2 * Copyright (C) 2011 Fujitsu. All rights reserved.
3 * Written by Miao Xie <miaox@cn.fujitsu.com>
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public
7 * License v2 as published by the Free Software Foundation.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
14 * You should have received a copy of the GNU General Public
15 * License along with this program; if not, write to the
16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17 * Boston, MA 021110-1307, USA.
20 #include <linux/slab.h>
21 #include "delayed-inode.h"
23 #include "transaction.h"
25 #define BTRFS_DELAYED_WRITEBACK 400
26 #define BTRFS_DELAYED_BACKGROUND 100
28 static struct kmem_cache
*delayed_node_cache
;
30 int __init
btrfs_delayed_inode_init(void)
32 delayed_node_cache
= kmem_cache_create("delayed_node",
33 sizeof(struct btrfs_delayed_node
),
35 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
,
37 if (!delayed_node_cache
)
42 void btrfs_delayed_inode_exit(void)
44 if (delayed_node_cache
)
45 kmem_cache_destroy(delayed_node_cache
);
48 static inline void btrfs_init_delayed_node(
49 struct btrfs_delayed_node
*delayed_node
,
50 struct btrfs_root
*root
, u64 inode_id
)
52 delayed_node
->root
= root
;
53 delayed_node
->inode_id
= inode_id
;
54 atomic_set(&delayed_node
->refs
, 0);
55 delayed_node
->count
= 0;
56 delayed_node
->in_list
= 0;
57 delayed_node
->inode_dirty
= 0;
58 delayed_node
->ins_root
= RB_ROOT
;
59 delayed_node
->del_root
= RB_ROOT
;
60 mutex_init(&delayed_node
->mutex
);
61 delayed_node
->index_cnt
= 0;
62 INIT_LIST_HEAD(&delayed_node
->n_list
);
63 INIT_LIST_HEAD(&delayed_node
->p_list
);
64 delayed_node
->bytes_reserved
= 0;
67 static inline int btrfs_is_continuous_delayed_item(
68 struct btrfs_delayed_item
*item1
,
69 struct btrfs_delayed_item
*item2
)
71 if (item1
->key
.type
== BTRFS_DIR_INDEX_KEY
&&
72 item1
->key
.objectid
== item2
->key
.objectid
&&
73 item1
->key
.type
== item2
->key
.type
&&
74 item1
->key
.offset
+ 1 == item2
->key
.offset
)
79 static inline struct btrfs_delayed_root
*btrfs_get_delayed_root(
80 struct btrfs_root
*root
)
82 return root
->fs_info
->delayed_root
;
85 static struct btrfs_delayed_node
*btrfs_get_delayed_node(struct inode
*inode
)
87 struct btrfs_inode
*btrfs_inode
= BTRFS_I(inode
);
88 struct btrfs_root
*root
= btrfs_inode
->root
;
89 u64 ino
= btrfs_ino(inode
);
90 struct btrfs_delayed_node
*node
;
92 node
= ACCESS_ONCE(btrfs_inode
->delayed_node
);
94 atomic_inc(&node
->refs
);
98 spin_lock(&root
->inode_lock
);
99 node
= radix_tree_lookup(&root
->delayed_nodes_tree
, ino
);
101 if (btrfs_inode
->delayed_node
) {
102 atomic_inc(&node
->refs
); /* can be accessed */
103 BUG_ON(btrfs_inode
->delayed_node
!= node
);
104 spin_unlock(&root
->inode_lock
);
107 btrfs_inode
->delayed_node
= node
;
108 atomic_inc(&node
->refs
); /* can be accessed */
109 atomic_inc(&node
->refs
); /* cached in the inode */
110 spin_unlock(&root
->inode_lock
);
113 spin_unlock(&root
->inode_lock
);
118 static struct btrfs_delayed_node
*btrfs_get_or_create_delayed_node(
121 struct btrfs_delayed_node
*node
;
122 struct btrfs_inode
*btrfs_inode
= BTRFS_I(inode
);
123 struct btrfs_root
*root
= btrfs_inode
->root
;
124 u64 ino
= btrfs_ino(inode
);
128 node
= btrfs_get_delayed_node(inode
);
132 node
= kmem_cache_alloc(delayed_node_cache
, GFP_NOFS
);
134 return ERR_PTR(-ENOMEM
);
135 btrfs_init_delayed_node(node
, root
, ino
);
137 atomic_inc(&node
->refs
); /* cached in the btrfs inode */
138 atomic_inc(&node
->refs
); /* can be accessed */
140 ret
= radix_tree_preload(GFP_NOFS
& ~__GFP_HIGHMEM
);
142 kmem_cache_free(delayed_node_cache
, node
);
146 spin_lock(&root
->inode_lock
);
147 ret
= radix_tree_insert(&root
->delayed_nodes_tree
, ino
, node
);
148 if (ret
== -EEXIST
) {
149 kmem_cache_free(delayed_node_cache
, node
);
150 spin_unlock(&root
->inode_lock
);
151 radix_tree_preload_end();
154 btrfs_inode
->delayed_node
= node
;
155 spin_unlock(&root
->inode_lock
);
156 radix_tree_preload_end();
162 * Call it when holding delayed_node->mutex
164 * If mod = 1, add this node into the prepared list.
166 static void btrfs_queue_delayed_node(struct btrfs_delayed_root
*root
,
167 struct btrfs_delayed_node
*node
,
170 spin_lock(&root
->lock
);
172 if (!list_empty(&node
->p_list
))
173 list_move_tail(&node
->p_list
, &root
->prepare_list
);
175 list_add_tail(&node
->p_list
, &root
->prepare_list
);
177 list_add_tail(&node
->n_list
, &root
->node_list
);
178 list_add_tail(&node
->p_list
, &root
->prepare_list
);
179 atomic_inc(&node
->refs
); /* inserted into list */
183 spin_unlock(&root
->lock
);
186 /* Call it when holding delayed_node->mutex */
187 static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root
*root
,
188 struct btrfs_delayed_node
*node
)
190 spin_lock(&root
->lock
);
193 atomic_dec(&node
->refs
); /* not in the list */
194 list_del_init(&node
->n_list
);
195 if (!list_empty(&node
->p_list
))
196 list_del_init(&node
->p_list
);
199 spin_unlock(&root
->lock
);
202 struct btrfs_delayed_node
*btrfs_first_delayed_node(
203 struct btrfs_delayed_root
*delayed_root
)
206 struct btrfs_delayed_node
*node
= NULL
;
208 spin_lock(&delayed_root
->lock
);
209 if (list_empty(&delayed_root
->node_list
))
212 p
= delayed_root
->node_list
.next
;
213 node
= list_entry(p
, struct btrfs_delayed_node
, n_list
);
214 atomic_inc(&node
->refs
);
216 spin_unlock(&delayed_root
->lock
);
221 struct btrfs_delayed_node
*btrfs_next_delayed_node(
222 struct btrfs_delayed_node
*node
)
224 struct btrfs_delayed_root
*delayed_root
;
226 struct btrfs_delayed_node
*next
= NULL
;
228 delayed_root
= node
->root
->fs_info
->delayed_root
;
229 spin_lock(&delayed_root
->lock
);
230 if (!node
->in_list
) { /* not in the list */
231 if (list_empty(&delayed_root
->node_list
))
233 p
= delayed_root
->node_list
.next
;
234 } else if (list_is_last(&node
->n_list
, &delayed_root
->node_list
))
237 p
= node
->n_list
.next
;
239 next
= list_entry(p
, struct btrfs_delayed_node
, n_list
);
240 atomic_inc(&next
->refs
);
242 spin_unlock(&delayed_root
->lock
);
247 static void __btrfs_release_delayed_node(
248 struct btrfs_delayed_node
*delayed_node
,
251 struct btrfs_delayed_root
*delayed_root
;
256 delayed_root
= delayed_node
->root
->fs_info
->delayed_root
;
258 mutex_lock(&delayed_node
->mutex
);
259 if (delayed_node
->count
)
260 btrfs_queue_delayed_node(delayed_root
, delayed_node
, mod
);
262 btrfs_dequeue_delayed_node(delayed_root
, delayed_node
);
263 mutex_unlock(&delayed_node
->mutex
);
265 if (atomic_dec_and_test(&delayed_node
->refs
)) {
266 struct btrfs_root
*root
= delayed_node
->root
;
267 spin_lock(&root
->inode_lock
);
268 if (atomic_read(&delayed_node
->refs
) == 0) {
269 radix_tree_delete(&root
->delayed_nodes_tree
,
270 delayed_node
->inode_id
);
271 kmem_cache_free(delayed_node_cache
, delayed_node
);
273 spin_unlock(&root
->inode_lock
);
277 static inline void btrfs_release_delayed_node(struct btrfs_delayed_node
*node
)
279 __btrfs_release_delayed_node(node
, 0);
282 struct btrfs_delayed_node
*btrfs_first_prepared_delayed_node(
283 struct btrfs_delayed_root
*delayed_root
)
286 struct btrfs_delayed_node
*node
= NULL
;
288 spin_lock(&delayed_root
->lock
);
289 if (list_empty(&delayed_root
->prepare_list
))
292 p
= delayed_root
->prepare_list
.next
;
294 node
= list_entry(p
, struct btrfs_delayed_node
, p_list
);
295 atomic_inc(&node
->refs
);
297 spin_unlock(&delayed_root
->lock
);
302 static inline void btrfs_release_prepared_delayed_node(
303 struct btrfs_delayed_node
*node
)
305 __btrfs_release_delayed_node(node
, 1);
308 struct btrfs_delayed_item
*btrfs_alloc_delayed_item(u32 data_len
)
310 struct btrfs_delayed_item
*item
;
311 item
= kmalloc(sizeof(*item
) + data_len
, GFP_NOFS
);
313 item
->data_len
= data_len
;
314 item
->ins_or_del
= 0;
315 item
->bytes_reserved
= 0;
316 item
->delayed_node
= NULL
;
317 atomic_set(&item
->refs
, 1);
323 * __btrfs_lookup_delayed_item - look up the delayed item by key
324 * @delayed_node: pointer to the delayed node
325 * @key: the key to look up
326 * @prev: used to store the prev item if the right item isn't found
327 * @next: used to store the next item if the right item isn't found
329 * Note: if we don't find the right item, we will return the prev item and
332 static struct btrfs_delayed_item
*__btrfs_lookup_delayed_item(
333 struct rb_root
*root
,
334 struct btrfs_key
*key
,
335 struct btrfs_delayed_item
**prev
,
336 struct btrfs_delayed_item
**next
)
338 struct rb_node
*node
, *prev_node
= NULL
;
339 struct btrfs_delayed_item
*delayed_item
= NULL
;
342 node
= root
->rb_node
;
345 delayed_item
= rb_entry(node
, struct btrfs_delayed_item
,
348 ret
= btrfs_comp_cpu_keys(&delayed_item
->key
, key
);
350 node
= node
->rb_right
;
352 node
= node
->rb_left
;
361 *prev
= delayed_item
;
362 else if ((node
= rb_prev(prev_node
)) != NULL
) {
363 *prev
= rb_entry(node
, struct btrfs_delayed_item
,
373 *next
= delayed_item
;
374 else if ((node
= rb_next(prev_node
)) != NULL
) {
375 *next
= rb_entry(node
, struct btrfs_delayed_item
,
383 struct btrfs_delayed_item
*__btrfs_lookup_delayed_insertion_item(
384 struct btrfs_delayed_node
*delayed_node
,
385 struct btrfs_key
*key
)
387 struct btrfs_delayed_item
*item
;
389 item
= __btrfs_lookup_delayed_item(&delayed_node
->ins_root
, key
,
394 struct btrfs_delayed_item
*__btrfs_lookup_delayed_deletion_item(
395 struct btrfs_delayed_node
*delayed_node
,
396 struct btrfs_key
*key
)
398 struct btrfs_delayed_item
*item
;
400 item
= __btrfs_lookup_delayed_item(&delayed_node
->del_root
, key
,
405 struct btrfs_delayed_item
*__btrfs_search_delayed_insertion_item(
406 struct btrfs_delayed_node
*delayed_node
,
407 struct btrfs_key
*key
)
409 struct btrfs_delayed_item
*item
, *next
;
411 item
= __btrfs_lookup_delayed_item(&delayed_node
->ins_root
, key
,
419 struct btrfs_delayed_item
*__btrfs_search_delayed_deletion_item(
420 struct btrfs_delayed_node
*delayed_node
,
421 struct btrfs_key
*key
)
423 struct btrfs_delayed_item
*item
, *next
;
425 item
= __btrfs_lookup_delayed_item(&delayed_node
->del_root
, key
,
433 static int __btrfs_add_delayed_item(struct btrfs_delayed_node
*delayed_node
,
434 struct btrfs_delayed_item
*ins
,
437 struct rb_node
**p
, *node
;
438 struct rb_node
*parent_node
= NULL
;
439 struct rb_root
*root
;
440 struct btrfs_delayed_item
*item
;
443 if (action
== BTRFS_DELAYED_INSERTION_ITEM
)
444 root
= &delayed_node
->ins_root
;
445 else if (action
== BTRFS_DELAYED_DELETION_ITEM
)
446 root
= &delayed_node
->del_root
;
450 node
= &ins
->rb_node
;
454 item
= rb_entry(parent_node
, struct btrfs_delayed_item
,
457 cmp
= btrfs_comp_cpu_keys(&item
->key
, &ins
->key
);
466 rb_link_node(node
, parent_node
, p
);
467 rb_insert_color(node
, root
);
468 ins
->delayed_node
= delayed_node
;
469 ins
->ins_or_del
= action
;
471 if (ins
->key
.type
== BTRFS_DIR_INDEX_KEY
&&
472 action
== BTRFS_DELAYED_INSERTION_ITEM
&&
473 ins
->key
.offset
>= delayed_node
->index_cnt
)
474 delayed_node
->index_cnt
= ins
->key
.offset
+ 1;
476 delayed_node
->count
++;
477 atomic_inc(&delayed_node
->root
->fs_info
->delayed_root
->items
);
481 static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node
*node
,
482 struct btrfs_delayed_item
*item
)
484 return __btrfs_add_delayed_item(node
, item
,
485 BTRFS_DELAYED_INSERTION_ITEM
);
488 static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node
*node
,
489 struct btrfs_delayed_item
*item
)
491 return __btrfs_add_delayed_item(node
, item
,
492 BTRFS_DELAYED_DELETION_ITEM
);
495 static void __btrfs_remove_delayed_item(struct btrfs_delayed_item
*delayed_item
)
497 struct rb_root
*root
;
498 struct btrfs_delayed_root
*delayed_root
;
500 delayed_root
= delayed_item
->delayed_node
->root
->fs_info
->delayed_root
;
502 BUG_ON(!delayed_root
);
503 BUG_ON(delayed_item
->ins_or_del
!= BTRFS_DELAYED_DELETION_ITEM
&&
504 delayed_item
->ins_or_del
!= BTRFS_DELAYED_INSERTION_ITEM
);
506 if (delayed_item
->ins_or_del
== BTRFS_DELAYED_INSERTION_ITEM
)
507 root
= &delayed_item
->delayed_node
->ins_root
;
509 root
= &delayed_item
->delayed_node
->del_root
;
511 rb_erase(&delayed_item
->rb_node
, root
);
512 delayed_item
->delayed_node
->count
--;
513 atomic_dec(&delayed_root
->items
);
514 if (atomic_read(&delayed_root
->items
) < BTRFS_DELAYED_BACKGROUND
&&
515 waitqueue_active(&delayed_root
->wait
))
516 wake_up(&delayed_root
->wait
);
519 static void btrfs_release_delayed_item(struct btrfs_delayed_item
*item
)
522 __btrfs_remove_delayed_item(item
);
523 if (atomic_dec_and_test(&item
->refs
))
528 struct btrfs_delayed_item
*__btrfs_first_delayed_insertion_item(
529 struct btrfs_delayed_node
*delayed_node
)
532 struct btrfs_delayed_item
*item
= NULL
;
534 p
= rb_first(&delayed_node
->ins_root
);
536 item
= rb_entry(p
, struct btrfs_delayed_item
, rb_node
);
541 struct btrfs_delayed_item
*__btrfs_first_delayed_deletion_item(
542 struct btrfs_delayed_node
*delayed_node
)
545 struct btrfs_delayed_item
*item
= NULL
;
547 p
= rb_first(&delayed_node
->del_root
);
549 item
= rb_entry(p
, struct btrfs_delayed_item
, rb_node
);
554 struct btrfs_delayed_item
*__btrfs_next_delayed_item(
555 struct btrfs_delayed_item
*item
)
558 struct btrfs_delayed_item
*next
= NULL
;
560 p
= rb_next(&item
->rb_node
);
562 next
= rb_entry(p
, struct btrfs_delayed_item
, rb_node
);
567 static inline struct btrfs_root
*btrfs_get_fs_root(struct btrfs_root
*root
,
570 struct btrfs_key root_key
;
572 if (root
->objectid
== root_id
)
575 root_key
.objectid
= root_id
;
576 root_key
.type
= BTRFS_ROOT_ITEM_KEY
;
577 root_key
.offset
= (u64
)-1;
578 return btrfs_read_fs_root_no_name(root
->fs_info
, &root_key
);
581 static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle
*trans
,
582 struct btrfs_root
*root
,
583 struct btrfs_delayed_item
*item
)
585 struct btrfs_block_rsv
*src_rsv
;
586 struct btrfs_block_rsv
*dst_rsv
;
590 if (!trans
->bytes_reserved
)
593 src_rsv
= trans
->block_rsv
;
594 dst_rsv
= &root
->fs_info
->delayed_block_rsv
;
596 num_bytes
= btrfs_calc_trans_metadata_size(root
, 1);
597 ret
= btrfs_block_rsv_migrate(src_rsv
, dst_rsv
, num_bytes
);
599 trace_btrfs_space_reservation(root
->fs_info
, "delayed_item",
602 item
->bytes_reserved
= num_bytes
;
608 static void btrfs_delayed_item_release_metadata(struct btrfs_root
*root
,
609 struct btrfs_delayed_item
*item
)
611 struct btrfs_block_rsv
*rsv
;
613 if (!item
->bytes_reserved
)
616 rsv
= &root
->fs_info
->delayed_block_rsv
;
617 trace_btrfs_space_reservation(root
->fs_info
, "delayed_item",
618 item
->key
.objectid
, item
->bytes_reserved
,
620 btrfs_block_rsv_release(root
, rsv
,
621 item
->bytes_reserved
);
624 static int btrfs_delayed_inode_reserve_metadata(
625 struct btrfs_trans_handle
*trans
,
626 struct btrfs_root
*root
,
628 struct btrfs_delayed_node
*node
)
630 struct btrfs_block_rsv
*src_rsv
;
631 struct btrfs_block_rsv
*dst_rsv
;
634 bool release
= false;
636 src_rsv
= trans
->block_rsv
;
637 dst_rsv
= &root
->fs_info
->delayed_block_rsv
;
639 num_bytes
= btrfs_calc_trans_metadata_size(root
, 1);
642 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
643 * which doesn't reserve space for speed. This is a problem since we
644 * still need to reserve space for this update, so try to reserve the
647 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
648 * we're accounted for.
650 if (!src_rsv
|| (!trans
->bytes_reserved
&&
651 src_rsv
!= &root
->fs_info
->delalloc_block_rsv
)) {
652 ret
= btrfs_block_rsv_add_noflush(root
, dst_rsv
, num_bytes
);
654 * Since we're under a transaction reserve_metadata_bytes could
655 * try to commit the transaction which will make it return
656 * EAGAIN to make us stop the transaction we have, so return
657 * ENOSPC instead so that btrfs_dirty_inode knows what to do.
662 node
->bytes_reserved
= num_bytes
;
663 trace_btrfs_space_reservation(root
->fs_info
,
669 } else if (src_rsv
== &root
->fs_info
->delalloc_block_rsv
) {
670 spin_lock(&BTRFS_I(inode
)->lock
);
671 if (BTRFS_I(inode
)->delalloc_meta_reserved
) {
672 BTRFS_I(inode
)->delalloc_meta_reserved
= 0;
673 spin_unlock(&BTRFS_I(inode
)->lock
);
677 spin_unlock(&BTRFS_I(inode
)->lock
);
679 /* Ok we didn't have space pre-reserved. This shouldn't happen
680 * too often but it can happen if we do delalloc to an existing
681 * inode which gets dirtied because of the time update, and then
682 * isn't touched again until after the transaction commits and
683 * then we try to write out the data. First try to be nice and
684 * reserve something strictly for us. If not be a pain and try
685 * to steal from the delalloc block rsv.
687 ret
= btrfs_block_rsv_add_noflush(root
, dst_rsv
, num_bytes
);
691 ret
= btrfs_block_rsv_migrate(src_rsv
, dst_rsv
, num_bytes
);
696 * Ok this is a problem, let's just steal from the global rsv
697 * since this really shouldn't happen that often.
700 ret
= btrfs_block_rsv_migrate(&root
->fs_info
->global_block_rsv
,
706 ret
= btrfs_block_rsv_migrate(src_rsv
, dst_rsv
, num_bytes
);
710 * Migrate only takes a reservation, it doesn't touch the size of the
711 * block_rsv. This is to simplify people who don't normally have things
712 * migrated from their block rsv. If they go to release their
713 * reservation, that will decrease the size as well, so if migrate
714 * reduced size we'd end up with a negative size. But for the
715 * delalloc_meta_reserved stuff we will only know to drop 1 reservation,
716 * but we could in fact do this reserve/migrate dance several times
717 * between the time we did the original reservation and we'd clean it
718 * up. So to take care of this, release the space for the meta
719 * reservation here. I think it may be time for a documentation page on
720 * how block rsvs. work.
723 trace_btrfs_space_reservation(root
->fs_info
, "delayed_inode",
724 btrfs_ino(inode
), num_bytes
, 1);
725 node
->bytes_reserved
= num_bytes
;
729 trace_btrfs_space_reservation(root
->fs_info
, "delalloc",
730 btrfs_ino(inode
), num_bytes
, 0);
731 btrfs_block_rsv_release(root
, src_rsv
, num_bytes
);
737 static void btrfs_delayed_inode_release_metadata(struct btrfs_root
*root
,
738 struct btrfs_delayed_node
*node
)
740 struct btrfs_block_rsv
*rsv
;
742 if (!node
->bytes_reserved
)
745 rsv
= &root
->fs_info
->delayed_block_rsv
;
746 trace_btrfs_space_reservation(root
->fs_info
, "delayed_inode",
747 node
->inode_id
, node
->bytes_reserved
, 0);
748 btrfs_block_rsv_release(root
, rsv
,
749 node
->bytes_reserved
);
750 node
->bytes_reserved
= 0;
754 * This helper will insert some continuous items into the same leaf according
755 * to the free space of the leaf.
757 static int btrfs_batch_insert_items(struct btrfs_trans_handle
*trans
,
758 struct btrfs_root
*root
,
759 struct btrfs_path
*path
,
760 struct btrfs_delayed_item
*item
)
762 struct btrfs_delayed_item
*curr
, *next
;
764 int total_data_size
= 0, total_size
= 0;
765 struct extent_buffer
*leaf
;
767 struct btrfs_key
*keys
;
769 struct list_head head
;
775 BUG_ON(!path
->nodes
[0]);
777 leaf
= path
->nodes
[0];
778 free_space
= btrfs_leaf_free_space(root
, leaf
);
779 INIT_LIST_HEAD(&head
);
785 * count the number of the continuous items that we can insert in batch
787 while (total_size
+ next
->data_len
+ sizeof(struct btrfs_item
) <=
789 total_data_size
+= next
->data_len
;
790 total_size
+= next
->data_len
+ sizeof(struct btrfs_item
);
791 list_add_tail(&next
->tree_list
, &head
);
795 next
= __btrfs_next_delayed_item(curr
);
799 if (!btrfs_is_continuous_delayed_item(curr
, next
))
809 * we need allocate some memory space, but it might cause the task
810 * to sleep, so we set all locked nodes in the path to blocking locks
813 btrfs_set_path_blocking(path
);
815 keys
= kmalloc(sizeof(struct btrfs_key
) * nitems
, GFP_NOFS
);
821 data_size
= kmalloc(sizeof(u32
) * nitems
, GFP_NOFS
);
827 /* get keys of all the delayed items */
829 list_for_each_entry(next
, &head
, tree_list
) {
831 data_size
[i
] = next
->data_len
;
835 /* reset all the locked nodes in the patch to spinning locks. */
836 btrfs_clear_path_blocking(path
, NULL
, 0);
838 /* insert the keys of the items */
839 ret
= setup_items_for_insert(trans
, root
, path
, keys
, data_size
,
840 total_data_size
, total_size
, nitems
);
844 /* insert the dir index items */
845 slot
= path
->slots
[0];
846 list_for_each_entry_safe(curr
, next
, &head
, tree_list
) {
847 data_ptr
= btrfs_item_ptr(leaf
, slot
, char);
848 write_extent_buffer(leaf
, &curr
->data
,
849 (unsigned long)data_ptr
,
853 btrfs_delayed_item_release_metadata(root
, curr
);
855 list_del(&curr
->tree_list
);
856 btrfs_release_delayed_item(curr
);
867 * This helper can just do simple insertion that needn't extend item for new
868 * data, such as directory name index insertion, inode insertion.
870 static int btrfs_insert_delayed_item(struct btrfs_trans_handle
*trans
,
871 struct btrfs_root
*root
,
872 struct btrfs_path
*path
,
873 struct btrfs_delayed_item
*delayed_item
)
875 struct extent_buffer
*leaf
;
876 struct btrfs_item
*item
;
880 ret
= btrfs_insert_empty_item(trans
, root
, path
, &delayed_item
->key
,
881 delayed_item
->data_len
);
882 if (ret
< 0 && ret
!= -EEXIST
)
885 leaf
= path
->nodes
[0];
887 item
= btrfs_item_nr(leaf
, path
->slots
[0]);
888 ptr
= btrfs_item_ptr(leaf
, path
->slots
[0], char);
890 write_extent_buffer(leaf
, delayed_item
->data
, (unsigned long)ptr
,
891 delayed_item
->data_len
);
892 btrfs_mark_buffer_dirty(leaf
);
894 btrfs_delayed_item_release_metadata(root
, delayed_item
);
899 * we insert an item first, then if there are some continuous items, we try
900 * to insert those items into the same leaf.
902 static int btrfs_insert_delayed_items(struct btrfs_trans_handle
*trans
,
903 struct btrfs_path
*path
,
904 struct btrfs_root
*root
,
905 struct btrfs_delayed_node
*node
)
907 struct btrfs_delayed_item
*curr
, *prev
;
911 mutex_lock(&node
->mutex
);
912 curr
= __btrfs_first_delayed_insertion_item(node
);
916 ret
= btrfs_insert_delayed_item(trans
, root
, path
, curr
);
918 btrfs_release_path(path
);
923 curr
= __btrfs_next_delayed_item(prev
);
924 if (curr
&& btrfs_is_continuous_delayed_item(prev
, curr
)) {
925 /* insert the continuous items into the same leaf */
927 btrfs_batch_insert_items(trans
, root
, path
, curr
);
929 btrfs_release_delayed_item(prev
);
930 btrfs_mark_buffer_dirty(path
->nodes
[0]);
932 btrfs_release_path(path
);
933 mutex_unlock(&node
->mutex
);
937 mutex_unlock(&node
->mutex
);
941 static int btrfs_batch_delete_items(struct btrfs_trans_handle
*trans
,
942 struct btrfs_root
*root
,
943 struct btrfs_path
*path
,
944 struct btrfs_delayed_item
*item
)
946 struct btrfs_delayed_item
*curr
, *next
;
947 struct extent_buffer
*leaf
;
948 struct btrfs_key key
;
949 struct list_head head
;
950 int nitems
, i
, last_item
;
953 BUG_ON(!path
->nodes
[0]);
955 leaf
= path
->nodes
[0];
958 last_item
= btrfs_header_nritems(leaf
) - 1;
960 return -ENOENT
; /* FIXME: Is errno suitable? */
963 INIT_LIST_HEAD(&head
);
964 btrfs_item_key_to_cpu(leaf
, &key
, i
);
967 * count the number of the dir index items that we can delete in batch
969 while (btrfs_comp_cpu_keys(&next
->key
, &key
) == 0) {
970 list_add_tail(&next
->tree_list
, &head
);
974 next
= __btrfs_next_delayed_item(curr
);
978 if (!btrfs_is_continuous_delayed_item(curr
, next
))
984 btrfs_item_key_to_cpu(leaf
, &key
, i
);
990 ret
= btrfs_del_items(trans
, root
, path
, path
->slots
[0], nitems
);
994 list_for_each_entry_safe(curr
, next
, &head
, tree_list
) {
995 btrfs_delayed_item_release_metadata(root
, curr
);
996 list_del(&curr
->tree_list
);
997 btrfs_release_delayed_item(curr
);
1004 static int btrfs_delete_delayed_items(struct btrfs_trans_handle
*trans
,
1005 struct btrfs_path
*path
,
1006 struct btrfs_root
*root
,
1007 struct btrfs_delayed_node
*node
)
1009 struct btrfs_delayed_item
*curr
, *prev
;
1013 mutex_lock(&node
->mutex
);
1014 curr
= __btrfs_first_delayed_deletion_item(node
);
1018 ret
= btrfs_search_slot(trans
, root
, &curr
->key
, path
, -1, 1);
1023 * can't find the item which the node points to, so this node
1024 * is invalid, just drop it.
1027 curr
= __btrfs_next_delayed_item(prev
);
1028 btrfs_release_delayed_item(prev
);
1030 btrfs_release_path(path
);
1037 btrfs_batch_delete_items(trans
, root
, path
, curr
);
1038 btrfs_release_path(path
);
1039 mutex_unlock(&node
->mutex
);
1043 btrfs_release_path(path
);
1044 mutex_unlock(&node
->mutex
);
1048 static void btrfs_release_delayed_inode(struct btrfs_delayed_node
*delayed_node
)
1050 struct btrfs_delayed_root
*delayed_root
;
1052 if (delayed_node
&& delayed_node
->inode_dirty
) {
1053 BUG_ON(!delayed_node
->root
);
1054 delayed_node
->inode_dirty
= 0;
1055 delayed_node
->count
--;
1057 delayed_root
= delayed_node
->root
->fs_info
->delayed_root
;
1058 atomic_dec(&delayed_root
->items
);
1059 if (atomic_read(&delayed_root
->items
) <
1060 BTRFS_DELAYED_BACKGROUND
&&
1061 waitqueue_active(&delayed_root
->wait
))
1062 wake_up(&delayed_root
->wait
);
1066 static int btrfs_update_delayed_inode(struct btrfs_trans_handle
*trans
,
1067 struct btrfs_root
*root
,
1068 struct btrfs_path
*path
,
1069 struct btrfs_delayed_node
*node
)
1071 struct btrfs_key key
;
1072 struct btrfs_inode_item
*inode_item
;
1073 struct extent_buffer
*leaf
;
1076 mutex_lock(&node
->mutex
);
1077 if (!node
->inode_dirty
) {
1078 mutex_unlock(&node
->mutex
);
1082 key
.objectid
= node
->inode_id
;
1083 btrfs_set_key_type(&key
, BTRFS_INODE_ITEM_KEY
);
1085 ret
= btrfs_lookup_inode(trans
, root
, path
, &key
, 1);
1087 btrfs_release_path(path
);
1088 mutex_unlock(&node
->mutex
);
1090 } else if (ret
< 0) {
1091 mutex_unlock(&node
->mutex
);
1095 btrfs_unlock_up_safe(path
, 1);
1096 leaf
= path
->nodes
[0];
1097 inode_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
1098 struct btrfs_inode_item
);
1099 write_extent_buffer(leaf
, &node
->inode_item
, (unsigned long)inode_item
,
1100 sizeof(struct btrfs_inode_item
));
1101 btrfs_mark_buffer_dirty(leaf
);
1102 btrfs_release_path(path
);
1104 btrfs_delayed_inode_release_metadata(root
, node
);
1105 btrfs_release_delayed_inode(node
);
1106 mutex_unlock(&node
->mutex
);
1111 /* Called when committing the transaction. */
1112 int btrfs_run_delayed_items(struct btrfs_trans_handle
*trans
,
1113 struct btrfs_root
*root
)
1115 struct btrfs_delayed_root
*delayed_root
;
1116 struct btrfs_delayed_node
*curr_node
, *prev_node
;
1117 struct btrfs_path
*path
;
1118 struct btrfs_block_rsv
*block_rsv
;
1121 path
= btrfs_alloc_path();
1124 path
->leave_spinning
= 1;
1126 block_rsv
= trans
->block_rsv
;
1127 trans
->block_rsv
= &root
->fs_info
->delayed_block_rsv
;
1129 delayed_root
= btrfs_get_delayed_root(root
);
1131 curr_node
= btrfs_first_delayed_node(delayed_root
);
1133 root
= curr_node
->root
;
1134 ret
= btrfs_insert_delayed_items(trans
, path
, root
,
1137 ret
= btrfs_delete_delayed_items(trans
, path
, root
,
1140 ret
= btrfs_update_delayed_inode(trans
, root
, path
,
1143 btrfs_release_delayed_node(curr_node
);
1147 prev_node
= curr_node
;
1148 curr_node
= btrfs_next_delayed_node(curr_node
);
1149 btrfs_release_delayed_node(prev_node
);
1152 btrfs_free_path(path
);
1153 trans
->block_rsv
= block_rsv
;
1157 static int __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle
*trans
,
1158 struct btrfs_delayed_node
*node
)
1160 struct btrfs_path
*path
;
1161 struct btrfs_block_rsv
*block_rsv
;
1164 path
= btrfs_alloc_path();
1167 path
->leave_spinning
= 1;
1169 block_rsv
= trans
->block_rsv
;
1170 trans
->block_rsv
= &node
->root
->fs_info
->delayed_block_rsv
;
1172 ret
= btrfs_insert_delayed_items(trans
, path
, node
->root
, node
);
1174 ret
= btrfs_delete_delayed_items(trans
, path
, node
->root
, node
);
1176 ret
= btrfs_update_delayed_inode(trans
, node
->root
, path
, node
);
1177 btrfs_free_path(path
);
1179 trans
->block_rsv
= block_rsv
;
1183 int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle
*trans
,
1184 struct inode
*inode
)
1186 struct btrfs_delayed_node
*delayed_node
= btrfs_get_delayed_node(inode
);
1192 mutex_lock(&delayed_node
->mutex
);
1193 if (!delayed_node
->count
) {
1194 mutex_unlock(&delayed_node
->mutex
);
1195 btrfs_release_delayed_node(delayed_node
);
1198 mutex_unlock(&delayed_node
->mutex
);
1200 ret
= __btrfs_commit_inode_delayed_items(trans
, delayed_node
);
1201 btrfs_release_delayed_node(delayed_node
);
1205 void btrfs_remove_delayed_node(struct inode
*inode
)
1207 struct btrfs_delayed_node
*delayed_node
;
1209 delayed_node
= ACCESS_ONCE(BTRFS_I(inode
)->delayed_node
);
1213 BTRFS_I(inode
)->delayed_node
= NULL
;
1214 btrfs_release_delayed_node(delayed_node
);
1217 struct btrfs_async_delayed_node
{
1218 struct btrfs_root
*root
;
1219 struct btrfs_delayed_node
*delayed_node
;
1220 struct btrfs_work work
;
1223 static void btrfs_async_run_delayed_node_done(struct btrfs_work
*work
)
1225 struct btrfs_async_delayed_node
*async_node
;
1226 struct btrfs_trans_handle
*trans
;
1227 struct btrfs_path
*path
;
1228 struct btrfs_delayed_node
*delayed_node
= NULL
;
1229 struct btrfs_root
*root
;
1230 struct btrfs_block_rsv
*block_rsv
;
1231 unsigned long nr
= 0;
1232 int need_requeue
= 0;
1235 async_node
= container_of(work
, struct btrfs_async_delayed_node
, work
);
1237 path
= btrfs_alloc_path();
1240 path
->leave_spinning
= 1;
1242 delayed_node
= async_node
->delayed_node
;
1243 root
= delayed_node
->root
;
1245 trans
= btrfs_join_transaction(root
);
1249 block_rsv
= trans
->block_rsv
;
1250 trans
->block_rsv
= &root
->fs_info
->delayed_block_rsv
;
1252 ret
= btrfs_insert_delayed_items(trans
, path
, root
, delayed_node
);
1254 ret
= btrfs_delete_delayed_items(trans
, path
, root
,
1258 btrfs_update_delayed_inode(trans
, root
, path
, delayed_node
);
1261 * Maybe new delayed items have been inserted, so we need requeue
1262 * the work. Besides that, we must dequeue the empty delayed nodes
1263 * to avoid the race between delayed items balance and the worker.
1264 * The race like this:
1265 * Task1 Worker thread
1266 * count == 0, needn't requeue
1267 * also needn't insert the
1268 * delayed node into prepare
1270 * add lots of delayed items
1271 * queue the delayed node
1272 * already in the list,
1273 * and not in the prepare
1274 * list, it means the delayed
1275 * node is being dealt with
1277 * do delayed items balance
1278 * the delayed node is being
1279 * dealt with by the worker
1281 * the worker goto idle.
1282 * Task1 will sleep until the transaction is commited.
1284 mutex_lock(&delayed_node
->mutex
);
1285 if (delayed_node
->count
)
1288 btrfs_dequeue_delayed_node(root
->fs_info
->delayed_root
,
1290 mutex_unlock(&delayed_node
->mutex
);
1292 nr
= trans
->blocks_used
;
1294 trans
->block_rsv
= block_rsv
;
1295 btrfs_end_transaction_dmeta(trans
, root
);
1296 __btrfs_btree_balance_dirty(root
, nr
);
1298 btrfs_free_path(path
);
1301 btrfs_requeue_work(&async_node
->work
);
1303 btrfs_release_prepared_delayed_node(delayed_node
);
1308 static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root
*delayed_root
,
1309 struct btrfs_root
*root
, int all
)
1311 struct btrfs_async_delayed_node
*async_node
;
1312 struct btrfs_delayed_node
*curr
;
1316 curr
= btrfs_first_prepared_delayed_node(delayed_root
);
1320 async_node
= kmalloc(sizeof(*async_node
), GFP_NOFS
);
1322 btrfs_release_prepared_delayed_node(curr
);
1326 async_node
->root
= root
;
1327 async_node
->delayed_node
= curr
;
1329 async_node
->work
.func
= btrfs_async_run_delayed_node_done
;
1330 async_node
->work
.flags
= 0;
1332 btrfs_queue_worker(&root
->fs_info
->delayed_workers
, &async_node
->work
);
1335 if (all
|| count
< 4)
1341 void btrfs_assert_delayed_root_empty(struct btrfs_root
*root
)
1343 struct btrfs_delayed_root
*delayed_root
;
1344 delayed_root
= btrfs_get_delayed_root(root
);
1345 WARN_ON(btrfs_first_delayed_node(delayed_root
));
1348 void btrfs_balance_delayed_items(struct btrfs_root
*root
)
1350 struct btrfs_delayed_root
*delayed_root
;
1352 delayed_root
= btrfs_get_delayed_root(root
);
1354 if (atomic_read(&delayed_root
->items
) < BTRFS_DELAYED_BACKGROUND
)
1357 if (atomic_read(&delayed_root
->items
) >= BTRFS_DELAYED_WRITEBACK
) {
1359 ret
= btrfs_wq_run_delayed_node(delayed_root
, root
, 1);
1363 wait_event_interruptible_timeout(
1365 (atomic_read(&delayed_root
->items
) <
1366 BTRFS_DELAYED_BACKGROUND
),
1371 btrfs_wq_run_delayed_node(delayed_root
, root
, 0);
1374 int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle
*trans
,
1375 struct btrfs_root
*root
, const char *name
,
1376 int name_len
, struct inode
*dir
,
1377 struct btrfs_disk_key
*disk_key
, u8 type
,
1380 struct btrfs_delayed_node
*delayed_node
;
1381 struct btrfs_delayed_item
*delayed_item
;
1382 struct btrfs_dir_item
*dir_item
;
1385 delayed_node
= btrfs_get_or_create_delayed_node(dir
);
1386 if (IS_ERR(delayed_node
))
1387 return PTR_ERR(delayed_node
);
1389 delayed_item
= btrfs_alloc_delayed_item(sizeof(*dir_item
) + name_len
);
1390 if (!delayed_item
) {
1395 delayed_item
->key
.objectid
= btrfs_ino(dir
);
1396 btrfs_set_key_type(&delayed_item
->key
, BTRFS_DIR_INDEX_KEY
);
1397 delayed_item
->key
.offset
= index
;
1399 dir_item
= (struct btrfs_dir_item
*)delayed_item
->data
;
1400 dir_item
->location
= *disk_key
;
1401 dir_item
->transid
= cpu_to_le64(trans
->transid
);
1402 dir_item
->data_len
= 0;
1403 dir_item
->name_len
= cpu_to_le16(name_len
);
1404 dir_item
->type
= type
;
1405 memcpy((char *)(dir_item
+ 1), name
, name_len
);
1407 ret
= btrfs_delayed_item_reserve_metadata(trans
, root
, delayed_item
);
1409 * we have reserved enough space when we start a new transaction,
1410 * so reserving metadata failure is impossible
1415 mutex_lock(&delayed_node
->mutex
);
1416 ret
= __btrfs_add_delayed_insertion_item(delayed_node
, delayed_item
);
1417 if (unlikely(ret
)) {
1418 printk(KERN_ERR
"err add delayed dir index item(name: %s) into "
1419 "the insertion tree of the delayed node"
1420 "(root id: %llu, inode id: %llu, errno: %d)\n",
1422 (unsigned long long)delayed_node
->root
->objectid
,
1423 (unsigned long long)delayed_node
->inode_id
,
1427 mutex_unlock(&delayed_node
->mutex
);
1430 btrfs_release_delayed_node(delayed_node
);
1434 static int btrfs_delete_delayed_insertion_item(struct btrfs_root
*root
,
1435 struct btrfs_delayed_node
*node
,
1436 struct btrfs_key
*key
)
1438 struct btrfs_delayed_item
*item
;
1440 mutex_lock(&node
->mutex
);
1441 item
= __btrfs_lookup_delayed_insertion_item(node
, key
);
1443 mutex_unlock(&node
->mutex
);
1447 btrfs_delayed_item_release_metadata(root
, item
);
1448 btrfs_release_delayed_item(item
);
1449 mutex_unlock(&node
->mutex
);
1453 int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle
*trans
,
1454 struct btrfs_root
*root
, struct inode
*dir
,
1457 struct btrfs_delayed_node
*node
;
1458 struct btrfs_delayed_item
*item
;
1459 struct btrfs_key item_key
;
1462 node
= btrfs_get_or_create_delayed_node(dir
);
1464 return PTR_ERR(node
);
1466 item_key
.objectid
= btrfs_ino(dir
);
1467 btrfs_set_key_type(&item_key
, BTRFS_DIR_INDEX_KEY
);
1468 item_key
.offset
= index
;
1470 ret
= btrfs_delete_delayed_insertion_item(root
, node
, &item_key
);
1474 item
= btrfs_alloc_delayed_item(0);
1480 item
->key
= item_key
;
1482 ret
= btrfs_delayed_item_reserve_metadata(trans
, root
, item
);
1484 * we have reserved enough space when we start a new transaction,
1485 * so reserving metadata failure is impossible.
1489 mutex_lock(&node
->mutex
);
1490 ret
= __btrfs_add_delayed_deletion_item(node
, item
);
1491 if (unlikely(ret
)) {
1492 printk(KERN_ERR
"err add delayed dir index item(index: %llu) "
1493 "into the deletion tree of the delayed node"
1494 "(root id: %llu, inode id: %llu, errno: %d)\n",
1495 (unsigned long long)index
,
1496 (unsigned long long)node
->root
->objectid
,
1497 (unsigned long long)node
->inode_id
,
1501 mutex_unlock(&node
->mutex
);
1503 btrfs_release_delayed_node(node
);
1507 int btrfs_inode_delayed_dir_index_count(struct inode
*inode
)
1509 struct btrfs_delayed_node
*delayed_node
= btrfs_get_delayed_node(inode
);
1515 * Since we have held i_mutex of this directory, it is impossible that
1516 * a new directory index is added into the delayed node and index_cnt
1517 * is updated now. So we needn't lock the delayed node.
1519 if (!delayed_node
->index_cnt
) {
1520 btrfs_release_delayed_node(delayed_node
);
1524 BTRFS_I(inode
)->index_cnt
= delayed_node
->index_cnt
;
1525 btrfs_release_delayed_node(delayed_node
);
1529 void btrfs_get_delayed_items(struct inode
*inode
, struct list_head
*ins_list
,
1530 struct list_head
*del_list
)
1532 struct btrfs_delayed_node
*delayed_node
;
1533 struct btrfs_delayed_item
*item
;
1535 delayed_node
= btrfs_get_delayed_node(inode
);
1539 mutex_lock(&delayed_node
->mutex
);
1540 item
= __btrfs_first_delayed_insertion_item(delayed_node
);
1542 atomic_inc(&item
->refs
);
1543 list_add_tail(&item
->readdir_list
, ins_list
);
1544 item
= __btrfs_next_delayed_item(item
);
1547 item
= __btrfs_first_delayed_deletion_item(delayed_node
);
1549 atomic_inc(&item
->refs
);
1550 list_add_tail(&item
->readdir_list
, del_list
);
1551 item
= __btrfs_next_delayed_item(item
);
1553 mutex_unlock(&delayed_node
->mutex
);
1555 * This delayed node is still cached in the btrfs inode, so refs
1556 * must be > 1 now, and we needn't check it is going to be freed
1559 * Besides that, this function is used to read dir, we do not
1560 * insert/delete delayed items in this period. So we also needn't
1561 * requeue or dequeue this delayed node.
1563 atomic_dec(&delayed_node
->refs
);
1566 void btrfs_put_delayed_items(struct list_head
*ins_list
,
1567 struct list_head
*del_list
)
1569 struct btrfs_delayed_item
*curr
, *next
;
1571 list_for_each_entry_safe(curr
, next
, ins_list
, readdir_list
) {
1572 list_del(&curr
->readdir_list
);
1573 if (atomic_dec_and_test(&curr
->refs
))
1577 list_for_each_entry_safe(curr
, next
, del_list
, readdir_list
) {
1578 list_del(&curr
->readdir_list
);
1579 if (atomic_dec_and_test(&curr
->refs
))
1584 int btrfs_should_delete_dir_index(struct list_head
*del_list
,
1587 struct btrfs_delayed_item
*curr
, *next
;
1590 if (list_empty(del_list
))
1593 list_for_each_entry_safe(curr
, next
, del_list
, readdir_list
) {
1594 if (curr
->key
.offset
> index
)
1597 list_del(&curr
->readdir_list
);
1598 ret
= (curr
->key
.offset
== index
);
1600 if (atomic_dec_and_test(&curr
->refs
))
1612 * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1615 int btrfs_readdir_delayed_dir_index(struct file
*filp
, void *dirent
,
1617 struct list_head
*ins_list
)
1619 struct btrfs_dir_item
*di
;
1620 struct btrfs_delayed_item
*curr
, *next
;
1621 struct btrfs_key location
;
1625 unsigned char d_type
;
1627 if (list_empty(ins_list
))
1631 * Changing the data of the delayed item is impossible. So
1632 * we needn't lock them. And we have held i_mutex of the
1633 * directory, nobody can delete any directory indexes now.
1635 list_for_each_entry_safe(curr
, next
, ins_list
, readdir_list
) {
1636 list_del(&curr
->readdir_list
);
1638 if (curr
->key
.offset
< filp
->f_pos
) {
1639 if (atomic_dec_and_test(&curr
->refs
))
1644 filp
->f_pos
= curr
->key
.offset
;
1646 di
= (struct btrfs_dir_item
*)curr
->data
;
1647 name
= (char *)(di
+ 1);
1648 name_len
= le16_to_cpu(di
->name_len
);
1650 d_type
= btrfs_filetype_table
[di
->type
];
1651 btrfs_disk_key_to_cpu(&location
, &di
->location
);
1653 over
= filldir(dirent
, name
, name_len
, curr
->key
.offset
,
1654 location
.objectid
, d_type
);
1656 if (atomic_dec_and_test(&curr
->refs
))
1665 BTRFS_SETGET_STACK_FUNCS(stack_inode_generation
, struct btrfs_inode_item
,
1667 BTRFS_SETGET_STACK_FUNCS(stack_inode_sequence
, struct btrfs_inode_item
,
1669 BTRFS_SETGET_STACK_FUNCS(stack_inode_transid
, struct btrfs_inode_item
,
1671 BTRFS_SETGET_STACK_FUNCS(stack_inode_size
, struct btrfs_inode_item
, size
, 64);
1672 BTRFS_SETGET_STACK_FUNCS(stack_inode_nbytes
, struct btrfs_inode_item
,
1674 BTRFS_SETGET_STACK_FUNCS(stack_inode_block_group
, struct btrfs_inode_item
,
1676 BTRFS_SETGET_STACK_FUNCS(stack_inode_nlink
, struct btrfs_inode_item
, nlink
, 32);
1677 BTRFS_SETGET_STACK_FUNCS(stack_inode_uid
, struct btrfs_inode_item
, uid
, 32);
1678 BTRFS_SETGET_STACK_FUNCS(stack_inode_gid
, struct btrfs_inode_item
, gid
, 32);
1679 BTRFS_SETGET_STACK_FUNCS(stack_inode_mode
, struct btrfs_inode_item
, mode
, 32);
1680 BTRFS_SETGET_STACK_FUNCS(stack_inode_rdev
, struct btrfs_inode_item
, rdev
, 64);
1681 BTRFS_SETGET_STACK_FUNCS(stack_inode_flags
, struct btrfs_inode_item
, flags
, 64);
1683 BTRFS_SETGET_STACK_FUNCS(stack_timespec_sec
, struct btrfs_timespec
, sec
, 64);
1684 BTRFS_SETGET_STACK_FUNCS(stack_timespec_nsec
, struct btrfs_timespec
, nsec
, 32);
1686 static void fill_stack_inode_item(struct btrfs_trans_handle
*trans
,
1687 struct btrfs_inode_item
*inode_item
,
1688 struct inode
*inode
)
1690 btrfs_set_stack_inode_uid(inode_item
, inode
->i_uid
);
1691 btrfs_set_stack_inode_gid(inode_item
, inode
->i_gid
);
1692 btrfs_set_stack_inode_size(inode_item
, BTRFS_I(inode
)->disk_i_size
);
1693 btrfs_set_stack_inode_mode(inode_item
, inode
->i_mode
);
1694 btrfs_set_stack_inode_nlink(inode_item
, inode
->i_nlink
);
1695 btrfs_set_stack_inode_nbytes(inode_item
, inode_get_bytes(inode
));
1696 btrfs_set_stack_inode_generation(inode_item
,
1697 BTRFS_I(inode
)->generation
);
1698 btrfs_set_stack_inode_sequence(inode_item
, BTRFS_I(inode
)->sequence
);
1699 btrfs_set_stack_inode_transid(inode_item
, trans
->transid
);
1700 btrfs_set_stack_inode_rdev(inode_item
, inode
->i_rdev
);
1701 btrfs_set_stack_inode_flags(inode_item
, BTRFS_I(inode
)->flags
);
1702 btrfs_set_stack_inode_block_group(inode_item
, 0);
1704 btrfs_set_stack_timespec_sec(btrfs_inode_atime(inode_item
),
1705 inode
->i_atime
.tv_sec
);
1706 btrfs_set_stack_timespec_nsec(btrfs_inode_atime(inode_item
),
1707 inode
->i_atime
.tv_nsec
);
1709 btrfs_set_stack_timespec_sec(btrfs_inode_mtime(inode_item
),
1710 inode
->i_mtime
.tv_sec
);
1711 btrfs_set_stack_timespec_nsec(btrfs_inode_mtime(inode_item
),
1712 inode
->i_mtime
.tv_nsec
);
1714 btrfs_set_stack_timespec_sec(btrfs_inode_ctime(inode_item
),
1715 inode
->i_ctime
.tv_sec
);
1716 btrfs_set_stack_timespec_nsec(btrfs_inode_ctime(inode_item
),
1717 inode
->i_ctime
.tv_nsec
);
1720 int btrfs_fill_inode(struct inode
*inode
, u32
*rdev
)
1722 struct btrfs_delayed_node
*delayed_node
;
1723 struct btrfs_inode_item
*inode_item
;
1724 struct btrfs_timespec
*tspec
;
1726 delayed_node
= btrfs_get_delayed_node(inode
);
1730 mutex_lock(&delayed_node
->mutex
);
1731 if (!delayed_node
->inode_dirty
) {
1732 mutex_unlock(&delayed_node
->mutex
);
1733 btrfs_release_delayed_node(delayed_node
);
1737 inode_item
= &delayed_node
->inode_item
;
1739 inode
->i_uid
= btrfs_stack_inode_uid(inode_item
);
1740 inode
->i_gid
= btrfs_stack_inode_gid(inode_item
);
1741 btrfs_i_size_write(inode
, btrfs_stack_inode_size(inode_item
));
1742 inode
->i_mode
= btrfs_stack_inode_mode(inode_item
);
1743 set_nlink(inode
, btrfs_stack_inode_nlink(inode_item
));
1744 inode_set_bytes(inode
, btrfs_stack_inode_nbytes(inode_item
));
1745 BTRFS_I(inode
)->generation
= btrfs_stack_inode_generation(inode_item
);
1746 BTRFS_I(inode
)->sequence
= btrfs_stack_inode_sequence(inode_item
);
1748 *rdev
= btrfs_stack_inode_rdev(inode_item
);
1749 BTRFS_I(inode
)->flags
= btrfs_stack_inode_flags(inode_item
);
1751 tspec
= btrfs_inode_atime(inode_item
);
1752 inode
->i_atime
.tv_sec
= btrfs_stack_timespec_sec(tspec
);
1753 inode
->i_atime
.tv_nsec
= btrfs_stack_timespec_nsec(tspec
);
1755 tspec
= btrfs_inode_mtime(inode_item
);
1756 inode
->i_mtime
.tv_sec
= btrfs_stack_timespec_sec(tspec
);
1757 inode
->i_mtime
.tv_nsec
= btrfs_stack_timespec_nsec(tspec
);
1759 tspec
= btrfs_inode_ctime(inode_item
);
1760 inode
->i_ctime
.tv_sec
= btrfs_stack_timespec_sec(tspec
);
1761 inode
->i_ctime
.tv_nsec
= btrfs_stack_timespec_nsec(tspec
);
1763 inode
->i_generation
= BTRFS_I(inode
)->generation
;
1764 BTRFS_I(inode
)->index_cnt
= (u64
)-1;
1766 mutex_unlock(&delayed_node
->mutex
);
1767 btrfs_release_delayed_node(delayed_node
);
1771 int btrfs_delayed_update_inode(struct btrfs_trans_handle
*trans
,
1772 struct btrfs_root
*root
, struct inode
*inode
)
1774 struct btrfs_delayed_node
*delayed_node
;
1777 delayed_node
= btrfs_get_or_create_delayed_node(inode
);
1778 if (IS_ERR(delayed_node
))
1779 return PTR_ERR(delayed_node
);
1781 mutex_lock(&delayed_node
->mutex
);
1782 if (delayed_node
->inode_dirty
) {
1783 fill_stack_inode_item(trans
, &delayed_node
->inode_item
, inode
);
1787 ret
= btrfs_delayed_inode_reserve_metadata(trans
, root
, inode
,
1792 fill_stack_inode_item(trans
, &delayed_node
->inode_item
, inode
);
1793 delayed_node
->inode_dirty
= 1;
1794 delayed_node
->count
++;
1795 atomic_inc(&root
->fs_info
->delayed_root
->items
);
1797 mutex_unlock(&delayed_node
->mutex
);
1798 btrfs_release_delayed_node(delayed_node
);
1802 static void __btrfs_kill_delayed_node(struct btrfs_delayed_node
*delayed_node
)
1804 struct btrfs_root
*root
= delayed_node
->root
;
1805 struct btrfs_delayed_item
*curr_item
, *prev_item
;
1807 mutex_lock(&delayed_node
->mutex
);
1808 curr_item
= __btrfs_first_delayed_insertion_item(delayed_node
);
1810 btrfs_delayed_item_release_metadata(root
, curr_item
);
1811 prev_item
= curr_item
;
1812 curr_item
= __btrfs_next_delayed_item(prev_item
);
1813 btrfs_release_delayed_item(prev_item
);
1816 curr_item
= __btrfs_first_delayed_deletion_item(delayed_node
);
1818 btrfs_delayed_item_release_metadata(root
, curr_item
);
1819 prev_item
= curr_item
;
1820 curr_item
= __btrfs_next_delayed_item(prev_item
);
1821 btrfs_release_delayed_item(prev_item
);
1824 if (delayed_node
->inode_dirty
) {
1825 btrfs_delayed_inode_release_metadata(root
, delayed_node
);
1826 btrfs_release_delayed_inode(delayed_node
);
1828 mutex_unlock(&delayed_node
->mutex
);
1831 void btrfs_kill_delayed_inode_items(struct inode
*inode
)
1833 struct btrfs_delayed_node
*delayed_node
;
1835 delayed_node
= btrfs_get_delayed_node(inode
);
1839 __btrfs_kill_delayed_node(delayed_node
);
1840 btrfs_release_delayed_node(delayed_node
);
1843 void btrfs_kill_all_delayed_nodes(struct btrfs_root
*root
)
1846 struct btrfs_delayed_node
*delayed_nodes
[8];
1850 spin_lock(&root
->inode_lock
);
1851 n
= radix_tree_gang_lookup(&root
->delayed_nodes_tree
,
1852 (void **)delayed_nodes
, inode_id
,
1853 ARRAY_SIZE(delayed_nodes
));
1855 spin_unlock(&root
->inode_lock
);
1859 inode_id
= delayed_nodes
[n
- 1]->inode_id
+ 1;
1861 for (i
= 0; i
< n
; i
++)
1862 atomic_inc(&delayed_nodes
[i
]->refs
);
1863 spin_unlock(&root
->inode_lock
);
1865 for (i
= 0; i
< n
; i
++) {
1866 __btrfs_kill_delayed_node(delayed_nodes
[i
]);
1867 btrfs_release_delayed_node(delayed_nodes
[i
]);