spi-topcliff-pch: supports a spi mode setup and bit order setup by IO control
[zen-stable.git] / fs / ext2 / inode.c
blob740cad8dcd8dc1eac9b56eb51134a8e2cc478ade
1 /*
2 * linux/fs/ext2/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
9 * from
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@dcs.ed.ac.uk), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
22 * Assorted race fixes, rewrite of ext2_get_block() by Al Viro, 2000
25 #include <linux/time.h>
26 #include <linux/highuid.h>
27 #include <linux/pagemap.h>
28 #include <linux/quotaops.h>
29 #include <linux/writeback.h>
30 #include <linux/buffer_head.h>
31 #include <linux/mpage.h>
32 #include <linux/fiemap.h>
33 #include <linux/namei.h>
34 #include "ext2.h"
35 #include "acl.h"
36 #include "xip.h"
38 static int __ext2_write_inode(struct inode *inode, int do_sync);
41 * Test whether an inode is a fast symlink.
43 static inline int ext2_inode_is_fast_symlink(struct inode *inode)
45 int ea_blocks = EXT2_I(inode)->i_file_acl ?
46 (inode->i_sb->s_blocksize >> 9) : 0;
48 return (S_ISLNK(inode->i_mode) &&
49 inode->i_blocks - ea_blocks == 0);
52 static void ext2_truncate_blocks(struct inode *inode, loff_t offset);
54 static void ext2_write_failed(struct address_space *mapping, loff_t to)
56 struct inode *inode = mapping->host;
58 if (to > inode->i_size) {
59 truncate_pagecache(inode, to, inode->i_size);
60 ext2_truncate_blocks(inode, inode->i_size);
65 * Called at the last iput() if i_nlink is zero.
67 void ext2_evict_inode(struct inode * inode)
69 struct ext2_block_alloc_info *rsv;
70 int want_delete = 0;
72 if (!inode->i_nlink && !is_bad_inode(inode)) {
73 want_delete = 1;
74 dquot_initialize(inode);
75 } else {
76 dquot_drop(inode);
79 truncate_inode_pages(&inode->i_data, 0);
81 if (want_delete) {
82 /* set dtime */
83 EXT2_I(inode)->i_dtime = get_seconds();
84 mark_inode_dirty(inode);
85 __ext2_write_inode(inode, inode_needs_sync(inode));
86 /* truncate to 0 */
87 inode->i_size = 0;
88 if (inode->i_blocks)
89 ext2_truncate_blocks(inode, 0);
92 invalidate_inode_buffers(inode);
93 end_writeback(inode);
95 ext2_discard_reservation(inode);
96 rsv = EXT2_I(inode)->i_block_alloc_info;
97 EXT2_I(inode)->i_block_alloc_info = NULL;
98 if (unlikely(rsv))
99 kfree(rsv);
101 if (want_delete)
102 ext2_free_inode(inode);
105 typedef struct {
106 __le32 *p;
107 __le32 key;
108 struct buffer_head *bh;
109 } Indirect;
111 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
113 p->key = *(p->p = v);
114 p->bh = bh;
117 static inline int verify_chain(Indirect *from, Indirect *to)
119 while (from <= to && from->key == *from->p)
120 from++;
121 return (from > to);
125 * ext2_block_to_path - parse the block number into array of offsets
126 * @inode: inode in question (we are only interested in its superblock)
127 * @i_block: block number to be parsed
128 * @offsets: array to store the offsets in
129 * @boundary: set this non-zero if the referred-to block is likely to be
130 * followed (on disk) by an indirect block.
131 * To store the locations of file's data ext2 uses a data structure common
132 * for UNIX filesystems - tree of pointers anchored in the inode, with
133 * data blocks at leaves and indirect blocks in intermediate nodes.
134 * This function translates the block number into path in that tree -
135 * return value is the path length and @offsets[n] is the offset of
136 * pointer to (n+1)th node in the nth one. If @block is out of range
137 * (negative or too large) warning is printed and zero returned.
139 * Note: function doesn't find node addresses, so no IO is needed. All
140 * we need to know is the capacity of indirect blocks (taken from the
141 * inode->i_sb).
145 * Portability note: the last comparison (check that we fit into triple
146 * indirect block) is spelled differently, because otherwise on an
147 * architecture with 32-bit longs and 8Kb pages we might get into trouble
148 * if our filesystem had 8Kb blocks. We might use long long, but that would
149 * kill us on x86. Oh, well, at least the sign propagation does not matter -
150 * i_block would have to be negative in the very beginning, so we would not
151 * get there at all.
154 static int ext2_block_to_path(struct inode *inode,
155 long i_block, int offsets[4], int *boundary)
157 int ptrs = EXT2_ADDR_PER_BLOCK(inode->i_sb);
158 int ptrs_bits = EXT2_ADDR_PER_BLOCK_BITS(inode->i_sb);
159 const long direct_blocks = EXT2_NDIR_BLOCKS,
160 indirect_blocks = ptrs,
161 double_blocks = (1 << (ptrs_bits * 2));
162 int n = 0;
163 int final = 0;
165 if (i_block < 0) {
166 ext2_msg(inode->i_sb, KERN_WARNING,
167 "warning: %s: block < 0", __func__);
168 } else if (i_block < direct_blocks) {
169 offsets[n++] = i_block;
170 final = direct_blocks;
171 } else if ( (i_block -= direct_blocks) < indirect_blocks) {
172 offsets[n++] = EXT2_IND_BLOCK;
173 offsets[n++] = i_block;
174 final = ptrs;
175 } else if ((i_block -= indirect_blocks) < double_blocks) {
176 offsets[n++] = EXT2_DIND_BLOCK;
177 offsets[n++] = i_block >> ptrs_bits;
178 offsets[n++] = i_block & (ptrs - 1);
179 final = ptrs;
180 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
181 offsets[n++] = EXT2_TIND_BLOCK;
182 offsets[n++] = i_block >> (ptrs_bits * 2);
183 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
184 offsets[n++] = i_block & (ptrs - 1);
185 final = ptrs;
186 } else {
187 ext2_msg(inode->i_sb, KERN_WARNING,
188 "warning: %s: block is too big", __func__);
190 if (boundary)
191 *boundary = final - 1 - (i_block & (ptrs - 1));
193 return n;
197 * ext2_get_branch - read the chain of indirect blocks leading to data
198 * @inode: inode in question
199 * @depth: depth of the chain (1 - direct pointer, etc.)
200 * @offsets: offsets of pointers in inode/indirect blocks
201 * @chain: place to store the result
202 * @err: here we store the error value
204 * Function fills the array of triples <key, p, bh> and returns %NULL
205 * if everything went OK or the pointer to the last filled triple
206 * (incomplete one) otherwise. Upon the return chain[i].key contains
207 * the number of (i+1)-th block in the chain (as it is stored in memory,
208 * i.e. little-endian 32-bit), chain[i].p contains the address of that
209 * number (it points into struct inode for i==0 and into the bh->b_data
210 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
211 * block for i>0 and NULL for i==0. In other words, it holds the block
212 * numbers of the chain, addresses they were taken from (and where we can
213 * verify that chain did not change) and buffer_heads hosting these
214 * numbers.
216 * Function stops when it stumbles upon zero pointer (absent block)
217 * (pointer to last triple returned, *@err == 0)
218 * or when it gets an IO error reading an indirect block
219 * (ditto, *@err == -EIO)
220 * or when it notices that chain had been changed while it was reading
221 * (ditto, *@err == -EAGAIN)
222 * or when it reads all @depth-1 indirect blocks successfully and finds
223 * the whole chain, all way to the data (returns %NULL, *err == 0).
225 static Indirect *ext2_get_branch(struct inode *inode,
226 int depth,
227 int *offsets,
228 Indirect chain[4],
229 int *err)
231 struct super_block *sb = inode->i_sb;
232 Indirect *p = chain;
233 struct buffer_head *bh;
235 *err = 0;
236 /* i_data is not going away, no lock needed */
237 add_chain (chain, NULL, EXT2_I(inode)->i_data + *offsets);
238 if (!p->key)
239 goto no_block;
240 while (--depth) {
241 bh = sb_bread(sb, le32_to_cpu(p->key));
242 if (!bh)
243 goto failure;
244 read_lock(&EXT2_I(inode)->i_meta_lock);
245 if (!verify_chain(chain, p))
246 goto changed;
247 add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
248 read_unlock(&EXT2_I(inode)->i_meta_lock);
249 if (!p->key)
250 goto no_block;
252 return NULL;
254 changed:
255 read_unlock(&EXT2_I(inode)->i_meta_lock);
256 brelse(bh);
257 *err = -EAGAIN;
258 goto no_block;
259 failure:
260 *err = -EIO;
261 no_block:
262 return p;
266 * ext2_find_near - find a place for allocation with sufficient locality
267 * @inode: owner
268 * @ind: descriptor of indirect block.
270 * This function returns the preferred place for block allocation.
271 * It is used when heuristic for sequential allocation fails.
272 * Rules are:
273 * + if there is a block to the left of our position - allocate near it.
274 * + if pointer will live in indirect block - allocate near that block.
275 * + if pointer will live in inode - allocate in the same cylinder group.
277 * In the latter case we colour the starting block by the callers PID to
278 * prevent it from clashing with concurrent allocations for a different inode
279 * in the same block group. The PID is used here so that functionally related
280 * files will be close-by on-disk.
282 * Caller must make sure that @ind is valid and will stay that way.
285 static ext2_fsblk_t ext2_find_near(struct inode *inode, Indirect *ind)
287 struct ext2_inode_info *ei = EXT2_I(inode);
288 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
289 __le32 *p;
290 ext2_fsblk_t bg_start;
291 ext2_fsblk_t colour;
293 /* Try to find previous block */
294 for (p = ind->p - 1; p >= start; p--)
295 if (*p)
296 return le32_to_cpu(*p);
298 /* No such thing, so let's try location of indirect block */
299 if (ind->bh)
300 return ind->bh->b_blocknr;
303 * It is going to be referred from inode itself? OK, just put it into
304 * the same cylinder group then.
306 bg_start = ext2_group_first_block_no(inode->i_sb, ei->i_block_group);
307 colour = (current->pid % 16) *
308 (EXT2_BLOCKS_PER_GROUP(inode->i_sb) / 16);
309 return bg_start + colour;
313 * ext2_find_goal - find a preferred place for allocation.
314 * @inode: owner
315 * @block: block we want
316 * @partial: pointer to the last triple within a chain
318 * Returns preferred place for a block (the goal).
321 static inline ext2_fsblk_t ext2_find_goal(struct inode *inode, long block,
322 Indirect *partial)
324 struct ext2_block_alloc_info *block_i;
326 block_i = EXT2_I(inode)->i_block_alloc_info;
329 * try the heuristic for sequential allocation,
330 * failing that at least try to get decent locality.
332 if (block_i && (block == block_i->last_alloc_logical_block + 1)
333 && (block_i->last_alloc_physical_block != 0)) {
334 return block_i->last_alloc_physical_block + 1;
337 return ext2_find_near(inode, partial);
341 * ext2_blks_to_allocate: Look up the block map and count the number
342 * of direct blocks need to be allocated for the given branch.
344 * @branch: chain of indirect blocks
345 * @k: number of blocks need for indirect blocks
346 * @blks: number of data blocks to be mapped.
347 * @blocks_to_boundary: the offset in the indirect block
349 * return the total number of blocks to be allocate, including the
350 * direct and indirect blocks.
352 static int
353 ext2_blks_to_allocate(Indirect * branch, int k, unsigned long blks,
354 int blocks_to_boundary)
356 unsigned long count = 0;
359 * Simple case, [t,d]Indirect block(s) has not allocated yet
360 * then it's clear blocks on that path have not allocated
362 if (k > 0) {
363 /* right now don't hanel cross boundary allocation */
364 if (blks < blocks_to_boundary + 1)
365 count += blks;
366 else
367 count += blocks_to_boundary + 1;
368 return count;
371 count++;
372 while (count < blks && count <= blocks_to_boundary
373 && le32_to_cpu(*(branch[0].p + count)) == 0) {
374 count++;
376 return count;
380 * ext2_alloc_blocks: multiple allocate blocks needed for a branch
381 * @indirect_blks: the number of blocks need to allocate for indirect
382 * blocks
384 * @new_blocks: on return it will store the new block numbers for
385 * the indirect blocks(if needed) and the first direct block,
386 * @blks: on return it will store the total number of allocated
387 * direct blocks
389 static int ext2_alloc_blocks(struct inode *inode,
390 ext2_fsblk_t goal, int indirect_blks, int blks,
391 ext2_fsblk_t new_blocks[4], int *err)
393 int target, i;
394 unsigned long count = 0;
395 int index = 0;
396 ext2_fsblk_t current_block = 0;
397 int ret = 0;
400 * Here we try to allocate the requested multiple blocks at once,
401 * on a best-effort basis.
402 * To build a branch, we should allocate blocks for
403 * the indirect blocks(if not allocated yet), and at least
404 * the first direct block of this branch. That's the
405 * minimum number of blocks need to allocate(required)
407 target = blks + indirect_blks;
409 while (1) {
410 count = target;
411 /* allocating blocks for indirect blocks and direct blocks */
412 current_block = ext2_new_blocks(inode,goal,&count,err);
413 if (*err)
414 goto failed_out;
416 target -= count;
417 /* allocate blocks for indirect blocks */
418 while (index < indirect_blks && count) {
419 new_blocks[index++] = current_block++;
420 count--;
423 if (count > 0)
424 break;
427 /* save the new block number for the first direct block */
428 new_blocks[index] = current_block;
430 /* total number of blocks allocated for direct blocks */
431 ret = count;
432 *err = 0;
433 return ret;
434 failed_out:
435 for (i = 0; i <index; i++)
436 ext2_free_blocks(inode, new_blocks[i], 1);
437 if (index)
438 mark_inode_dirty(inode);
439 return ret;
443 * ext2_alloc_branch - allocate and set up a chain of blocks.
444 * @inode: owner
445 * @num: depth of the chain (number of blocks to allocate)
446 * @offsets: offsets (in the blocks) to store the pointers to next.
447 * @branch: place to store the chain in.
449 * This function allocates @num blocks, zeroes out all but the last one,
450 * links them into chain and (if we are synchronous) writes them to disk.
451 * In other words, it prepares a branch that can be spliced onto the
452 * inode. It stores the information about that chain in the branch[], in
453 * the same format as ext2_get_branch() would do. We are calling it after
454 * we had read the existing part of chain and partial points to the last
455 * triple of that (one with zero ->key). Upon the exit we have the same
456 * picture as after the successful ext2_get_block(), except that in one
457 * place chain is disconnected - *branch->p is still zero (we did not
458 * set the last link), but branch->key contains the number that should
459 * be placed into *branch->p to fill that gap.
461 * If allocation fails we free all blocks we've allocated (and forget
462 * their buffer_heads) and return the error value the from failed
463 * ext2_alloc_block() (normally -ENOSPC). Otherwise we set the chain
464 * as described above and return 0.
467 static int ext2_alloc_branch(struct inode *inode,
468 int indirect_blks, int *blks, ext2_fsblk_t goal,
469 int *offsets, Indirect *branch)
471 int blocksize = inode->i_sb->s_blocksize;
472 int i, n = 0;
473 int err = 0;
474 struct buffer_head *bh;
475 int num;
476 ext2_fsblk_t new_blocks[4];
477 ext2_fsblk_t current_block;
479 num = ext2_alloc_blocks(inode, goal, indirect_blks,
480 *blks, new_blocks, &err);
481 if (err)
482 return err;
484 branch[0].key = cpu_to_le32(new_blocks[0]);
486 * metadata blocks and data blocks are allocated.
488 for (n = 1; n <= indirect_blks; n++) {
490 * Get buffer_head for parent block, zero it out
491 * and set the pointer to new one, then send
492 * parent to disk.
494 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
495 branch[n].bh = bh;
496 lock_buffer(bh);
497 memset(bh->b_data, 0, blocksize);
498 branch[n].p = (__le32 *) bh->b_data + offsets[n];
499 branch[n].key = cpu_to_le32(new_blocks[n]);
500 *branch[n].p = branch[n].key;
501 if ( n == indirect_blks) {
502 current_block = new_blocks[n];
504 * End of chain, update the last new metablock of
505 * the chain to point to the new allocated
506 * data blocks numbers
508 for (i=1; i < num; i++)
509 *(branch[n].p + i) = cpu_to_le32(++current_block);
511 set_buffer_uptodate(bh);
512 unlock_buffer(bh);
513 mark_buffer_dirty_inode(bh, inode);
514 /* We used to sync bh here if IS_SYNC(inode).
515 * But we now rely upon generic_write_sync()
516 * and b_inode_buffers. But not for directories.
518 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
519 sync_dirty_buffer(bh);
521 *blks = num;
522 return err;
526 * ext2_splice_branch - splice the allocated branch onto inode.
527 * @inode: owner
528 * @block: (logical) number of block we are adding
529 * @where: location of missing link
530 * @num: number of indirect blocks we are adding
531 * @blks: number of direct blocks we are adding
533 * This function fills the missing link and does all housekeeping needed in
534 * inode (->i_blocks, etc.). In case of success we end up with the full
535 * chain to new block and return 0.
537 static void ext2_splice_branch(struct inode *inode,
538 long block, Indirect *where, int num, int blks)
540 int i;
541 struct ext2_block_alloc_info *block_i;
542 ext2_fsblk_t current_block;
544 block_i = EXT2_I(inode)->i_block_alloc_info;
546 /* XXX LOCKING probably should have i_meta_lock ?*/
547 /* That's it */
549 *where->p = where->key;
552 * Update the host buffer_head or inode to point to more just allocated
553 * direct blocks blocks
555 if (num == 0 && blks > 1) {
556 current_block = le32_to_cpu(where->key) + 1;
557 for (i = 1; i < blks; i++)
558 *(where->p + i ) = cpu_to_le32(current_block++);
562 * update the most recently allocated logical & physical block
563 * in i_block_alloc_info, to assist find the proper goal block for next
564 * allocation
566 if (block_i) {
567 block_i->last_alloc_logical_block = block + blks - 1;
568 block_i->last_alloc_physical_block =
569 le32_to_cpu(where[num].key) + blks - 1;
572 /* We are done with atomic stuff, now do the rest of housekeeping */
574 /* had we spliced it onto indirect block? */
575 if (where->bh)
576 mark_buffer_dirty_inode(where->bh, inode);
578 inode->i_ctime = CURRENT_TIME_SEC;
579 mark_inode_dirty(inode);
583 * Allocation strategy is simple: if we have to allocate something, we will
584 * have to go the whole way to leaf. So let's do it before attaching anything
585 * to tree, set linkage between the newborn blocks, write them if sync is
586 * required, recheck the path, free and repeat if check fails, otherwise
587 * set the last missing link (that will protect us from any truncate-generated
588 * removals - all blocks on the path are immune now) and possibly force the
589 * write on the parent block.
590 * That has a nice additional property: no special recovery from the failed
591 * allocations is needed - we simply release blocks and do not touch anything
592 * reachable from inode.
594 * `handle' can be NULL if create == 0.
596 * return > 0, # of blocks mapped or allocated.
597 * return = 0, if plain lookup failed.
598 * return < 0, error case.
600 static int ext2_get_blocks(struct inode *inode,
601 sector_t iblock, unsigned long maxblocks,
602 struct buffer_head *bh_result,
603 int create)
605 int err = -EIO;
606 int offsets[4];
607 Indirect chain[4];
608 Indirect *partial;
609 ext2_fsblk_t goal;
610 int indirect_blks;
611 int blocks_to_boundary = 0;
612 int depth;
613 struct ext2_inode_info *ei = EXT2_I(inode);
614 int count = 0;
615 ext2_fsblk_t first_block = 0;
617 depth = ext2_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
619 if (depth == 0)
620 return (err);
622 partial = ext2_get_branch(inode, depth, offsets, chain, &err);
623 /* Simplest case - block found, no allocation needed */
624 if (!partial) {
625 first_block = le32_to_cpu(chain[depth - 1].key);
626 clear_buffer_new(bh_result); /* What's this do? */
627 count++;
628 /*map more blocks*/
629 while (count < maxblocks && count <= blocks_to_boundary) {
630 ext2_fsblk_t blk;
632 if (!verify_chain(chain, chain + depth - 1)) {
634 * Indirect block might be removed by
635 * truncate while we were reading it.
636 * Handling of that case: forget what we've
637 * got now, go to reread.
639 err = -EAGAIN;
640 count = 0;
641 break;
643 blk = le32_to_cpu(*(chain[depth-1].p + count));
644 if (blk == first_block + count)
645 count++;
646 else
647 break;
649 if (err != -EAGAIN)
650 goto got_it;
653 /* Next simple case - plain lookup or failed read of indirect block */
654 if (!create || err == -EIO)
655 goto cleanup;
657 mutex_lock(&ei->truncate_mutex);
659 * If the indirect block is missing while we are reading
660 * the chain(ext2_get_branch() returns -EAGAIN err), or
661 * if the chain has been changed after we grab the semaphore,
662 * (either because another process truncated this branch, or
663 * another get_block allocated this branch) re-grab the chain to see if
664 * the request block has been allocated or not.
666 * Since we already block the truncate/other get_block
667 * at this point, we will have the current copy of the chain when we
668 * splice the branch into the tree.
670 if (err == -EAGAIN || !verify_chain(chain, partial)) {
671 while (partial > chain) {
672 brelse(partial->bh);
673 partial--;
675 partial = ext2_get_branch(inode, depth, offsets, chain, &err);
676 if (!partial) {
677 count++;
678 mutex_unlock(&ei->truncate_mutex);
679 if (err)
680 goto cleanup;
681 clear_buffer_new(bh_result);
682 goto got_it;
687 * Okay, we need to do block allocation. Lazily initialize the block
688 * allocation info here if necessary
690 if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
691 ext2_init_block_alloc_info(inode);
693 goal = ext2_find_goal(inode, iblock, partial);
695 /* the number of blocks need to allocate for [d,t]indirect blocks */
696 indirect_blks = (chain + depth) - partial - 1;
698 * Next look up the indirect map to count the totoal number of
699 * direct blocks to allocate for this branch.
701 count = ext2_blks_to_allocate(partial, indirect_blks,
702 maxblocks, blocks_to_boundary);
704 * XXX ???? Block out ext2_truncate while we alter the tree
706 err = ext2_alloc_branch(inode, indirect_blks, &count, goal,
707 offsets + (partial - chain), partial);
709 if (err) {
710 mutex_unlock(&ei->truncate_mutex);
711 goto cleanup;
714 if (ext2_use_xip(inode->i_sb)) {
716 * we need to clear the block
718 err = ext2_clear_xip_target (inode,
719 le32_to_cpu(chain[depth-1].key));
720 if (err) {
721 mutex_unlock(&ei->truncate_mutex);
722 goto cleanup;
726 ext2_splice_branch(inode, iblock, partial, indirect_blks, count);
727 mutex_unlock(&ei->truncate_mutex);
728 set_buffer_new(bh_result);
729 got_it:
730 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
731 if (count > blocks_to_boundary)
732 set_buffer_boundary(bh_result);
733 err = count;
734 /* Clean up and exit */
735 partial = chain + depth - 1; /* the whole chain */
736 cleanup:
737 while (partial > chain) {
738 brelse(partial->bh);
739 partial--;
741 return err;
744 int ext2_get_block(struct inode *inode, sector_t iblock, struct buffer_head *bh_result, int create)
746 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
747 int ret = ext2_get_blocks(inode, iblock, max_blocks,
748 bh_result, create);
749 if (ret > 0) {
750 bh_result->b_size = (ret << inode->i_blkbits);
751 ret = 0;
753 return ret;
757 int ext2_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
758 u64 start, u64 len)
760 return generic_block_fiemap(inode, fieinfo, start, len,
761 ext2_get_block);
764 static int ext2_writepage(struct page *page, struct writeback_control *wbc)
766 return block_write_full_page(page, ext2_get_block, wbc);
769 static int ext2_readpage(struct file *file, struct page *page)
771 return mpage_readpage(page, ext2_get_block);
774 static int
775 ext2_readpages(struct file *file, struct address_space *mapping,
776 struct list_head *pages, unsigned nr_pages)
778 return mpage_readpages(mapping, pages, nr_pages, ext2_get_block);
781 static int
782 ext2_write_begin(struct file *file, struct address_space *mapping,
783 loff_t pos, unsigned len, unsigned flags,
784 struct page **pagep, void **fsdata)
786 int ret;
788 ret = block_write_begin(mapping, pos, len, flags, pagep,
789 ext2_get_block);
790 if (ret < 0)
791 ext2_write_failed(mapping, pos + len);
792 return ret;
795 static int ext2_write_end(struct file *file, struct address_space *mapping,
796 loff_t pos, unsigned len, unsigned copied,
797 struct page *page, void *fsdata)
799 int ret;
801 ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
802 if (ret < len)
803 ext2_write_failed(mapping, pos + len);
804 return ret;
807 static int
808 ext2_nobh_write_begin(struct file *file, struct address_space *mapping,
809 loff_t pos, unsigned len, unsigned flags,
810 struct page **pagep, void **fsdata)
812 int ret;
814 ret = nobh_write_begin(mapping, pos, len, flags, pagep, fsdata,
815 ext2_get_block);
816 if (ret < 0)
817 ext2_write_failed(mapping, pos + len);
818 return ret;
821 static int ext2_nobh_writepage(struct page *page,
822 struct writeback_control *wbc)
824 return nobh_writepage(page, ext2_get_block, wbc);
827 static sector_t ext2_bmap(struct address_space *mapping, sector_t block)
829 return generic_block_bmap(mapping,block,ext2_get_block);
832 static ssize_t
833 ext2_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
834 loff_t offset, unsigned long nr_segs)
836 struct file *file = iocb->ki_filp;
837 struct address_space *mapping = file->f_mapping;
838 struct inode *inode = mapping->host;
839 ssize_t ret;
841 ret = blockdev_direct_IO(rw, iocb, inode, iov, offset, nr_segs,
842 ext2_get_block);
843 if (ret < 0 && (rw & WRITE))
844 ext2_write_failed(mapping, offset + iov_length(iov, nr_segs));
845 return ret;
848 static int
849 ext2_writepages(struct address_space *mapping, struct writeback_control *wbc)
851 return mpage_writepages(mapping, wbc, ext2_get_block);
854 const struct address_space_operations ext2_aops = {
855 .readpage = ext2_readpage,
856 .readpages = ext2_readpages,
857 .writepage = ext2_writepage,
858 .write_begin = ext2_write_begin,
859 .write_end = ext2_write_end,
860 .bmap = ext2_bmap,
861 .direct_IO = ext2_direct_IO,
862 .writepages = ext2_writepages,
863 .migratepage = buffer_migrate_page,
864 .is_partially_uptodate = block_is_partially_uptodate,
865 .error_remove_page = generic_error_remove_page,
868 const struct address_space_operations ext2_aops_xip = {
869 .bmap = ext2_bmap,
870 .get_xip_mem = ext2_get_xip_mem,
873 const struct address_space_operations ext2_nobh_aops = {
874 .readpage = ext2_readpage,
875 .readpages = ext2_readpages,
876 .writepage = ext2_nobh_writepage,
877 .write_begin = ext2_nobh_write_begin,
878 .write_end = nobh_write_end,
879 .bmap = ext2_bmap,
880 .direct_IO = ext2_direct_IO,
881 .writepages = ext2_writepages,
882 .migratepage = buffer_migrate_page,
883 .error_remove_page = generic_error_remove_page,
887 * Probably it should be a library function... search for first non-zero word
888 * or memcmp with zero_page, whatever is better for particular architecture.
889 * Linus?
891 static inline int all_zeroes(__le32 *p, __le32 *q)
893 while (p < q)
894 if (*p++)
895 return 0;
896 return 1;
900 * ext2_find_shared - find the indirect blocks for partial truncation.
901 * @inode: inode in question
902 * @depth: depth of the affected branch
903 * @offsets: offsets of pointers in that branch (see ext2_block_to_path)
904 * @chain: place to store the pointers to partial indirect blocks
905 * @top: place to the (detached) top of branch
907 * This is a helper function used by ext2_truncate().
909 * When we do truncate() we may have to clean the ends of several indirect
910 * blocks but leave the blocks themselves alive. Block is partially
911 * truncated if some data below the new i_size is referred from it (and
912 * it is on the path to the first completely truncated data block, indeed).
913 * We have to free the top of that path along with everything to the right
914 * of the path. Since no allocation past the truncation point is possible
915 * until ext2_truncate() finishes, we may safely do the latter, but top
916 * of branch may require special attention - pageout below the truncation
917 * point might try to populate it.
919 * We atomically detach the top of branch from the tree, store the block
920 * number of its root in *@top, pointers to buffer_heads of partially
921 * truncated blocks - in @chain[].bh and pointers to their last elements
922 * that should not be removed - in @chain[].p. Return value is the pointer
923 * to last filled element of @chain.
925 * The work left to caller to do the actual freeing of subtrees:
926 * a) free the subtree starting from *@top
927 * b) free the subtrees whose roots are stored in
928 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
929 * c) free the subtrees growing from the inode past the @chain[0].p
930 * (no partially truncated stuff there).
933 static Indirect *ext2_find_shared(struct inode *inode,
934 int depth,
935 int offsets[4],
936 Indirect chain[4],
937 __le32 *top)
939 Indirect *partial, *p;
940 int k, err;
942 *top = 0;
943 for (k = depth; k > 1 && !offsets[k-1]; k--)
945 partial = ext2_get_branch(inode, k, offsets, chain, &err);
946 if (!partial)
947 partial = chain + k-1;
949 * If the branch acquired continuation since we've looked at it -
950 * fine, it should all survive and (new) top doesn't belong to us.
952 write_lock(&EXT2_I(inode)->i_meta_lock);
953 if (!partial->key && *partial->p) {
954 write_unlock(&EXT2_I(inode)->i_meta_lock);
955 goto no_top;
957 for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
960 * OK, we've found the last block that must survive. The rest of our
961 * branch should be detached before unlocking. However, if that rest
962 * of branch is all ours and does not grow immediately from the inode
963 * it's easier to cheat and just decrement partial->p.
965 if (p == chain + k - 1 && p > chain) {
966 p->p--;
967 } else {
968 *top = *p->p;
969 *p->p = 0;
971 write_unlock(&EXT2_I(inode)->i_meta_lock);
973 while(partial > p)
975 brelse(partial->bh);
976 partial--;
978 no_top:
979 return partial;
983 * ext2_free_data - free a list of data blocks
984 * @inode: inode we are dealing with
985 * @p: array of block numbers
986 * @q: points immediately past the end of array
988 * We are freeing all blocks referred from that array (numbers are
989 * stored as little-endian 32-bit) and updating @inode->i_blocks
990 * appropriately.
992 static inline void ext2_free_data(struct inode *inode, __le32 *p, __le32 *q)
994 unsigned long block_to_free = 0, count = 0;
995 unsigned long nr;
997 for ( ; p < q ; p++) {
998 nr = le32_to_cpu(*p);
999 if (nr) {
1000 *p = 0;
1001 /* accumulate blocks to free if they're contiguous */
1002 if (count == 0)
1003 goto free_this;
1004 else if (block_to_free == nr - count)
1005 count++;
1006 else {
1007 ext2_free_blocks (inode, block_to_free, count);
1008 mark_inode_dirty(inode);
1009 free_this:
1010 block_to_free = nr;
1011 count = 1;
1015 if (count > 0) {
1016 ext2_free_blocks (inode, block_to_free, count);
1017 mark_inode_dirty(inode);
1022 * ext2_free_branches - free an array of branches
1023 * @inode: inode we are dealing with
1024 * @p: array of block numbers
1025 * @q: pointer immediately past the end of array
1026 * @depth: depth of the branches to free
1028 * We are freeing all blocks referred from these branches (numbers are
1029 * stored as little-endian 32-bit) and updating @inode->i_blocks
1030 * appropriately.
1032 static void ext2_free_branches(struct inode *inode, __le32 *p, __le32 *q, int depth)
1034 struct buffer_head * bh;
1035 unsigned long nr;
1037 if (depth--) {
1038 int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
1039 for ( ; p < q ; p++) {
1040 nr = le32_to_cpu(*p);
1041 if (!nr)
1042 continue;
1043 *p = 0;
1044 bh = sb_bread(inode->i_sb, nr);
1046 * A read failure? Report error and clear slot
1047 * (should be rare).
1049 if (!bh) {
1050 ext2_error(inode->i_sb, "ext2_free_branches",
1051 "Read failure, inode=%ld, block=%ld",
1052 inode->i_ino, nr);
1053 continue;
1055 ext2_free_branches(inode,
1056 (__le32*)bh->b_data,
1057 (__le32*)bh->b_data + addr_per_block,
1058 depth);
1059 bforget(bh);
1060 ext2_free_blocks(inode, nr, 1);
1061 mark_inode_dirty(inode);
1063 } else
1064 ext2_free_data(inode, p, q);
1067 static void __ext2_truncate_blocks(struct inode *inode, loff_t offset)
1069 __le32 *i_data = EXT2_I(inode)->i_data;
1070 struct ext2_inode_info *ei = EXT2_I(inode);
1071 int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
1072 int offsets[4];
1073 Indirect chain[4];
1074 Indirect *partial;
1075 __le32 nr = 0;
1076 int n;
1077 long iblock;
1078 unsigned blocksize;
1079 blocksize = inode->i_sb->s_blocksize;
1080 iblock = (offset + blocksize-1) >> EXT2_BLOCK_SIZE_BITS(inode->i_sb);
1082 n = ext2_block_to_path(inode, iblock, offsets, NULL);
1083 if (n == 0)
1084 return;
1087 * From here we block out all ext2_get_block() callers who want to
1088 * modify the block allocation tree.
1090 mutex_lock(&ei->truncate_mutex);
1092 if (n == 1) {
1093 ext2_free_data(inode, i_data+offsets[0],
1094 i_data + EXT2_NDIR_BLOCKS);
1095 goto do_indirects;
1098 partial = ext2_find_shared(inode, n, offsets, chain, &nr);
1099 /* Kill the top of shared branch (already detached) */
1100 if (nr) {
1101 if (partial == chain)
1102 mark_inode_dirty(inode);
1103 else
1104 mark_buffer_dirty_inode(partial->bh, inode);
1105 ext2_free_branches(inode, &nr, &nr+1, (chain+n-1) - partial);
1107 /* Clear the ends of indirect blocks on the shared branch */
1108 while (partial > chain) {
1109 ext2_free_branches(inode,
1110 partial->p + 1,
1111 (__le32*)partial->bh->b_data+addr_per_block,
1112 (chain+n-1) - partial);
1113 mark_buffer_dirty_inode(partial->bh, inode);
1114 brelse (partial->bh);
1115 partial--;
1117 do_indirects:
1118 /* Kill the remaining (whole) subtrees */
1119 switch (offsets[0]) {
1120 default:
1121 nr = i_data[EXT2_IND_BLOCK];
1122 if (nr) {
1123 i_data[EXT2_IND_BLOCK] = 0;
1124 mark_inode_dirty(inode);
1125 ext2_free_branches(inode, &nr, &nr+1, 1);
1127 case EXT2_IND_BLOCK:
1128 nr = i_data[EXT2_DIND_BLOCK];
1129 if (nr) {
1130 i_data[EXT2_DIND_BLOCK] = 0;
1131 mark_inode_dirty(inode);
1132 ext2_free_branches(inode, &nr, &nr+1, 2);
1134 case EXT2_DIND_BLOCK:
1135 nr = i_data[EXT2_TIND_BLOCK];
1136 if (nr) {
1137 i_data[EXT2_TIND_BLOCK] = 0;
1138 mark_inode_dirty(inode);
1139 ext2_free_branches(inode, &nr, &nr+1, 3);
1141 case EXT2_TIND_BLOCK:
1145 ext2_discard_reservation(inode);
1147 mutex_unlock(&ei->truncate_mutex);
1150 static void ext2_truncate_blocks(struct inode *inode, loff_t offset)
1153 * XXX: it seems like a bug here that we don't allow
1154 * IS_APPEND inode to have blocks-past-i_size trimmed off.
1155 * review and fix this.
1157 * Also would be nice to be able to handle IO errors and such,
1158 * but that's probably too much to ask.
1160 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1161 S_ISLNK(inode->i_mode)))
1162 return;
1163 if (ext2_inode_is_fast_symlink(inode))
1164 return;
1165 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1166 return;
1167 __ext2_truncate_blocks(inode, offset);
1170 static int ext2_setsize(struct inode *inode, loff_t newsize)
1172 int error;
1174 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1175 S_ISLNK(inode->i_mode)))
1176 return -EINVAL;
1177 if (ext2_inode_is_fast_symlink(inode))
1178 return -EINVAL;
1179 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1180 return -EPERM;
1182 inode_dio_wait(inode);
1184 if (mapping_is_xip(inode->i_mapping))
1185 error = xip_truncate_page(inode->i_mapping, newsize);
1186 else if (test_opt(inode->i_sb, NOBH))
1187 error = nobh_truncate_page(inode->i_mapping,
1188 newsize, ext2_get_block);
1189 else
1190 error = block_truncate_page(inode->i_mapping,
1191 newsize, ext2_get_block);
1192 if (error)
1193 return error;
1195 truncate_setsize(inode, newsize);
1196 __ext2_truncate_blocks(inode, newsize);
1198 inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC;
1199 if (inode_needs_sync(inode)) {
1200 sync_mapping_buffers(inode->i_mapping);
1201 sync_inode_metadata(inode, 1);
1202 } else {
1203 mark_inode_dirty(inode);
1206 return 0;
1209 static struct ext2_inode *ext2_get_inode(struct super_block *sb, ino_t ino,
1210 struct buffer_head **p)
1212 struct buffer_head * bh;
1213 unsigned long block_group;
1214 unsigned long block;
1215 unsigned long offset;
1216 struct ext2_group_desc * gdp;
1218 *p = NULL;
1219 if ((ino != EXT2_ROOT_INO && ino < EXT2_FIRST_INO(sb)) ||
1220 ino > le32_to_cpu(EXT2_SB(sb)->s_es->s_inodes_count))
1221 goto Einval;
1223 block_group = (ino - 1) / EXT2_INODES_PER_GROUP(sb);
1224 gdp = ext2_get_group_desc(sb, block_group, NULL);
1225 if (!gdp)
1226 goto Egdp;
1228 * Figure out the offset within the block group inode table
1230 offset = ((ino - 1) % EXT2_INODES_PER_GROUP(sb)) * EXT2_INODE_SIZE(sb);
1231 block = le32_to_cpu(gdp->bg_inode_table) +
1232 (offset >> EXT2_BLOCK_SIZE_BITS(sb));
1233 if (!(bh = sb_bread(sb, block)))
1234 goto Eio;
1236 *p = bh;
1237 offset &= (EXT2_BLOCK_SIZE(sb) - 1);
1238 return (struct ext2_inode *) (bh->b_data + offset);
1240 Einval:
1241 ext2_error(sb, "ext2_get_inode", "bad inode number: %lu",
1242 (unsigned long) ino);
1243 return ERR_PTR(-EINVAL);
1244 Eio:
1245 ext2_error(sb, "ext2_get_inode",
1246 "unable to read inode block - inode=%lu, block=%lu",
1247 (unsigned long) ino, block);
1248 Egdp:
1249 return ERR_PTR(-EIO);
1252 void ext2_set_inode_flags(struct inode *inode)
1254 unsigned int flags = EXT2_I(inode)->i_flags;
1256 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
1257 if (flags & EXT2_SYNC_FL)
1258 inode->i_flags |= S_SYNC;
1259 if (flags & EXT2_APPEND_FL)
1260 inode->i_flags |= S_APPEND;
1261 if (flags & EXT2_IMMUTABLE_FL)
1262 inode->i_flags |= S_IMMUTABLE;
1263 if (flags & EXT2_NOATIME_FL)
1264 inode->i_flags |= S_NOATIME;
1265 if (flags & EXT2_DIRSYNC_FL)
1266 inode->i_flags |= S_DIRSYNC;
1269 /* Propagate flags from i_flags to EXT2_I(inode)->i_flags */
1270 void ext2_get_inode_flags(struct ext2_inode_info *ei)
1272 unsigned int flags = ei->vfs_inode.i_flags;
1274 ei->i_flags &= ~(EXT2_SYNC_FL|EXT2_APPEND_FL|
1275 EXT2_IMMUTABLE_FL|EXT2_NOATIME_FL|EXT2_DIRSYNC_FL);
1276 if (flags & S_SYNC)
1277 ei->i_flags |= EXT2_SYNC_FL;
1278 if (flags & S_APPEND)
1279 ei->i_flags |= EXT2_APPEND_FL;
1280 if (flags & S_IMMUTABLE)
1281 ei->i_flags |= EXT2_IMMUTABLE_FL;
1282 if (flags & S_NOATIME)
1283 ei->i_flags |= EXT2_NOATIME_FL;
1284 if (flags & S_DIRSYNC)
1285 ei->i_flags |= EXT2_DIRSYNC_FL;
1288 struct inode *ext2_iget (struct super_block *sb, unsigned long ino)
1290 struct ext2_inode_info *ei;
1291 struct buffer_head * bh;
1292 struct ext2_inode *raw_inode;
1293 struct inode *inode;
1294 long ret = -EIO;
1295 int n;
1297 inode = iget_locked(sb, ino);
1298 if (!inode)
1299 return ERR_PTR(-ENOMEM);
1300 if (!(inode->i_state & I_NEW))
1301 return inode;
1303 ei = EXT2_I(inode);
1304 ei->i_block_alloc_info = NULL;
1306 raw_inode = ext2_get_inode(inode->i_sb, ino, &bh);
1307 if (IS_ERR(raw_inode)) {
1308 ret = PTR_ERR(raw_inode);
1309 goto bad_inode;
1312 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
1313 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
1314 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
1315 if (!(test_opt (inode->i_sb, NO_UID32))) {
1316 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
1317 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
1319 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
1320 inode->i_size = le32_to_cpu(raw_inode->i_size);
1321 inode->i_atime.tv_sec = (signed)le32_to_cpu(raw_inode->i_atime);
1322 inode->i_ctime.tv_sec = (signed)le32_to_cpu(raw_inode->i_ctime);
1323 inode->i_mtime.tv_sec = (signed)le32_to_cpu(raw_inode->i_mtime);
1324 inode->i_atime.tv_nsec = inode->i_mtime.tv_nsec = inode->i_ctime.tv_nsec = 0;
1325 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
1326 /* We now have enough fields to check if the inode was active or not.
1327 * This is needed because nfsd might try to access dead inodes
1328 * the test is that same one that e2fsck uses
1329 * NeilBrown 1999oct15
1331 if (inode->i_nlink == 0 && (inode->i_mode == 0 || ei->i_dtime)) {
1332 /* this inode is deleted */
1333 brelse (bh);
1334 ret = -ESTALE;
1335 goto bad_inode;
1337 inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
1338 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
1339 ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
1340 ei->i_frag_no = raw_inode->i_frag;
1341 ei->i_frag_size = raw_inode->i_fsize;
1342 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
1343 ei->i_dir_acl = 0;
1344 if (S_ISREG(inode->i_mode))
1345 inode->i_size |= ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
1346 else
1347 ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
1348 ei->i_dtime = 0;
1349 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
1350 ei->i_state = 0;
1351 ei->i_block_group = (ino - 1) / EXT2_INODES_PER_GROUP(inode->i_sb);
1352 ei->i_dir_start_lookup = 0;
1355 * NOTE! The in-memory inode i_data array is in little-endian order
1356 * even on big-endian machines: we do NOT byteswap the block numbers!
1358 for (n = 0; n < EXT2_N_BLOCKS; n++)
1359 ei->i_data[n] = raw_inode->i_block[n];
1361 if (S_ISREG(inode->i_mode)) {
1362 inode->i_op = &ext2_file_inode_operations;
1363 if (ext2_use_xip(inode->i_sb)) {
1364 inode->i_mapping->a_ops = &ext2_aops_xip;
1365 inode->i_fop = &ext2_xip_file_operations;
1366 } else if (test_opt(inode->i_sb, NOBH)) {
1367 inode->i_mapping->a_ops = &ext2_nobh_aops;
1368 inode->i_fop = &ext2_file_operations;
1369 } else {
1370 inode->i_mapping->a_ops = &ext2_aops;
1371 inode->i_fop = &ext2_file_operations;
1373 } else if (S_ISDIR(inode->i_mode)) {
1374 inode->i_op = &ext2_dir_inode_operations;
1375 inode->i_fop = &ext2_dir_operations;
1376 if (test_opt(inode->i_sb, NOBH))
1377 inode->i_mapping->a_ops = &ext2_nobh_aops;
1378 else
1379 inode->i_mapping->a_ops = &ext2_aops;
1380 } else if (S_ISLNK(inode->i_mode)) {
1381 if (ext2_inode_is_fast_symlink(inode)) {
1382 inode->i_op = &ext2_fast_symlink_inode_operations;
1383 nd_terminate_link(ei->i_data, inode->i_size,
1384 sizeof(ei->i_data) - 1);
1385 } else {
1386 inode->i_op = &ext2_symlink_inode_operations;
1387 if (test_opt(inode->i_sb, NOBH))
1388 inode->i_mapping->a_ops = &ext2_nobh_aops;
1389 else
1390 inode->i_mapping->a_ops = &ext2_aops;
1392 } else {
1393 inode->i_op = &ext2_special_inode_operations;
1394 if (raw_inode->i_block[0])
1395 init_special_inode(inode, inode->i_mode,
1396 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
1397 else
1398 init_special_inode(inode, inode->i_mode,
1399 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
1401 brelse (bh);
1402 ext2_set_inode_flags(inode);
1403 unlock_new_inode(inode);
1404 return inode;
1406 bad_inode:
1407 iget_failed(inode);
1408 return ERR_PTR(ret);
1411 static int __ext2_write_inode(struct inode *inode, int do_sync)
1413 struct ext2_inode_info *ei = EXT2_I(inode);
1414 struct super_block *sb = inode->i_sb;
1415 ino_t ino = inode->i_ino;
1416 uid_t uid = inode->i_uid;
1417 gid_t gid = inode->i_gid;
1418 struct buffer_head * bh;
1419 struct ext2_inode * raw_inode = ext2_get_inode(sb, ino, &bh);
1420 int n;
1421 int err = 0;
1423 if (IS_ERR(raw_inode))
1424 return -EIO;
1426 /* For fields not not tracking in the in-memory inode,
1427 * initialise them to zero for new inodes. */
1428 if (ei->i_state & EXT2_STATE_NEW)
1429 memset(raw_inode, 0, EXT2_SB(sb)->s_inode_size);
1431 ext2_get_inode_flags(ei);
1432 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
1433 if (!(test_opt(sb, NO_UID32))) {
1434 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(uid));
1435 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(gid));
1437 * Fix up interoperability with old kernels. Otherwise, old inodes get
1438 * re-used with the upper 16 bits of the uid/gid intact
1440 if (!ei->i_dtime) {
1441 raw_inode->i_uid_high = cpu_to_le16(high_16_bits(uid));
1442 raw_inode->i_gid_high = cpu_to_le16(high_16_bits(gid));
1443 } else {
1444 raw_inode->i_uid_high = 0;
1445 raw_inode->i_gid_high = 0;
1447 } else {
1448 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(uid));
1449 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(gid));
1450 raw_inode->i_uid_high = 0;
1451 raw_inode->i_gid_high = 0;
1453 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
1454 raw_inode->i_size = cpu_to_le32(inode->i_size);
1455 raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
1456 raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
1457 raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
1459 raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
1460 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
1461 raw_inode->i_flags = cpu_to_le32(ei->i_flags);
1462 raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
1463 raw_inode->i_frag = ei->i_frag_no;
1464 raw_inode->i_fsize = ei->i_frag_size;
1465 raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
1466 if (!S_ISREG(inode->i_mode))
1467 raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
1468 else {
1469 raw_inode->i_size_high = cpu_to_le32(inode->i_size >> 32);
1470 if (inode->i_size > 0x7fffffffULL) {
1471 if (!EXT2_HAS_RO_COMPAT_FEATURE(sb,
1472 EXT2_FEATURE_RO_COMPAT_LARGE_FILE) ||
1473 EXT2_SB(sb)->s_es->s_rev_level ==
1474 cpu_to_le32(EXT2_GOOD_OLD_REV)) {
1475 /* If this is the first large file
1476 * created, add a flag to the superblock.
1478 spin_lock(&EXT2_SB(sb)->s_lock);
1479 ext2_update_dynamic_rev(sb);
1480 EXT2_SET_RO_COMPAT_FEATURE(sb,
1481 EXT2_FEATURE_RO_COMPAT_LARGE_FILE);
1482 spin_unlock(&EXT2_SB(sb)->s_lock);
1483 ext2_write_super(sb);
1488 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
1489 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1490 if (old_valid_dev(inode->i_rdev)) {
1491 raw_inode->i_block[0] =
1492 cpu_to_le32(old_encode_dev(inode->i_rdev));
1493 raw_inode->i_block[1] = 0;
1494 } else {
1495 raw_inode->i_block[0] = 0;
1496 raw_inode->i_block[1] =
1497 cpu_to_le32(new_encode_dev(inode->i_rdev));
1498 raw_inode->i_block[2] = 0;
1500 } else for (n = 0; n < EXT2_N_BLOCKS; n++)
1501 raw_inode->i_block[n] = ei->i_data[n];
1502 mark_buffer_dirty(bh);
1503 if (do_sync) {
1504 sync_dirty_buffer(bh);
1505 if (buffer_req(bh) && !buffer_uptodate(bh)) {
1506 printk ("IO error syncing ext2 inode [%s:%08lx]\n",
1507 sb->s_id, (unsigned long) ino);
1508 err = -EIO;
1511 ei->i_state &= ~EXT2_STATE_NEW;
1512 brelse (bh);
1513 return err;
1516 int ext2_write_inode(struct inode *inode, struct writeback_control *wbc)
1518 return __ext2_write_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1521 int ext2_setattr(struct dentry *dentry, struct iattr *iattr)
1523 struct inode *inode = dentry->d_inode;
1524 int error;
1526 error = inode_change_ok(inode, iattr);
1527 if (error)
1528 return error;
1530 if (is_quota_modification(inode, iattr))
1531 dquot_initialize(inode);
1532 if ((iattr->ia_valid & ATTR_UID && iattr->ia_uid != inode->i_uid) ||
1533 (iattr->ia_valid & ATTR_GID && iattr->ia_gid != inode->i_gid)) {
1534 error = dquot_transfer(inode, iattr);
1535 if (error)
1536 return error;
1538 if (iattr->ia_valid & ATTR_SIZE && iattr->ia_size != inode->i_size) {
1539 error = ext2_setsize(inode, iattr->ia_size);
1540 if (error)
1541 return error;
1543 setattr_copy(inode, iattr);
1544 if (iattr->ia_valid & ATTR_MODE)
1545 error = ext2_acl_chmod(inode);
1546 mark_inode_dirty(inode);
1548 return error;