PTR(-EINVAL);
981 if (!nr_pages)
982 return ERR_PTR(-EINVAL);
984 bio = bio_kmalloc(gfp_mask, nr_pages);
985 if (!bio)
986 return ERR_PTR(-ENOMEM);
988 ret = -ENOMEM;
989 pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
990 if (!pages)
991 goto out;
993 for (i = 0; i < iov_count; i++) {
994 unsigned long uaddr = (unsigned long)iov[i].iov_base;
995 unsigned long len = iov[i].iov_len;
996 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
997 unsigned long start = uaddr >> PAGE_SHIFT;
998 const int local_nr_pages = end - start;
999 const int page_limit = cur_page + local_nr_pages;
1001 ret = get_user_pages_fast(uaddr, local_nr_pages,
1002 write_to_vm, &pages[cur_page]);
1003 if (ret < local_nr_pages) {
1004 ret = -EFAULT;
1005 goto out_unmap;
1008 offset = uaddr & ~PAGE_MASK;
1009 for (j = cur_page; j < page_limit; j++) {
1010 unsigned int bytes = PAGE_SIZE - offset;
1012 if (len <= 0)
1013 break;
1015 if (bytes > len)
1016 bytes = len;
1019 * sorry...
1021 if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
1022 bytes)
1023 break;
1025 len -= bytes;
1026 offset = 0;
1029 cur_page = j;
1031 * release the pages we didn't map into the bio, if any
1033 while (j < page_limit)
1034 page_cache_release(pages[j++]);
1037 kfree(pages);
1040 * set data direction, and check if mapped pages need bouncing
1042 if (!write_to_vm)
1043 bio->bi_rw |= REQ_WRITE;
1045 bio->bi_bdev = bdev;
1046 bio->bi_flags |= (1 << BIO_USER_MAPPED);
1047 return bio;
1049 out_unmap:
1050 for (i = 0; i < nr_pages; i++) {
1051 if(!pages[i])
1052 break;
1053 page_cache_release(pages[i]);
1055 out:
1056 kfree(pages);
1057 bio_put(bio);
1058 return ERR_PTR(ret);
1062 * bio_map_user - map user address into bio
1063 * @q: the struct request_queue for the bio
1064 * @bdev: destination block device
1065 * @uaddr: start of user address
1066 * @len: length in bytes
1067 * @write_to_vm: bool indicating writing to pages or not
1068 * @gfp_mask: memory allocation flags
1070 * Map the user space address into a bio suitable for io to a block
1071 * device. Returns an error pointer in case of error.
1073 struct bio *bio_map_user(struct request_queue *q, struct block_device *bdev,
1074 unsigned long uaddr, unsigned int len, int write_to_vm,
1075 gfp_t gfp_mask)
1077 struct sg_iovec iov;
1079 iov.iov_base = (void __user *)uaddr;
1080 iov.iov_len = len;
1082 return bio_map_user_iov(q, bdev, &iov, 1, write_to_vm, gfp_mask);
1084 EXPORT_SYMBOL(bio_map_user);
1087 * bio_map_user_iov - map user sg_iovec table into bio
1088 * @q: the struct request_queue for the bio
1089 * @bdev: destination block device
1090 * @iov: the iovec.
1091 * @iov_count: number of elements in the iovec
1092 * @write_to_vm: bool indicating writing to pages or not
1093 * @gfp_mask: memory allocation flags
1095 * Map the user space address into a bio suitable for io to a block
1096 * device. Returns an error pointer in case of error.
1098 struct bio *bio_map_user_iov(struct request_queue *q, struct block_device *bdev,
1099 struct sg_iovec *iov, int iov_count,
1100 int write_to_vm, gfp_t gfp_mask)
1102 struct bio *bio;
1104 bio = __bio_map_user_iov(q, bdev, iov, iov_count, write_to_vm,
1105 gfp_mask);
1106 if (IS_ERR(bio))
1107 return bio;
1110 * subtle -- if __bio_map_user() ended up bouncing a bio,
1111 * it would normally disappear when its bi_end_io is run.
1112 * however, we need it for the unmap, so grab an extra
1113 * reference to it
1115 bio_get(bio);
1117 return bio;
1120 static void __bio_unmap_user(struct bio *bio)
1122 struct bio_vec *bvec;
1123 int i;
1126 * make sure we dirty pages we wrote to
1128 __bio_for_each_segment(bvec, bio, i, 0) {
1129 if (bio_data_dir(bio) == READ)
1130 set_page_dirty_lock(bvec->bv_page);
1132 page_cache_release(bvec->bv_page);
1135 bio_put(bio);
1139 * bio_unmap_user - unmap a bio
1140 * @bio: the bio being unmapped
1142 * Unmap a bio previously mapped by bio_map_user(). Must be called with
1143 * a process context.
1145 * bio_unmap_user() may sleep.
1147 void bio_unmap_user(struct bio *bio)
1149 __bio_unmap_user(bio);
1150 bio_put(bio);
1152 EXPORT_SYMBOL(bio_unmap_user);
1154 static void bio_map_kern_endio(struct bio *bio, int err)
1156 bio_put(bio);
1159 static struct bio *__bio_map_kern(struct request_queue *q, void *data,
1160 unsigned int len, gfp_t gfp_mask)
1162 unsigned long kaddr = (unsigned long)data;
1163 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1164 unsigned long start = kaddr >> PAGE_SHIFT;
1165 const int nr_pages = end - start;
1166 int offset, i;
1167 struct bio *bio;
1169 bio = bio_kmalloc(gfp_mask, nr_pages);
1170 if (!bio)
1171 return ERR_PTR(-ENOMEM);
1173 offset = offset_in_page(kaddr);
1174 for (i = 0; i < nr_pages; i++) {
1175 unsigned int bytes = PAGE_SIZE - offset;
1177 if (len <= 0)
1178 break;
1180 if (bytes > len)
1181 bytes = len;
1183 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
1184 offset) < bytes)
1185 break;
1187 data += bytes;
1188 len -= bytes;
1189 offset = 0;
1192 bio->bi_end_io = bio_map_kern_endio;
1193 return bio;
1197 * bio_map_kern - map kernel address into bio
1198 * @q: the struct request_queue for the bio
1199 * @data: pointer to buffer to map
1200 * @len: length in bytes
1201 * @gfp_mask: allocation flags for bio allocation
1203 * Map the kernel address into a bio suitable for io to a block
1204 * device. Returns an error pointer in case of error.
1206 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1207 gfp_t gfp_mask)
1209 struct bio *bio;
1211 bio = __bio_map_kern(q, data, len, gfp_mask);
1212 if (IS_ERR(bio))
1213 return bio;
1215 if (bio->bi_size == len)
1216 return bio;
1219 * Don't support partial mappings.
1221 bio_put(bio);
1222 return ERR_PTR(-EINVAL);
1224 EXPORT_SYMBOL(bio_map_kern);
1226 static void bio_copy_kern_endio(struct bio *bio, int err)
1228 struct bio_vec *bvec;
1229 const int read = bio_data_dir(bio) == READ;
1230 struct bio_map_data *bmd = bio->bi_private;
1231 int i;
1232 char *p = bmd->sgvecs[0].iov_base;
1234 __bio_for_each_segment(bvec, bio, i, 0) {
1235 char *addr = page_address(bvec->bv_page);
1236 int len = bmd->iovecs[i].bv_len;
1238 if (read)
1239 memcpy(p, addr, len);
1241 __free_page(bvec->bv_page);
1242 p += len;
1245 bio_free_map_data(bmd);
1246 bio_put(bio);
1250 * bio_copy_kern - copy kernel address into bio
1251 * @q: the struct request_queue for the bio
1252 * @data: pointer to buffer to copy
1253 * @len: length in bytes
1254 * @gfp_mask: allocation flags for bio and page allocation
1255 * @reading: data direction is READ
1257 * copy the kernel address into a bio suitable for io to a block
1258 * device. Returns an error pointer in case of error.
1260 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1261 gfp_t gfp_mask, int reading)
1263 struct bio *bio;
1264 struct bio_vec *bvec;
1265 int i;
1267 bio = bio_copy_user(q, NULL, (unsigned long)data, len, 1, gfp_mask);
1268 if (IS_ERR(bio))
1269 return bio;
1271 if (!reading) {
1272 void *p = data;
1274 bio_for_each_segment(bvec, bio, i) {
1275 char *addr = page_address(bvec->bv_page);
1277 memcpy(addr, p, bvec->bv_len);
1278 p += bvec->bv_len;
1282 bio->bi_end_io = bio_copy_kern_endio;
1284 return bio;
1286 EXPORT_SYMBOL(bio_copy_kern);
1289 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1290 * for performing direct-IO in BIOs.
1292 * The problem is that we cannot run set_page_dirty() from interrupt context
1293 * because the required locks are not interrupt-safe. So what we can do is to
1294 * mark the pages dirty _before_ performing IO. And in interrupt context,
1295 * check that the pages are still dirty. If so, fine. If not, redirty them
1296 * in process context.
1298 * We special-case compound pages here: normally this means reads into hugetlb
1299 * pages. The logic in here doesn't really work right for compound pages
1300 * because the VM does not uniformly chase down the head page in all cases.
1301 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1302 * handle them at all. So we skip compound pages here at an early stage.
1304 * Note that this code is very hard to test under normal circumstances because
1305 * direct-io pins the pages with get_user_pages(). This makes
1306 * is_page_cache_freeable return false, and the VM will not clean the pages.
1307 * But other code (eg, pdflush) could clean the pages if they are mapped
1308 * pagecache.
1310 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1311 * deferred bio dirtying paths.
1315 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1317 void bio_set_pages_dirty(struct bio *bio)
1319 struct bio_vec *bvec = bio->bi_io_vec;
1320 int i;
1322 for (i = 0; i < bio->bi_vcnt; i++) {
1323 struct page *page = bvec[i].bv_page;
1325 if (page && !PageCompound(page))
1326 set_page_dirty_lock(page);
1330 static void bio_release_pages(struct bio *bio)
1332 struct bio_vec *bvec = bio->bi_io_vec;
1333 int i;
1335 for (i = 0; i < bio->bi_vcnt; i++) {
1336 struct page *page = bvec[i].bv_page;
1338 if (page)
1339 put_page(page);
1344 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1345 * If they are, then fine. If, however, some pages are clean then they must
1346 * have been written out during the direct-IO read. So we take another ref on
1347 * the BIO and the offending pages and re-dirty the pages in process context.
1349 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1350 * here on. It will run one page_cache_release() against each page and will
1351 * run one bio_put() against the BIO.
1354 static void bio_dirty_fn(struct work_struct *work);
1356 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1357 static DEFINE_SPINLOCK(bio_dirty_lock);
1358 static struct bio *bio_dirty_list;
1361 * This runs in process context
1363 static void bio_dirty_fn(struct work_struct *work)
1365 unsigned long flags;
1366 struct bio *bio;
1368 spin_lock_irqsave(&bio_dirty_lock, flags);
1369 bio = bio_dirty_list;
1370 bio_dirty_list = NULL;
1371 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1373 while (bio) {
1374 struct bio *next = bio->bi_private;
1376 bio_set_pages_dirty(bio);
1377 bio_release_pages(bio);
1378 bio_put(bio);
1379 bio = next;
1383 void bio_check_pages_dirty(struct bio *bio)
1385 struct bio_vec *bvec = bio->bi_io_vec;
1386 int nr_clean_pages = 0;
1387 int i;
1389 for (i = 0; i < bio->bi_vcnt; i++) {
1390 struct page *page = bvec[i].bv_page;
1392 if (PageDirty(page) || PageCompound(page)) {
1393 page_cache_release(page);
1394 bvec[i].bv_page = NULL;
1395 } else {
1396 nr_clean_pages++;
1400 if (nr_clean_pages) {
1401 unsigned long flags;
1403 spin_lock_irqsave(&bio_dirty_lock, flags);
1404 bio->bi_private = bio_dirty_list;
1405 bio_dirty_list = bio;
1406 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1407 schedule_work(&bio_dirty_work);
1408 } else {
1409 bio_put(bio);
1413 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1414 void bio_flush_dcache_pages(struct bio *bi)
1416 int i;
1417 struct bio_vec *bvec;
1419 bio_for_each_segment(bvec, bi, i)
1420 flush_dcache_page(bvec->bv_page);
1422 EXPORT_SYMBOL(bio_flush_dcache_pages);
1423 #endif
1426 * bio_endio - end I/O on a bio
1427 * @bio: bio
1428 * @error: error, if any
1430 * Description:
1431 * bio_endio() will end I/O on the whole bio. bio_endio() is the
1432 * preferred way to end I/O on a bio, it takes care of clearing
1433 * BIO_UPTODATE on error. @error is 0 on success, and and one of the
1434 * established -Exxxx (-EIO, for instance) error values in case
1435 * something went wrong. No one should call bi_end_io() directly on a
1436 * bio unless they own it and thus know that it has an end_io
1437 * function.
1439 void bio_endio(struct bio *bio, int error)
1441 if (error)
1442 clear_bit(BIO_UPTODATE, &bio->bi_flags);
1443 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1444 error = -EIO;
1446 if (bio->bi_end_io)
1447 bio->bi_end_io(bio, error);
1449 EXPORT_SYMBOL(bio_endio);
1451 void bio_pair_release(struct bio_pair *bp)
1453 if (atomic_dec_and_test(&bp->cnt)) {
1454 struct bio *master = bp->bio1.bi_private;
1456 bio_endio(master, bp->error);
1457 mempool_free(bp, bp->bio2.bi_private);
1460 EXPORT_SYMBOL(bio_pair_release);
1462 static void bio_pair_end_1(struct bio *bi, int err)
1464 struct bio_pair *bp = container_of(bi, struct bio_pair, bio1);
1466 if (err)
1467 bp->error = err;
1469 bio_pair_release(bp);
1472 static void bio_pair_end_2(struct bio *bi, int err)
1474 struct bio_pair *bp = container_of(bi, struct bio_pair, bio2);
1476 if (err)
1477 bp->error = err;
1479 bio_pair_release(bp);
1483 * split a bio - only worry about a bio with a single page in its iovec
1485 struct bio_pair *bio_split(struct bio *bi, int first_sectors)
1487 struct bio_pair *bp = mempool_alloc(bio_split_pool, GFP_NOIO);
1489 if (!bp)
1490 return bp;
1492 trace_block_split(bdev_get_queue(bi->bi_bdev), bi,
1493 bi->bi_sector + first_sectors);
1495 BUG_ON(bi->bi_vcnt != 1);
1496 BUG_ON(bi->bi_idx != 0);
1497 atomic_set(&bp->cnt, 3);
1498 bp->error = 0;
1499 bp->bio1 = *bi;
1500 bp->bio2 = *bi;
1501 bp->bio2.bi_sector += first_sectors;
1502 bp->bio2.bi_size -= first_sectors << 9;
1503 bp->bio1.bi_size = first_sectors << 9;
1505 bp->bv1 = bi->bi_io_vec[0];
1506 bp->bv2 = bi->bi_io_vec[0];
1507 bp->bv2.bv_offset += first_sectors << 9;
1508 bp->bv2.bv_len -= first_sectors << 9;
1509 bp->bv1.bv_len = first_sectors << 9;
1511 bp->bio1.bi_io_vec = &bp->bv1;
1512 bp->bio2.bi_io_vec = &bp->bv2;
1514 bp->bio1.bi_max_vecs = 1;
1515 bp->bio2.bi_max_vecs = 1;
1517 bp->bio1.bi_end_io = bio_pair_end_1;
1518 bp->bio2.bi_end_io = bio_pair_end_2;
1520 bp->bio1.bi_private = bi;
1521 bp->bio2.bi_private = bio_split_pool;
1523 if (bio_integrity(bi))
1524 bio_integrity_split(bi, bp, first_sectors);
1526 return bp;
1528 EXPORT_SYMBOL(bio_split);
1531 * bio_sector_offset - Find hardware sector offset in bio
1532 * @bio: bio to inspect
1533 * @index: bio_vec index
1534 * @offset: offset in bv_page
1536 * Return the number of hardware sectors between beginning of bio
1537 * and an end point indicated by a bio_vec index and an offset
1538 * within that vector's page.
1540 sector_t bio_sector_offset(struct bio *bio, unsigned short index,
1541 unsigned int offset)
1543 unsigned int sector_sz;
1544 struct bio_vec *bv;
1545 sector_t sectors;
1546 int i;
1548 sector_sz = queue_logical_block_size(bio->bi_bdev->bd_disk->queue);
1549 sectors = 0;
1551 if (index >= bio->bi_idx)
1552 index = bio->bi_vcnt - 1;
1554 __bio_for_each_segment(bv, bio, i, 0) {
1555 if (i == index) {
1556 if (offset > bv->bv_offset)
1557 sectors += (offset - bv->bv_offset) / sector_sz;
1558 break;
1561 sectors += bv->bv_len / sector_sz;
1564 return sectors;
1566 EXPORT_SYMBOL(bio_sector_offset);
1569 * create memory pools for biovec's in a bio_set.
1570 * use the global biovec slabs created for general use.
1572 static int biovec_create_pools(struct bio_set *bs, int pool_entries)
1574 struct biovec_slab *bp = bvec_slabs + BIOVEC_MAX_IDX;
1576 bs->bvec_pool = mempool_create_slab_pool(pool_entries, bp->slab);
1577 if (!bs->bvec_pool)
1578 return -ENOMEM;
1580 return 0;
1583 static void biovec_free_pools(struct bio_set *bs)
1585 mempool_destroy(bs->bvec_pool);
1588 void bioset_free(struct bio_set *bs)
1590 if (bs->bio_pool)
1591 mempool_destroy(bs->bio_pool);
1593 bioset_integrity_free(bs);
1594 biovec_free_pools(bs);
1595 bio_put_slab(bs);
1597 kfree(bs);
1599 EXPORT_SYMBOL(bioset_free);
1602 * bioset_create - Create a bio_set
1603 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1604 * @front_pad: Number of bytes to allocate in front of the returned bio
1606 * Description:
1607 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1608 * to ask for a number of bytes to be allocated in front of the bio.
1609 * Front pad allocation is useful for embedding the bio inside
1610 * another structure, to avoid allocating extra data to go with the bio.
1611 * Note that the bio must be embedded at the END of that structure always,
1612 * or things will break badly.
1614 struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad)
1616 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1617 struct bio_set *bs;
1619 bs = kzalloc(sizeof(*bs), GFP_KERNEL);
1620 if (!bs)
1621 return NULL;
1623 bs->front_pad = front_pad;
1625 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1626 if (!bs->bio_slab) {
1627 kfree(bs);
1628 return NULL;
1631 bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
1632 if (!bs->bio_pool)
1633 goto bad;
1635 if (!biovec_create_pools(bs, pool_size))
1636 return bs;
1638 bad:
1639 bioset_free(bs);
1640 return NULL;
1642 EXPORT_SYMBOL(bioset_create);
1644 static void __init biovec_init_slabs(void)
1646 int i;
1648 for (i = 0; i < BIOVEC_NR_POOLS; i++) {
1649 int size;
1650 struct biovec_slab *bvs = bvec_slabs + i;
1652 if (bvs->nr_vecs <= BIO_INLINE_VECS) {
1653 bvs->slab = NULL;
1654 continue;
1657 size = bvs->nr_vecs * sizeof(struct bio_vec);
1658 bvs->slab = kmem_cache_create(bvs->name, size, 0,
1659 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1663 static int __init init_bio(void)
1665 bio_slab_max = 2;
1666 bio_slab_nr = 0;
1667 bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
1668 if (!bio_slabs)
1669 panic("bio: can't allocate bios\n");
1671 bio_integrity_init();
1672 biovec_init_slabs();
1674 fs_bio_set = bioset_create(BIO_POOL_SIZE, 0);
1675 if (!fs_bio_set)
1676 panic("bio: can't allocate bios\n");
1678 if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE))
1679 panic("bio: can't create integrity pool\n");
1681 bio_split_pool = mempool_create_kmalloc_pool(BIO_SPLIT_ENTRIES,
1682 sizeof(struct bio_pair));
1683 if (!bio_split_pool)
1684 panic("bio: can't create split pool\n");
1686 return 0;
1688 subsys_initcall(init_bio);