spi-topcliff-pch: supports a spi mode setup and bit order setup by IO control
[zen-stable.git] / fs / ext4 / extents.c
blobf920c189e5d17e64d2235a5782f36c1f0a6bd948
1 /*
2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
5 * Architecture independence:
6 * Copyright (c) 2005, Bull S.A.
7 * Written by Pierre Peiffer <pierre.peiffer@bull.net>
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public Licens
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
24 * Extents support for EXT4
26 * TODO:
27 * - ext4*_error() should be used in some situations
28 * - analyze all BUG()/BUG_ON(), use -EIO where appropriate
29 * - smart tree reduction
32 #include <linux/fs.h>
33 #include <linux/time.h>
34 #include <linux/jbd2.h>
35 #include <linux/highuid.h>
36 #include <linux/pagemap.h>
37 #include <linux/quotaops.h>
38 #include <linux/string.h>
39 #include <linux/slab.h>
40 #include <linux/falloc.h>
41 #include <asm/uaccess.h>
42 #include <linux/fiemap.h>
43 #include "ext4_jbd2.h"
45 #include <trace/events/ext4.h>
47 static int ext4_split_extent(handle_t *handle,
48 struct inode *inode,
49 struct ext4_ext_path *path,
50 struct ext4_map_blocks *map,
51 int split_flag,
52 int flags);
54 static int ext4_ext_truncate_extend_restart(handle_t *handle,
55 struct inode *inode,
56 int needed)
58 int err;
60 if (!ext4_handle_valid(handle))
61 return 0;
62 if (handle->h_buffer_credits > needed)
63 return 0;
64 err = ext4_journal_extend(handle, needed);
65 if (err <= 0)
66 return err;
67 err = ext4_truncate_restart_trans(handle, inode, needed);
68 if (err == 0)
69 err = -EAGAIN;
71 return err;
75 * could return:
76 * - EROFS
77 * - ENOMEM
79 static int ext4_ext_get_access(handle_t *handle, struct inode *inode,
80 struct ext4_ext_path *path)
82 if (path->p_bh) {
83 /* path points to block */
84 return ext4_journal_get_write_access(handle, path->p_bh);
86 /* path points to leaf/index in inode body */
87 /* we use in-core data, no need to protect them */
88 return 0;
92 * could return:
93 * - EROFS
94 * - ENOMEM
95 * - EIO
97 #define ext4_ext_dirty(handle, inode, path) \
98 __ext4_ext_dirty(__func__, __LINE__, (handle), (inode), (path))
99 static int __ext4_ext_dirty(const char *where, unsigned int line,
100 handle_t *handle, struct inode *inode,
101 struct ext4_ext_path *path)
103 int err;
104 if (path->p_bh) {
105 /* path points to block */
106 err = __ext4_handle_dirty_metadata(where, line, handle,
107 inode, path->p_bh);
108 } else {
109 /* path points to leaf/index in inode body */
110 err = ext4_mark_inode_dirty(handle, inode);
112 return err;
115 static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode,
116 struct ext4_ext_path *path,
117 ext4_lblk_t block)
119 if (path) {
120 int depth = path->p_depth;
121 struct ext4_extent *ex;
124 * Try to predict block placement assuming that we are
125 * filling in a file which will eventually be
126 * non-sparse --- i.e., in the case of libbfd writing
127 * an ELF object sections out-of-order but in a way
128 * the eventually results in a contiguous object or
129 * executable file, or some database extending a table
130 * space file. However, this is actually somewhat
131 * non-ideal if we are writing a sparse file such as
132 * qemu or KVM writing a raw image file that is going
133 * to stay fairly sparse, since it will end up
134 * fragmenting the file system's free space. Maybe we
135 * should have some hueristics or some way to allow
136 * userspace to pass a hint to file system,
137 * especially if the latter case turns out to be
138 * common.
140 ex = path[depth].p_ext;
141 if (ex) {
142 ext4_fsblk_t ext_pblk = ext4_ext_pblock(ex);
143 ext4_lblk_t ext_block = le32_to_cpu(ex->ee_block);
145 if (block > ext_block)
146 return ext_pblk + (block - ext_block);
147 else
148 return ext_pblk - (ext_block - block);
151 /* it looks like index is empty;
152 * try to find starting block from index itself */
153 if (path[depth].p_bh)
154 return path[depth].p_bh->b_blocknr;
157 /* OK. use inode's group */
158 return ext4_inode_to_goal_block(inode);
162 * Allocation for a meta data block
164 static ext4_fsblk_t
165 ext4_ext_new_meta_block(handle_t *handle, struct inode *inode,
166 struct ext4_ext_path *path,
167 struct ext4_extent *ex, int *err, unsigned int flags)
169 ext4_fsblk_t goal, newblock;
171 goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block));
172 newblock = ext4_new_meta_blocks(handle, inode, goal, flags,
173 NULL, err);
174 return newblock;
177 static inline int ext4_ext_space_block(struct inode *inode, int check)
179 int size;
181 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
182 / sizeof(struct ext4_extent);
183 #ifdef AGGRESSIVE_TEST
184 if (!check && size > 6)
185 size = 6;
186 #endif
187 return size;
190 static inline int ext4_ext_space_block_idx(struct inode *inode, int check)
192 int size;
194 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
195 / sizeof(struct ext4_extent_idx);
196 #ifdef AGGRESSIVE_TEST
197 if (!check && size > 5)
198 size = 5;
199 #endif
200 return size;
203 static inline int ext4_ext_space_root(struct inode *inode, int check)
205 int size;
207 size = sizeof(EXT4_I(inode)->i_data);
208 size -= sizeof(struct ext4_extent_header);
209 size /= sizeof(struct ext4_extent);
210 #ifdef AGGRESSIVE_TEST
211 if (!check && size > 3)
212 size = 3;
213 #endif
214 return size;
217 static inline int ext4_ext_space_root_idx(struct inode *inode, int check)
219 int size;
221 size = sizeof(EXT4_I(inode)->i_data);
222 size -= sizeof(struct ext4_extent_header);
223 size /= sizeof(struct ext4_extent_idx);
224 #ifdef AGGRESSIVE_TEST
225 if (!check && size > 4)
226 size = 4;
227 #endif
228 return size;
232 * Calculate the number of metadata blocks needed
233 * to allocate @blocks
234 * Worse case is one block per extent
236 int ext4_ext_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
238 struct ext4_inode_info *ei = EXT4_I(inode);
239 int idxs;
241 idxs = ((inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
242 / sizeof(struct ext4_extent_idx));
245 * If the new delayed allocation block is contiguous with the
246 * previous da block, it can share index blocks with the
247 * previous block, so we only need to allocate a new index
248 * block every idxs leaf blocks. At ldxs**2 blocks, we need
249 * an additional index block, and at ldxs**3 blocks, yet
250 * another index blocks.
252 if (ei->i_da_metadata_calc_len &&
253 ei->i_da_metadata_calc_last_lblock+1 == lblock) {
254 int num = 0;
256 if ((ei->i_da_metadata_calc_len % idxs) == 0)
257 num++;
258 if ((ei->i_da_metadata_calc_len % (idxs*idxs)) == 0)
259 num++;
260 if ((ei->i_da_metadata_calc_len % (idxs*idxs*idxs)) == 0) {
261 num++;
262 ei->i_da_metadata_calc_len = 0;
263 } else
264 ei->i_da_metadata_calc_len++;
265 ei->i_da_metadata_calc_last_lblock++;
266 return num;
270 * In the worst case we need a new set of index blocks at
271 * every level of the inode's extent tree.
273 ei->i_da_metadata_calc_len = 1;
274 ei->i_da_metadata_calc_last_lblock = lblock;
275 return ext_depth(inode) + 1;
278 static int
279 ext4_ext_max_entries(struct inode *inode, int depth)
281 int max;
283 if (depth == ext_depth(inode)) {
284 if (depth == 0)
285 max = ext4_ext_space_root(inode, 1);
286 else
287 max = ext4_ext_space_root_idx(inode, 1);
288 } else {
289 if (depth == 0)
290 max = ext4_ext_space_block(inode, 1);
291 else
292 max = ext4_ext_space_block_idx(inode, 1);
295 return max;
298 static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext)
300 ext4_fsblk_t block = ext4_ext_pblock(ext);
301 int len = ext4_ext_get_actual_len(ext);
303 if (len == 0)
304 return 0;
305 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len);
308 static int ext4_valid_extent_idx(struct inode *inode,
309 struct ext4_extent_idx *ext_idx)
311 ext4_fsblk_t block = ext4_idx_pblock(ext_idx);
313 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1);
316 static int ext4_valid_extent_entries(struct inode *inode,
317 struct ext4_extent_header *eh,
318 int depth)
320 unsigned short entries;
321 if (eh->eh_entries == 0)
322 return 1;
324 entries = le16_to_cpu(eh->eh_entries);
326 if (depth == 0) {
327 /* leaf entries */
328 struct ext4_extent *ext = EXT_FIRST_EXTENT(eh);
329 while (entries) {
330 if (!ext4_valid_extent(inode, ext))
331 return 0;
332 ext++;
333 entries--;
335 } else {
336 struct ext4_extent_idx *ext_idx = EXT_FIRST_INDEX(eh);
337 while (entries) {
338 if (!ext4_valid_extent_idx(inode, ext_idx))
339 return 0;
340 ext_idx++;
341 entries--;
344 return 1;
347 static int __ext4_ext_check(const char *function, unsigned int line,
348 struct inode *inode, struct ext4_extent_header *eh,
349 int depth)
351 const char *error_msg;
352 int max = 0;
354 if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) {
355 error_msg = "invalid magic";
356 goto corrupted;
358 if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) {
359 error_msg = "unexpected eh_depth";
360 goto corrupted;
362 if (unlikely(eh->eh_max == 0)) {
363 error_msg = "invalid eh_max";
364 goto corrupted;
366 max = ext4_ext_max_entries(inode, depth);
367 if (unlikely(le16_to_cpu(eh->eh_max) > max)) {
368 error_msg = "too large eh_max";
369 goto corrupted;
371 if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) {
372 error_msg = "invalid eh_entries";
373 goto corrupted;
375 if (!ext4_valid_extent_entries(inode, eh, depth)) {
376 error_msg = "invalid extent entries";
377 goto corrupted;
379 return 0;
381 corrupted:
382 ext4_error_inode(inode, function, line, 0,
383 "bad header/extent: %s - magic %x, "
384 "entries %u, max %u(%u), depth %u(%u)",
385 error_msg, le16_to_cpu(eh->eh_magic),
386 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max),
387 max, le16_to_cpu(eh->eh_depth), depth);
389 return -EIO;
392 #define ext4_ext_check(inode, eh, depth) \
393 __ext4_ext_check(__func__, __LINE__, inode, eh, depth)
395 int ext4_ext_check_inode(struct inode *inode)
397 return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode));
400 #ifdef EXT_DEBUG
401 static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path)
403 int k, l = path->p_depth;
405 ext_debug("path:");
406 for (k = 0; k <= l; k++, path++) {
407 if (path->p_idx) {
408 ext_debug(" %d->%llu", le32_to_cpu(path->p_idx->ei_block),
409 ext4_idx_pblock(path->p_idx));
410 } else if (path->p_ext) {
411 ext_debug(" %d:[%d]%d:%llu ",
412 le32_to_cpu(path->p_ext->ee_block),
413 ext4_ext_is_uninitialized(path->p_ext),
414 ext4_ext_get_actual_len(path->p_ext),
415 ext4_ext_pblock(path->p_ext));
416 } else
417 ext_debug(" []");
419 ext_debug("\n");
422 static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path)
424 int depth = ext_depth(inode);
425 struct ext4_extent_header *eh;
426 struct ext4_extent *ex;
427 int i;
429 if (!path)
430 return;
432 eh = path[depth].p_hdr;
433 ex = EXT_FIRST_EXTENT(eh);
435 ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino);
437 for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) {
438 ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block),
439 ext4_ext_is_uninitialized(ex),
440 ext4_ext_get_actual_len(ex), ext4_ext_pblock(ex));
442 ext_debug("\n");
445 static void ext4_ext_show_move(struct inode *inode, struct ext4_ext_path *path,
446 ext4_fsblk_t newblock, int level)
448 int depth = ext_depth(inode);
449 struct ext4_extent *ex;
451 if (depth != level) {
452 struct ext4_extent_idx *idx;
453 idx = path[level].p_idx;
454 while (idx <= EXT_MAX_INDEX(path[level].p_hdr)) {
455 ext_debug("%d: move %d:%llu in new index %llu\n", level,
456 le32_to_cpu(idx->ei_block),
457 ext4_idx_pblock(idx),
458 newblock);
459 idx++;
462 return;
465 ex = path[depth].p_ext;
466 while (ex <= EXT_MAX_EXTENT(path[depth].p_hdr)) {
467 ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n",
468 le32_to_cpu(ex->ee_block),
469 ext4_ext_pblock(ex),
470 ext4_ext_is_uninitialized(ex),
471 ext4_ext_get_actual_len(ex),
472 newblock);
473 ex++;
477 #else
478 #define ext4_ext_show_path(inode, path)
479 #define ext4_ext_show_leaf(inode, path)
480 #define ext4_ext_show_move(inode, path, newblock, level)
481 #endif
483 void ext4_ext_drop_refs(struct ext4_ext_path *path)
485 int depth = path->p_depth;
486 int i;
488 for (i = 0; i <= depth; i++, path++)
489 if (path->p_bh) {
490 brelse(path->p_bh);
491 path->p_bh = NULL;
496 * ext4_ext_binsearch_idx:
497 * binary search for the closest index of the given block
498 * the header must be checked before calling this
500 static void
501 ext4_ext_binsearch_idx(struct inode *inode,
502 struct ext4_ext_path *path, ext4_lblk_t block)
504 struct ext4_extent_header *eh = path->p_hdr;
505 struct ext4_extent_idx *r, *l, *m;
508 ext_debug("binsearch for %u(idx): ", block);
510 l = EXT_FIRST_INDEX(eh) + 1;
511 r = EXT_LAST_INDEX(eh);
512 while (l <= r) {
513 m = l + (r - l) / 2;
514 if (block < le32_to_cpu(m->ei_block))
515 r = m - 1;
516 else
517 l = m + 1;
518 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block),
519 m, le32_to_cpu(m->ei_block),
520 r, le32_to_cpu(r->ei_block));
523 path->p_idx = l - 1;
524 ext_debug(" -> %d->%lld ", le32_to_cpu(path->p_idx->ei_block),
525 ext4_idx_pblock(path->p_idx));
527 #ifdef CHECK_BINSEARCH
529 struct ext4_extent_idx *chix, *ix;
530 int k;
532 chix = ix = EXT_FIRST_INDEX(eh);
533 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) {
534 if (k != 0 &&
535 le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) {
536 printk(KERN_DEBUG "k=%d, ix=0x%p, "
537 "first=0x%p\n", k,
538 ix, EXT_FIRST_INDEX(eh));
539 printk(KERN_DEBUG "%u <= %u\n",
540 le32_to_cpu(ix->ei_block),
541 le32_to_cpu(ix[-1].ei_block));
543 BUG_ON(k && le32_to_cpu(ix->ei_block)
544 <= le32_to_cpu(ix[-1].ei_block));
545 if (block < le32_to_cpu(ix->ei_block))
546 break;
547 chix = ix;
549 BUG_ON(chix != path->p_idx);
551 #endif
556 * ext4_ext_binsearch:
557 * binary search for closest extent of the given block
558 * the header must be checked before calling this
560 static void
561 ext4_ext_binsearch(struct inode *inode,
562 struct ext4_ext_path *path, ext4_lblk_t block)
564 struct ext4_extent_header *eh = path->p_hdr;
565 struct ext4_extent *r, *l, *m;
567 if (eh->eh_entries == 0) {
569 * this leaf is empty:
570 * we get such a leaf in split/add case
572 return;
575 ext_debug("binsearch for %u: ", block);
577 l = EXT_FIRST_EXTENT(eh) + 1;
578 r = EXT_LAST_EXTENT(eh);
580 while (l <= r) {
581 m = l + (r - l) / 2;
582 if (block < le32_to_cpu(m->ee_block))
583 r = m - 1;
584 else
585 l = m + 1;
586 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block),
587 m, le32_to_cpu(m->ee_block),
588 r, le32_to_cpu(r->ee_block));
591 path->p_ext = l - 1;
592 ext_debug(" -> %d:%llu:[%d]%d ",
593 le32_to_cpu(path->p_ext->ee_block),
594 ext4_ext_pblock(path->p_ext),
595 ext4_ext_is_uninitialized(path->p_ext),
596 ext4_ext_get_actual_len(path->p_ext));
598 #ifdef CHECK_BINSEARCH
600 struct ext4_extent *chex, *ex;
601 int k;
603 chex = ex = EXT_FIRST_EXTENT(eh);
604 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) {
605 BUG_ON(k && le32_to_cpu(ex->ee_block)
606 <= le32_to_cpu(ex[-1].ee_block));
607 if (block < le32_to_cpu(ex->ee_block))
608 break;
609 chex = ex;
611 BUG_ON(chex != path->p_ext);
613 #endif
617 int ext4_ext_tree_init(handle_t *handle, struct inode *inode)
619 struct ext4_extent_header *eh;
621 eh = ext_inode_hdr(inode);
622 eh->eh_depth = 0;
623 eh->eh_entries = 0;
624 eh->eh_magic = EXT4_EXT_MAGIC;
625 eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0));
626 ext4_mark_inode_dirty(handle, inode);
627 ext4_ext_invalidate_cache(inode);
628 return 0;
631 struct ext4_ext_path *
632 ext4_ext_find_extent(struct inode *inode, ext4_lblk_t block,
633 struct ext4_ext_path *path)
635 struct ext4_extent_header *eh;
636 struct buffer_head *bh;
637 short int depth, i, ppos = 0, alloc = 0;
639 eh = ext_inode_hdr(inode);
640 depth = ext_depth(inode);
642 /* account possible depth increase */
643 if (!path) {
644 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2),
645 GFP_NOFS);
646 if (!path)
647 return ERR_PTR(-ENOMEM);
648 alloc = 1;
650 path[0].p_hdr = eh;
651 path[0].p_bh = NULL;
653 i = depth;
654 /* walk through the tree */
655 while (i) {
656 int need_to_validate = 0;
658 ext_debug("depth %d: num %d, max %d\n",
659 ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
661 ext4_ext_binsearch_idx(inode, path + ppos, block);
662 path[ppos].p_block = ext4_idx_pblock(path[ppos].p_idx);
663 path[ppos].p_depth = i;
664 path[ppos].p_ext = NULL;
666 bh = sb_getblk(inode->i_sb, path[ppos].p_block);
667 if (unlikely(!bh))
668 goto err;
669 if (!bh_uptodate_or_lock(bh)) {
670 trace_ext4_ext_load_extent(inode, block,
671 path[ppos].p_block);
672 if (bh_submit_read(bh) < 0) {
673 put_bh(bh);
674 goto err;
676 /* validate the extent entries */
677 need_to_validate = 1;
679 eh = ext_block_hdr(bh);
680 ppos++;
681 if (unlikely(ppos > depth)) {
682 put_bh(bh);
683 EXT4_ERROR_INODE(inode,
684 "ppos %d > depth %d", ppos, depth);
685 goto err;
687 path[ppos].p_bh = bh;
688 path[ppos].p_hdr = eh;
689 i--;
691 if (need_to_validate && ext4_ext_check(inode, eh, i))
692 goto err;
695 path[ppos].p_depth = i;
696 path[ppos].p_ext = NULL;
697 path[ppos].p_idx = NULL;
699 /* find extent */
700 ext4_ext_binsearch(inode, path + ppos, block);
701 /* if not an empty leaf */
702 if (path[ppos].p_ext)
703 path[ppos].p_block = ext4_ext_pblock(path[ppos].p_ext);
705 ext4_ext_show_path(inode, path);
707 return path;
709 err:
710 ext4_ext_drop_refs(path);
711 if (alloc)
712 kfree(path);
713 return ERR_PTR(-EIO);
717 * ext4_ext_insert_index:
718 * insert new index [@logical;@ptr] into the block at @curp;
719 * check where to insert: before @curp or after @curp
721 static int ext4_ext_insert_index(handle_t *handle, struct inode *inode,
722 struct ext4_ext_path *curp,
723 int logical, ext4_fsblk_t ptr)
725 struct ext4_extent_idx *ix;
726 int len, err;
728 err = ext4_ext_get_access(handle, inode, curp);
729 if (err)
730 return err;
732 if (unlikely(logical == le32_to_cpu(curp->p_idx->ei_block))) {
733 EXT4_ERROR_INODE(inode,
734 "logical %d == ei_block %d!",
735 logical, le32_to_cpu(curp->p_idx->ei_block));
736 return -EIO;
739 if (unlikely(le16_to_cpu(curp->p_hdr->eh_entries)
740 >= le16_to_cpu(curp->p_hdr->eh_max))) {
741 EXT4_ERROR_INODE(inode,
742 "eh_entries %d >= eh_max %d!",
743 le16_to_cpu(curp->p_hdr->eh_entries),
744 le16_to_cpu(curp->p_hdr->eh_max));
745 return -EIO;
748 if (logical > le32_to_cpu(curp->p_idx->ei_block)) {
749 /* insert after */
750 ext_debug("insert new index %d after: %llu\n", logical, ptr);
751 ix = curp->p_idx + 1;
752 } else {
753 /* insert before */
754 ext_debug("insert new index %d before: %llu\n", logical, ptr);
755 ix = curp->p_idx;
758 len = EXT_LAST_INDEX(curp->p_hdr) - ix + 1;
759 BUG_ON(len < 0);
760 if (len > 0) {
761 ext_debug("insert new index %d: "
762 "move %d indices from 0x%p to 0x%p\n",
763 logical, len, ix, ix + 1);
764 memmove(ix + 1, ix, len * sizeof(struct ext4_extent_idx));
767 if (unlikely(ix > EXT_MAX_INDEX(curp->p_hdr))) {
768 EXT4_ERROR_INODE(inode, "ix > EXT_MAX_INDEX!");
769 return -EIO;
772 ix->ei_block = cpu_to_le32(logical);
773 ext4_idx_store_pblock(ix, ptr);
774 le16_add_cpu(&curp->p_hdr->eh_entries, 1);
776 if (unlikely(ix > EXT_LAST_INDEX(curp->p_hdr))) {
777 EXT4_ERROR_INODE(inode, "ix > EXT_LAST_INDEX!");
778 return -EIO;
781 err = ext4_ext_dirty(handle, inode, curp);
782 ext4_std_error(inode->i_sb, err);
784 return err;
788 * ext4_ext_split:
789 * inserts new subtree into the path, using free index entry
790 * at depth @at:
791 * - allocates all needed blocks (new leaf and all intermediate index blocks)
792 * - makes decision where to split
793 * - moves remaining extents and index entries (right to the split point)
794 * into the newly allocated blocks
795 * - initializes subtree
797 static int ext4_ext_split(handle_t *handle, struct inode *inode,
798 unsigned int flags,
799 struct ext4_ext_path *path,
800 struct ext4_extent *newext, int at)
802 struct buffer_head *bh = NULL;
803 int depth = ext_depth(inode);
804 struct ext4_extent_header *neh;
805 struct ext4_extent_idx *fidx;
806 int i = at, k, m, a;
807 ext4_fsblk_t newblock, oldblock;
808 __le32 border;
809 ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */
810 int err = 0;
812 /* make decision: where to split? */
813 /* FIXME: now decision is simplest: at current extent */
815 /* if current leaf will be split, then we should use
816 * border from split point */
817 if (unlikely(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr))) {
818 EXT4_ERROR_INODE(inode, "p_ext > EXT_MAX_EXTENT!");
819 return -EIO;
821 if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) {
822 border = path[depth].p_ext[1].ee_block;
823 ext_debug("leaf will be split."
824 " next leaf starts at %d\n",
825 le32_to_cpu(border));
826 } else {
827 border = newext->ee_block;
828 ext_debug("leaf will be added."
829 " next leaf starts at %d\n",
830 le32_to_cpu(border));
834 * If error occurs, then we break processing
835 * and mark filesystem read-only. index won't
836 * be inserted and tree will be in consistent
837 * state. Next mount will repair buffers too.
841 * Get array to track all allocated blocks.
842 * We need this to handle errors and free blocks
843 * upon them.
845 ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS);
846 if (!ablocks)
847 return -ENOMEM;
849 /* allocate all needed blocks */
850 ext_debug("allocate %d blocks for indexes/leaf\n", depth - at);
851 for (a = 0; a < depth - at; a++) {
852 newblock = ext4_ext_new_meta_block(handle, inode, path,
853 newext, &err, flags);
854 if (newblock == 0)
855 goto cleanup;
856 ablocks[a] = newblock;
859 /* initialize new leaf */
860 newblock = ablocks[--a];
861 if (unlikely(newblock == 0)) {
862 EXT4_ERROR_INODE(inode, "newblock == 0!");
863 err = -EIO;
864 goto cleanup;
866 bh = sb_getblk(inode->i_sb, newblock);
867 if (!bh) {
868 err = -EIO;
869 goto cleanup;
871 lock_buffer(bh);
873 err = ext4_journal_get_create_access(handle, bh);
874 if (err)
875 goto cleanup;
877 neh = ext_block_hdr(bh);
878 neh->eh_entries = 0;
879 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
880 neh->eh_magic = EXT4_EXT_MAGIC;
881 neh->eh_depth = 0;
883 /* move remainder of path[depth] to the new leaf */
884 if (unlikely(path[depth].p_hdr->eh_entries !=
885 path[depth].p_hdr->eh_max)) {
886 EXT4_ERROR_INODE(inode, "eh_entries %d != eh_max %d!",
887 path[depth].p_hdr->eh_entries,
888 path[depth].p_hdr->eh_max);
889 err = -EIO;
890 goto cleanup;
892 /* start copy from next extent */
893 m = EXT_MAX_EXTENT(path[depth].p_hdr) - path[depth].p_ext++;
894 ext4_ext_show_move(inode, path, newblock, depth);
895 if (m) {
896 struct ext4_extent *ex;
897 ex = EXT_FIRST_EXTENT(neh);
898 memmove(ex, path[depth].p_ext, sizeof(struct ext4_extent) * m);
899 le16_add_cpu(&neh->eh_entries, m);
902 set_buffer_uptodate(bh);
903 unlock_buffer(bh);
905 err = ext4_handle_dirty_metadata(handle, inode, bh);
906 if (err)
907 goto cleanup;
908 brelse(bh);
909 bh = NULL;
911 /* correct old leaf */
912 if (m) {
913 err = ext4_ext_get_access(handle, inode, path + depth);
914 if (err)
915 goto cleanup;
916 le16_add_cpu(&path[depth].p_hdr->eh_entries, -m);
917 err = ext4_ext_dirty(handle, inode, path + depth);
918 if (err)
919 goto cleanup;
923 /* create intermediate indexes */
924 k = depth - at - 1;
925 if (unlikely(k < 0)) {
926 EXT4_ERROR_INODE(inode, "k %d < 0!", k);
927 err = -EIO;
928 goto cleanup;
930 if (k)
931 ext_debug("create %d intermediate indices\n", k);
932 /* insert new index into current index block */
933 /* current depth stored in i var */
934 i = depth - 1;
935 while (k--) {
936 oldblock = newblock;
937 newblock = ablocks[--a];
938 bh = sb_getblk(inode->i_sb, newblock);
939 if (!bh) {
940 err = -EIO;
941 goto cleanup;
943 lock_buffer(bh);
945 err = ext4_journal_get_create_access(handle, bh);
946 if (err)
947 goto cleanup;
949 neh = ext_block_hdr(bh);
950 neh->eh_entries = cpu_to_le16(1);
951 neh->eh_magic = EXT4_EXT_MAGIC;
952 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
953 neh->eh_depth = cpu_to_le16(depth - i);
954 fidx = EXT_FIRST_INDEX(neh);
955 fidx->ei_block = border;
956 ext4_idx_store_pblock(fidx, oldblock);
958 ext_debug("int.index at %d (block %llu): %u -> %llu\n",
959 i, newblock, le32_to_cpu(border), oldblock);
961 /* move remainder of path[i] to the new index block */
962 if (unlikely(EXT_MAX_INDEX(path[i].p_hdr) !=
963 EXT_LAST_INDEX(path[i].p_hdr))) {
964 EXT4_ERROR_INODE(inode,
965 "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!",
966 le32_to_cpu(path[i].p_ext->ee_block));
967 err = -EIO;
968 goto cleanup;
970 /* start copy indexes */
971 m = EXT_MAX_INDEX(path[i].p_hdr) - path[i].p_idx++;
972 ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx,
973 EXT_MAX_INDEX(path[i].p_hdr));
974 ext4_ext_show_move(inode, path, newblock, i);
975 if (m) {
976 memmove(++fidx, path[i].p_idx,
977 sizeof(struct ext4_extent_idx) * m);
978 le16_add_cpu(&neh->eh_entries, m);
980 set_buffer_uptodate(bh);
981 unlock_buffer(bh);
983 err = ext4_handle_dirty_metadata(handle, inode, bh);
984 if (err)
985 goto cleanup;
986 brelse(bh);
987 bh = NULL;
989 /* correct old index */
990 if (m) {
991 err = ext4_ext_get_access(handle, inode, path + i);
992 if (err)
993 goto cleanup;
994 le16_add_cpu(&path[i].p_hdr->eh_entries, -m);
995 err = ext4_ext_dirty(handle, inode, path + i);
996 if (err)
997 goto cleanup;
1000 i--;
1003 /* insert new index */
1004 err = ext4_ext_insert_index(handle, inode, path + at,
1005 le32_to_cpu(border), newblock);
1007 cleanup:
1008 if (bh) {
1009 if (buffer_locked(bh))
1010 unlock_buffer(bh);
1011 brelse(bh);
1014 if (err) {
1015 /* free all allocated blocks in error case */
1016 for (i = 0; i < depth; i++) {
1017 if (!ablocks[i])
1018 continue;
1019 ext4_free_blocks(handle, inode, NULL, ablocks[i], 1,
1020 EXT4_FREE_BLOCKS_METADATA);
1023 kfree(ablocks);
1025 return err;
1029 * ext4_ext_grow_indepth:
1030 * implements tree growing procedure:
1031 * - allocates new block
1032 * - moves top-level data (index block or leaf) into the new block
1033 * - initializes new top-level, creating index that points to the
1034 * just created block
1036 static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode,
1037 unsigned int flags,
1038 struct ext4_extent *newext)
1040 struct ext4_extent_header *neh;
1041 struct buffer_head *bh;
1042 ext4_fsblk_t newblock;
1043 int err = 0;
1045 newblock = ext4_ext_new_meta_block(handle, inode, NULL,
1046 newext, &err, flags);
1047 if (newblock == 0)
1048 return err;
1050 bh = sb_getblk(inode->i_sb, newblock);
1051 if (!bh) {
1052 err = -EIO;
1053 ext4_std_error(inode->i_sb, err);
1054 return err;
1056 lock_buffer(bh);
1058 err = ext4_journal_get_create_access(handle, bh);
1059 if (err) {
1060 unlock_buffer(bh);
1061 goto out;
1064 /* move top-level index/leaf into new block */
1065 memmove(bh->b_data, EXT4_I(inode)->i_data,
1066 sizeof(EXT4_I(inode)->i_data));
1068 /* set size of new block */
1069 neh = ext_block_hdr(bh);
1070 /* old root could have indexes or leaves
1071 * so calculate e_max right way */
1072 if (ext_depth(inode))
1073 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1074 else
1075 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
1076 neh->eh_magic = EXT4_EXT_MAGIC;
1077 set_buffer_uptodate(bh);
1078 unlock_buffer(bh);
1080 err = ext4_handle_dirty_metadata(handle, inode, bh);
1081 if (err)
1082 goto out;
1084 /* Update top-level index: num,max,pointer */
1085 neh = ext_inode_hdr(inode);
1086 neh->eh_entries = cpu_to_le16(1);
1087 ext4_idx_store_pblock(EXT_FIRST_INDEX(neh), newblock);
1088 if (neh->eh_depth == 0) {
1089 /* Root extent block becomes index block */
1090 neh->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0));
1091 EXT_FIRST_INDEX(neh)->ei_block =
1092 EXT_FIRST_EXTENT(neh)->ee_block;
1094 ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n",
1095 le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max),
1096 le32_to_cpu(EXT_FIRST_INDEX(neh)->ei_block),
1097 ext4_idx_pblock(EXT_FIRST_INDEX(neh)));
1099 neh->eh_depth = cpu_to_le16(le16_to_cpu(neh->eh_depth) + 1);
1100 ext4_mark_inode_dirty(handle, inode);
1101 out:
1102 brelse(bh);
1104 return err;
1108 * ext4_ext_create_new_leaf:
1109 * finds empty index and adds new leaf.
1110 * if no free index is found, then it requests in-depth growing.
1112 static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode,
1113 unsigned int flags,
1114 struct ext4_ext_path *path,
1115 struct ext4_extent *newext)
1117 struct ext4_ext_path *curp;
1118 int depth, i, err = 0;
1120 repeat:
1121 i = depth = ext_depth(inode);
1123 /* walk up to the tree and look for free index entry */
1124 curp = path + depth;
1125 while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) {
1126 i--;
1127 curp--;
1130 /* we use already allocated block for index block,
1131 * so subsequent data blocks should be contiguous */
1132 if (EXT_HAS_FREE_INDEX(curp)) {
1133 /* if we found index with free entry, then use that
1134 * entry: create all needed subtree and add new leaf */
1135 err = ext4_ext_split(handle, inode, flags, path, newext, i);
1136 if (err)
1137 goto out;
1139 /* refill path */
1140 ext4_ext_drop_refs(path);
1141 path = ext4_ext_find_extent(inode,
1142 (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1143 path);
1144 if (IS_ERR(path))
1145 err = PTR_ERR(path);
1146 } else {
1147 /* tree is full, time to grow in depth */
1148 err = ext4_ext_grow_indepth(handle, inode, flags, newext);
1149 if (err)
1150 goto out;
1152 /* refill path */
1153 ext4_ext_drop_refs(path);
1154 path = ext4_ext_find_extent(inode,
1155 (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1156 path);
1157 if (IS_ERR(path)) {
1158 err = PTR_ERR(path);
1159 goto out;
1163 * only first (depth 0 -> 1) produces free space;
1164 * in all other cases we have to split the grown tree
1166 depth = ext_depth(inode);
1167 if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) {
1168 /* now we need to split */
1169 goto repeat;
1173 out:
1174 return err;
1178 * search the closest allocated block to the left for *logical
1179 * and returns it at @logical + it's physical address at @phys
1180 * if *logical is the smallest allocated block, the function
1181 * returns 0 at @phys
1182 * return value contains 0 (success) or error code
1184 static int ext4_ext_search_left(struct inode *inode,
1185 struct ext4_ext_path *path,
1186 ext4_lblk_t *logical, ext4_fsblk_t *phys)
1188 struct ext4_extent_idx *ix;
1189 struct ext4_extent *ex;
1190 int depth, ee_len;
1192 if (unlikely(path == NULL)) {
1193 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1194 return -EIO;
1196 depth = path->p_depth;
1197 *phys = 0;
1199 if (depth == 0 && path->p_ext == NULL)
1200 return 0;
1202 /* usually extent in the path covers blocks smaller
1203 * then *logical, but it can be that extent is the
1204 * first one in the file */
1206 ex = path[depth].p_ext;
1207 ee_len = ext4_ext_get_actual_len(ex);
1208 if (*logical < le32_to_cpu(ex->ee_block)) {
1209 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1210 EXT4_ERROR_INODE(inode,
1211 "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!",
1212 *logical, le32_to_cpu(ex->ee_block));
1213 return -EIO;
1215 while (--depth >= 0) {
1216 ix = path[depth].p_idx;
1217 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1218 EXT4_ERROR_INODE(inode,
1219 "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!",
1220 ix != NULL ? le32_to_cpu(ix->ei_block) : 0,
1221 EXT_FIRST_INDEX(path[depth].p_hdr) != NULL ?
1222 le32_to_cpu(EXT_FIRST_INDEX(path[depth].p_hdr)->ei_block) : 0,
1223 depth);
1224 return -EIO;
1227 return 0;
1230 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1231 EXT4_ERROR_INODE(inode,
1232 "logical %d < ee_block %d + ee_len %d!",
1233 *logical, le32_to_cpu(ex->ee_block), ee_len);
1234 return -EIO;
1237 *logical = le32_to_cpu(ex->ee_block) + ee_len - 1;
1238 *phys = ext4_ext_pblock(ex) + ee_len - 1;
1239 return 0;
1243 * search the closest allocated block to the right for *logical
1244 * and returns it at @logical + it's physical address at @phys
1245 * if *logical is the largest allocated block, the function
1246 * returns 0 at @phys
1247 * return value contains 0 (success) or error code
1249 static int ext4_ext_search_right(struct inode *inode,
1250 struct ext4_ext_path *path,
1251 ext4_lblk_t *logical, ext4_fsblk_t *phys,
1252 struct ext4_extent **ret_ex)
1254 struct buffer_head *bh = NULL;
1255 struct ext4_extent_header *eh;
1256 struct ext4_extent_idx *ix;
1257 struct ext4_extent *ex;
1258 ext4_fsblk_t block;
1259 int depth; /* Note, NOT eh_depth; depth from top of tree */
1260 int ee_len;
1262 if (unlikely(path == NULL)) {
1263 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1264 return -EIO;
1266 depth = path->p_depth;
1267 *phys = 0;
1269 if (depth == 0 && path->p_ext == NULL)
1270 return 0;
1272 /* usually extent in the path covers blocks smaller
1273 * then *logical, but it can be that extent is the
1274 * first one in the file */
1276 ex = path[depth].p_ext;
1277 ee_len = ext4_ext_get_actual_len(ex);
1278 if (*logical < le32_to_cpu(ex->ee_block)) {
1279 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1280 EXT4_ERROR_INODE(inode,
1281 "first_extent(path[%d].p_hdr) != ex",
1282 depth);
1283 return -EIO;
1285 while (--depth >= 0) {
1286 ix = path[depth].p_idx;
1287 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1288 EXT4_ERROR_INODE(inode,
1289 "ix != EXT_FIRST_INDEX *logical %d!",
1290 *logical);
1291 return -EIO;
1294 goto found_extent;
1297 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1298 EXT4_ERROR_INODE(inode,
1299 "logical %d < ee_block %d + ee_len %d!",
1300 *logical, le32_to_cpu(ex->ee_block), ee_len);
1301 return -EIO;
1304 if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) {
1305 /* next allocated block in this leaf */
1306 ex++;
1307 goto found_extent;
1310 /* go up and search for index to the right */
1311 while (--depth >= 0) {
1312 ix = path[depth].p_idx;
1313 if (ix != EXT_LAST_INDEX(path[depth].p_hdr))
1314 goto got_index;
1317 /* we've gone up to the root and found no index to the right */
1318 return 0;
1320 got_index:
1321 /* we've found index to the right, let's
1322 * follow it and find the closest allocated
1323 * block to the right */
1324 ix++;
1325 block = ext4_idx_pblock(ix);
1326 while (++depth < path->p_depth) {
1327 bh = sb_bread(inode->i_sb, block);
1328 if (bh == NULL)
1329 return -EIO;
1330 eh = ext_block_hdr(bh);
1331 /* subtract from p_depth to get proper eh_depth */
1332 if (ext4_ext_check(inode, eh, path->p_depth - depth)) {
1333 put_bh(bh);
1334 return -EIO;
1336 ix = EXT_FIRST_INDEX(eh);
1337 block = ext4_idx_pblock(ix);
1338 put_bh(bh);
1341 bh = sb_bread(inode->i_sb, block);
1342 if (bh == NULL)
1343 return -EIO;
1344 eh = ext_block_hdr(bh);
1345 if (ext4_ext_check(inode, eh, path->p_depth - depth)) {
1346 put_bh(bh);
1347 return -EIO;
1349 ex = EXT_FIRST_EXTENT(eh);
1350 found_extent:
1351 *logical = le32_to_cpu(ex->ee_block);
1352 *phys = ext4_ext_pblock(ex);
1353 *ret_ex = ex;
1354 if (bh)
1355 put_bh(bh);
1356 return 0;
1360 * ext4_ext_next_allocated_block:
1361 * returns allocated block in subsequent extent or EXT_MAX_BLOCKS.
1362 * NOTE: it considers block number from index entry as
1363 * allocated block. Thus, index entries have to be consistent
1364 * with leaves.
1366 static ext4_lblk_t
1367 ext4_ext_next_allocated_block(struct ext4_ext_path *path)
1369 int depth;
1371 BUG_ON(path == NULL);
1372 depth = path->p_depth;
1374 if (depth == 0 && path->p_ext == NULL)
1375 return EXT_MAX_BLOCKS;
1377 while (depth >= 0) {
1378 if (depth == path->p_depth) {
1379 /* leaf */
1380 if (path[depth].p_ext &&
1381 path[depth].p_ext !=
1382 EXT_LAST_EXTENT(path[depth].p_hdr))
1383 return le32_to_cpu(path[depth].p_ext[1].ee_block);
1384 } else {
1385 /* index */
1386 if (path[depth].p_idx !=
1387 EXT_LAST_INDEX(path[depth].p_hdr))
1388 return le32_to_cpu(path[depth].p_idx[1].ei_block);
1390 depth--;
1393 return EXT_MAX_BLOCKS;
1397 * ext4_ext_next_leaf_block:
1398 * returns first allocated block from next leaf or EXT_MAX_BLOCKS
1400 static ext4_lblk_t ext4_ext_next_leaf_block(struct ext4_ext_path *path)
1402 int depth;
1404 BUG_ON(path == NULL);
1405 depth = path->p_depth;
1407 /* zero-tree has no leaf blocks at all */
1408 if (depth == 0)
1409 return EXT_MAX_BLOCKS;
1411 /* go to index block */
1412 depth--;
1414 while (depth >= 0) {
1415 if (path[depth].p_idx !=
1416 EXT_LAST_INDEX(path[depth].p_hdr))
1417 return (ext4_lblk_t)
1418 le32_to_cpu(path[depth].p_idx[1].ei_block);
1419 depth--;
1422 return EXT_MAX_BLOCKS;
1426 * ext4_ext_correct_indexes:
1427 * if leaf gets modified and modified extent is first in the leaf,
1428 * then we have to correct all indexes above.
1429 * TODO: do we need to correct tree in all cases?
1431 static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode,
1432 struct ext4_ext_path *path)
1434 struct ext4_extent_header *eh;
1435 int depth = ext_depth(inode);
1436 struct ext4_extent *ex;
1437 __le32 border;
1438 int k, err = 0;
1440 eh = path[depth].p_hdr;
1441 ex = path[depth].p_ext;
1443 if (unlikely(ex == NULL || eh == NULL)) {
1444 EXT4_ERROR_INODE(inode,
1445 "ex %p == NULL or eh %p == NULL", ex, eh);
1446 return -EIO;
1449 if (depth == 0) {
1450 /* there is no tree at all */
1451 return 0;
1454 if (ex != EXT_FIRST_EXTENT(eh)) {
1455 /* we correct tree if first leaf got modified only */
1456 return 0;
1460 * TODO: we need correction if border is smaller than current one
1462 k = depth - 1;
1463 border = path[depth].p_ext->ee_block;
1464 err = ext4_ext_get_access(handle, inode, path + k);
1465 if (err)
1466 return err;
1467 path[k].p_idx->ei_block = border;
1468 err = ext4_ext_dirty(handle, inode, path + k);
1469 if (err)
1470 return err;
1472 while (k--) {
1473 /* change all left-side indexes */
1474 if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr))
1475 break;
1476 err = ext4_ext_get_access(handle, inode, path + k);
1477 if (err)
1478 break;
1479 path[k].p_idx->ei_block = border;
1480 err = ext4_ext_dirty(handle, inode, path + k);
1481 if (err)
1482 break;
1485 return err;
1489 ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1,
1490 struct ext4_extent *ex2)
1492 unsigned short ext1_ee_len, ext2_ee_len, max_len;
1495 * Make sure that either both extents are uninitialized, or
1496 * both are _not_.
1498 if (ext4_ext_is_uninitialized(ex1) ^ ext4_ext_is_uninitialized(ex2))
1499 return 0;
1501 if (ext4_ext_is_uninitialized(ex1))
1502 max_len = EXT_UNINIT_MAX_LEN;
1503 else
1504 max_len = EXT_INIT_MAX_LEN;
1506 ext1_ee_len = ext4_ext_get_actual_len(ex1);
1507 ext2_ee_len = ext4_ext_get_actual_len(ex2);
1509 if (le32_to_cpu(ex1->ee_block) + ext1_ee_len !=
1510 le32_to_cpu(ex2->ee_block))
1511 return 0;
1514 * To allow future support for preallocated extents to be added
1515 * as an RO_COMPAT feature, refuse to merge to extents if
1516 * this can result in the top bit of ee_len being set.
1518 if (ext1_ee_len + ext2_ee_len > max_len)
1519 return 0;
1520 #ifdef AGGRESSIVE_TEST
1521 if (ext1_ee_len >= 4)
1522 return 0;
1523 #endif
1525 if (ext4_ext_pblock(ex1) + ext1_ee_len == ext4_ext_pblock(ex2))
1526 return 1;
1527 return 0;
1531 * This function tries to merge the "ex" extent to the next extent in the tree.
1532 * It always tries to merge towards right. If you want to merge towards
1533 * left, pass "ex - 1" as argument instead of "ex".
1534 * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns
1535 * 1 if they got merged.
1537 static int ext4_ext_try_to_merge_right(struct inode *inode,
1538 struct ext4_ext_path *path,
1539 struct ext4_extent *ex)
1541 struct ext4_extent_header *eh;
1542 unsigned int depth, len;
1543 int merge_done = 0;
1544 int uninitialized = 0;
1546 depth = ext_depth(inode);
1547 BUG_ON(path[depth].p_hdr == NULL);
1548 eh = path[depth].p_hdr;
1550 while (ex < EXT_LAST_EXTENT(eh)) {
1551 if (!ext4_can_extents_be_merged(inode, ex, ex + 1))
1552 break;
1553 /* merge with next extent! */
1554 if (ext4_ext_is_uninitialized(ex))
1555 uninitialized = 1;
1556 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1557 + ext4_ext_get_actual_len(ex + 1));
1558 if (uninitialized)
1559 ext4_ext_mark_uninitialized(ex);
1561 if (ex + 1 < EXT_LAST_EXTENT(eh)) {
1562 len = (EXT_LAST_EXTENT(eh) - ex - 1)
1563 * sizeof(struct ext4_extent);
1564 memmove(ex + 1, ex + 2, len);
1566 le16_add_cpu(&eh->eh_entries, -1);
1567 merge_done = 1;
1568 WARN_ON(eh->eh_entries == 0);
1569 if (!eh->eh_entries)
1570 EXT4_ERROR_INODE(inode, "eh->eh_entries = 0!");
1573 return merge_done;
1577 * This function tries to merge the @ex extent to neighbours in the tree.
1578 * return 1 if merge left else 0.
1580 static int ext4_ext_try_to_merge(struct inode *inode,
1581 struct ext4_ext_path *path,
1582 struct ext4_extent *ex) {
1583 struct ext4_extent_header *eh;
1584 unsigned int depth;
1585 int merge_done = 0;
1586 int ret = 0;
1588 depth = ext_depth(inode);
1589 BUG_ON(path[depth].p_hdr == NULL);
1590 eh = path[depth].p_hdr;
1592 if (ex > EXT_FIRST_EXTENT(eh))
1593 merge_done = ext4_ext_try_to_merge_right(inode, path, ex - 1);
1595 if (!merge_done)
1596 ret = ext4_ext_try_to_merge_right(inode, path, ex);
1598 return ret;
1602 * check if a portion of the "newext" extent overlaps with an
1603 * existing extent.
1605 * If there is an overlap discovered, it updates the length of the newext
1606 * such that there will be no overlap, and then returns 1.
1607 * If there is no overlap found, it returns 0.
1609 static unsigned int ext4_ext_check_overlap(struct ext4_sb_info *sbi,
1610 struct inode *inode,
1611 struct ext4_extent *newext,
1612 struct ext4_ext_path *path)
1614 ext4_lblk_t b1, b2;
1615 unsigned int depth, len1;
1616 unsigned int ret = 0;
1618 b1 = le32_to_cpu(newext->ee_block);
1619 len1 = ext4_ext_get_actual_len(newext);
1620 depth = ext_depth(inode);
1621 if (!path[depth].p_ext)
1622 goto out;
1623 b2 = le32_to_cpu(path[depth].p_ext->ee_block);
1624 b2 &= ~(sbi->s_cluster_ratio - 1);
1627 * get the next allocated block if the extent in the path
1628 * is before the requested block(s)
1630 if (b2 < b1) {
1631 b2 = ext4_ext_next_allocated_block(path);
1632 if (b2 == EXT_MAX_BLOCKS)
1633 goto out;
1634 b2 &= ~(sbi->s_cluster_ratio - 1);
1637 /* check for wrap through zero on extent logical start block*/
1638 if (b1 + len1 < b1) {
1639 len1 = EXT_MAX_BLOCKS - b1;
1640 newext->ee_len = cpu_to_le16(len1);
1641 ret = 1;
1644 /* check for overlap */
1645 if (b1 + len1 > b2) {
1646 newext->ee_len = cpu_to_le16(b2 - b1);
1647 ret = 1;
1649 out:
1650 return ret;
1654 * ext4_ext_insert_extent:
1655 * tries to merge requsted extent into the existing extent or
1656 * inserts requested extent as new one into the tree,
1657 * creating new leaf in the no-space case.
1659 int ext4_ext_insert_extent(handle_t *handle, struct inode *inode,
1660 struct ext4_ext_path *path,
1661 struct ext4_extent *newext, int flag)
1663 struct ext4_extent_header *eh;
1664 struct ext4_extent *ex, *fex;
1665 struct ext4_extent *nearex; /* nearest extent */
1666 struct ext4_ext_path *npath = NULL;
1667 int depth, len, err;
1668 ext4_lblk_t next;
1669 unsigned uninitialized = 0;
1670 int flags = 0;
1672 if (unlikely(ext4_ext_get_actual_len(newext) == 0)) {
1673 EXT4_ERROR_INODE(inode, "ext4_ext_get_actual_len(newext) == 0");
1674 return -EIO;
1676 depth = ext_depth(inode);
1677 ex = path[depth].p_ext;
1678 if (unlikely(path[depth].p_hdr == NULL)) {
1679 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1680 return -EIO;
1683 /* try to insert block into found extent and return */
1684 if (ex && !(flag & EXT4_GET_BLOCKS_PRE_IO)
1685 && ext4_can_extents_be_merged(inode, ex, newext)) {
1686 ext_debug("append [%d]%d block to %u:[%d]%d (from %llu)\n",
1687 ext4_ext_is_uninitialized(newext),
1688 ext4_ext_get_actual_len(newext),
1689 le32_to_cpu(ex->ee_block),
1690 ext4_ext_is_uninitialized(ex),
1691 ext4_ext_get_actual_len(ex),
1692 ext4_ext_pblock(ex));
1693 err = ext4_ext_get_access(handle, inode, path + depth);
1694 if (err)
1695 return err;
1698 * ext4_can_extents_be_merged should have checked that either
1699 * both extents are uninitialized, or both aren't. Thus we
1700 * need to check only one of them here.
1702 if (ext4_ext_is_uninitialized(ex))
1703 uninitialized = 1;
1704 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1705 + ext4_ext_get_actual_len(newext));
1706 if (uninitialized)
1707 ext4_ext_mark_uninitialized(ex);
1708 eh = path[depth].p_hdr;
1709 nearex = ex;
1710 goto merge;
1713 depth = ext_depth(inode);
1714 eh = path[depth].p_hdr;
1715 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max))
1716 goto has_space;
1718 /* probably next leaf has space for us? */
1719 fex = EXT_LAST_EXTENT(eh);
1720 next = EXT_MAX_BLOCKS;
1721 if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block))
1722 next = ext4_ext_next_leaf_block(path);
1723 if (next != EXT_MAX_BLOCKS) {
1724 ext_debug("next leaf block - %u\n", next);
1725 BUG_ON(npath != NULL);
1726 npath = ext4_ext_find_extent(inode, next, NULL);
1727 if (IS_ERR(npath))
1728 return PTR_ERR(npath);
1729 BUG_ON(npath->p_depth != path->p_depth);
1730 eh = npath[depth].p_hdr;
1731 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) {
1732 ext_debug("next leaf isn't full(%d)\n",
1733 le16_to_cpu(eh->eh_entries));
1734 path = npath;
1735 goto has_space;
1737 ext_debug("next leaf has no free space(%d,%d)\n",
1738 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
1742 * There is no free space in the found leaf.
1743 * We're gonna add a new leaf in the tree.
1745 if (flag & EXT4_GET_BLOCKS_PUNCH_OUT_EXT)
1746 flags = EXT4_MB_USE_ROOT_BLOCKS;
1747 err = ext4_ext_create_new_leaf(handle, inode, flags, path, newext);
1748 if (err)
1749 goto cleanup;
1750 depth = ext_depth(inode);
1751 eh = path[depth].p_hdr;
1753 has_space:
1754 nearex = path[depth].p_ext;
1756 err = ext4_ext_get_access(handle, inode, path + depth);
1757 if (err)
1758 goto cleanup;
1760 if (!nearex) {
1761 /* there is no extent in this leaf, create first one */
1762 ext_debug("first extent in the leaf: %u:%llu:[%d]%d\n",
1763 le32_to_cpu(newext->ee_block),
1764 ext4_ext_pblock(newext),
1765 ext4_ext_is_uninitialized(newext),
1766 ext4_ext_get_actual_len(newext));
1767 nearex = EXT_FIRST_EXTENT(eh);
1768 } else {
1769 if (le32_to_cpu(newext->ee_block)
1770 > le32_to_cpu(nearex->ee_block)) {
1771 /* Insert after */
1772 ext_debug("insert %u:%llu:[%d]%d before: "
1773 "nearest %p\n",
1774 le32_to_cpu(newext->ee_block),
1775 ext4_ext_pblock(newext),
1776 ext4_ext_is_uninitialized(newext),
1777 ext4_ext_get_actual_len(newext),
1778 nearex);
1779 nearex++;
1780 } else {
1781 /* Insert before */
1782 BUG_ON(newext->ee_block == nearex->ee_block);
1783 ext_debug("insert %u:%llu:[%d]%d after: "
1784 "nearest %p\n",
1785 le32_to_cpu(newext->ee_block),
1786 ext4_ext_pblock(newext),
1787 ext4_ext_is_uninitialized(newext),
1788 ext4_ext_get_actual_len(newext),
1789 nearex);
1791 len = EXT_LAST_EXTENT(eh) - nearex + 1;
1792 if (len > 0) {
1793 ext_debug("insert %u:%llu:[%d]%d: "
1794 "move %d extents from 0x%p to 0x%p\n",
1795 le32_to_cpu(newext->ee_block),
1796 ext4_ext_pblock(newext),
1797 ext4_ext_is_uninitialized(newext),
1798 ext4_ext_get_actual_len(newext),
1799 len, nearex, nearex + 1);
1800 memmove(nearex + 1, nearex,
1801 len * sizeof(struct ext4_extent));
1805 le16_add_cpu(&eh->eh_entries, 1);
1806 path[depth].p_ext = nearex;
1807 nearex->ee_block = newext->ee_block;
1808 ext4_ext_store_pblock(nearex, ext4_ext_pblock(newext));
1809 nearex->ee_len = newext->ee_len;
1811 merge:
1812 /* try to merge extents to the right */
1813 if (!(flag & EXT4_GET_BLOCKS_PRE_IO))
1814 ext4_ext_try_to_merge(inode, path, nearex);
1816 /* try to merge extents to the left */
1818 /* time to correct all indexes above */
1819 err = ext4_ext_correct_indexes(handle, inode, path);
1820 if (err)
1821 goto cleanup;
1823 err = ext4_ext_dirty(handle, inode, path + depth);
1825 cleanup:
1826 if (npath) {
1827 ext4_ext_drop_refs(npath);
1828 kfree(npath);
1830 ext4_ext_invalidate_cache(inode);
1831 return err;
1834 static int ext4_ext_walk_space(struct inode *inode, ext4_lblk_t block,
1835 ext4_lblk_t num, ext_prepare_callback func,
1836 void *cbdata)
1838 struct ext4_ext_path *path = NULL;
1839 struct ext4_ext_cache cbex;
1840 struct ext4_extent *ex;
1841 ext4_lblk_t next, start = 0, end = 0;
1842 ext4_lblk_t last = block + num;
1843 int depth, exists, err = 0;
1845 BUG_ON(func == NULL);
1846 BUG_ON(inode == NULL);
1848 while (block < last && block != EXT_MAX_BLOCKS) {
1849 num = last - block;
1850 /* find extent for this block */
1851 down_read(&EXT4_I(inode)->i_data_sem);
1852 path = ext4_ext_find_extent(inode, block, path);
1853 up_read(&EXT4_I(inode)->i_data_sem);
1854 if (IS_ERR(path)) {
1855 err = PTR_ERR(path);
1856 path = NULL;
1857 break;
1860 depth = ext_depth(inode);
1861 if (unlikely(path[depth].p_hdr == NULL)) {
1862 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1863 err = -EIO;
1864 break;
1866 ex = path[depth].p_ext;
1867 next = ext4_ext_next_allocated_block(path);
1869 exists = 0;
1870 if (!ex) {
1871 /* there is no extent yet, so try to allocate
1872 * all requested space */
1873 start = block;
1874 end = block + num;
1875 } else if (le32_to_cpu(ex->ee_block) > block) {
1876 /* need to allocate space before found extent */
1877 start = block;
1878 end = le32_to_cpu(ex->ee_block);
1879 if (block + num < end)
1880 end = block + num;
1881 } else if (block >= le32_to_cpu(ex->ee_block)
1882 + ext4_ext_get_actual_len(ex)) {
1883 /* need to allocate space after found extent */
1884 start = block;
1885 end = block + num;
1886 if (end >= next)
1887 end = next;
1888 } else if (block >= le32_to_cpu(ex->ee_block)) {
1890 * some part of requested space is covered
1891 * by found extent
1893 start = block;
1894 end = le32_to_cpu(ex->ee_block)
1895 + ext4_ext_get_actual_len(ex);
1896 if (block + num < end)
1897 end = block + num;
1898 exists = 1;
1899 } else {
1900 BUG();
1902 BUG_ON(end <= start);
1904 if (!exists) {
1905 cbex.ec_block = start;
1906 cbex.ec_len = end - start;
1907 cbex.ec_start = 0;
1908 } else {
1909 cbex.ec_block = le32_to_cpu(ex->ee_block);
1910 cbex.ec_len = ext4_ext_get_actual_len(ex);
1911 cbex.ec_start = ext4_ext_pblock(ex);
1914 if (unlikely(cbex.ec_len == 0)) {
1915 EXT4_ERROR_INODE(inode, "cbex.ec_len == 0");
1916 err = -EIO;
1917 break;
1919 err = func(inode, next, &cbex, ex, cbdata);
1920 ext4_ext_drop_refs(path);
1922 if (err < 0)
1923 break;
1925 if (err == EXT_REPEAT)
1926 continue;
1927 else if (err == EXT_BREAK) {
1928 err = 0;
1929 break;
1932 if (ext_depth(inode) != depth) {
1933 /* depth was changed. we have to realloc path */
1934 kfree(path);
1935 path = NULL;
1938 block = cbex.ec_block + cbex.ec_len;
1941 if (path) {
1942 ext4_ext_drop_refs(path);
1943 kfree(path);
1946 return err;
1949 static void
1950 ext4_ext_put_in_cache(struct inode *inode, ext4_lblk_t block,
1951 __u32 len, ext4_fsblk_t start)
1953 struct ext4_ext_cache *cex;
1954 BUG_ON(len == 0);
1955 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1956 trace_ext4_ext_put_in_cache(inode, block, len, start);
1957 cex = &EXT4_I(inode)->i_cached_extent;
1958 cex->ec_block = block;
1959 cex->ec_len = len;
1960 cex->ec_start = start;
1961 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1965 * ext4_ext_put_gap_in_cache:
1966 * calculate boundaries of the gap that the requested block fits into
1967 * and cache this gap
1969 static void
1970 ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path,
1971 ext4_lblk_t block)
1973 int depth = ext_depth(inode);
1974 unsigned long len;
1975 ext4_lblk_t lblock;
1976 struct ext4_extent *ex;
1978 ex = path[depth].p_ext;
1979 if (ex == NULL) {
1980 /* there is no extent yet, so gap is [0;-] */
1981 lblock = 0;
1982 len = EXT_MAX_BLOCKS;
1983 ext_debug("cache gap(whole file):");
1984 } else if (block < le32_to_cpu(ex->ee_block)) {
1985 lblock = block;
1986 len = le32_to_cpu(ex->ee_block) - block;
1987 ext_debug("cache gap(before): %u [%u:%u]",
1988 block,
1989 le32_to_cpu(ex->ee_block),
1990 ext4_ext_get_actual_len(ex));
1991 } else if (block >= le32_to_cpu(ex->ee_block)
1992 + ext4_ext_get_actual_len(ex)) {
1993 ext4_lblk_t next;
1994 lblock = le32_to_cpu(ex->ee_block)
1995 + ext4_ext_get_actual_len(ex);
1997 next = ext4_ext_next_allocated_block(path);
1998 ext_debug("cache gap(after): [%u:%u] %u",
1999 le32_to_cpu(ex->ee_block),
2000 ext4_ext_get_actual_len(ex),
2001 block);
2002 BUG_ON(next == lblock);
2003 len = next - lblock;
2004 } else {
2005 lblock = len = 0;
2006 BUG();
2009 ext_debug(" -> %u:%lu\n", lblock, len);
2010 ext4_ext_put_in_cache(inode, lblock, len, 0);
2014 * ext4_ext_check_cache()
2015 * Checks to see if the given block is in the cache.
2016 * If it is, the cached extent is stored in the given
2017 * cache extent pointer. If the cached extent is a hole,
2018 * this routine should be used instead of
2019 * ext4_ext_in_cache if the calling function needs to
2020 * know the size of the hole.
2022 * @inode: The files inode
2023 * @block: The block to look for in the cache
2024 * @ex: Pointer where the cached extent will be stored
2025 * if it contains block
2027 * Return 0 if cache is invalid; 1 if the cache is valid
2029 static int ext4_ext_check_cache(struct inode *inode, ext4_lblk_t block,
2030 struct ext4_ext_cache *ex){
2031 struct ext4_ext_cache *cex;
2032 struct ext4_sb_info *sbi;
2033 int ret = 0;
2036 * We borrow i_block_reservation_lock to protect i_cached_extent
2038 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
2039 cex = &EXT4_I(inode)->i_cached_extent;
2040 sbi = EXT4_SB(inode->i_sb);
2042 /* has cache valid data? */
2043 if (cex->ec_len == 0)
2044 goto errout;
2046 if (in_range(block, cex->ec_block, cex->ec_len)) {
2047 memcpy(ex, cex, sizeof(struct ext4_ext_cache));
2048 ext_debug("%u cached by %u:%u:%llu\n",
2049 block,
2050 cex->ec_block, cex->ec_len, cex->ec_start);
2051 ret = 1;
2053 errout:
2054 trace_ext4_ext_in_cache(inode, block, ret);
2055 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
2056 return ret;
2060 * ext4_ext_in_cache()
2061 * Checks to see if the given block is in the cache.
2062 * If it is, the cached extent is stored in the given
2063 * extent pointer.
2065 * @inode: The files inode
2066 * @block: The block to look for in the cache
2067 * @ex: Pointer where the cached extent will be stored
2068 * if it contains block
2070 * Return 0 if cache is invalid; 1 if the cache is valid
2072 static int
2073 ext4_ext_in_cache(struct inode *inode, ext4_lblk_t block,
2074 struct ext4_extent *ex)
2076 struct ext4_ext_cache cex;
2077 int ret = 0;
2079 if (ext4_ext_check_cache(inode, block, &cex)) {
2080 ex->ee_block = cpu_to_le32(cex.ec_block);
2081 ext4_ext_store_pblock(ex, cex.ec_start);
2082 ex->ee_len = cpu_to_le16(cex.ec_len);
2083 ret = 1;
2086 return ret;
2091 * ext4_ext_rm_idx:
2092 * removes index from the index block.
2094 static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode,
2095 struct ext4_ext_path *path)
2097 int err;
2098 ext4_fsblk_t leaf;
2100 /* free index block */
2101 path--;
2102 leaf = ext4_idx_pblock(path->p_idx);
2103 if (unlikely(path->p_hdr->eh_entries == 0)) {
2104 EXT4_ERROR_INODE(inode, "path->p_hdr->eh_entries == 0");
2105 return -EIO;
2107 err = ext4_ext_get_access(handle, inode, path);
2108 if (err)
2109 return err;
2111 if (path->p_idx != EXT_LAST_INDEX(path->p_hdr)) {
2112 int len = EXT_LAST_INDEX(path->p_hdr) - path->p_idx;
2113 len *= sizeof(struct ext4_extent_idx);
2114 memmove(path->p_idx, path->p_idx + 1, len);
2117 le16_add_cpu(&path->p_hdr->eh_entries, -1);
2118 err = ext4_ext_dirty(handle, inode, path);
2119 if (err)
2120 return err;
2121 ext_debug("index is empty, remove it, free block %llu\n", leaf);
2122 trace_ext4_ext_rm_idx(inode, leaf);
2124 ext4_free_blocks(handle, inode, NULL, leaf, 1,
2125 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
2126 return err;
2130 * ext4_ext_calc_credits_for_single_extent:
2131 * This routine returns max. credits that needed to insert an extent
2132 * to the extent tree.
2133 * When pass the actual path, the caller should calculate credits
2134 * under i_data_sem.
2136 int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks,
2137 struct ext4_ext_path *path)
2139 if (path) {
2140 int depth = ext_depth(inode);
2141 int ret = 0;
2143 /* probably there is space in leaf? */
2144 if (le16_to_cpu(path[depth].p_hdr->eh_entries)
2145 < le16_to_cpu(path[depth].p_hdr->eh_max)) {
2148 * There are some space in the leaf tree, no
2149 * need to account for leaf block credit
2151 * bitmaps and block group descriptor blocks
2152 * and other metadata blocks still need to be
2153 * accounted.
2155 /* 1 bitmap, 1 block group descriptor */
2156 ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb);
2157 return ret;
2161 return ext4_chunk_trans_blocks(inode, nrblocks);
2165 * How many index/leaf blocks need to change/allocate to modify nrblocks?
2167 * if nrblocks are fit in a single extent (chunk flag is 1), then
2168 * in the worse case, each tree level index/leaf need to be changed
2169 * if the tree split due to insert a new extent, then the old tree
2170 * index/leaf need to be updated too
2172 * If the nrblocks are discontiguous, they could cause
2173 * the whole tree split more than once, but this is really rare.
2175 int ext4_ext_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
2177 int index;
2178 int depth = ext_depth(inode);
2180 if (chunk)
2181 index = depth * 2;
2182 else
2183 index = depth * 3;
2185 return index;
2188 static int ext4_remove_blocks(handle_t *handle, struct inode *inode,
2189 struct ext4_extent *ex,
2190 ext4_fsblk_t *partial_cluster,
2191 ext4_lblk_t from, ext4_lblk_t to)
2193 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2194 unsigned short ee_len = ext4_ext_get_actual_len(ex);
2195 ext4_fsblk_t pblk;
2196 int flags = EXT4_FREE_BLOCKS_FORGET;
2198 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2199 flags |= EXT4_FREE_BLOCKS_METADATA;
2201 * For bigalloc file systems, we never free a partial cluster
2202 * at the beginning of the extent. Instead, we make a note
2203 * that we tried freeing the cluster, and check to see if we
2204 * need to free it on a subsequent call to ext4_remove_blocks,
2205 * or at the end of the ext4_truncate() operation.
2207 flags |= EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER;
2209 trace_ext4_remove_blocks(inode, ex, from, to, *partial_cluster);
2211 * If we have a partial cluster, and it's different from the
2212 * cluster of the last block, we need to explicitly free the
2213 * partial cluster here.
2215 pblk = ext4_ext_pblock(ex) + ee_len - 1;
2216 if (*partial_cluster && (EXT4_B2C(sbi, pblk) != *partial_cluster)) {
2217 ext4_free_blocks(handle, inode, NULL,
2218 EXT4_C2B(sbi, *partial_cluster),
2219 sbi->s_cluster_ratio, flags);
2220 *partial_cluster = 0;
2223 #ifdef EXTENTS_STATS
2225 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2226 spin_lock(&sbi->s_ext_stats_lock);
2227 sbi->s_ext_blocks += ee_len;
2228 sbi->s_ext_extents++;
2229 if (ee_len < sbi->s_ext_min)
2230 sbi->s_ext_min = ee_len;
2231 if (ee_len > sbi->s_ext_max)
2232 sbi->s_ext_max = ee_len;
2233 if (ext_depth(inode) > sbi->s_depth_max)
2234 sbi->s_depth_max = ext_depth(inode);
2235 spin_unlock(&sbi->s_ext_stats_lock);
2237 #endif
2238 if (from >= le32_to_cpu(ex->ee_block)
2239 && to == le32_to_cpu(ex->ee_block) + ee_len - 1) {
2240 /* tail removal */
2241 ext4_lblk_t num;
2243 num = le32_to_cpu(ex->ee_block) + ee_len - from;
2244 pblk = ext4_ext_pblock(ex) + ee_len - num;
2245 ext_debug("free last %u blocks starting %llu\n", num, pblk);
2246 ext4_free_blocks(handle, inode, NULL, pblk, num, flags);
2248 * If the block range to be freed didn't start at the
2249 * beginning of a cluster, and we removed the entire
2250 * extent, save the partial cluster here, since we
2251 * might need to delete if we determine that the
2252 * truncate operation has removed all of the blocks in
2253 * the cluster.
2255 if (pblk & (sbi->s_cluster_ratio - 1) &&
2256 (ee_len == num))
2257 *partial_cluster = EXT4_B2C(sbi, pblk);
2258 else
2259 *partial_cluster = 0;
2260 } else if (from == le32_to_cpu(ex->ee_block)
2261 && to <= le32_to_cpu(ex->ee_block) + ee_len - 1) {
2262 /* head removal */
2263 ext4_lblk_t num;
2264 ext4_fsblk_t start;
2266 num = to - from;
2267 start = ext4_ext_pblock(ex);
2269 ext_debug("free first %u blocks starting %llu\n", num, start);
2270 ext4_free_blocks(handle, inode, NULL, start, num, flags);
2272 } else {
2273 printk(KERN_INFO "strange request: removal(2) "
2274 "%u-%u from %u:%u\n",
2275 from, to, le32_to_cpu(ex->ee_block), ee_len);
2277 return 0;
2282 * ext4_ext_rm_leaf() Removes the extents associated with the
2283 * blocks appearing between "start" and "end", and splits the extents
2284 * if "start" and "end" appear in the same extent
2286 * @handle: The journal handle
2287 * @inode: The files inode
2288 * @path: The path to the leaf
2289 * @start: The first block to remove
2290 * @end: The last block to remove
2292 static int
2293 ext4_ext_rm_leaf(handle_t *handle, struct inode *inode,
2294 struct ext4_ext_path *path, ext4_fsblk_t *partial_cluster,
2295 ext4_lblk_t start, ext4_lblk_t end)
2297 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2298 int err = 0, correct_index = 0;
2299 int depth = ext_depth(inode), credits;
2300 struct ext4_extent_header *eh;
2301 ext4_lblk_t a, b;
2302 unsigned num;
2303 ext4_lblk_t ex_ee_block;
2304 unsigned short ex_ee_len;
2305 unsigned uninitialized = 0;
2306 struct ext4_extent *ex;
2308 /* the header must be checked already in ext4_ext_remove_space() */
2309 ext_debug("truncate since %u in leaf\n", start);
2310 if (!path[depth].p_hdr)
2311 path[depth].p_hdr = ext_block_hdr(path[depth].p_bh);
2312 eh = path[depth].p_hdr;
2313 if (unlikely(path[depth].p_hdr == NULL)) {
2314 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2315 return -EIO;
2317 /* find where to start removing */
2318 ex = EXT_LAST_EXTENT(eh);
2320 ex_ee_block = le32_to_cpu(ex->ee_block);
2321 ex_ee_len = ext4_ext_get_actual_len(ex);
2323 trace_ext4_ext_rm_leaf(inode, start, ex, *partial_cluster);
2325 while (ex >= EXT_FIRST_EXTENT(eh) &&
2326 ex_ee_block + ex_ee_len > start) {
2328 if (ext4_ext_is_uninitialized(ex))
2329 uninitialized = 1;
2330 else
2331 uninitialized = 0;
2333 ext_debug("remove ext %u:[%d]%d\n", ex_ee_block,
2334 uninitialized, ex_ee_len);
2335 path[depth].p_ext = ex;
2337 a = ex_ee_block > start ? ex_ee_block : start;
2338 b = ex_ee_block+ex_ee_len - 1 < end ?
2339 ex_ee_block+ex_ee_len - 1 : end;
2341 ext_debug(" border %u:%u\n", a, b);
2343 /* If this extent is beyond the end of the hole, skip it */
2344 if (end <= ex_ee_block) {
2345 ex--;
2346 ex_ee_block = le32_to_cpu(ex->ee_block);
2347 ex_ee_len = ext4_ext_get_actual_len(ex);
2348 continue;
2349 } else if (b != ex_ee_block + ex_ee_len - 1) {
2350 EXT4_ERROR_INODE(inode," bad truncate %u:%u\n",
2351 start, end);
2352 err = -EIO;
2353 goto out;
2354 } else if (a != ex_ee_block) {
2355 /* remove tail of the extent */
2356 num = a - ex_ee_block;
2357 } else {
2358 /* remove whole extent: excellent! */
2359 num = 0;
2362 * 3 for leaf, sb, and inode plus 2 (bmap and group
2363 * descriptor) for each block group; assume two block
2364 * groups plus ex_ee_len/blocks_per_block_group for
2365 * the worst case
2367 credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb));
2368 if (ex == EXT_FIRST_EXTENT(eh)) {
2369 correct_index = 1;
2370 credits += (ext_depth(inode)) + 1;
2372 credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
2374 err = ext4_ext_truncate_extend_restart(handle, inode, credits);
2375 if (err)
2376 goto out;
2378 err = ext4_ext_get_access(handle, inode, path + depth);
2379 if (err)
2380 goto out;
2382 err = ext4_remove_blocks(handle, inode, ex, partial_cluster,
2383 a, b);
2384 if (err)
2385 goto out;
2387 if (num == 0)
2388 /* this extent is removed; mark slot entirely unused */
2389 ext4_ext_store_pblock(ex, 0);
2391 ex->ee_len = cpu_to_le16(num);
2393 * Do not mark uninitialized if all the blocks in the
2394 * extent have been removed.
2396 if (uninitialized && num)
2397 ext4_ext_mark_uninitialized(ex);
2399 * If the extent was completely released,
2400 * we need to remove it from the leaf
2402 if (num == 0) {
2403 if (end != EXT_MAX_BLOCKS - 1) {
2405 * For hole punching, we need to scoot all the
2406 * extents up when an extent is removed so that
2407 * we dont have blank extents in the middle
2409 memmove(ex, ex+1, (EXT_LAST_EXTENT(eh) - ex) *
2410 sizeof(struct ext4_extent));
2412 /* Now get rid of the one at the end */
2413 memset(EXT_LAST_EXTENT(eh), 0,
2414 sizeof(struct ext4_extent));
2416 le16_add_cpu(&eh->eh_entries, -1);
2417 } else
2418 *partial_cluster = 0;
2420 err = ext4_ext_dirty(handle, inode, path + depth);
2421 if (err)
2422 goto out;
2424 ext_debug("new extent: %u:%u:%llu\n", ex_ee_block, num,
2425 ext4_ext_pblock(ex));
2426 ex--;
2427 ex_ee_block = le32_to_cpu(ex->ee_block);
2428 ex_ee_len = ext4_ext_get_actual_len(ex);
2431 if (correct_index && eh->eh_entries)
2432 err = ext4_ext_correct_indexes(handle, inode, path);
2435 * If there is still a entry in the leaf node, check to see if
2436 * it references the partial cluster. This is the only place
2437 * where it could; if it doesn't, we can free the cluster.
2439 if (*partial_cluster && ex >= EXT_FIRST_EXTENT(eh) &&
2440 (EXT4_B2C(sbi, ext4_ext_pblock(ex) + ex_ee_len - 1) !=
2441 *partial_cluster)) {
2442 int flags = EXT4_FREE_BLOCKS_FORGET;
2444 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2445 flags |= EXT4_FREE_BLOCKS_METADATA;
2447 ext4_free_blocks(handle, inode, NULL,
2448 EXT4_C2B(sbi, *partial_cluster),
2449 sbi->s_cluster_ratio, flags);
2450 *partial_cluster = 0;
2453 /* if this leaf is free, then we should
2454 * remove it from index block above */
2455 if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL)
2456 err = ext4_ext_rm_idx(handle, inode, path + depth);
2458 out:
2459 return err;
2463 * ext4_ext_more_to_rm:
2464 * returns 1 if current index has to be freed (even partial)
2466 static int
2467 ext4_ext_more_to_rm(struct ext4_ext_path *path)
2469 BUG_ON(path->p_idx == NULL);
2471 if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr))
2472 return 0;
2475 * if truncate on deeper level happened, it wasn't partial,
2476 * so we have to consider current index for truncation
2478 if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block)
2479 return 0;
2480 return 1;
2483 static int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start)
2485 struct super_block *sb = inode->i_sb;
2486 int depth = ext_depth(inode);
2487 struct ext4_ext_path *path;
2488 ext4_fsblk_t partial_cluster = 0;
2489 handle_t *handle;
2490 int i, err;
2492 ext_debug("truncate since %u\n", start);
2494 /* probably first extent we're gonna free will be last in block */
2495 handle = ext4_journal_start(inode, depth + 1);
2496 if (IS_ERR(handle))
2497 return PTR_ERR(handle);
2499 again:
2500 ext4_ext_invalidate_cache(inode);
2502 trace_ext4_ext_remove_space(inode, start, depth);
2505 * We start scanning from right side, freeing all the blocks
2506 * after i_size and walking into the tree depth-wise.
2508 depth = ext_depth(inode);
2509 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1), GFP_NOFS);
2510 if (path == NULL) {
2511 ext4_journal_stop(handle);
2512 return -ENOMEM;
2514 path[0].p_depth = depth;
2515 path[0].p_hdr = ext_inode_hdr(inode);
2516 if (ext4_ext_check(inode, path[0].p_hdr, depth)) {
2517 err = -EIO;
2518 goto out;
2520 i = err = 0;
2522 while (i >= 0 && err == 0) {
2523 if (i == depth) {
2524 /* this is leaf block */
2525 err = ext4_ext_rm_leaf(handle, inode, path,
2526 &partial_cluster, start,
2527 EXT_MAX_BLOCKS - 1);
2528 /* root level has p_bh == NULL, brelse() eats this */
2529 brelse(path[i].p_bh);
2530 path[i].p_bh = NULL;
2531 i--;
2532 continue;
2535 /* this is index block */
2536 if (!path[i].p_hdr) {
2537 ext_debug("initialize header\n");
2538 path[i].p_hdr = ext_block_hdr(path[i].p_bh);
2541 if (!path[i].p_idx) {
2542 /* this level hasn't been touched yet */
2543 path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr);
2544 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1;
2545 ext_debug("init index ptr: hdr 0x%p, num %d\n",
2546 path[i].p_hdr,
2547 le16_to_cpu(path[i].p_hdr->eh_entries));
2548 } else {
2549 /* we were already here, see at next index */
2550 path[i].p_idx--;
2553 ext_debug("level %d - index, first 0x%p, cur 0x%p\n",
2554 i, EXT_FIRST_INDEX(path[i].p_hdr),
2555 path[i].p_idx);
2556 if (ext4_ext_more_to_rm(path + i)) {
2557 struct buffer_head *bh;
2558 /* go to the next level */
2559 ext_debug("move to level %d (block %llu)\n",
2560 i + 1, ext4_idx_pblock(path[i].p_idx));
2561 memset(path + i + 1, 0, sizeof(*path));
2562 bh = sb_bread(sb, ext4_idx_pblock(path[i].p_idx));
2563 if (!bh) {
2564 /* should we reset i_size? */
2565 err = -EIO;
2566 break;
2568 if (WARN_ON(i + 1 > depth)) {
2569 err = -EIO;
2570 break;
2572 if (ext4_ext_check(inode, ext_block_hdr(bh),
2573 depth - i - 1)) {
2574 err = -EIO;
2575 break;
2577 path[i + 1].p_bh = bh;
2579 /* save actual number of indexes since this
2580 * number is changed at the next iteration */
2581 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries);
2582 i++;
2583 } else {
2584 /* we finished processing this index, go up */
2585 if (path[i].p_hdr->eh_entries == 0 && i > 0) {
2586 /* index is empty, remove it;
2587 * handle must be already prepared by the
2588 * truncatei_leaf() */
2589 err = ext4_ext_rm_idx(handle, inode, path + i);
2591 /* root level has p_bh == NULL, brelse() eats this */
2592 brelse(path[i].p_bh);
2593 path[i].p_bh = NULL;
2594 i--;
2595 ext_debug("return to level %d\n", i);
2599 trace_ext4_ext_remove_space_done(inode, start, depth, partial_cluster,
2600 path->p_hdr->eh_entries);
2602 /* If we still have something in the partial cluster and we have removed
2603 * even the first extent, then we should free the blocks in the partial
2604 * cluster as well. */
2605 if (partial_cluster && path->p_hdr->eh_entries == 0) {
2606 int flags = EXT4_FREE_BLOCKS_FORGET;
2608 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2609 flags |= EXT4_FREE_BLOCKS_METADATA;
2611 ext4_free_blocks(handle, inode, NULL,
2612 EXT4_C2B(EXT4_SB(sb), partial_cluster),
2613 EXT4_SB(sb)->s_cluster_ratio, flags);
2614 partial_cluster = 0;
2617 /* TODO: flexible tree reduction should be here */
2618 if (path->p_hdr->eh_entries == 0) {
2620 * truncate to zero freed all the tree,
2621 * so we need to correct eh_depth
2623 err = ext4_ext_get_access(handle, inode, path);
2624 if (err == 0) {
2625 ext_inode_hdr(inode)->eh_depth = 0;
2626 ext_inode_hdr(inode)->eh_max =
2627 cpu_to_le16(ext4_ext_space_root(inode, 0));
2628 err = ext4_ext_dirty(handle, inode, path);
2631 out:
2632 ext4_ext_drop_refs(path);
2633 kfree(path);
2634 if (err == -EAGAIN)
2635 goto again;
2636 ext4_journal_stop(handle);
2638 return err;
2642 * called at mount time
2644 void ext4_ext_init(struct super_block *sb)
2647 * possible initialization would be here
2650 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
2651 #if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS)
2652 printk(KERN_INFO "EXT4-fs: file extents enabled");
2653 #ifdef AGGRESSIVE_TEST
2654 printk(", aggressive tests");
2655 #endif
2656 #ifdef CHECK_BINSEARCH
2657 printk(", check binsearch");
2658 #endif
2659 #ifdef EXTENTS_STATS
2660 printk(", stats");
2661 #endif
2662 printk("\n");
2663 #endif
2664 #ifdef EXTENTS_STATS
2665 spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock);
2666 EXT4_SB(sb)->s_ext_min = 1 << 30;
2667 EXT4_SB(sb)->s_ext_max = 0;
2668 #endif
2673 * called at umount time
2675 void ext4_ext_release(struct super_block *sb)
2677 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS))
2678 return;
2680 #ifdef EXTENTS_STATS
2681 if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) {
2682 struct ext4_sb_info *sbi = EXT4_SB(sb);
2683 printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n",
2684 sbi->s_ext_blocks, sbi->s_ext_extents,
2685 sbi->s_ext_blocks / sbi->s_ext_extents);
2686 printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n",
2687 sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max);
2689 #endif
2692 /* FIXME!! we need to try to merge to left or right after zero-out */
2693 static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex)
2695 ext4_fsblk_t ee_pblock;
2696 unsigned int ee_len;
2697 int ret;
2699 ee_len = ext4_ext_get_actual_len(ex);
2700 ee_pblock = ext4_ext_pblock(ex);
2702 ret = sb_issue_zeroout(inode->i_sb, ee_pblock, ee_len, GFP_NOFS);
2703 if (ret > 0)
2704 ret = 0;
2706 return ret;
2710 * used by extent splitting.
2712 #define EXT4_EXT_MAY_ZEROOUT 0x1 /* safe to zeroout if split fails \
2713 due to ENOSPC */
2714 #define EXT4_EXT_MARK_UNINIT1 0x2 /* mark first half uninitialized */
2715 #define EXT4_EXT_MARK_UNINIT2 0x4 /* mark second half uninitialized */
2718 * ext4_split_extent_at() splits an extent at given block.
2720 * @handle: the journal handle
2721 * @inode: the file inode
2722 * @path: the path to the extent
2723 * @split: the logical block where the extent is splitted.
2724 * @split_flags: indicates if the extent could be zeroout if split fails, and
2725 * the states(init or uninit) of new extents.
2726 * @flags: flags used to insert new extent to extent tree.
2729 * Splits extent [a, b] into two extents [a, @split) and [@split, b], states
2730 * of which are deterimined by split_flag.
2732 * There are two cases:
2733 * a> the extent are splitted into two extent.
2734 * b> split is not needed, and just mark the extent.
2736 * return 0 on success.
2738 static int ext4_split_extent_at(handle_t *handle,
2739 struct inode *inode,
2740 struct ext4_ext_path *path,
2741 ext4_lblk_t split,
2742 int split_flag,
2743 int flags)
2745 ext4_fsblk_t newblock;
2746 ext4_lblk_t ee_block;
2747 struct ext4_extent *ex, newex, orig_ex;
2748 struct ext4_extent *ex2 = NULL;
2749 unsigned int ee_len, depth;
2750 int err = 0;
2752 ext_debug("ext4_split_extents_at: inode %lu, logical"
2753 "block %llu\n", inode->i_ino, (unsigned long long)split);
2755 ext4_ext_show_leaf(inode, path);
2757 depth = ext_depth(inode);
2758 ex = path[depth].p_ext;
2759 ee_block = le32_to_cpu(ex->ee_block);
2760 ee_len = ext4_ext_get_actual_len(ex);
2761 newblock = split - ee_block + ext4_ext_pblock(ex);
2763 BUG_ON(split < ee_block || split >= (ee_block + ee_len));
2765 err = ext4_ext_get_access(handle, inode, path + depth);
2766 if (err)
2767 goto out;
2769 if (split == ee_block) {
2771 * case b: block @split is the block that the extent begins with
2772 * then we just change the state of the extent, and splitting
2773 * is not needed.
2775 if (split_flag & EXT4_EXT_MARK_UNINIT2)
2776 ext4_ext_mark_uninitialized(ex);
2777 else
2778 ext4_ext_mark_initialized(ex);
2780 if (!(flags & EXT4_GET_BLOCKS_PRE_IO))
2781 ext4_ext_try_to_merge(inode, path, ex);
2783 err = ext4_ext_dirty(handle, inode, path + depth);
2784 goto out;
2787 /* case a */
2788 memcpy(&orig_ex, ex, sizeof(orig_ex));
2789 ex->ee_len = cpu_to_le16(split - ee_block);
2790 if (split_flag & EXT4_EXT_MARK_UNINIT1)
2791 ext4_ext_mark_uninitialized(ex);
2794 * path may lead to new leaf, not to original leaf any more
2795 * after ext4_ext_insert_extent() returns,
2797 err = ext4_ext_dirty(handle, inode, path + depth);
2798 if (err)
2799 goto fix_extent_len;
2801 ex2 = &newex;
2802 ex2->ee_block = cpu_to_le32(split);
2803 ex2->ee_len = cpu_to_le16(ee_len - (split - ee_block));
2804 ext4_ext_store_pblock(ex2, newblock);
2805 if (split_flag & EXT4_EXT_MARK_UNINIT2)
2806 ext4_ext_mark_uninitialized(ex2);
2808 err = ext4_ext_insert_extent(handle, inode, path, &newex, flags);
2809 if (err == -ENOSPC && (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
2810 err = ext4_ext_zeroout(inode, &orig_ex);
2811 if (err)
2812 goto fix_extent_len;
2813 /* update the extent length and mark as initialized */
2814 ex->ee_len = cpu_to_le16(ee_len);
2815 ext4_ext_try_to_merge(inode, path, ex);
2816 err = ext4_ext_dirty(handle, inode, path + depth);
2817 goto out;
2818 } else if (err)
2819 goto fix_extent_len;
2821 out:
2822 ext4_ext_show_leaf(inode, path);
2823 return err;
2825 fix_extent_len:
2826 ex->ee_len = orig_ex.ee_len;
2827 ext4_ext_dirty(handle, inode, path + depth);
2828 return err;
2832 * ext4_split_extents() splits an extent and mark extent which is covered
2833 * by @map as split_flags indicates
2835 * It may result in splitting the extent into multiple extents (upto three)
2836 * There are three possibilities:
2837 * a> There is no split required
2838 * b> Splits in two extents: Split is happening at either end of the extent
2839 * c> Splits in three extents: Somone is splitting in middle of the extent
2842 static int ext4_split_extent(handle_t *handle,
2843 struct inode *inode,
2844 struct ext4_ext_path *path,
2845 struct ext4_map_blocks *map,
2846 int split_flag,
2847 int flags)
2849 ext4_lblk_t ee_block;
2850 struct ext4_extent *ex;
2851 unsigned int ee_len, depth;
2852 int err = 0;
2853 int uninitialized;
2854 int split_flag1, flags1;
2856 depth = ext_depth(inode);
2857 ex = path[depth].p_ext;
2858 ee_block = le32_to_cpu(ex->ee_block);
2859 ee_len = ext4_ext_get_actual_len(ex);
2860 uninitialized = ext4_ext_is_uninitialized(ex);
2862 if (map->m_lblk + map->m_len < ee_block + ee_len) {
2863 split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT ?
2864 EXT4_EXT_MAY_ZEROOUT : 0;
2865 flags1 = flags | EXT4_GET_BLOCKS_PRE_IO;
2866 if (uninitialized)
2867 split_flag1 |= EXT4_EXT_MARK_UNINIT1 |
2868 EXT4_EXT_MARK_UNINIT2;
2869 err = ext4_split_extent_at(handle, inode, path,
2870 map->m_lblk + map->m_len, split_flag1, flags1);
2871 if (err)
2872 goto out;
2875 ext4_ext_drop_refs(path);
2876 path = ext4_ext_find_extent(inode, map->m_lblk, path);
2877 if (IS_ERR(path))
2878 return PTR_ERR(path);
2880 if (map->m_lblk >= ee_block) {
2881 split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT ?
2882 EXT4_EXT_MAY_ZEROOUT : 0;
2883 if (uninitialized)
2884 split_flag1 |= EXT4_EXT_MARK_UNINIT1;
2885 if (split_flag & EXT4_EXT_MARK_UNINIT2)
2886 split_flag1 |= EXT4_EXT_MARK_UNINIT2;
2887 err = ext4_split_extent_at(handle, inode, path,
2888 map->m_lblk, split_flag1, flags);
2889 if (err)
2890 goto out;
2893 ext4_ext_show_leaf(inode, path);
2894 out:
2895 return err ? err : map->m_len;
2898 #define EXT4_EXT_ZERO_LEN 7
2900 * This function is called by ext4_ext_map_blocks() if someone tries to write
2901 * to an uninitialized extent. It may result in splitting the uninitialized
2902 * extent into multiple extents (up to three - one initialized and two
2903 * uninitialized).
2904 * There are three possibilities:
2905 * a> There is no split required: Entire extent should be initialized
2906 * b> Splits in two extents: Write is happening at either end of the extent
2907 * c> Splits in three extents: Somone is writing in middle of the extent
2909 * Pre-conditions:
2910 * - The extent pointed to by 'path' is uninitialized.
2911 * - The extent pointed to by 'path' contains a superset
2912 * of the logical span [map->m_lblk, map->m_lblk + map->m_len).
2914 * Post-conditions on success:
2915 * - the returned value is the number of blocks beyond map->l_lblk
2916 * that are allocated and initialized.
2917 * It is guaranteed to be >= map->m_len.
2919 static int ext4_ext_convert_to_initialized(handle_t *handle,
2920 struct inode *inode,
2921 struct ext4_map_blocks *map,
2922 struct ext4_ext_path *path)
2924 struct ext4_extent_header *eh;
2925 struct ext4_map_blocks split_map;
2926 struct ext4_extent zero_ex;
2927 struct ext4_extent *ex;
2928 ext4_lblk_t ee_block, eof_block;
2929 unsigned int ee_len, depth;
2930 int allocated;
2931 int err = 0;
2932 int split_flag = 0;
2934 ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical"
2935 "block %llu, max_blocks %u\n", inode->i_ino,
2936 (unsigned long long)map->m_lblk, map->m_len);
2938 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
2939 inode->i_sb->s_blocksize_bits;
2940 if (eof_block < map->m_lblk + map->m_len)
2941 eof_block = map->m_lblk + map->m_len;
2943 depth = ext_depth(inode);
2944 eh = path[depth].p_hdr;
2945 ex = path[depth].p_ext;
2946 ee_block = le32_to_cpu(ex->ee_block);
2947 ee_len = ext4_ext_get_actual_len(ex);
2948 allocated = ee_len - (map->m_lblk - ee_block);
2950 trace_ext4_ext_convert_to_initialized_enter(inode, map, ex);
2952 /* Pre-conditions */
2953 BUG_ON(!ext4_ext_is_uninitialized(ex));
2954 BUG_ON(!in_range(map->m_lblk, ee_block, ee_len));
2957 * Attempt to transfer newly initialized blocks from the currently
2958 * uninitialized extent to its left neighbor. This is much cheaper
2959 * than an insertion followed by a merge as those involve costly
2960 * memmove() calls. This is the common case in steady state for
2961 * workloads doing fallocate(FALLOC_FL_KEEP_SIZE) followed by append
2962 * writes.
2964 * Limitations of the current logic:
2965 * - L1: we only deal with writes at the start of the extent.
2966 * The approach could be extended to writes at the end
2967 * of the extent but this scenario was deemed less common.
2968 * - L2: we do not deal with writes covering the whole extent.
2969 * This would require removing the extent if the transfer
2970 * is possible.
2971 * - L3: we only attempt to merge with an extent stored in the
2972 * same extent tree node.
2974 if ((map->m_lblk == ee_block) && /*L1*/
2975 (map->m_len < ee_len) && /*L2*/
2976 (ex > EXT_FIRST_EXTENT(eh))) { /*L3*/
2977 struct ext4_extent *prev_ex;
2978 ext4_lblk_t prev_lblk;
2979 ext4_fsblk_t prev_pblk, ee_pblk;
2980 unsigned int prev_len, write_len;
2982 prev_ex = ex - 1;
2983 prev_lblk = le32_to_cpu(prev_ex->ee_block);
2984 prev_len = ext4_ext_get_actual_len(prev_ex);
2985 prev_pblk = ext4_ext_pblock(prev_ex);
2986 ee_pblk = ext4_ext_pblock(ex);
2987 write_len = map->m_len;
2990 * A transfer of blocks from 'ex' to 'prev_ex' is allowed
2991 * upon those conditions:
2992 * - C1: prev_ex is initialized,
2993 * - C2: prev_ex is logically abutting ex,
2994 * - C3: prev_ex is physically abutting ex,
2995 * - C4: prev_ex can receive the additional blocks without
2996 * overflowing the (initialized) length limit.
2998 if ((!ext4_ext_is_uninitialized(prev_ex)) && /*C1*/
2999 ((prev_lblk + prev_len) == ee_block) && /*C2*/
3000 ((prev_pblk + prev_len) == ee_pblk) && /*C3*/
3001 (prev_len < (EXT_INIT_MAX_LEN - write_len))) { /*C4*/
3002 err = ext4_ext_get_access(handle, inode, path + depth);
3003 if (err)
3004 goto out;
3006 trace_ext4_ext_convert_to_initialized_fastpath(inode,
3007 map, ex, prev_ex);
3009 /* Shift the start of ex by 'write_len' blocks */
3010 ex->ee_block = cpu_to_le32(ee_block + write_len);
3011 ext4_ext_store_pblock(ex, ee_pblk + write_len);
3012 ex->ee_len = cpu_to_le16(ee_len - write_len);
3013 ext4_ext_mark_uninitialized(ex); /* Restore the flag */
3015 /* Extend prev_ex by 'write_len' blocks */
3016 prev_ex->ee_len = cpu_to_le16(prev_len + write_len);
3018 /* Mark the block containing both extents as dirty */
3019 ext4_ext_dirty(handle, inode, path + depth);
3021 /* Update path to point to the right extent */
3022 path[depth].p_ext = prev_ex;
3024 /* Result: number of initialized blocks past m_lblk */
3025 allocated = write_len;
3026 goto out;
3030 WARN_ON(map->m_lblk < ee_block);
3032 * It is safe to convert extent to initialized via explicit
3033 * zeroout only if extent is fully insde i_size or new_size.
3035 split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3037 /* If extent has less than 2*EXT4_EXT_ZERO_LEN zerout directly */
3038 if (ee_len <= 2*EXT4_EXT_ZERO_LEN &&
3039 (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
3040 err = ext4_ext_zeroout(inode, ex);
3041 if (err)
3042 goto out;
3044 err = ext4_ext_get_access(handle, inode, path + depth);
3045 if (err)
3046 goto out;
3047 ext4_ext_mark_initialized(ex);
3048 ext4_ext_try_to_merge(inode, path, ex);
3049 err = ext4_ext_dirty(handle, inode, path + depth);
3050 goto out;
3054 * four cases:
3055 * 1. split the extent into three extents.
3056 * 2. split the extent into two extents, zeroout the first half.
3057 * 3. split the extent into two extents, zeroout the second half.
3058 * 4. split the extent into two extents with out zeroout.
3060 split_map.m_lblk = map->m_lblk;
3061 split_map.m_len = map->m_len;
3063 if (allocated > map->m_len) {
3064 if (allocated <= EXT4_EXT_ZERO_LEN &&
3065 (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
3066 /* case 3 */
3067 zero_ex.ee_block =
3068 cpu_to_le32(map->m_lblk);
3069 zero_ex.ee_len = cpu_to_le16(allocated);
3070 ext4_ext_store_pblock(&zero_ex,
3071 ext4_ext_pblock(ex) + map->m_lblk - ee_block);
3072 err = ext4_ext_zeroout(inode, &zero_ex);
3073 if (err)
3074 goto out;
3075 split_map.m_lblk = map->m_lblk;
3076 split_map.m_len = allocated;
3077 } else if ((map->m_lblk - ee_block + map->m_len <
3078 EXT4_EXT_ZERO_LEN) &&
3079 (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
3080 /* case 2 */
3081 if (map->m_lblk != ee_block) {
3082 zero_ex.ee_block = ex->ee_block;
3083 zero_ex.ee_len = cpu_to_le16(map->m_lblk -
3084 ee_block);
3085 ext4_ext_store_pblock(&zero_ex,
3086 ext4_ext_pblock(ex));
3087 err = ext4_ext_zeroout(inode, &zero_ex);
3088 if (err)
3089 goto out;
3092 split_map.m_lblk = ee_block;
3093 split_map.m_len = map->m_lblk - ee_block + map->m_len;
3094 allocated = map->m_len;
3098 allocated = ext4_split_extent(handle, inode, path,
3099 &split_map, split_flag, 0);
3100 if (allocated < 0)
3101 err = allocated;
3103 out:
3104 return err ? err : allocated;
3108 * This function is called by ext4_ext_map_blocks() from
3109 * ext4_get_blocks_dio_write() when DIO to write
3110 * to an uninitialized extent.
3112 * Writing to an uninitialized extent may result in splitting the uninitialized
3113 * extent into multiple /initialized uninitialized extents (up to three)
3114 * There are three possibilities:
3115 * a> There is no split required: Entire extent should be uninitialized
3116 * b> Splits in two extents: Write is happening at either end of the extent
3117 * c> Splits in three extents: Somone is writing in middle of the extent
3119 * One of more index blocks maybe needed if the extent tree grow after
3120 * the uninitialized extent split. To prevent ENOSPC occur at the IO
3121 * complete, we need to split the uninitialized extent before DIO submit
3122 * the IO. The uninitialized extent called at this time will be split
3123 * into three uninitialized extent(at most). After IO complete, the part
3124 * being filled will be convert to initialized by the end_io callback function
3125 * via ext4_convert_unwritten_extents().
3127 * Returns the size of uninitialized extent to be written on success.
3129 static int ext4_split_unwritten_extents(handle_t *handle,
3130 struct inode *inode,
3131 struct ext4_map_blocks *map,
3132 struct ext4_ext_path *path,
3133 int flags)
3135 ext4_lblk_t eof_block;
3136 ext4_lblk_t ee_block;
3137 struct ext4_extent *ex;
3138 unsigned int ee_len;
3139 int split_flag = 0, depth;
3141 ext_debug("ext4_split_unwritten_extents: inode %lu, logical"
3142 "block %llu, max_blocks %u\n", inode->i_ino,
3143 (unsigned long long)map->m_lblk, map->m_len);
3145 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3146 inode->i_sb->s_blocksize_bits;
3147 if (eof_block < map->m_lblk + map->m_len)
3148 eof_block = map->m_lblk + map->m_len;
3150 * It is safe to convert extent to initialized via explicit
3151 * zeroout only if extent is fully insde i_size or new_size.
3153 depth = ext_depth(inode);
3154 ex = path[depth].p_ext;
3155 ee_block = le32_to_cpu(ex->ee_block);
3156 ee_len = ext4_ext_get_actual_len(ex);
3158 split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3159 split_flag |= EXT4_EXT_MARK_UNINIT2;
3161 flags |= EXT4_GET_BLOCKS_PRE_IO;
3162 return ext4_split_extent(handle, inode, path, map, split_flag, flags);
3165 static int ext4_convert_unwritten_extents_endio(handle_t *handle,
3166 struct inode *inode,
3167 struct ext4_ext_path *path)
3169 struct ext4_extent *ex;
3170 int depth;
3171 int err = 0;
3173 depth = ext_depth(inode);
3174 ex = path[depth].p_ext;
3176 ext_debug("ext4_convert_unwritten_extents_endio: inode %lu, logical"
3177 "block %llu, max_blocks %u\n", inode->i_ino,
3178 (unsigned long long)le32_to_cpu(ex->ee_block),
3179 ext4_ext_get_actual_len(ex));
3181 err = ext4_ext_get_access(handle, inode, path + depth);
3182 if (err)
3183 goto out;
3184 /* first mark the extent as initialized */
3185 ext4_ext_mark_initialized(ex);
3187 /* note: ext4_ext_correct_indexes() isn't needed here because
3188 * borders are not changed
3190 ext4_ext_try_to_merge(inode, path, ex);
3192 /* Mark modified extent as dirty */
3193 err = ext4_ext_dirty(handle, inode, path + depth);
3194 out:
3195 ext4_ext_show_leaf(inode, path);
3196 return err;
3199 static void unmap_underlying_metadata_blocks(struct block_device *bdev,
3200 sector_t block, int count)
3202 int i;
3203 for (i = 0; i < count; i++)
3204 unmap_underlying_metadata(bdev, block + i);
3208 * Handle EOFBLOCKS_FL flag, clearing it if necessary
3210 static int check_eofblocks_fl(handle_t *handle, struct inode *inode,
3211 ext4_lblk_t lblk,
3212 struct ext4_ext_path *path,
3213 unsigned int len)
3215 int i, depth;
3216 struct ext4_extent_header *eh;
3217 struct ext4_extent *last_ex;
3219 if (!ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
3220 return 0;
3222 depth = ext_depth(inode);
3223 eh = path[depth].p_hdr;
3225 if (unlikely(!eh->eh_entries)) {
3226 EXT4_ERROR_INODE(inode, "eh->eh_entries == 0 and "
3227 "EOFBLOCKS_FL set");
3228 return -EIO;
3230 last_ex = EXT_LAST_EXTENT(eh);
3232 * We should clear the EOFBLOCKS_FL flag if we are writing the
3233 * last block in the last extent in the file. We test this by
3234 * first checking to see if the caller to
3235 * ext4_ext_get_blocks() was interested in the last block (or
3236 * a block beyond the last block) in the current extent. If
3237 * this turns out to be false, we can bail out from this
3238 * function immediately.
3240 if (lblk + len < le32_to_cpu(last_ex->ee_block) +
3241 ext4_ext_get_actual_len(last_ex))
3242 return 0;
3244 * If the caller does appear to be planning to write at or
3245 * beyond the end of the current extent, we then test to see
3246 * if the current extent is the last extent in the file, by
3247 * checking to make sure it was reached via the rightmost node
3248 * at each level of the tree.
3250 for (i = depth-1; i >= 0; i--)
3251 if (path[i].p_idx != EXT_LAST_INDEX(path[i].p_hdr))
3252 return 0;
3253 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3254 return ext4_mark_inode_dirty(handle, inode);
3258 * ext4_find_delalloc_range: find delayed allocated block in the given range.
3260 * Goes through the buffer heads in the range [lblk_start, lblk_end] and returns
3261 * whether there are any buffers marked for delayed allocation. It returns '1'
3262 * on the first delalloc'ed buffer head found. If no buffer head in the given
3263 * range is marked for delalloc, it returns 0.
3264 * lblk_start should always be <= lblk_end.
3265 * search_hint_reverse is to indicate that searching in reverse from lblk_end to
3266 * lblk_start might be more efficient (i.e., we will likely hit the delalloc'ed
3267 * block sooner). This is useful when blocks are truncated sequentially from
3268 * lblk_start towards lblk_end.
3270 static int ext4_find_delalloc_range(struct inode *inode,
3271 ext4_lblk_t lblk_start,
3272 ext4_lblk_t lblk_end,
3273 int search_hint_reverse)
3275 struct address_space *mapping = inode->i_mapping;
3276 struct buffer_head *head, *bh = NULL;
3277 struct page *page;
3278 ext4_lblk_t i, pg_lblk;
3279 pgoff_t index;
3281 if (!test_opt(inode->i_sb, DELALLOC))
3282 return 0;
3284 /* reverse search wont work if fs block size is less than page size */
3285 if (inode->i_blkbits < PAGE_CACHE_SHIFT)
3286 search_hint_reverse = 0;
3288 if (search_hint_reverse)
3289 i = lblk_end;
3290 else
3291 i = lblk_start;
3293 index = i >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
3295 while ((i >= lblk_start) && (i <= lblk_end)) {
3296 page = find_get_page(mapping, index);
3297 if (!page)
3298 goto nextpage;
3300 if (!page_has_buffers(page))
3301 goto nextpage;
3303 head = page_buffers(page);
3304 if (!head)
3305 goto nextpage;
3307 bh = head;
3308 pg_lblk = index << (PAGE_CACHE_SHIFT -
3309 inode->i_blkbits);
3310 do {
3311 if (unlikely(pg_lblk < lblk_start)) {
3313 * This is possible when fs block size is less
3314 * than page size and our cluster starts/ends in
3315 * middle of the page. So we need to skip the
3316 * initial few blocks till we reach the 'lblk'
3318 pg_lblk++;
3319 continue;
3322 /* Check if the buffer is delayed allocated and that it
3323 * is not yet mapped. (when da-buffers are mapped during
3324 * their writeout, their da_mapped bit is set.)
3326 if (buffer_delay(bh) && !buffer_da_mapped(bh)) {
3327 page_cache_release(page);
3328 trace_ext4_find_delalloc_range(inode,
3329 lblk_start, lblk_end,
3330 search_hint_reverse,
3331 1, i);
3332 return 1;
3334 if (search_hint_reverse)
3335 i--;
3336 else
3337 i++;
3338 } while ((i >= lblk_start) && (i <= lblk_end) &&
3339 ((bh = bh->b_this_page) != head));
3340 nextpage:
3341 if (page)
3342 page_cache_release(page);
3344 * Move to next page. 'i' will be the first lblk in the next
3345 * page.
3347 if (search_hint_reverse)
3348 index--;
3349 else
3350 index++;
3351 i = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
3354 trace_ext4_find_delalloc_range(inode, lblk_start, lblk_end,
3355 search_hint_reverse, 0, 0);
3356 return 0;
3359 int ext4_find_delalloc_cluster(struct inode *inode, ext4_lblk_t lblk,
3360 int search_hint_reverse)
3362 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3363 ext4_lblk_t lblk_start, lblk_end;
3364 lblk_start = lblk & (~(sbi->s_cluster_ratio - 1));
3365 lblk_end = lblk_start + sbi->s_cluster_ratio - 1;
3367 return ext4_find_delalloc_range(inode, lblk_start, lblk_end,
3368 search_hint_reverse);
3372 * Determines how many complete clusters (out of those specified by the 'map')
3373 * are under delalloc and were reserved quota for.
3374 * This function is called when we are writing out the blocks that were
3375 * originally written with their allocation delayed, but then the space was
3376 * allocated using fallocate() before the delayed allocation could be resolved.
3377 * The cases to look for are:
3378 * ('=' indicated delayed allocated blocks
3379 * '-' indicates non-delayed allocated blocks)
3380 * (a) partial clusters towards beginning and/or end outside of allocated range
3381 * are not delalloc'ed.
3382 * Ex:
3383 * |----c---=|====c====|====c====|===-c----|
3384 * |++++++ allocated ++++++|
3385 * ==> 4 complete clusters in above example
3387 * (b) partial cluster (outside of allocated range) towards either end is
3388 * marked for delayed allocation. In this case, we will exclude that
3389 * cluster.
3390 * Ex:
3391 * |----====c========|========c========|
3392 * |++++++ allocated ++++++|
3393 * ==> 1 complete clusters in above example
3395 * Ex:
3396 * |================c================|
3397 * |++++++ allocated ++++++|
3398 * ==> 0 complete clusters in above example
3400 * The ext4_da_update_reserve_space will be called only if we
3401 * determine here that there were some "entire" clusters that span
3402 * this 'allocated' range.
3403 * In the non-bigalloc case, this function will just end up returning num_blks
3404 * without ever calling ext4_find_delalloc_range.
3406 static unsigned int
3407 get_reserved_cluster_alloc(struct inode *inode, ext4_lblk_t lblk_start,
3408 unsigned int num_blks)
3410 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3411 ext4_lblk_t alloc_cluster_start, alloc_cluster_end;
3412 ext4_lblk_t lblk_from, lblk_to, c_offset;
3413 unsigned int allocated_clusters = 0;
3415 alloc_cluster_start = EXT4_B2C(sbi, lblk_start);
3416 alloc_cluster_end = EXT4_B2C(sbi, lblk_start + num_blks - 1);
3418 /* max possible clusters for this allocation */
3419 allocated_clusters = alloc_cluster_end - alloc_cluster_start + 1;
3421 trace_ext4_get_reserved_cluster_alloc(inode, lblk_start, num_blks);
3423 /* Check towards left side */
3424 c_offset = lblk_start & (sbi->s_cluster_ratio - 1);
3425 if (c_offset) {
3426 lblk_from = lblk_start & (~(sbi->s_cluster_ratio - 1));
3427 lblk_to = lblk_from + c_offset - 1;
3429 if (ext4_find_delalloc_range(inode, lblk_from, lblk_to, 0))
3430 allocated_clusters--;
3433 /* Now check towards right. */
3434 c_offset = (lblk_start + num_blks) & (sbi->s_cluster_ratio - 1);
3435 if (allocated_clusters && c_offset) {
3436 lblk_from = lblk_start + num_blks;
3437 lblk_to = lblk_from + (sbi->s_cluster_ratio - c_offset) - 1;
3439 if (ext4_find_delalloc_range(inode, lblk_from, lblk_to, 0))
3440 allocated_clusters--;
3443 return allocated_clusters;
3446 static int
3447 ext4_ext_handle_uninitialized_extents(handle_t *handle, struct inode *inode,
3448 struct ext4_map_blocks *map,
3449 struct ext4_ext_path *path, int flags,
3450 unsigned int allocated, ext4_fsblk_t newblock)
3452 int ret = 0;
3453 int err = 0;
3454 ext4_io_end_t *io = EXT4_I(inode)->cur_aio_dio;
3456 ext_debug("ext4_ext_handle_uninitialized_extents: inode %lu, logical "
3457 "block %llu, max_blocks %u, flags %x, allocated %u\n",
3458 inode->i_ino, (unsigned long long)map->m_lblk, map->m_len,
3459 flags, allocated);
3460 ext4_ext_show_leaf(inode, path);
3462 trace_ext4_ext_handle_uninitialized_extents(inode, map, allocated,
3463 newblock);
3465 /* get_block() before submit the IO, split the extent */
3466 if ((flags & EXT4_GET_BLOCKS_PRE_IO)) {
3467 ret = ext4_split_unwritten_extents(handle, inode, map,
3468 path, flags);
3470 * Flag the inode(non aio case) or end_io struct (aio case)
3471 * that this IO needs to conversion to written when IO is
3472 * completed
3474 if (io)
3475 ext4_set_io_unwritten_flag(inode, io);
3476 else
3477 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3478 if (ext4_should_dioread_nolock(inode))
3479 map->m_flags |= EXT4_MAP_UNINIT;
3480 goto out;
3482 /* IO end_io complete, convert the filled extent to written */
3483 if ((flags & EXT4_GET_BLOCKS_CONVERT)) {
3484 ret = ext4_convert_unwritten_extents_endio(handle, inode,
3485 path);
3486 if (ret >= 0) {
3487 ext4_update_inode_fsync_trans(handle, inode, 1);
3488 err = check_eofblocks_fl(handle, inode, map->m_lblk,
3489 path, map->m_len);
3490 } else
3491 err = ret;
3492 goto out2;
3494 /* buffered IO case */
3496 * repeat fallocate creation request
3497 * we already have an unwritten extent
3499 if (flags & EXT4_GET_BLOCKS_UNINIT_EXT)
3500 goto map_out;
3502 /* buffered READ or buffered write_begin() lookup */
3503 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3505 * We have blocks reserved already. We
3506 * return allocated blocks so that delalloc
3507 * won't do block reservation for us. But
3508 * the buffer head will be unmapped so that
3509 * a read from the block returns 0s.
3511 map->m_flags |= EXT4_MAP_UNWRITTEN;
3512 goto out1;
3515 /* buffered write, writepage time, convert*/
3516 ret = ext4_ext_convert_to_initialized(handle, inode, map, path);
3517 if (ret >= 0)
3518 ext4_update_inode_fsync_trans(handle, inode, 1);
3519 out:
3520 if (ret <= 0) {
3521 err = ret;
3522 goto out2;
3523 } else
3524 allocated = ret;
3525 map->m_flags |= EXT4_MAP_NEW;
3527 * if we allocated more blocks than requested
3528 * we need to make sure we unmap the extra block
3529 * allocated. The actual needed block will get
3530 * unmapped later when we find the buffer_head marked
3531 * new.
3533 if (allocated > map->m_len) {
3534 unmap_underlying_metadata_blocks(inode->i_sb->s_bdev,
3535 newblock + map->m_len,
3536 allocated - map->m_len);
3537 allocated = map->m_len;
3541 * If we have done fallocate with the offset that is already
3542 * delayed allocated, we would have block reservation
3543 * and quota reservation done in the delayed write path.
3544 * But fallocate would have already updated quota and block
3545 * count for this offset. So cancel these reservation
3547 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
3548 unsigned int reserved_clusters;
3549 reserved_clusters = get_reserved_cluster_alloc(inode,
3550 map->m_lblk, map->m_len);
3551 if (reserved_clusters)
3552 ext4_da_update_reserve_space(inode,
3553 reserved_clusters,
3557 map_out:
3558 map->m_flags |= EXT4_MAP_MAPPED;
3559 if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0) {
3560 err = check_eofblocks_fl(handle, inode, map->m_lblk, path,
3561 map->m_len);
3562 if (err < 0)
3563 goto out2;
3565 out1:
3566 if (allocated > map->m_len)
3567 allocated = map->m_len;
3568 ext4_ext_show_leaf(inode, path);
3569 map->m_pblk = newblock;
3570 map->m_len = allocated;
3571 out2:
3572 if (path) {
3573 ext4_ext_drop_refs(path);
3574 kfree(path);
3576 return err ? err : allocated;
3580 * get_implied_cluster_alloc - check to see if the requested
3581 * allocation (in the map structure) overlaps with a cluster already
3582 * allocated in an extent.
3583 * @sb The filesystem superblock structure
3584 * @map The requested lblk->pblk mapping
3585 * @ex The extent structure which might contain an implied
3586 * cluster allocation
3588 * This function is called by ext4_ext_map_blocks() after we failed to
3589 * find blocks that were already in the inode's extent tree. Hence,
3590 * we know that the beginning of the requested region cannot overlap
3591 * the extent from the inode's extent tree. There are three cases we
3592 * want to catch. The first is this case:
3594 * |--- cluster # N--|
3595 * |--- extent ---| |---- requested region ---|
3596 * |==========|
3598 * The second case that we need to test for is this one:
3600 * |--------- cluster # N ----------------|
3601 * |--- requested region --| |------- extent ----|
3602 * |=======================|
3604 * The third case is when the requested region lies between two extents
3605 * within the same cluster:
3606 * |------------- cluster # N-------------|
3607 * |----- ex -----| |---- ex_right ----|
3608 * |------ requested region ------|
3609 * |================|
3611 * In each of the above cases, we need to set the map->m_pblk and
3612 * map->m_len so it corresponds to the return the extent labelled as
3613 * "|====|" from cluster #N, since it is already in use for data in
3614 * cluster EXT4_B2C(sbi, map->m_lblk). We will then return 1 to
3615 * signal to ext4_ext_map_blocks() that map->m_pblk should be treated
3616 * as a new "allocated" block region. Otherwise, we will return 0 and
3617 * ext4_ext_map_blocks() will then allocate one or more new clusters
3618 * by calling ext4_mb_new_blocks().
3620 static int get_implied_cluster_alloc(struct super_block *sb,
3621 struct ext4_map_blocks *map,
3622 struct ext4_extent *ex,
3623 struct ext4_ext_path *path)
3625 struct ext4_sb_info *sbi = EXT4_SB(sb);
3626 ext4_lblk_t c_offset = map->m_lblk & (sbi->s_cluster_ratio-1);
3627 ext4_lblk_t ex_cluster_start, ex_cluster_end;
3628 ext4_lblk_t rr_cluster_start;
3629 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
3630 ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
3631 unsigned short ee_len = ext4_ext_get_actual_len(ex);
3633 /* The extent passed in that we are trying to match */
3634 ex_cluster_start = EXT4_B2C(sbi, ee_block);
3635 ex_cluster_end = EXT4_B2C(sbi, ee_block + ee_len - 1);
3637 /* The requested region passed into ext4_map_blocks() */
3638 rr_cluster_start = EXT4_B2C(sbi, map->m_lblk);
3640 if ((rr_cluster_start == ex_cluster_end) ||
3641 (rr_cluster_start == ex_cluster_start)) {
3642 if (rr_cluster_start == ex_cluster_end)
3643 ee_start += ee_len - 1;
3644 map->m_pblk = (ee_start & ~(sbi->s_cluster_ratio - 1)) +
3645 c_offset;
3646 map->m_len = min(map->m_len,
3647 (unsigned) sbi->s_cluster_ratio - c_offset);
3649 * Check for and handle this case:
3651 * |--------- cluster # N-------------|
3652 * |------- extent ----|
3653 * |--- requested region ---|
3654 * |===========|
3657 if (map->m_lblk < ee_block)
3658 map->m_len = min(map->m_len, ee_block - map->m_lblk);
3661 * Check for the case where there is already another allocated
3662 * block to the right of 'ex' but before the end of the cluster.
3664 * |------------- cluster # N-------------|
3665 * |----- ex -----| |---- ex_right ----|
3666 * |------ requested region ------|
3667 * |================|
3669 if (map->m_lblk > ee_block) {
3670 ext4_lblk_t next = ext4_ext_next_allocated_block(path);
3671 map->m_len = min(map->m_len, next - map->m_lblk);
3674 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 1);
3675 return 1;
3678 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 0);
3679 return 0;
3684 * Block allocation/map/preallocation routine for extents based files
3687 * Need to be called with
3688 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
3689 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
3691 * return > 0, number of of blocks already mapped/allocated
3692 * if create == 0 and these are pre-allocated blocks
3693 * buffer head is unmapped
3694 * otherwise blocks are mapped
3696 * return = 0, if plain look up failed (blocks have not been allocated)
3697 * buffer head is unmapped
3699 * return < 0, error case.
3701 int ext4_ext_map_blocks(handle_t *handle, struct inode *inode,
3702 struct ext4_map_blocks *map, int flags)
3704 struct ext4_ext_path *path = NULL;
3705 struct ext4_extent newex, *ex, *ex2;
3706 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3707 ext4_fsblk_t newblock = 0;
3708 int free_on_err = 0, err = 0, depth, ret;
3709 unsigned int allocated = 0, offset = 0;
3710 unsigned int allocated_clusters = 0;
3711 unsigned int punched_out = 0;
3712 unsigned int result = 0;
3713 struct ext4_allocation_request ar;
3714 ext4_io_end_t *io = EXT4_I(inode)->cur_aio_dio;
3715 ext4_lblk_t cluster_offset;
3717 ext_debug("blocks %u/%u requested for inode %lu\n",
3718 map->m_lblk, map->m_len, inode->i_ino);
3719 trace_ext4_ext_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
3721 /* check in cache */
3722 if (!(flags & EXT4_GET_BLOCKS_PUNCH_OUT_EXT) &&
3723 ext4_ext_in_cache(inode, map->m_lblk, &newex)) {
3724 if (!newex.ee_start_lo && !newex.ee_start_hi) {
3725 if ((sbi->s_cluster_ratio > 1) &&
3726 ext4_find_delalloc_cluster(inode, map->m_lblk, 0))
3727 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
3729 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3731 * block isn't allocated yet and
3732 * user doesn't want to allocate it
3734 goto out2;
3736 /* we should allocate requested block */
3737 } else {
3738 /* block is already allocated */
3739 if (sbi->s_cluster_ratio > 1)
3740 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
3741 newblock = map->m_lblk
3742 - le32_to_cpu(newex.ee_block)
3743 + ext4_ext_pblock(&newex);
3744 /* number of remaining blocks in the extent */
3745 allocated = ext4_ext_get_actual_len(&newex) -
3746 (map->m_lblk - le32_to_cpu(newex.ee_block));
3747 goto out;
3751 /* find extent for this block */
3752 path = ext4_ext_find_extent(inode, map->m_lblk, NULL);
3753 if (IS_ERR(path)) {
3754 err = PTR_ERR(path);
3755 path = NULL;
3756 goto out2;
3759 depth = ext_depth(inode);
3762 * consistent leaf must not be empty;
3763 * this situation is possible, though, _during_ tree modification;
3764 * this is why assert can't be put in ext4_ext_find_extent()
3766 if (unlikely(path[depth].p_ext == NULL && depth != 0)) {
3767 EXT4_ERROR_INODE(inode, "bad extent address "
3768 "lblock: %lu, depth: %d pblock %lld",
3769 (unsigned long) map->m_lblk, depth,
3770 path[depth].p_block);
3771 err = -EIO;
3772 goto out2;
3775 ex = path[depth].p_ext;
3776 if (ex) {
3777 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
3778 ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
3779 unsigned short ee_len;
3782 * Uninitialized extents are treated as holes, except that
3783 * we split out initialized portions during a write.
3785 ee_len = ext4_ext_get_actual_len(ex);
3787 trace_ext4_ext_show_extent(inode, ee_block, ee_start, ee_len);
3789 /* if found extent covers block, simply return it */
3790 if (in_range(map->m_lblk, ee_block, ee_len)) {
3791 struct ext4_map_blocks punch_map;
3792 ext4_fsblk_t partial_cluster = 0;
3794 newblock = map->m_lblk - ee_block + ee_start;
3795 /* number of remaining blocks in the extent */
3796 allocated = ee_len - (map->m_lblk - ee_block);
3797 ext_debug("%u fit into %u:%d -> %llu\n", map->m_lblk,
3798 ee_block, ee_len, newblock);
3800 if ((flags & EXT4_GET_BLOCKS_PUNCH_OUT_EXT) == 0) {
3802 * Do not put uninitialized extent
3803 * in the cache
3805 if (!ext4_ext_is_uninitialized(ex)) {
3806 ext4_ext_put_in_cache(inode, ee_block,
3807 ee_len, ee_start);
3808 goto out;
3810 ret = ext4_ext_handle_uninitialized_extents(
3811 handle, inode, map, path, flags,
3812 allocated, newblock);
3813 return ret;
3817 * Punch out the map length, but only to the
3818 * end of the extent
3820 punched_out = allocated < map->m_len ?
3821 allocated : map->m_len;
3824 * Sense extents need to be converted to
3825 * uninitialized, they must fit in an
3826 * uninitialized extent
3828 if (punched_out > EXT_UNINIT_MAX_LEN)
3829 punched_out = EXT_UNINIT_MAX_LEN;
3831 punch_map.m_lblk = map->m_lblk;
3832 punch_map.m_pblk = newblock;
3833 punch_map.m_len = punched_out;
3834 punch_map.m_flags = 0;
3836 /* Check to see if the extent needs to be split */
3837 if (punch_map.m_len != ee_len ||
3838 punch_map.m_lblk != ee_block) {
3840 ret = ext4_split_extent(handle, inode,
3841 path, &punch_map, 0,
3842 EXT4_GET_BLOCKS_PUNCH_OUT_EXT |
3843 EXT4_GET_BLOCKS_PRE_IO);
3845 if (ret < 0) {
3846 err = ret;
3847 goto out2;
3850 * find extent for the block at
3851 * the start of the hole
3853 ext4_ext_drop_refs(path);
3854 kfree(path);
3856 path = ext4_ext_find_extent(inode,
3857 map->m_lblk, NULL);
3858 if (IS_ERR(path)) {
3859 err = PTR_ERR(path);
3860 path = NULL;
3861 goto out2;
3864 depth = ext_depth(inode);
3865 ex = path[depth].p_ext;
3866 ee_len = ext4_ext_get_actual_len(ex);
3867 ee_block = le32_to_cpu(ex->ee_block);
3868 ee_start = ext4_ext_pblock(ex);
3872 ext4_ext_mark_uninitialized(ex);
3874 ext4_ext_invalidate_cache(inode);
3876 err = ext4_ext_rm_leaf(handle, inode, path,
3877 &partial_cluster, map->m_lblk,
3878 map->m_lblk + punched_out);
3880 if (!err && path->p_hdr->eh_entries == 0) {
3882 * Punch hole freed all of this sub tree,
3883 * so we need to correct eh_depth
3885 err = ext4_ext_get_access(handle, inode, path);
3886 if (err == 0) {
3887 ext_inode_hdr(inode)->eh_depth = 0;
3888 ext_inode_hdr(inode)->eh_max =
3889 cpu_to_le16(ext4_ext_space_root(
3890 inode, 0));
3892 err = ext4_ext_dirty(
3893 handle, inode, path);
3897 goto out2;
3901 if ((sbi->s_cluster_ratio > 1) &&
3902 ext4_find_delalloc_cluster(inode, map->m_lblk, 0))
3903 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
3906 * requested block isn't allocated yet;
3907 * we couldn't try to create block if create flag is zero
3909 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3911 * put just found gap into cache to speed up
3912 * subsequent requests
3914 ext4_ext_put_gap_in_cache(inode, path, map->m_lblk);
3915 goto out2;
3919 * Okay, we need to do block allocation.
3921 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
3922 newex.ee_block = cpu_to_le32(map->m_lblk);
3923 cluster_offset = map->m_lblk & (sbi->s_cluster_ratio-1);
3926 * If we are doing bigalloc, check to see if the extent returned
3927 * by ext4_ext_find_extent() implies a cluster we can use.
3929 if (cluster_offset && ex &&
3930 get_implied_cluster_alloc(inode->i_sb, map, ex, path)) {
3931 ar.len = allocated = map->m_len;
3932 newblock = map->m_pblk;
3933 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
3934 goto got_allocated_blocks;
3937 /* find neighbour allocated blocks */
3938 ar.lleft = map->m_lblk;
3939 err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft);
3940 if (err)
3941 goto out2;
3942 ar.lright = map->m_lblk;
3943 ex2 = NULL;
3944 err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright, &ex2);
3945 if (err)
3946 goto out2;
3948 /* Check if the extent after searching to the right implies a
3949 * cluster we can use. */
3950 if ((sbi->s_cluster_ratio > 1) && ex2 &&
3951 get_implied_cluster_alloc(inode->i_sb, map, ex2, path)) {
3952 ar.len = allocated = map->m_len;
3953 newblock = map->m_pblk;
3954 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
3955 goto got_allocated_blocks;
3959 * See if request is beyond maximum number of blocks we can have in
3960 * a single extent. For an initialized extent this limit is
3961 * EXT_INIT_MAX_LEN and for an uninitialized extent this limit is
3962 * EXT_UNINIT_MAX_LEN.
3964 if (map->m_len > EXT_INIT_MAX_LEN &&
3965 !(flags & EXT4_GET_BLOCKS_UNINIT_EXT))
3966 map->m_len = EXT_INIT_MAX_LEN;
3967 else if (map->m_len > EXT_UNINIT_MAX_LEN &&
3968 (flags & EXT4_GET_BLOCKS_UNINIT_EXT))
3969 map->m_len = EXT_UNINIT_MAX_LEN;
3971 /* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */
3972 newex.ee_len = cpu_to_le16(map->m_len);
3973 err = ext4_ext_check_overlap(sbi, inode, &newex, path);
3974 if (err)
3975 allocated = ext4_ext_get_actual_len(&newex);
3976 else
3977 allocated = map->m_len;
3979 /* allocate new block */
3980 ar.inode = inode;
3981 ar.goal = ext4_ext_find_goal(inode, path, map->m_lblk);
3982 ar.logical = map->m_lblk;
3984 * We calculate the offset from the beginning of the cluster
3985 * for the logical block number, since when we allocate a
3986 * physical cluster, the physical block should start at the
3987 * same offset from the beginning of the cluster. This is
3988 * needed so that future calls to get_implied_cluster_alloc()
3989 * work correctly.
3991 offset = map->m_lblk & (sbi->s_cluster_ratio - 1);
3992 ar.len = EXT4_NUM_B2C(sbi, offset+allocated);
3993 ar.goal -= offset;
3994 ar.logical -= offset;
3995 if (S_ISREG(inode->i_mode))
3996 ar.flags = EXT4_MB_HINT_DATA;
3997 else
3998 /* disable in-core preallocation for non-regular files */
3999 ar.flags = 0;
4000 if (flags & EXT4_GET_BLOCKS_NO_NORMALIZE)
4001 ar.flags |= EXT4_MB_HINT_NOPREALLOC;
4002 newblock = ext4_mb_new_blocks(handle, &ar, &err);
4003 if (!newblock)
4004 goto out2;
4005 ext_debug("allocate new block: goal %llu, found %llu/%u\n",
4006 ar.goal, newblock, allocated);
4007 free_on_err = 1;
4008 allocated_clusters = ar.len;
4009 ar.len = EXT4_C2B(sbi, ar.len) - offset;
4010 if (ar.len > allocated)
4011 ar.len = allocated;
4013 got_allocated_blocks:
4014 /* try to insert new extent into found leaf and return */
4015 ext4_ext_store_pblock(&newex, newblock + offset);
4016 newex.ee_len = cpu_to_le16(ar.len);
4017 /* Mark uninitialized */
4018 if (flags & EXT4_GET_BLOCKS_UNINIT_EXT){
4019 ext4_ext_mark_uninitialized(&newex);
4021 * io_end structure was created for every IO write to an
4022 * uninitialized extent. To avoid unnecessary conversion,
4023 * here we flag the IO that really needs the conversion.
4024 * For non asycn direct IO case, flag the inode state
4025 * that we need to perform conversion when IO is done.
4027 if ((flags & EXT4_GET_BLOCKS_PRE_IO)) {
4028 if (io)
4029 ext4_set_io_unwritten_flag(inode, io);
4030 else
4031 ext4_set_inode_state(inode,
4032 EXT4_STATE_DIO_UNWRITTEN);
4034 if (ext4_should_dioread_nolock(inode))
4035 map->m_flags |= EXT4_MAP_UNINIT;
4038 err = 0;
4039 if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0)
4040 err = check_eofblocks_fl(handle, inode, map->m_lblk,
4041 path, ar.len);
4042 if (!err)
4043 err = ext4_ext_insert_extent(handle, inode, path,
4044 &newex, flags);
4045 if (err && free_on_err) {
4046 int fb_flags = flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE ?
4047 EXT4_FREE_BLOCKS_NO_QUOT_UPDATE : 0;
4048 /* free data blocks we just allocated */
4049 /* not a good idea to call discard here directly,
4050 * but otherwise we'd need to call it every free() */
4051 ext4_discard_preallocations(inode);
4052 ext4_free_blocks(handle, inode, NULL, ext4_ext_pblock(&newex),
4053 ext4_ext_get_actual_len(&newex), fb_flags);
4054 goto out2;
4057 /* previous routine could use block we allocated */
4058 newblock = ext4_ext_pblock(&newex);
4059 allocated = ext4_ext_get_actual_len(&newex);
4060 if (allocated > map->m_len)
4061 allocated = map->m_len;
4062 map->m_flags |= EXT4_MAP_NEW;
4065 * Update reserved blocks/metadata blocks after successful
4066 * block allocation which had been deferred till now.
4068 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
4069 unsigned int reserved_clusters;
4071 * Check how many clusters we had reserved this allocated range
4073 reserved_clusters = get_reserved_cluster_alloc(inode,
4074 map->m_lblk, allocated);
4075 if (map->m_flags & EXT4_MAP_FROM_CLUSTER) {
4076 if (reserved_clusters) {
4078 * We have clusters reserved for this range.
4079 * But since we are not doing actual allocation
4080 * and are simply using blocks from previously
4081 * allocated cluster, we should release the
4082 * reservation and not claim quota.
4084 ext4_da_update_reserve_space(inode,
4085 reserved_clusters, 0);
4087 } else {
4088 BUG_ON(allocated_clusters < reserved_clusters);
4089 /* We will claim quota for all newly allocated blocks.*/
4090 ext4_da_update_reserve_space(inode, allocated_clusters,
4092 if (reserved_clusters < allocated_clusters) {
4093 struct ext4_inode_info *ei = EXT4_I(inode);
4094 int reservation = allocated_clusters -
4095 reserved_clusters;
4097 * It seems we claimed few clusters outside of
4098 * the range of this allocation. We should give
4099 * it back to the reservation pool. This can
4100 * happen in the following case:
4102 * * Suppose s_cluster_ratio is 4 (i.e., each
4103 * cluster has 4 blocks. Thus, the clusters
4104 * are [0-3],[4-7],[8-11]...
4105 * * First comes delayed allocation write for
4106 * logical blocks 10 & 11. Since there were no
4107 * previous delayed allocated blocks in the
4108 * range [8-11], we would reserve 1 cluster
4109 * for this write.
4110 * * Next comes write for logical blocks 3 to 8.
4111 * In this case, we will reserve 2 clusters
4112 * (for [0-3] and [4-7]; and not for [8-11] as
4113 * that range has a delayed allocated blocks.
4114 * Thus total reserved clusters now becomes 3.
4115 * * Now, during the delayed allocation writeout
4116 * time, we will first write blocks [3-8] and
4117 * allocate 3 clusters for writing these
4118 * blocks. Also, we would claim all these
4119 * three clusters above.
4120 * * Now when we come here to writeout the
4121 * blocks [10-11], we would expect to claim
4122 * the reservation of 1 cluster we had made
4123 * (and we would claim it since there are no
4124 * more delayed allocated blocks in the range
4125 * [8-11]. But our reserved cluster count had
4126 * already gone to 0.
4128 * Thus, at the step 4 above when we determine
4129 * that there are still some unwritten delayed
4130 * allocated blocks outside of our current
4131 * block range, we should increment the
4132 * reserved clusters count so that when the
4133 * remaining blocks finally gets written, we
4134 * could claim them.
4136 dquot_reserve_block(inode,
4137 EXT4_C2B(sbi, reservation));
4138 spin_lock(&ei->i_block_reservation_lock);
4139 ei->i_reserved_data_blocks += reservation;
4140 spin_unlock(&ei->i_block_reservation_lock);
4146 * Cache the extent and update transaction to commit on fdatasync only
4147 * when it is _not_ an uninitialized extent.
4149 if ((flags & EXT4_GET_BLOCKS_UNINIT_EXT) == 0) {
4150 ext4_ext_put_in_cache(inode, map->m_lblk, allocated, newblock);
4151 ext4_update_inode_fsync_trans(handle, inode, 1);
4152 } else
4153 ext4_update_inode_fsync_trans(handle, inode, 0);
4154 out:
4155 if (allocated > map->m_len)
4156 allocated = map->m_len;
4157 ext4_ext_show_leaf(inode, path);
4158 map->m_flags |= EXT4_MAP_MAPPED;
4159 map->m_pblk = newblock;
4160 map->m_len = allocated;
4161 out2:
4162 if (path) {
4163 ext4_ext_drop_refs(path);
4164 kfree(path);
4166 result = (flags & EXT4_GET_BLOCKS_PUNCH_OUT_EXT) ?
4167 punched_out : allocated;
4169 trace_ext4_ext_map_blocks_exit(inode, map->m_lblk,
4170 newblock, map->m_len, err ? err : result);
4172 return err ? err : result;
4175 void ext4_ext_truncate(struct inode *inode)
4177 struct address_space *mapping = inode->i_mapping;
4178 struct super_block *sb = inode->i_sb;
4179 ext4_lblk_t last_block;
4180 handle_t *handle;
4181 loff_t page_len;
4182 int err = 0;
4185 * finish any pending end_io work so we won't run the risk of
4186 * converting any truncated blocks to initialized later
4188 ext4_flush_completed_IO(inode);
4191 * probably first extent we're gonna free will be last in block
4193 err = ext4_writepage_trans_blocks(inode);
4194 handle = ext4_journal_start(inode, err);
4195 if (IS_ERR(handle))
4196 return;
4198 if (inode->i_size % PAGE_CACHE_SIZE != 0) {
4199 page_len = PAGE_CACHE_SIZE -
4200 (inode->i_size & (PAGE_CACHE_SIZE - 1));
4202 err = ext4_discard_partial_page_buffers(handle,
4203 mapping, inode->i_size, page_len, 0);
4205 if (err)
4206 goto out_stop;
4209 if (ext4_orphan_add(handle, inode))
4210 goto out_stop;
4212 down_write(&EXT4_I(inode)->i_data_sem);
4213 ext4_ext_invalidate_cache(inode);
4215 ext4_discard_preallocations(inode);
4218 * TODO: optimization is possible here.
4219 * Probably we need not scan at all,
4220 * because page truncation is enough.
4223 /* we have to know where to truncate from in crash case */
4224 EXT4_I(inode)->i_disksize = inode->i_size;
4225 ext4_mark_inode_dirty(handle, inode);
4227 last_block = (inode->i_size + sb->s_blocksize - 1)
4228 >> EXT4_BLOCK_SIZE_BITS(sb);
4229 err = ext4_ext_remove_space(inode, last_block);
4231 /* In a multi-transaction truncate, we only make the final
4232 * transaction synchronous.
4234 if (IS_SYNC(inode))
4235 ext4_handle_sync(handle);
4237 up_write(&EXT4_I(inode)->i_data_sem);
4239 out_stop:
4241 * If this was a simple ftruncate() and the file will remain alive,
4242 * then we need to clear up the orphan record which we created above.
4243 * However, if this was a real unlink then we were called by
4244 * ext4_delete_inode(), and we allow that function to clean up the
4245 * orphan info for us.
4247 if (inode->i_nlink)
4248 ext4_orphan_del(handle, inode);
4250 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4251 ext4_mark_inode_dirty(handle, inode);
4252 ext4_journal_stop(handle);
4255 static void ext4_falloc_update_inode(struct inode *inode,
4256 int mode, loff_t new_size, int update_ctime)
4258 struct timespec now;
4260 if (update_ctime) {
4261 now = current_fs_time(inode->i_sb);
4262 if (!timespec_equal(&inode->i_ctime, &now))
4263 inode->i_ctime = now;
4266 * Update only when preallocation was requested beyond
4267 * the file size.
4269 if (!(mode & FALLOC_FL_KEEP_SIZE)) {
4270 if (new_size > i_size_read(inode))
4271 i_size_write(inode, new_size);
4272 if (new_size > EXT4_I(inode)->i_disksize)
4273 ext4_update_i_disksize(inode, new_size);
4274 } else {
4276 * Mark that we allocate beyond EOF so the subsequent truncate
4277 * can proceed even if the new size is the same as i_size.
4279 if (new_size > i_size_read(inode))
4280 ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4286 * preallocate space for a file. This implements ext4's fallocate file
4287 * operation, which gets called from sys_fallocate system call.
4288 * For block-mapped files, posix_fallocate should fall back to the method
4289 * of writing zeroes to the required new blocks (the same behavior which is
4290 * expected for file systems which do not support fallocate() system call).
4292 long ext4_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
4294 struct inode *inode = file->f_path.dentry->d_inode;
4295 handle_t *handle;
4296 loff_t new_size;
4297 unsigned int max_blocks;
4298 int ret = 0;
4299 int ret2 = 0;
4300 int retries = 0;
4301 int flags;
4302 struct ext4_map_blocks map;
4303 unsigned int credits, blkbits = inode->i_blkbits;
4306 * currently supporting (pre)allocate mode for extent-based
4307 * files _only_
4309 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4310 return -EOPNOTSUPP;
4312 /* Return error if mode is not supported */
4313 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
4314 return -EOPNOTSUPP;
4316 if (mode & FALLOC_FL_PUNCH_HOLE)
4317 return ext4_punch_hole(file, offset, len);
4319 trace_ext4_fallocate_enter(inode, offset, len, mode);
4320 map.m_lblk = offset >> blkbits;
4322 * We can't just convert len to max_blocks because
4323 * If blocksize = 4096 offset = 3072 and len = 2048
4325 max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits)
4326 - map.m_lblk;
4328 * credits to insert 1 extent into extent tree
4330 credits = ext4_chunk_trans_blocks(inode, max_blocks);
4331 mutex_lock(&inode->i_mutex);
4332 ret = inode_newsize_ok(inode, (len + offset));
4333 if (ret) {
4334 mutex_unlock(&inode->i_mutex);
4335 trace_ext4_fallocate_exit(inode, offset, max_blocks, ret);
4336 return ret;
4338 flags = EXT4_GET_BLOCKS_CREATE_UNINIT_EXT;
4339 if (mode & FALLOC_FL_KEEP_SIZE)
4340 flags |= EXT4_GET_BLOCKS_KEEP_SIZE;
4342 * Don't normalize the request if it can fit in one extent so
4343 * that it doesn't get unnecessarily split into multiple
4344 * extents.
4346 if (len <= EXT_UNINIT_MAX_LEN << blkbits)
4347 flags |= EXT4_GET_BLOCKS_NO_NORMALIZE;
4348 retry:
4349 while (ret >= 0 && ret < max_blocks) {
4350 map.m_lblk = map.m_lblk + ret;
4351 map.m_len = max_blocks = max_blocks - ret;
4352 handle = ext4_journal_start(inode, credits);
4353 if (IS_ERR(handle)) {
4354 ret = PTR_ERR(handle);
4355 break;
4357 ret = ext4_map_blocks(handle, inode, &map, flags);
4358 if (ret <= 0) {
4359 #ifdef EXT4FS_DEBUG
4360 WARN_ON(ret <= 0);
4361 printk(KERN_ERR "%s: ext4_ext_map_blocks "
4362 "returned error inode#%lu, block=%u, "
4363 "max_blocks=%u", __func__,
4364 inode->i_ino, map.m_lblk, max_blocks);
4365 #endif
4366 ext4_mark_inode_dirty(handle, inode);
4367 ret2 = ext4_journal_stop(handle);
4368 break;
4370 if ((map.m_lblk + ret) >= (EXT4_BLOCK_ALIGN(offset + len,
4371 blkbits) >> blkbits))
4372 new_size = offset + len;
4373 else
4374 new_size = ((loff_t) map.m_lblk + ret) << blkbits;
4376 ext4_falloc_update_inode(inode, mode, new_size,
4377 (map.m_flags & EXT4_MAP_NEW));
4378 ext4_mark_inode_dirty(handle, inode);
4379 ret2 = ext4_journal_stop(handle);
4380 if (ret2)
4381 break;
4383 if (ret == -ENOSPC &&
4384 ext4_should_retry_alloc(inode->i_sb, &retries)) {
4385 ret = 0;
4386 goto retry;
4388 mutex_unlock(&inode->i_mutex);
4389 trace_ext4_fallocate_exit(inode, offset, max_blocks,
4390 ret > 0 ? ret2 : ret);
4391 return ret > 0 ? ret2 : ret;
4395 * This function convert a range of blocks to written extents
4396 * The caller of this function will pass the start offset and the size.
4397 * all unwritten extents within this range will be converted to
4398 * written extents.
4400 * This function is called from the direct IO end io call back
4401 * function, to convert the fallocated extents after IO is completed.
4402 * Returns 0 on success.
4404 int ext4_convert_unwritten_extents(struct inode *inode, loff_t offset,
4405 ssize_t len)
4407 handle_t *handle;
4408 unsigned int max_blocks;
4409 int ret = 0;
4410 int ret2 = 0;
4411 struct ext4_map_blocks map;
4412 unsigned int credits, blkbits = inode->i_blkbits;
4414 map.m_lblk = offset >> blkbits;
4416 * We can't just convert len to max_blocks because
4417 * If blocksize = 4096 offset = 3072 and len = 2048
4419 max_blocks = ((EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) -
4420 map.m_lblk);
4422 * credits to insert 1 extent into extent tree
4424 credits = ext4_chunk_trans_blocks(inode, max_blocks);
4425 while (ret >= 0 && ret < max_blocks) {
4426 map.m_lblk += ret;
4427 map.m_len = (max_blocks -= ret);
4428 handle = ext4_journal_start(inode, credits);
4429 if (IS_ERR(handle)) {
4430 ret = PTR_ERR(handle);
4431 break;
4433 ret = ext4_map_blocks(handle, inode, &map,
4434 EXT4_GET_BLOCKS_IO_CONVERT_EXT);
4435 if (ret <= 0) {
4436 WARN_ON(ret <= 0);
4437 printk(KERN_ERR "%s: ext4_ext_map_blocks "
4438 "returned error inode#%lu, block=%u, "
4439 "max_blocks=%u", __func__,
4440 inode->i_ino, map.m_lblk, map.m_len);
4442 ext4_mark_inode_dirty(handle, inode);
4443 ret2 = ext4_journal_stop(handle);
4444 if (ret <= 0 || ret2 )
4445 break;
4447 return ret > 0 ? ret2 : ret;
4451 * Callback function called for each extent to gather FIEMAP information.
4453 static int ext4_ext_fiemap_cb(struct inode *inode, ext4_lblk_t next,
4454 struct ext4_ext_cache *newex, struct ext4_extent *ex,
4455 void *data)
4457 __u64 logical;
4458 __u64 physical;
4459 __u64 length;
4460 __u32 flags = 0;
4461 int ret = 0;
4462 struct fiemap_extent_info *fieinfo = data;
4463 unsigned char blksize_bits;
4465 blksize_bits = inode->i_sb->s_blocksize_bits;
4466 logical = (__u64)newex->ec_block << blksize_bits;
4468 if (newex->ec_start == 0) {
4470 * No extent in extent-tree contains block @newex->ec_start,
4471 * then the block may stay in 1)a hole or 2)delayed-extent.
4473 * Holes or delayed-extents are processed as follows.
4474 * 1. lookup dirty pages with specified range in pagecache.
4475 * If no page is got, then there is no delayed-extent and
4476 * return with EXT_CONTINUE.
4477 * 2. find the 1st mapped buffer,
4478 * 3. check if the mapped buffer is both in the request range
4479 * and a delayed buffer. If not, there is no delayed-extent,
4480 * then return.
4481 * 4. a delayed-extent is found, the extent will be collected.
4483 ext4_lblk_t end = 0;
4484 pgoff_t last_offset;
4485 pgoff_t offset;
4486 pgoff_t index;
4487 pgoff_t start_index = 0;
4488 struct page **pages = NULL;
4489 struct buffer_head *bh = NULL;
4490 struct buffer_head *head = NULL;
4491 unsigned int nr_pages = PAGE_SIZE / sizeof(struct page *);
4493 pages = kmalloc(PAGE_SIZE, GFP_KERNEL);
4494 if (pages == NULL)
4495 return -ENOMEM;
4497 offset = logical >> PAGE_SHIFT;
4498 repeat:
4499 last_offset = offset;
4500 head = NULL;
4501 ret = find_get_pages_tag(inode->i_mapping, &offset,
4502 PAGECACHE_TAG_DIRTY, nr_pages, pages);
4504 if (!(flags & FIEMAP_EXTENT_DELALLOC)) {
4505 /* First time, try to find a mapped buffer. */
4506 if (ret == 0) {
4507 out:
4508 for (index = 0; index < ret; index++)
4509 page_cache_release(pages[index]);
4510 /* just a hole. */
4511 kfree(pages);
4512 return EXT_CONTINUE;
4514 index = 0;
4516 next_page:
4517 /* Try to find the 1st mapped buffer. */
4518 end = ((__u64)pages[index]->index << PAGE_SHIFT) >>
4519 blksize_bits;
4520 if (!page_has_buffers(pages[index]))
4521 goto out;
4522 head = page_buffers(pages[index]);
4523 if (!head)
4524 goto out;
4526 index++;
4527 bh = head;
4528 do {
4529 if (end >= newex->ec_block +
4530 newex->ec_len)
4531 /* The buffer is out of
4532 * the request range.
4534 goto out;
4536 if (buffer_mapped(bh) &&
4537 end >= newex->ec_block) {
4538 start_index = index - 1;
4539 /* get the 1st mapped buffer. */
4540 goto found_mapped_buffer;
4543 bh = bh->b_this_page;
4544 end++;
4545 } while (bh != head);
4547 /* No mapped buffer in the range found in this page,
4548 * We need to look up next page.
4550 if (index >= ret) {
4551 /* There is no page left, but we need to limit
4552 * newex->ec_len.
4554 newex->ec_len = end - newex->ec_block;
4555 goto out;
4557 goto next_page;
4558 } else {
4559 /*Find contiguous delayed buffers. */
4560 if (ret > 0 && pages[0]->index == last_offset)
4561 head = page_buffers(pages[0]);
4562 bh = head;
4563 index = 1;
4564 start_index = 0;
4567 found_mapped_buffer:
4568 if (bh != NULL && buffer_delay(bh)) {
4569 /* 1st or contiguous delayed buffer found. */
4570 if (!(flags & FIEMAP_EXTENT_DELALLOC)) {
4572 * 1st delayed buffer found, record
4573 * the start of extent.
4575 flags |= FIEMAP_EXTENT_DELALLOC;
4576 newex->ec_block = end;
4577 logical = (__u64)end << blksize_bits;
4579 /* Find contiguous delayed buffers. */
4580 do {
4581 if (!buffer_delay(bh))
4582 goto found_delayed_extent;
4583 bh = bh->b_this_page;
4584 end++;
4585 } while (bh != head);
4587 for (; index < ret; index++) {
4588 if (!page_has_buffers(pages[index])) {
4589 bh = NULL;
4590 break;
4592 head = page_buffers(pages[index]);
4593 if (!head) {
4594 bh = NULL;
4595 break;
4598 if (pages[index]->index !=
4599 pages[start_index]->index + index
4600 - start_index) {
4601 /* Blocks are not contiguous. */
4602 bh = NULL;
4603 break;
4605 bh = head;
4606 do {
4607 if (!buffer_delay(bh))
4608 /* Delayed-extent ends. */
4609 goto found_delayed_extent;
4610 bh = bh->b_this_page;
4611 end++;
4612 } while (bh != head);
4614 } else if (!(flags & FIEMAP_EXTENT_DELALLOC))
4615 /* a hole found. */
4616 goto out;
4618 found_delayed_extent:
4619 newex->ec_len = min(end - newex->ec_block,
4620 (ext4_lblk_t)EXT_INIT_MAX_LEN);
4621 if (ret == nr_pages && bh != NULL &&
4622 newex->ec_len < EXT_INIT_MAX_LEN &&
4623 buffer_delay(bh)) {
4624 /* Have not collected an extent and continue. */
4625 for (index = 0; index < ret; index++)
4626 page_cache_release(pages[index]);
4627 goto repeat;
4630 for (index = 0; index < ret; index++)
4631 page_cache_release(pages[index]);
4632 kfree(pages);
4635 physical = (__u64)newex->ec_start << blksize_bits;
4636 length = (__u64)newex->ec_len << blksize_bits;
4638 if (ex && ext4_ext_is_uninitialized(ex))
4639 flags |= FIEMAP_EXTENT_UNWRITTEN;
4641 if (next == EXT_MAX_BLOCKS)
4642 flags |= FIEMAP_EXTENT_LAST;
4644 ret = fiemap_fill_next_extent(fieinfo, logical, physical,
4645 length, flags);
4646 if (ret < 0)
4647 return ret;
4648 if (ret == 1)
4649 return EXT_BREAK;
4650 return EXT_CONTINUE;
4652 /* fiemap flags we can handle specified here */
4653 #define EXT4_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR)
4655 static int ext4_xattr_fiemap(struct inode *inode,
4656 struct fiemap_extent_info *fieinfo)
4658 __u64 physical = 0;
4659 __u64 length;
4660 __u32 flags = FIEMAP_EXTENT_LAST;
4661 int blockbits = inode->i_sb->s_blocksize_bits;
4662 int error = 0;
4664 /* in-inode? */
4665 if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4666 struct ext4_iloc iloc;
4667 int offset; /* offset of xattr in inode */
4669 error = ext4_get_inode_loc(inode, &iloc);
4670 if (error)
4671 return error;
4672 physical = iloc.bh->b_blocknr << blockbits;
4673 offset = EXT4_GOOD_OLD_INODE_SIZE +
4674 EXT4_I(inode)->i_extra_isize;
4675 physical += offset;
4676 length = EXT4_SB(inode->i_sb)->s_inode_size - offset;
4677 flags |= FIEMAP_EXTENT_DATA_INLINE;
4678 brelse(iloc.bh);
4679 } else { /* external block */
4680 physical = EXT4_I(inode)->i_file_acl << blockbits;
4681 length = inode->i_sb->s_blocksize;
4684 if (physical)
4685 error = fiemap_fill_next_extent(fieinfo, 0, physical,
4686 length, flags);
4687 return (error < 0 ? error : 0);
4691 * ext4_ext_punch_hole
4693 * Punches a hole of "length" bytes in a file starting
4694 * at byte "offset"
4696 * @inode: The inode of the file to punch a hole in
4697 * @offset: The starting byte offset of the hole
4698 * @length: The length of the hole
4700 * Returns the number of blocks removed or negative on err
4702 int ext4_ext_punch_hole(struct file *file, loff_t offset, loff_t length)
4704 struct inode *inode = file->f_path.dentry->d_inode;
4705 struct super_block *sb = inode->i_sb;
4706 struct ext4_ext_cache cache_ex;
4707 ext4_lblk_t first_block, last_block, num_blocks, iblock, max_blocks;
4708 struct address_space *mapping = inode->i_mapping;
4709 struct ext4_map_blocks map;
4710 handle_t *handle;
4711 loff_t first_page, last_page, page_len;
4712 loff_t first_page_offset, last_page_offset;
4713 int ret, credits, blocks_released, err = 0;
4715 /* No need to punch hole beyond i_size */
4716 if (offset >= inode->i_size)
4717 return 0;
4720 * If the hole extends beyond i_size, set the hole
4721 * to end after the page that contains i_size
4723 if (offset + length > inode->i_size) {
4724 length = inode->i_size +
4725 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
4726 offset;
4729 first_block = (offset + sb->s_blocksize - 1) >>
4730 EXT4_BLOCK_SIZE_BITS(sb);
4731 last_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4733 first_page = (offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
4734 last_page = (offset + length) >> PAGE_CACHE_SHIFT;
4736 first_page_offset = first_page << PAGE_CACHE_SHIFT;
4737 last_page_offset = last_page << PAGE_CACHE_SHIFT;
4740 * Write out all dirty pages to avoid race conditions
4741 * Then release them.
4743 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4744 err = filemap_write_and_wait_range(mapping,
4745 offset, offset + length - 1);
4747 if (err)
4748 return err;
4751 /* Now release the pages */
4752 if (last_page_offset > first_page_offset) {
4753 truncate_inode_pages_range(mapping, first_page_offset,
4754 last_page_offset-1);
4757 /* finish any pending end_io work */
4758 ext4_flush_completed_IO(inode);
4760 credits = ext4_writepage_trans_blocks(inode);
4761 handle = ext4_journal_start(inode, credits);
4762 if (IS_ERR(handle))
4763 return PTR_ERR(handle);
4765 err = ext4_orphan_add(handle, inode);
4766 if (err)
4767 goto out;
4770 * Now we need to zero out the non-page-aligned data in the
4771 * pages at the start and tail of the hole, and unmap the buffer
4772 * heads for the block aligned regions of the page that were
4773 * completely zeroed.
4775 if (first_page > last_page) {
4777 * If the file space being truncated is contained within a page
4778 * just zero out and unmap the middle of that page
4780 err = ext4_discard_partial_page_buffers(handle,
4781 mapping, offset, length, 0);
4783 if (err)
4784 goto out;
4785 } else {
4787 * zero out and unmap the partial page that contains
4788 * the start of the hole
4790 page_len = first_page_offset - offset;
4791 if (page_len > 0) {
4792 err = ext4_discard_partial_page_buffers(handle, mapping,
4793 offset, page_len, 0);
4794 if (err)
4795 goto out;
4799 * zero out and unmap the partial page that contains
4800 * the end of the hole
4802 page_len = offset + length - last_page_offset;
4803 if (page_len > 0) {
4804 err = ext4_discard_partial_page_buffers(handle, mapping,
4805 last_page_offset, page_len, 0);
4806 if (err)
4807 goto out;
4813 * If i_size is contained in the last page, we need to
4814 * unmap and zero the partial page after i_size
4816 if (inode->i_size >> PAGE_CACHE_SHIFT == last_page &&
4817 inode->i_size % PAGE_CACHE_SIZE != 0) {
4819 page_len = PAGE_CACHE_SIZE -
4820 (inode->i_size & (PAGE_CACHE_SIZE - 1));
4822 if (page_len > 0) {
4823 err = ext4_discard_partial_page_buffers(handle,
4824 mapping, inode->i_size, page_len, 0);
4826 if (err)
4827 goto out;
4831 /* If there are no blocks to remove, return now */
4832 if (first_block >= last_block)
4833 goto out;
4835 down_write(&EXT4_I(inode)->i_data_sem);
4836 ext4_ext_invalidate_cache(inode);
4837 ext4_discard_preallocations(inode);
4840 * Loop over all the blocks and identify blocks
4841 * that need to be punched out
4843 iblock = first_block;
4844 blocks_released = 0;
4845 while (iblock < last_block) {
4846 max_blocks = last_block - iblock;
4847 num_blocks = 1;
4848 memset(&map, 0, sizeof(map));
4849 map.m_lblk = iblock;
4850 map.m_len = max_blocks;
4851 ret = ext4_ext_map_blocks(handle, inode, &map,
4852 EXT4_GET_BLOCKS_PUNCH_OUT_EXT);
4854 if (ret > 0) {
4855 blocks_released += ret;
4856 num_blocks = ret;
4857 } else if (ret == 0) {
4859 * If map blocks could not find the block,
4860 * then it is in a hole. If the hole was
4861 * not already cached, then map blocks should
4862 * put it in the cache. So we can get the hole
4863 * out of the cache
4865 memset(&cache_ex, 0, sizeof(cache_ex));
4866 if ((ext4_ext_check_cache(inode, iblock, &cache_ex)) &&
4867 !cache_ex.ec_start) {
4869 /* The hole is cached */
4870 num_blocks = cache_ex.ec_block +
4871 cache_ex.ec_len - iblock;
4873 } else {
4874 /* The block could not be identified */
4875 err = -EIO;
4876 break;
4878 } else {
4879 /* Map blocks error */
4880 err = ret;
4881 break;
4884 if (num_blocks == 0) {
4885 /* This condition should never happen */
4886 ext_debug("Block lookup failed");
4887 err = -EIO;
4888 break;
4891 iblock += num_blocks;
4894 if (blocks_released > 0) {
4895 ext4_ext_invalidate_cache(inode);
4896 ext4_discard_preallocations(inode);
4899 if (IS_SYNC(inode))
4900 ext4_handle_sync(handle);
4902 up_write(&EXT4_I(inode)->i_data_sem);
4904 out:
4905 ext4_orphan_del(handle, inode);
4906 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4907 ext4_mark_inode_dirty(handle, inode);
4908 ext4_journal_stop(handle);
4909 return err;
4911 int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4912 __u64 start, __u64 len)
4914 ext4_lblk_t start_blk;
4915 int error = 0;
4917 /* fallback to generic here if not in extents fmt */
4918 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4919 return generic_block_fiemap(inode, fieinfo, start, len,
4920 ext4_get_block);
4922 if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS))
4923 return -EBADR;
4925 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
4926 error = ext4_xattr_fiemap(inode, fieinfo);
4927 } else {
4928 ext4_lblk_t len_blks;
4929 __u64 last_blk;
4931 start_blk = start >> inode->i_sb->s_blocksize_bits;
4932 last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits;
4933 if (last_blk >= EXT_MAX_BLOCKS)
4934 last_blk = EXT_MAX_BLOCKS-1;
4935 len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1;
4938 * Walk the extent tree gathering extent information.
4939 * ext4_ext_fiemap_cb will push extents back to user.
4941 error = ext4_ext_walk_space(inode, start_blk, len_blks,
4942 ext4_ext_fiemap_cb, fieinfo);
4945 return error;