spi-topcliff-pch: supports a spi mode setup and bit order setup by IO control
[zen-stable.git] / fs / btrfs / transaction.c
blob04b77e3ceb7a9783332c33c4ceca006ac9c14482
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include "ctree.h"
26 #include "disk-io.h"
27 #include "transaction.h"
28 #include "locking.h"
29 #include "tree-log.h"
30 #include "inode-map.h"
32 #define BTRFS_ROOT_TRANS_TAG 0
34 static noinline void put_transaction(struct btrfs_transaction *transaction)
36 WARN_ON(atomic_read(&transaction->use_count) == 0);
37 if (atomic_dec_and_test(&transaction->use_count)) {
38 BUG_ON(!list_empty(&transaction->list));
39 WARN_ON(transaction->delayed_refs.root.rb_node);
40 WARN_ON(!list_empty(&transaction->delayed_refs.seq_head));
41 memset(transaction, 0, sizeof(*transaction));
42 kmem_cache_free(btrfs_transaction_cachep, transaction);
46 static noinline void switch_commit_root(struct btrfs_root *root)
48 free_extent_buffer(root->commit_root);
49 root->commit_root = btrfs_root_node(root);
53 * either allocate a new transaction or hop into the existing one
55 static noinline int join_transaction(struct btrfs_root *root, int nofail)
57 struct btrfs_transaction *cur_trans;
59 spin_lock(&root->fs_info->trans_lock);
60 loop:
61 if (root->fs_info->trans_no_join) {
62 if (!nofail) {
63 spin_unlock(&root->fs_info->trans_lock);
64 return -EBUSY;
68 cur_trans = root->fs_info->running_transaction;
69 if (cur_trans) {
70 atomic_inc(&cur_trans->use_count);
71 atomic_inc(&cur_trans->num_writers);
72 cur_trans->num_joined++;
73 spin_unlock(&root->fs_info->trans_lock);
74 return 0;
76 spin_unlock(&root->fs_info->trans_lock);
78 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
79 if (!cur_trans)
80 return -ENOMEM;
82 spin_lock(&root->fs_info->trans_lock);
83 if (root->fs_info->running_transaction) {
85 * someone started a transaction after we unlocked. Make sure
86 * to redo the trans_no_join checks above
88 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
89 cur_trans = root->fs_info->running_transaction;
90 goto loop;
93 atomic_set(&cur_trans->num_writers, 1);
94 cur_trans->num_joined = 0;
95 init_waitqueue_head(&cur_trans->writer_wait);
96 init_waitqueue_head(&cur_trans->commit_wait);
97 cur_trans->in_commit = 0;
98 cur_trans->blocked = 0;
100 * One for this trans handle, one so it will live on until we
101 * commit the transaction.
103 atomic_set(&cur_trans->use_count, 2);
104 cur_trans->commit_done = 0;
105 cur_trans->start_time = get_seconds();
107 cur_trans->delayed_refs.root = RB_ROOT;
108 cur_trans->delayed_refs.num_entries = 0;
109 cur_trans->delayed_refs.num_heads_ready = 0;
110 cur_trans->delayed_refs.num_heads = 0;
111 cur_trans->delayed_refs.flushing = 0;
112 cur_trans->delayed_refs.run_delayed_start = 0;
113 cur_trans->delayed_refs.seq = 1;
114 init_waitqueue_head(&cur_trans->delayed_refs.seq_wait);
115 spin_lock_init(&cur_trans->commit_lock);
116 spin_lock_init(&cur_trans->delayed_refs.lock);
117 INIT_LIST_HEAD(&cur_trans->delayed_refs.seq_head);
119 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
120 list_add_tail(&cur_trans->list, &root->fs_info->trans_list);
121 extent_io_tree_init(&cur_trans->dirty_pages,
122 root->fs_info->btree_inode->i_mapping);
123 root->fs_info->generation++;
124 cur_trans->transid = root->fs_info->generation;
125 root->fs_info->running_transaction = cur_trans;
126 spin_unlock(&root->fs_info->trans_lock);
128 return 0;
132 * this does all the record keeping required to make sure that a reference
133 * counted root is properly recorded in a given transaction. This is required
134 * to make sure the old root from before we joined the transaction is deleted
135 * when the transaction commits
137 static int record_root_in_trans(struct btrfs_trans_handle *trans,
138 struct btrfs_root *root)
140 if (root->ref_cows && root->last_trans < trans->transid) {
141 WARN_ON(root == root->fs_info->extent_root);
142 WARN_ON(root->commit_root != root->node);
145 * see below for in_trans_setup usage rules
146 * we have the reloc mutex held now, so there
147 * is only one writer in this function
149 root->in_trans_setup = 1;
151 /* make sure readers find in_trans_setup before
152 * they find our root->last_trans update
154 smp_wmb();
156 spin_lock(&root->fs_info->fs_roots_radix_lock);
157 if (root->last_trans == trans->transid) {
158 spin_unlock(&root->fs_info->fs_roots_radix_lock);
159 return 0;
161 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
162 (unsigned long)root->root_key.objectid,
163 BTRFS_ROOT_TRANS_TAG);
164 spin_unlock(&root->fs_info->fs_roots_radix_lock);
165 root->last_trans = trans->transid;
167 /* this is pretty tricky. We don't want to
168 * take the relocation lock in btrfs_record_root_in_trans
169 * unless we're really doing the first setup for this root in
170 * this transaction.
172 * Normally we'd use root->last_trans as a flag to decide
173 * if we want to take the expensive mutex.
175 * But, we have to set root->last_trans before we
176 * init the relocation root, otherwise, we trip over warnings
177 * in ctree.c. The solution used here is to flag ourselves
178 * with root->in_trans_setup. When this is 1, we're still
179 * fixing up the reloc trees and everyone must wait.
181 * When this is zero, they can trust root->last_trans and fly
182 * through btrfs_record_root_in_trans without having to take the
183 * lock. smp_wmb() makes sure that all the writes above are
184 * done before we pop in the zero below
186 btrfs_init_reloc_root(trans, root);
187 smp_wmb();
188 root->in_trans_setup = 0;
190 return 0;
194 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
195 struct btrfs_root *root)
197 if (!root->ref_cows)
198 return 0;
201 * see record_root_in_trans for comments about in_trans_setup usage
202 * and barriers
204 smp_rmb();
205 if (root->last_trans == trans->transid &&
206 !root->in_trans_setup)
207 return 0;
209 mutex_lock(&root->fs_info->reloc_mutex);
210 record_root_in_trans(trans, root);
211 mutex_unlock(&root->fs_info->reloc_mutex);
213 return 0;
216 /* wait for commit against the current transaction to become unblocked
217 * when this is done, it is safe to start a new transaction, but the current
218 * transaction might not be fully on disk.
220 static void wait_current_trans(struct btrfs_root *root)
222 struct btrfs_transaction *cur_trans;
224 spin_lock(&root->fs_info->trans_lock);
225 cur_trans = root->fs_info->running_transaction;
226 if (cur_trans && cur_trans->blocked) {
227 atomic_inc(&cur_trans->use_count);
228 spin_unlock(&root->fs_info->trans_lock);
230 wait_event(root->fs_info->transaction_wait,
231 !cur_trans->blocked);
232 put_transaction(cur_trans);
233 } else {
234 spin_unlock(&root->fs_info->trans_lock);
238 enum btrfs_trans_type {
239 TRANS_START,
240 TRANS_JOIN,
241 TRANS_USERSPACE,
242 TRANS_JOIN_NOLOCK,
245 static int may_wait_transaction(struct btrfs_root *root, int type)
247 if (root->fs_info->log_root_recovering)
248 return 0;
250 if (type == TRANS_USERSPACE)
251 return 1;
253 if (type == TRANS_START &&
254 !atomic_read(&root->fs_info->open_ioctl_trans))
255 return 1;
257 return 0;
260 static struct btrfs_trans_handle *start_transaction(struct btrfs_root *root,
261 u64 num_items, int type)
263 struct btrfs_trans_handle *h;
264 struct btrfs_transaction *cur_trans;
265 u64 num_bytes = 0;
266 int ret;
268 if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
269 return ERR_PTR(-EROFS);
271 if (current->journal_info) {
272 WARN_ON(type != TRANS_JOIN && type != TRANS_JOIN_NOLOCK);
273 h = current->journal_info;
274 h->use_count++;
275 h->orig_rsv = h->block_rsv;
276 h->block_rsv = NULL;
277 goto got_it;
281 * Do the reservation before we join the transaction so we can do all
282 * the appropriate flushing if need be.
284 if (num_items > 0 && root != root->fs_info->chunk_root) {
285 num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
286 ret = btrfs_block_rsv_add(root,
287 &root->fs_info->trans_block_rsv,
288 num_bytes);
289 if (ret)
290 return ERR_PTR(ret);
292 again:
293 h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
294 if (!h)
295 return ERR_PTR(-ENOMEM);
297 if (may_wait_transaction(root, type))
298 wait_current_trans(root);
300 do {
301 ret = join_transaction(root, type == TRANS_JOIN_NOLOCK);
302 if (ret == -EBUSY)
303 wait_current_trans(root);
304 } while (ret == -EBUSY);
306 if (ret < 0) {
307 kmem_cache_free(btrfs_trans_handle_cachep, h);
308 return ERR_PTR(ret);
311 cur_trans = root->fs_info->running_transaction;
313 h->transid = cur_trans->transid;
314 h->transaction = cur_trans;
315 h->blocks_used = 0;
316 h->bytes_reserved = 0;
317 h->delayed_ref_updates = 0;
318 h->use_count = 1;
319 h->block_rsv = NULL;
320 h->orig_rsv = NULL;
322 smp_mb();
323 if (cur_trans->blocked && may_wait_transaction(root, type)) {
324 btrfs_commit_transaction(h, root);
325 goto again;
328 if (num_bytes) {
329 trace_btrfs_space_reservation(root->fs_info, "transaction",
330 (u64)(unsigned long)h,
331 num_bytes, 1);
332 h->block_rsv = &root->fs_info->trans_block_rsv;
333 h->bytes_reserved = num_bytes;
336 got_it:
337 btrfs_record_root_in_trans(h, root);
339 if (!current->journal_info && type != TRANS_USERSPACE)
340 current->journal_info = h;
341 return h;
344 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
345 int num_items)
347 return start_transaction(root, num_items, TRANS_START);
349 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
351 return start_transaction(root, 0, TRANS_JOIN);
354 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
356 return start_transaction(root, 0, TRANS_JOIN_NOLOCK);
359 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
361 return start_transaction(root, 0, TRANS_USERSPACE);
364 /* wait for a transaction commit to be fully complete */
365 static noinline void wait_for_commit(struct btrfs_root *root,
366 struct btrfs_transaction *commit)
368 wait_event(commit->commit_wait, commit->commit_done);
371 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
373 struct btrfs_transaction *cur_trans = NULL, *t;
374 int ret;
376 ret = 0;
377 if (transid) {
378 if (transid <= root->fs_info->last_trans_committed)
379 goto out;
381 /* find specified transaction */
382 spin_lock(&root->fs_info->trans_lock);
383 list_for_each_entry(t, &root->fs_info->trans_list, list) {
384 if (t->transid == transid) {
385 cur_trans = t;
386 atomic_inc(&cur_trans->use_count);
387 break;
389 if (t->transid > transid)
390 break;
392 spin_unlock(&root->fs_info->trans_lock);
393 ret = -EINVAL;
394 if (!cur_trans)
395 goto out; /* bad transid */
396 } else {
397 /* find newest transaction that is committing | committed */
398 spin_lock(&root->fs_info->trans_lock);
399 list_for_each_entry_reverse(t, &root->fs_info->trans_list,
400 list) {
401 if (t->in_commit) {
402 if (t->commit_done)
403 break;
404 cur_trans = t;
405 atomic_inc(&cur_trans->use_count);
406 break;
409 spin_unlock(&root->fs_info->trans_lock);
410 if (!cur_trans)
411 goto out; /* nothing committing|committed */
414 wait_for_commit(root, cur_trans);
416 put_transaction(cur_trans);
417 ret = 0;
418 out:
419 return ret;
422 void btrfs_throttle(struct btrfs_root *root)
424 if (!atomic_read(&root->fs_info->open_ioctl_trans))
425 wait_current_trans(root);
428 static int should_end_transaction(struct btrfs_trans_handle *trans,
429 struct btrfs_root *root)
431 int ret;
433 ret = btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
434 return ret ? 1 : 0;
437 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
438 struct btrfs_root *root)
440 struct btrfs_transaction *cur_trans = trans->transaction;
441 struct btrfs_block_rsv *rsv = trans->block_rsv;
442 int updates;
444 smp_mb();
445 if (cur_trans->blocked || cur_trans->delayed_refs.flushing)
446 return 1;
449 * We need to do this in case we're deleting csums so the global block
450 * rsv get's used instead of the csum block rsv.
452 trans->block_rsv = NULL;
454 updates = trans->delayed_ref_updates;
455 trans->delayed_ref_updates = 0;
456 if (updates)
457 btrfs_run_delayed_refs(trans, root, updates);
459 trans->block_rsv = rsv;
461 return should_end_transaction(trans, root);
464 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
465 struct btrfs_root *root, int throttle, int lock)
467 struct btrfs_transaction *cur_trans = trans->transaction;
468 struct btrfs_fs_info *info = root->fs_info;
469 int count = 0;
471 if (--trans->use_count) {
472 trans->block_rsv = trans->orig_rsv;
473 return 0;
476 btrfs_trans_release_metadata(trans, root);
477 trans->block_rsv = NULL;
478 while (count < 2) {
479 unsigned long cur = trans->delayed_ref_updates;
480 trans->delayed_ref_updates = 0;
481 if (cur &&
482 trans->transaction->delayed_refs.num_heads_ready > 64) {
483 trans->delayed_ref_updates = 0;
484 btrfs_run_delayed_refs(trans, root, cur);
485 } else {
486 break;
488 count++;
491 if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
492 should_end_transaction(trans, root)) {
493 trans->transaction->blocked = 1;
494 smp_wmb();
497 if (lock && cur_trans->blocked && !cur_trans->in_commit) {
498 if (throttle) {
500 * We may race with somebody else here so end up having
501 * to call end_transaction on ourselves again, so inc
502 * our use_count.
504 trans->use_count++;
505 return btrfs_commit_transaction(trans, root);
506 } else {
507 wake_up_process(info->transaction_kthread);
511 WARN_ON(cur_trans != info->running_transaction);
512 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
513 atomic_dec(&cur_trans->num_writers);
515 smp_mb();
516 if (waitqueue_active(&cur_trans->writer_wait))
517 wake_up(&cur_trans->writer_wait);
518 put_transaction(cur_trans);
520 if (current->journal_info == trans)
521 current->journal_info = NULL;
522 memset(trans, 0, sizeof(*trans));
523 kmem_cache_free(btrfs_trans_handle_cachep, trans);
525 if (throttle)
526 btrfs_run_delayed_iputs(root);
528 return 0;
531 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
532 struct btrfs_root *root)
534 int ret;
536 ret = __btrfs_end_transaction(trans, root, 0, 1);
537 if (ret)
538 return ret;
539 return 0;
542 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
543 struct btrfs_root *root)
545 int ret;
547 ret = __btrfs_end_transaction(trans, root, 1, 1);
548 if (ret)
549 return ret;
550 return 0;
553 int btrfs_end_transaction_nolock(struct btrfs_trans_handle *trans,
554 struct btrfs_root *root)
556 int ret;
558 ret = __btrfs_end_transaction(trans, root, 0, 0);
559 if (ret)
560 return ret;
561 return 0;
564 int btrfs_end_transaction_dmeta(struct btrfs_trans_handle *trans,
565 struct btrfs_root *root)
567 return __btrfs_end_transaction(trans, root, 1, 1);
571 * when btree blocks are allocated, they have some corresponding bits set for
572 * them in one of two extent_io trees. This is used to make sure all of
573 * those extents are sent to disk but does not wait on them
575 int btrfs_write_marked_extents(struct btrfs_root *root,
576 struct extent_io_tree *dirty_pages, int mark)
578 int err = 0;
579 int werr = 0;
580 struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
581 u64 start = 0;
582 u64 end;
584 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
585 mark)) {
586 convert_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT, mark,
587 GFP_NOFS);
588 err = filemap_fdatawrite_range(mapping, start, end);
589 if (err)
590 werr = err;
591 cond_resched();
592 start = end + 1;
594 if (err)
595 werr = err;
596 return werr;
600 * when btree blocks are allocated, they have some corresponding bits set for
601 * them in one of two extent_io trees. This is used to make sure all of
602 * those extents are on disk for transaction or log commit. We wait
603 * on all the pages and clear them from the dirty pages state tree
605 int btrfs_wait_marked_extents(struct btrfs_root *root,
606 struct extent_io_tree *dirty_pages, int mark)
608 int err = 0;
609 int werr = 0;
610 struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
611 u64 start = 0;
612 u64 end;
614 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
615 EXTENT_NEED_WAIT)) {
616 clear_extent_bits(dirty_pages, start, end, EXTENT_NEED_WAIT, GFP_NOFS);
617 err = filemap_fdatawait_range(mapping, start, end);
618 if (err)
619 werr = err;
620 cond_resched();
621 start = end + 1;
623 if (err)
624 werr = err;
625 return werr;
629 * when btree blocks are allocated, they have some corresponding bits set for
630 * them in one of two extent_io trees. This is used to make sure all of
631 * those extents are on disk for transaction or log commit
633 int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
634 struct extent_io_tree *dirty_pages, int mark)
636 int ret;
637 int ret2;
639 ret = btrfs_write_marked_extents(root, dirty_pages, mark);
640 ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
642 if (ret)
643 return ret;
644 if (ret2)
645 return ret2;
646 return 0;
649 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
650 struct btrfs_root *root)
652 if (!trans || !trans->transaction) {
653 struct inode *btree_inode;
654 btree_inode = root->fs_info->btree_inode;
655 return filemap_write_and_wait(btree_inode->i_mapping);
657 return btrfs_write_and_wait_marked_extents(root,
658 &trans->transaction->dirty_pages,
659 EXTENT_DIRTY);
663 * this is used to update the root pointer in the tree of tree roots.
665 * But, in the case of the extent allocation tree, updating the root
666 * pointer may allocate blocks which may change the root of the extent
667 * allocation tree.
669 * So, this loops and repeats and makes sure the cowonly root didn't
670 * change while the root pointer was being updated in the metadata.
672 static int update_cowonly_root(struct btrfs_trans_handle *trans,
673 struct btrfs_root *root)
675 int ret;
676 u64 old_root_bytenr;
677 u64 old_root_used;
678 struct btrfs_root *tree_root = root->fs_info->tree_root;
680 old_root_used = btrfs_root_used(&root->root_item);
681 btrfs_write_dirty_block_groups(trans, root);
683 while (1) {
684 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
685 if (old_root_bytenr == root->node->start &&
686 old_root_used == btrfs_root_used(&root->root_item))
687 break;
689 btrfs_set_root_node(&root->root_item, root->node);
690 ret = btrfs_update_root(trans, tree_root,
691 &root->root_key,
692 &root->root_item);
693 BUG_ON(ret);
695 old_root_used = btrfs_root_used(&root->root_item);
696 ret = btrfs_write_dirty_block_groups(trans, root);
697 BUG_ON(ret);
700 if (root != root->fs_info->extent_root)
701 switch_commit_root(root);
703 return 0;
707 * update all the cowonly tree roots on disk
709 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
710 struct btrfs_root *root)
712 struct btrfs_fs_info *fs_info = root->fs_info;
713 struct list_head *next;
714 struct extent_buffer *eb;
715 int ret;
717 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
718 BUG_ON(ret);
720 eb = btrfs_lock_root_node(fs_info->tree_root);
721 btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 0, &eb);
722 btrfs_tree_unlock(eb);
723 free_extent_buffer(eb);
725 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
726 BUG_ON(ret);
728 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
729 next = fs_info->dirty_cowonly_roots.next;
730 list_del_init(next);
731 root = list_entry(next, struct btrfs_root, dirty_list);
733 update_cowonly_root(trans, root);
736 down_write(&fs_info->extent_commit_sem);
737 switch_commit_root(fs_info->extent_root);
738 up_write(&fs_info->extent_commit_sem);
740 return 0;
744 * dead roots are old snapshots that need to be deleted. This allocates
745 * a dirty root struct and adds it into the list of dead roots that need to
746 * be deleted
748 int btrfs_add_dead_root(struct btrfs_root *root)
750 spin_lock(&root->fs_info->trans_lock);
751 list_add(&root->root_list, &root->fs_info->dead_roots);
752 spin_unlock(&root->fs_info->trans_lock);
753 return 0;
757 * update all the cowonly tree roots on disk
759 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
760 struct btrfs_root *root)
762 struct btrfs_root *gang[8];
763 struct btrfs_fs_info *fs_info = root->fs_info;
764 int i;
765 int ret;
766 int err = 0;
768 spin_lock(&fs_info->fs_roots_radix_lock);
769 while (1) {
770 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
771 (void **)gang, 0,
772 ARRAY_SIZE(gang),
773 BTRFS_ROOT_TRANS_TAG);
774 if (ret == 0)
775 break;
776 for (i = 0; i < ret; i++) {
777 root = gang[i];
778 radix_tree_tag_clear(&fs_info->fs_roots_radix,
779 (unsigned long)root->root_key.objectid,
780 BTRFS_ROOT_TRANS_TAG);
781 spin_unlock(&fs_info->fs_roots_radix_lock);
783 btrfs_free_log(trans, root);
784 btrfs_update_reloc_root(trans, root);
785 btrfs_orphan_commit_root(trans, root);
787 btrfs_save_ino_cache(root, trans);
789 /* see comments in should_cow_block() */
790 root->force_cow = 0;
791 smp_wmb();
793 if (root->commit_root != root->node) {
794 mutex_lock(&root->fs_commit_mutex);
795 switch_commit_root(root);
796 btrfs_unpin_free_ino(root);
797 mutex_unlock(&root->fs_commit_mutex);
799 btrfs_set_root_node(&root->root_item,
800 root->node);
803 err = btrfs_update_root(trans, fs_info->tree_root,
804 &root->root_key,
805 &root->root_item);
806 spin_lock(&fs_info->fs_roots_radix_lock);
807 if (err)
808 break;
811 spin_unlock(&fs_info->fs_roots_radix_lock);
812 return err;
816 * defrag a given btree. If cacheonly == 1, this won't read from the disk,
817 * otherwise every leaf in the btree is read and defragged.
819 int btrfs_defrag_root(struct btrfs_root *root, int cacheonly)
821 struct btrfs_fs_info *info = root->fs_info;
822 struct btrfs_trans_handle *trans;
823 int ret;
824 unsigned long nr;
826 if (xchg(&root->defrag_running, 1))
827 return 0;
829 while (1) {
830 trans = btrfs_start_transaction(root, 0);
831 if (IS_ERR(trans))
832 return PTR_ERR(trans);
834 ret = btrfs_defrag_leaves(trans, root, cacheonly);
836 nr = trans->blocks_used;
837 btrfs_end_transaction(trans, root);
838 btrfs_btree_balance_dirty(info->tree_root, nr);
839 cond_resched();
841 if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
842 break;
844 root->defrag_running = 0;
845 return ret;
849 * new snapshots need to be created at a very specific time in the
850 * transaction commit. This does the actual creation
852 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
853 struct btrfs_fs_info *fs_info,
854 struct btrfs_pending_snapshot *pending)
856 struct btrfs_key key;
857 struct btrfs_root_item *new_root_item;
858 struct btrfs_root *tree_root = fs_info->tree_root;
859 struct btrfs_root *root = pending->root;
860 struct btrfs_root *parent_root;
861 struct btrfs_block_rsv *rsv;
862 struct inode *parent_inode;
863 struct dentry *parent;
864 struct dentry *dentry;
865 struct extent_buffer *tmp;
866 struct extent_buffer *old;
867 int ret;
868 u64 to_reserve = 0;
869 u64 index = 0;
870 u64 objectid;
871 u64 root_flags;
873 rsv = trans->block_rsv;
875 new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
876 if (!new_root_item) {
877 pending->error = -ENOMEM;
878 goto fail;
881 ret = btrfs_find_free_objectid(tree_root, &objectid);
882 if (ret) {
883 pending->error = ret;
884 goto fail;
887 btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
889 if (to_reserve > 0) {
890 ret = btrfs_block_rsv_add_noflush(root, &pending->block_rsv,
891 to_reserve);
892 if (ret) {
893 pending->error = ret;
894 goto fail;
898 key.objectid = objectid;
899 key.offset = (u64)-1;
900 key.type = BTRFS_ROOT_ITEM_KEY;
902 trans->block_rsv = &pending->block_rsv;
904 dentry = pending->dentry;
905 parent = dget_parent(dentry);
906 parent_inode = parent->d_inode;
907 parent_root = BTRFS_I(parent_inode)->root;
908 record_root_in_trans(trans, parent_root);
911 * insert the directory item
913 ret = btrfs_set_inode_index(parent_inode, &index);
914 BUG_ON(ret);
915 ret = btrfs_insert_dir_item(trans, parent_root,
916 dentry->d_name.name, dentry->d_name.len,
917 parent_inode, &key,
918 BTRFS_FT_DIR, index);
919 if (ret) {
920 pending->error = -EEXIST;
921 dput(parent);
922 goto fail;
925 btrfs_i_size_write(parent_inode, parent_inode->i_size +
926 dentry->d_name.len * 2);
927 ret = btrfs_update_inode(trans, parent_root, parent_inode);
928 BUG_ON(ret);
931 * pull in the delayed directory update
932 * and the delayed inode item
933 * otherwise we corrupt the FS during
934 * snapshot
936 ret = btrfs_run_delayed_items(trans, root);
937 BUG_ON(ret);
939 record_root_in_trans(trans, root);
940 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
941 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
942 btrfs_check_and_init_root_item(new_root_item);
944 root_flags = btrfs_root_flags(new_root_item);
945 if (pending->readonly)
946 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
947 else
948 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
949 btrfs_set_root_flags(new_root_item, root_flags);
951 old = btrfs_lock_root_node(root);
952 btrfs_cow_block(trans, root, old, NULL, 0, &old);
953 btrfs_set_lock_blocking(old);
955 btrfs_copy_root(trans, root, old, &tmp, objectid);
956 btrfs_tree_unlock(old);
957 free_extent_buffer(old);
959 /* see comments in should_cow_block() */
960 root->force_cow = 1;
961 smp_wmb();
963 btrfs_set_root_node(new_root_item, tmp);
964 /* record when the snapshot was created in key.offset */
965 key.offset = trans->transid;
966 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
967 btrfs_tree_unlock(tmp);
968 free_extent_buffer(tmp);
969 BUG_ON(ret);
972 * insert root back/forward references
974 ret = btrfs_add_root_ref(trans, tree_root, objectid,
975 parent_root->root_key.objectid,
976 btrfs_ino(parent_inode), index,
977 dentry->d_name.name, dentry->d_name.len);
978 BUG_ON(ret);
979 dput(parent);
981 key.offset = (u64)-1;
982 pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
983 BUG_ON(IS_ERR(pending->snap));
985 btrfs_reloc_post_snapshot(trans, pending);
986 fail:
987 kfree(new_root_item);
988 trans->block_rsv = rsv;
989 btrfs_block_rsv_release(root, &pending->block_rsv, (u64)-1);
990 return 0;
994 * create all the snapshots we've scheduled for creation
996 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
997 struct btrfs_fs_info *fs_info)
999 struct btrfs_pending_snapshot *pending;
1000 struct list_head *head = &trans->transaction->pending_snapshots;
1002 list_for_each_entry(pending, head, list)
1003 create_pending_snapshot(trans, fs_info, pending);
1004 return 0;
1007 static void update_super_roots(struct btrfs_root *root)
1009 struct btrfs_root_item *root_item;
1010 struct btrfs_super_block *super;
1012 super = root->fs_info->super_copy;
1014 root_item = &root->fs_info->chunk_root->root_item;
1015 super->chunk_root = root_item->bytenr;
1016 super->chunk_root_generation = root_item->generation;
1017 super->chunk_root_level = root_item->level;
1019 root_item = &root->fs_info->tree_root->root_item;
1020 super->root = root_item->bytenr;
1021 super->generation = root_item->generation;
1022 super->root_level = root_item->level;
1023 if (btrfs_test_opt(root, SPACE_CACHE))
1024 super->cache_generation = root_item->generation;
1027 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1029 int ret = 0;
1030 spin_lock(&info->trans_lock);
1031 if (info->running_transaction)
1032 ret = info->running_transaction->in_commit;
1033 spin_unlock(&info->trans_lock);
1034 return ret;
1037 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1039 int ret = 0;
1040 spin_lock(&info->trans_lock);
1041 if (info->running_transaction)
1042 ret = info->running_transaction->blocked;
1043 spin_unlock(&info->trans_lock);
1044 return ret;
1048 * wait for the current transaction commit to start and block subsequent
1049 * transaction joins
1051 static void wait_current_trans_commit_start(struct btrfs_root *root,
1052 struct btrfs_transaction *trans)
1054 wait_event(root->fs_info->transaction_blocked_wait, trans->in_commit);
1058 * wait for the current transaction to start and then become unblocked.
1059 * caller holds ref.
1061 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1062 struct btrfs_transaction *trans)
1064 wait_event(root->fs_info->transaction_wait,
1065 trans->commit_done || (trans->in_commit && !trans->blocked));
1069 * commit transactions asynchronously. once btrfs_commit_transaction_async
1070 * returns, any subsequent transaction will not be allowed to join.
1072 struct btrfs_async_commit {
1073 struct btrfs_trans_handle *newtrans;
1074 struct btrfs_root *root;
1075 struct delayed_work work;
1078 static void do_async_commit(struct work_struct *work)
1080 struct btrfs_async_commit *ac =
1081 container_of(work, struct btrfs_async_commit, work.work);
1083 btrfs_commit_transaction(ac->newtrans, ac->root);
1084 kfree(ac);
1087 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1088 struct btrfs_root *root,
1089 int wait_for_unblock)
1091 struct btrfs_async_commit *ac;
1092 struct btrfs_transaction *cur_trans;
1094 ac = kmalloc(sizeof(*ac), GFP_NOFS);
1095 if (!ac)
1096 return -ENOMEM;
1098 INIT_DELAYED_WORK(&ac->work, do_async_commit);
1099 ac->root = root;
1100 ac->newtrans = btrfs_join_transaction(root);
1101 if (IS_ERR(ac->newtrans)) {
1102 int err = PTR_ERR(ac->newtrans);
1103 kfree(ac);
1104 return err;
1107 /* take transaction reference */
1108 cur_trans = trans->transaction;
1109 atomic_inc(&cur_trans->use_count);
1111 btrfs_end_transaction(trans, root);
1112 schedule_delayed_work(&ac->work, 0);
1114 /* wait for transaction to start and unblock */
1115 if (wait_for_unblock)
1116 wait_current_trans_commit_start_and_unblock(root, cur_trans);
1117 else
1118 wait_current_trans_commit_start(root, cur_trans);
1120 if (current->journal_info == trans)
1121 current->journal_info = NULL;
1123 put_transaction(cur_trans);
1124 return 0;
1128 * btrfs_transaction state sequence:
1129 * in_commit = 0, blocked = 0 (initial)
1130 * in_commit = 1, blocked = 1
1131 * blocked = 0
1132 * commit_done = 1
1134 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1135 struct btrfs_root *root)
1137 unsigned long joined = 0;
1138 struct btrfs_transaction *cur_trans;
1139 struct btrfs_transaction *prev_trans = NULL;
1140 DEFINE_WAIT(wait);
1141 int ret;
1142 int should_grow = 0;
1143 unsigned long now = get_seconds();
1144 int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT);
1146 btrfs_run_ordered_operations(root, 0);
1148 btrfs_trans_release_metadata(trans, root);
1149 trans->block_rsv = NULL;
1151 /* make a pass through all the delayed refs we have so far
1152 * any runnings procs may add more while we are here
1154 ret = btrfs_run_delayed_refs(trans, root, 0);
1155 BUG_ON(ret);
1157 cur_trans = trans->transaction;
1159 * set the flushing flag so procs in this transaction have to
1160 * start sending their work down.
1162 cur_trans->delayed_refs.flushing = 1;
1164 ret = btrfs_run_delayed_refs(trans, root, 0);
1165 BUG_ON(ret);
1167 spin_lock(&cur_trans->commit_lock);
1168 if (cur_trans->in_commit) {
1169 spin_unlock(&cur_trans->commit_lock);
1170 atomic_inc(&cur_trans->use_count);
1171 btrfs_end_transaction(trans, root);
1173 wait_for_commit(root, cur_trans);
1175 put_transaction(cur_trans);
1177 return 0;
1180 trans->transaction->in_commit = 1;
1181 trans->transaction->blocked = 1;
1182 spin_unlock(&cur_trans->commit_lock);
1183 wake_up(&root->fs_info->transaction_blocked_wait);
1185 spin_lock(&root->fs_info->trans_lock);
1186 if (cur_trans->list.prev != &root->fs_info->trans_list) {
1187 prev_trans = list_entry(cur_trans->list.prev,
1188 struct btrfs_transaction, list);
1189 if (!prev_trans->commit_done) {
1190 atomic_inc(&prev_trans->use_count);
1191 spin_unlock(&root->fs_info->trans_lock);
1193 wait_for_commit(root, prev_trans);
1195 put_transaction(prev_trans);
1196 } else {
1197 spin_unlock(&root->fs_info->trans_lock);
1199 } else {
1200 spin_unlock(&root->fs_info->trans_lock);
1203 if (now < cur_trans->start_time || now - cur_trans->start_time < 1)
1204 should_grow = 1;
1206 do {
1207 int snap_pending = 0;
1209 joined = cur_trans->num_joined;
1210 if (!list_empty(&trans->transaction->pending_snapshots))
1211 snap_pending = 1;
1213 WARN_ON(cur_trans != trans->transaction);
1215 if (flush_on_commit || snap_pending) {
1216 btrfs_start_delalloc_inodes(root, 1);
1217 ret = btrfs_wait_ordered_extents(root, 0, 1);
1218 BUG_ON(ret);
1221 ret = btrfs_run_delayed_items(trans, root);
1222 BUG_ON(ret);
1225 * rename don't use btrfs_join_transaction, so, once we
1226 * set the transaction to blocked above, we aren't going
1227 * to get any new ordered operations. We can safely run
1228 * it here and no for sure that nothing new will be added
1229 * to the list
1231 btrfs_run_ordered_operations(root, 1);
1233 prepare_to_wait(&cur_trans->writer_wait, &wait,
1234 TASK_UNINTERRUPTIBLE);
1236 if (atomic_read(&cur_trans->num_writers) > 1)
1237 schedule_timeout(MAX_SCHEDULE_TIMEOUT);
1238 else if (should_grow)
1239 schedule_timeout(1);
1241 finish_wait(&cur_trans->writer_wait, &wait);
1242 } while (atomic_read(&cur_trans->num_writers) > 1 ||
1243 (should_grow && cur_trans->num_joined != joined));
1246 * Ok now we need to make sure to block out any other joins while we
1247 * commit the transaction. We could have started a join before setting
1248 * no_join so make sure to wait for num_writers to == 1 again.
1250 spin_lock(&root->fs_info->trans_lock);
1251 root->fs_info->trans_no_join = 1;
1252 spin_unlock(&root->fs_info->trans_lock);
1253 wait_event(cur_trans->writer_wait,
1254 atomic_read(&cur_trans->num_writers) == 1);
1257 * the reloc mutex makes sure that we stop
1258 * the balancing code from coming in and moving
1259 * extents around in the middle of the commit
1261 mutex_lock(&root->fs_info->reloc_mutex);
1263 ret = btrfs_run_delayed_items(trans, root);
1264 BUG_ON(ret);
1266 ret = create_pending_snapshots(trans, root->fs_info);
1267 BUG_ON(ret);
1269 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1270 BUG_ON(ret);
1273 * make sure none of the code above managed to slip in a
1274 * delayed item
1276 btrfs_assert_delayed_root_empty(root);
1278 WARN_ON(cur_trans != trans->transaction);
1280 btrfs_scrub_pause(root);
1281 /* btrfs_commit_tree_roots is responsible for getting the
1282 * various roots consistent with each other. Every pointer
1283 * in the tree of tree roots has to point to the most up to date
1284 * root for every subvolume and other tree. So, we have to keep
1285 * the tree logging code from jumping in and changing any
1286 * of the trees.
1288 * At this point in the commit, there can't be any tree-log
1289 * writers, but a little lower down we drop the trans mutex
1290 * and let new people in. By holding the tree_log_mutex
1291 * from now until after the super is written, we avoid races
1292 * with the tree-log code.
1294 mutex_lock(&root->fs_info->tree_log_mutex);
1296 ret = commit_fs_roots(trans, root);
1297 BUG_ON(ret);
1299 /* commit_fs_roots gets rid of all the tree log roots, it is now
1300 * safe to free the root of tree log roots
1302 btrfs_free_log_root_tree(trans, root->fs_info);
1304 ret = commit_cowonly_roots(trans, root);
1305 BUG_ON(ret);
1307 btrfs_prepare_extent_commit(trans, root);
1309 cur_trans = root->fs_info->running_transaction;
1311 btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1312 root->fs_info->tree_root->node);
1313 switch_commit_root(root->fs_info->tree_root);
1315 btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1316 root->fs_info->chunk_root->node);
1317 switch_commit_root(root->fs_info->chunk_root);
1319 update_super_roots(root);
1321 if (!root->fs_info->log_root_recovering) {
1322 btrfs_set_super_log_root(root->fs_info->super_copy, 0);
1323 btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
1326 memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
1327 sizeof(*root->fs_info->super_copy));
1329 trans->transaction->blocked = 0;
1330 spin_lock(&root->fs_info->trans_lock);
1331 root->fs_info->running_transaction = NULL;
1332 root->fs_info->trans_no_join = 0;
1333 spin_unlock(&root->fs_info->trans_lock);
1334 mutex_unlock(&root->fs_info->reloc_mutex);
1336 wake_up(&root->fs_info->transaction_wait);
1338 ret = btrfs_write_and_wait_transaction(trans, root);
1339 BUG_ON(ret);
1340 write_ctree_super(trans, root, 0);
1343 * the super is written, we can safely allow the tree-loggers
1344 * to go about their business
1346 mutex_unlock(&root->fs_info->tree_log_mutex);
1348 btrfs_finish_extent_commit(trans, root);
1350 cur_trans->commit_done = 1;
1352 root->fs_info->last_trans_committed = cur_trans->transid;
1354 wake_up(&cur_trans->commit_wait);
1356 spin_lock(&root->fs_info->trans_lock);
1357 list_del_init(&cur_trans->list);
1358 spin_unlock(&root->fs_info->trans_lock);
1360 put_transaction(cur_trans);
1361 put_transaction(cur_trans);
1363 trace_btrfs_transaction_commit(root);
1365 btrfs_scrub_continue(root);
1367 if (current->journal_info == trans)
1368 current->journal_info = NULL;
1370 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1372 if (current != root->fs_info->transaction_kthread)
1373 btrfs_run_delayed_iputs(root);
1375 return ret;
1379 * interface function to delete all the snapshots we have scheduled for deletion
1381 int btrfs_clean_old_snapshots(struct btrfs_root *root)
1383 LIST_HEAD(list);
1384 struct btrfs_fs_info *fs_info = root->fs_info;
1386 spin_lock(&fs_info->trans_lock);
1387 list_splice_init(&fs_info->dead_roots, &list);
1388 spin_unlock(&fs_info->trans_lock);
1390 while (!list_empty(&list)) {
1391 root = list_entry(list.next, struct btrfs_root, root_list);
1392 list_del(&root->root_list);
1394 btrfs_kill_all_delayed_nodes(root);
1396 if (btrfs_header_backref_rev(root->node) <
1397 BTRFS_MIXED_BACKREF_REV)
1398 btrfs_drop_snapshot(root, NULL, 0, 0);
1399 else
1400 btrfs_drop_snapshot(root, NULL, 1, 0);
1402 return 0;