spi-topcliff-pch: supports a spi mode setup and bit order setup by IO control
[zen-stable.git] / fs / namespace.c
blobe6081996c9a2f9d26525740545445630c4737583
1 /*
2 * linux/fs/namespace.c
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/namei.h>
16 #include <linux/security.h>
17 #include <linux/idr.h>
18 #include <linux/acct.h> /* acct_auto_close_mnt */
19 #include <linux/ramfs.h> /* init_rootfs */
20 #include <linux/fs_struct.h> /* get_fs_root et.al. */
21 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
22 #include <linux/uaccess.h>
23 #include "pnode.h"
24 #include "internal.h"
26 #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
27 #define HASH_SIZE (1UL << HASH_SHIFT)
29 static int event;
30 static DEFINE_IDA(mnt_id_ida);
31 static DEFINE_IDA(mnt_group_ida);
32 static DEFINE_SPINLOCK(mnt_id_lock);
33 static int mnt_id_start = 0;
34 static int mnt_group_start = 1;
36 static struct list_head *mount_hashtable __read_mostly;
37 static struct kmem_cache *mnt_cache __read_mostly;
38 static struct rw_semaphore namespace_sem;
40 /* /sys/fs */
41 struct kobject *fs_kobj;
42 EXPORT_SYMBOL_GPL(fs_kobj);
45 * vfsmount lock may be taken for read to prevent changes to the
46 * vfsmount hash, ie. during mountpoint lookups or walking back
47 * up the tree.
49 * It should be taken for write in all cases where the vfsmount
50 * tree or hash is modified or when a vfsmount structure is modified.
52 DEFINE_BRLOCK(vfsmount_lock);
54 static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
56 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
57 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
58 tmp = tmp + (tmp >> HASH_SHIFT);
59 return tmp & (HASH_SIZE - 1);
62 #define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
65 * allocation is serialized by namespace_sem, but we need the spinlock to
66 * serialize with freeing.
68 static int mnt_alloc_id(struct mount *mnt)
70 int res;
72 retry:
73 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
74 spin_lock(&mnt_id_lock);
75 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
76 if (!res)
77 mnt_id_start = mnt->mnt_id + 1;
78 spin_unlock(&mnt_id_lock);
79 if (res == -EAGAIN)
80 goto retry;
82 return res;
85 static void mnt_free_id(struct mount *mnt)
87 int id = mnt->mnt_id;
88 spin_lock(&mnt_id_lock);
89 ida_remove(&mnt_id_ida, id);
90 if (mnt_id_start > id)
91 mnt_id_start = id;
92 spin_unlock(&mnt_id_lock);
96 * Allocate a new peer group ID
98 * mnt_group_ida is protected by namespace_sem
100 static int mnt_alloc_group_id(struct mount *mnt)
102 int res;
104 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
105 return -ENOMEM;
107 res = ida_get_new_above(&mnt_group_ida,
108 mnt_group_start,
109 &mnt->mnt_group_id);
110 if (!res)
111 mnt_group_start = mnt->mnt_group_id + 1;
113 return res;
117 * Release a peer group ID
119 void mnt_release_group_id(struct mount *mnt)
121 int id = mnt->mnt_group_id;
122 ida_remove(&mnt_group_ida, id);
123 if (mnt_group_start > id)
124 mnt_group_start = id;
125 mnt->mnt_group_id = 0;
129 * vfsmount lock must be held for read
131 static inline void mnt_add_count(struct mount *mnt, int n)
133 #ifdef CONFIG_SMP
134 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
135 #else
136 preempt_disable();
137 mnt->mnt_count += n;
138 preempt_enable();
139 #endif
143 * vfsmount lock must be held for write
145 unsigned int mnt_get_count(struct mount *mnt)
147 #ifdef CONFIG_SMP
148 unsigned int count = 0;
149 int cpu;
151 for_each_possible_cpu(cpu) {
152 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
155 return count;
156 #else
157 return mnt->mnt_count;
158 #endif
161 static struct mount *alloc_vfsmnt(const char *name)
163 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
164 if (mnt) {
165 int err;
167 err = mnt_alloc_id(mnt);
168 if (err)
169 goto out_free_cache;
171 if (name) {
172 mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
173 if (!mnt->mnt_devname)
174 goto out_free_id;
177 #ifdef CONFIG_SMP
178 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
179 if (!mnt->mnt_pcp)
180 goto out_free_devname;
182 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
183 #else
184 mnt->mnt_count = 1;
185 mnt->mnt_writers = 0;
186 #endif
188 INIT_LIST_HEAD(&mnt->mnt_hash);
189 INIT_LIST_HEAD(&mnt->mnt_child);
190 INIT_LIST_HEAD(&mnt->mnt_mounts);
191 INIT_LIST_HEAD(&mnt->mnt_list);
192 INIT_LIST_HEAD(&mnt->mnt_expire);
193 INIT_LIST_HEAD(&mnt->mnt_share);
194 INIT_LIST_HEAD(&mnt->mnt_slave_list);
195 INIT_LIST_HEAD(&mnt->mnt_slave);
196 #ifdef CONFIG_FSNOTIFY
197 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
198 #endif
200 return mnt;
202 #ifdef CONFIG_SMP
203 out_free_devname:
204 kfree(mnt->mnt_devname);
205 #endif
206 out_free_id:
207 mnt_free_id(mnt);
208 out_free_cache:
209 kmem_cache_free(mnt_cache, mnt);
210 return NULL;
214 * Most r/o checks on a fs are for operations that take
215 * discrete amounts of time, like a write() or unlink().
216 * We must keep track of when those operations start
217 * (for permission checks) and when they end, so that
218 * we can determine when writes are able to occur to
219 * a filesystem.
222 * __mnt_is_readonly: check whether a mount is read-only
223 * @mnt: the mount to check for its write status
225 * This shouldn't be used directly ouside of the VFS.
226 * It does not guarantee that the filesystem will stay
227 * r/w, just that it is right *now*. This can not and
228 * should not be used in place of IS_RDONLY(inode).
229 * mnt_want/drop_write() will _keep_ the filesystem
230 * r/w.
232 int __mnt_is_readonly(struct vfsmount *mnt)
234 if (mnt->mnt_flags & MNT_READONLY)
235 return 1;
236 if (mnt->mnt_sb->s_flags & MS_RDONLY)
237 return 1;
238 return 0;
240 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
242 static inline void mnt_inc_writers(struct mount *mnt)
244 #ifdef CONFIG_SMP
245 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
246 #else
247 mnt->mnt_writers++;
248 #endif
251 static inline void mnt_dec_writers(struct mount *mnt)
253 #ifdef CONFIG_SMP
254 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
255 #else
256 mnt->mnt_writers--;
257 #endif
260 static unsigned int mnt_get_writers(struct mount *mnt)
262 #ifdef CONFIG_SMP
263 unsigned int count = 0;
264 int cpu;
266 for_each_possible_cpu(cpu) {
267 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
270 return count;
271 #else
272 return mnt->mnt_writers;
273 #endif
276 static int mnt_is_readonly(struct vfsmount *mnt)
278 if (mnt->mnt_sb->s_readonly_remount)
279 return 1;
280 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
281 smp_rmb();
282 return __mnt_is_readonly(mnt);
286 * Most r/o checks on a fs are for operations that take
287 * discrete amounts of time, like a write() or unlink().
288 * We must keep track of when those operations start
289 * (for permission checks) and when they end, so that
290 * we can determine when writes are able to occur to
291 * a filesystem.
294 * mnt_want_write - get write access to a mount
295 * @m: the mount on which to take a write
297 * This tells the low-level filesystem that a write is
298 * about to be performed to it, and makes sure that
299 * writes are allowed before returning success. When
300 * the write operation is finished, mnt_drop_write()
301 * must be called. This is effectively a refcount.
303 int mnt_want_write(struct vfsmount *m)
305 struct mount *mnt = real_mount(m);
306 int ret = 0;
308 preempt_disable();
309 mnt_inc_writers(mnt);
311 * The store to mnt_inc_writers must be visible before we pass
312 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
313 * incremented count after it has set MNT_WRITE_HOLD.
315 smp_mb();
316 while (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
317 cpu_relax();
319 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
320 * be set to match its requirements. So we must not load that until
321 * MNT_WRITE_HOLD is cleared.
323 smp_rmb();
324 if (mnt_is_readonly(m)) {
325 mnt_dec_writers(mnt);
326 ret = -EROFS;
328 preempt_enable();
329 return ret;
331 EXPORT_SYMBOL_GPL(mnt_want_write);
334 * mnt_clone_write - get write access to a mount
335 * @mnt: the mount on which to take a write
337 * This is effectively like mnt_want_write, except
338 * it must only be used to take an extra write reference
339 * on a mountpoint that we already know has a write reference
340 * on it. This allows some optimisation.
342 * After finished, mnt_drop_write must be called as usual to
343 * drop the reference.
345 int mnt_clone_write(struct vfsmount *mnt)
347 /* superblock may be r/o */
348 if (__mnt_is_readonly(mnt))
349 return -EROFS;
350 preempt_disable();
351 mnt_inc_writers(real_mount(mnt));
352 preempt_enable();
353 return 0;
355 EXPORT_SYMBOL_GPL(mnt_clone_write);
358 * mnt_want_write_file - get write access to a file's mount
359 * @file: the file who's mount on which to take a write
361 * This is like mnt_want_write, but it takes a file and can
362 * do some optimisations if the file is open for write already
364 int mnt_want_write_file(struct file *file)
366 struct inode *inode = file->f_dentry->d_inode;
367 if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode))
368 return mnt_want_write(file->f_path.mnt);
369 else
370 return mnt_clone_write(file->f_path.mnt);
372 EXPORT_SYMBOL_GPL(mnt_want_write_file);
375 * mnt_drop_write - give up write access to a mount
376 * @mnt: the mount on which to give up write access
378 * Tells the low-level filesystem that we are done
379 * performing writes to it. Must be matched with
380 * mnt_want_write() call above.
382 void mnt_drop_write(struct vfsmount *mnt)
384 preempt_disable();
385 mnt_dec_writers(real_mount(mnt));
386 preempt_enable();
388 EXPORT_SYMBOL_GPL(mnt_drop_write);
390 void mnt_drop_write_file(struct file *file)
392 mnt_drop_write(file->f_path.mnt);
394 EXPORT_SYMBOL(mnt_drop_write_file);
396 static int mnt_make_readonly(struct mount *mnt)
398 int ret = 0;
400 br_write_lock(vfsmount_lock);
401 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
403 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
404 * should be visible before we do.
406 smp_mb();
409 * With writers on hold, if this value is zero, then there are
410 * definitely no active writers (although held writers may subsequently
411 * increment the count, they'll have to wait, and decrement it after
412 * seeing MNT_READONLY).
414 * It is OK to have counter incremented on one CPU and decremented on
415 * another: the sum will add up correctly. The danger would be when we
416 * sum up each counter, if we read a counter before it is incremented,
417 * but then read another CPU's count which it has been subsequently
418 * decremented from -- we would see more decrements than we should.
419 * MNT_WRITE_HOLD protects against this scenario, because
420 * mnt_want_write first increments count, then smp_mb, then spins on
421 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
422 * we're counting up here.
424 if (mnt_get_writers(mnt) > 0)
425 ret = -EBUSY;
426 else
427 mnt->mnt.mnt_flags |= MNT_READONLY;
429 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
430 * that become unheld will see MNT_READONLY.
432 smp_wmb();
433 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
434 br_write_unlock(vfsmount_lock);
435 return ret;
438 static void __mnt_unmake_readonly(struct mount *mnt)
440 br_write_lock(vfsmount_lock);
441 mnt->mnt.mnt_flags &= ~MNT_READONLY;
442 br_write_unlock(vfsmount_lock);
445 int sb_prepare_remount_readonly(struct super_block *sb)
447 struct mount *mnt;
448 int err = 0;
450 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
451 if (atomic_long_read(&sb->s_remove_count))
452 return -EBUSY;
454 br_write_lock(vfsmount_lock);
455 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
456 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
457 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
458 smp_mb();
459 if (mnt_get_writers(mnt) > 0) {
460 err = -EBUSY;
461 break;
465 if (!err && atomic_long_read(&sb->s_remove_count))
466 err = -EBUSY;
468 if (!err) {
469 sb->s_readonly_remount = 1;
470 smp_wmb();
472 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
473 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
474 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
476 br_write_unlock(vfsmount_lock);
478 return err;
481 static void free_vfsmnt(struct mount *mnt)
483 kfree(mnt->mnt_devname);
484 mnt_free_id(mnt);
485 #ifdef CONFIG_SMP
486 free_percpu(mnt->mnt_pcp);
487 #endif
488 kmem_cache_free(mnt_cache, mnt);
492 * find the first or last mount at @dentry on vfsmount @mnt depending on
493 * @dir. If @dir is set return the first mount else return the last mount.
494 * vfsmount_lock must be held for read or write.
496 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
497 int dir)
499 struct list_head *head = mount_hashtable + hash(mnt, dentry);
500 struct list_head *tmp = head;
501 struct mount *p, *found = NULL;
503 for (;;) {
504 tmp = dir ? tmp->next : tmp->prev;
505 p = NULL;
506 if (tmp == head)
507 break;
508 p = list_entry(tmp, struct mount, mnt_hash);
509 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) {
510 found = p;
511 break;
514 return found;
518 * lookup_mnt increments the ref count before returning
519 * the vfsmount struct.
521 struct vfsmount *lookup_mnt(struct path *path)
523 struct mount *child_mnt;
525 br_read_lock(vfsmount_lock);
526 child_mnt = __lookup_mnt(path->mnt, path->dentry, 1);
527 if (child_mnt) {
528 mnt_add_count(child_mnt, 1);
529 br_read_unlock(vfsmount_lock);
530 return &child_mnt->mnt;
531 } else {
532 br_read_unlock(vfsmount_lock);
533 return NULL;
537 static inline int check_mnt(struct mount *mnt)
539 return mnt->mnt_ns == current->nsproxy->mnt_ns;
543 * vfsmount lock must be held for write
545 static void touch_mnt_namespace(struct mnt_namespace *ns)
547 if (ns) {
548 ns->event = ++event;
549 wake_up_interruptible(&ns->poll);
554 * vfsmount lock must be held for write
556 static void __touch_mnt_namespace(struct mnt_namespace *ns)
558 if (ns && ns->event != event) {
559 ns->event = event;
560 wake_up_interruptible(&ns->poll);
565 * Clear dentry's mounted state if it has no remaining mounts.
566 * vfsmount_lock must be held for write.
568 static void dentry_reset_mounted(struct dentry *dentry)
570 unsigned u;
572 for (u = 0; u < HASH_SIZE; u++) {
573 struct mount *p;
575 list_for_each_entry(p, &mount_hashtable[u], mnt_hash) {
576 if (p->mnt_mountpoint == dentry)
577 return;
580 spin_lock(&dentry->d_lock);
581 dentry->d_flags &= ~DCACHE_MOUNTED;
582 spin_unlock(&dentry->d_lock);
586 * vfsmount lock must be held for write
588 static void detach_mnt(struct mount *mnt, struct path *old_path)
590 old_path->dentry = mnt->mnt_mountpoint;
591 old_path->mnt = &mnt->mnt_parent->mnt;
592 mnt->mnt_parent = mnt;
593 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
594 list_del_init(&mnt->mnt_child);
595 list_del_init(&mnt->mnt_hash);
596 dentry_reset_mounted(old_path->dentry);
600 * vfsmount lock must be held for write
602 void mnt_set_mountpoint(struct mount *mnt, struct dentry *dentry,
603 struct mount *child_mnt)
605 mnt_add_count(mnt, 1); /* essentially, that's mntget */
606 child_mnt->mnt_mountpoint = dget(dentry);
607 child_mnt->mnt_parent = mnt;
608 spin_lock(&dentry->d_lock);
609 dentry->d_flags |= DCACHE_MOUNTED;
610 spin_unlock(&dentry->d_lock);
614 * vfsmount lock must be held for write
616 static void attach_mnt(struct mount *mnt, struct path *path)
618 mnt_set_mountpoint(real_mount(path->mnt), path->dentry, mnt);
619 list_add_tail(&mnt->mnt_hash, mount_hashtable +
620 hash(path->mnt, path->dentry));
621 list_add_tail(&mnt->mnt_child, &real_mount(path->mnt)->mnt_mounts);
624 static inline void __mnt_make_longterm(struct mount *mnt)
626 #ifdef CONFIG_SMP
627 atomic_inc(&mnt->mnt_longterm);
628 #endif
631 /* needs vfsmount lock for write */
632 static inline void __mnt_make_shortterm(struct mount *mnt)
634 #ifdef CONFIG_SMP
635 atomic_dec(&mnt->mnt_longterm);
636 #endif
640 * vfsmount lock must be held for write
642 static void commit_tree(struct mount *mnt)
644 struct mount *parent = mnt->mnt_parent;
645 struct mount *m;
646 LIST_HEAD(head);
647 struct mnt_namespace *n = parent->mnt_ns;
649 BUG_ON(parent == mnt);
651 list_add_tail(&head, &mnt->mnt_list);
652 list_for_each_entry(m, &head, mnt_list) {
653 m->mnt_ns = n;
654 __mnt_make_longterm(m);
657 list_splice(&head, n->list.prev);
659 list_add_tail(&mnt->mnt_hash, mount_hashtable +
660 hash(&parent->mnt, mnt->mnt_mountpoint));
661 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
662 touch_mnt_namespace(n);
665 static struct mount *next_mnt(struct mount *p, struct mount *root)
667 struct list_head *next = p->mnt_mounts.next;
668 if (next == &p->mnt_mounts) {
669 while (1) {
670 if (p == root)
671 return NULL;
672 next = p->mnt_child.next;
673 if (next != &p->mnt_parent->mnt_mounts)
674 break;
675 p = p->mnt_parent;
678 return list_entry(next, struct mount, mnt_child);
681 static struct mount *skip_mnt_tree(struct mount *p)
683 struct list_head *prev = p->mnt_mounts.prev;
684 while (prev != &p->mnt_mounts) {
685 p = list_entry(prev, struct mount, mnt_child);
686 prev = p->mnt_mounts.prev;
688 return p;
691 struct vfsmount *
692 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
694 struct mount *mnt;
695 struct dentry *root;
697 if (!type)
698 return ERR_PTR(-ENODEV);
700 mnt = alloc_vfsmnt(name);
701 if (!mnt)
702 return ERR_PTR(-ENOMEM);
704 if (flags & MS_KERNMOUNT)
705 mnt->mnt.mnt_flags = MNT_INTERNAL;
707 root = mount_fs(type, flags, name, data);
708 if (IS_ERR(root)) {
709 free_vfsmnt(mnt);
710 return ERR_CAST(root);
713 mnt->mnt.mnt_root = root;
714 mnt->mnt.mnt_sb = root->d_sb;
715 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
716 mnt->mnt_parent = mnt;
717 br_write_lock(vfsmount_lock);
718 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
719 br_write_unlock(vfsmount_lock);
720 return &mnt->mnt;
722 EXPORT_SYMBOL_GPL(vfs_kern_mount);
724 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
725 int flag)
727 struct super_block *sb = old->mnt.mnt_sb;
728 struct mount *mnt = alloc_vfsmnt(old->mnt_devname);
730 if (mnt) {
731 if (flag & (CL_SLAVE | CL_PRIVATE))
732 mnt->mnt_group_id = 0; /* not a peer of original */
733 else
734 mnt->mnt_group_id = old->mnt_group_id;
736 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
737 int err = mnt_alloc_group_id(mnt);
738 if (err)
739 goto out_free;
742 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~MNT_WRITE_HOLD;
743 atomic_inc(&sb->s_active);
744 mnt->mnt.mnt_sb = sb;
745 mnt->mnt.mnt_root = dget(root);
746 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
747 mnt->mnt_parent = mnt;
748 br_write_lock(vfsmount_lock);
749 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
750 br_write_unlock(vfsmount_lock);
752 if (flag & CL_SLAVE) {
753 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
754 mnt->mnt_master = old;
755 CLEAR_MNT_SHARED(mnt);
756 } else if (!(flag & CL_PRIVATE)) {
757 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
758 list_add(&mnt->mnt_share, &old->mnt_share);
759 if (IS_MNT_SLAVE(old))
760 list_add(&mnt->mnt_slave, &old->mnt_slave);
761 mnt->mnt_master = old->mnt_master;
763 if (flag & CL_MAKE_SHARED)
764 set_mnt_shared(mnt);
766 /* stick the duplicate mount on the same expiry list
767 * as the original if that was on one */
768 if (flag & CL_EXPIRE) {
769 if (!list_empty(&old->mnt_expire))
770 list_add(&mnt->mnt_expire, &old->mnt_expire);
773 return mnt;
775 out_free:
776 free_vfsmnt(mnt);
777 return NULL;
780 static inline void mntfree(struct mount *mnt)
782 struct vfsmount *m = &mnt->mnt;
783 struct super_block *sb = m->mnt_sb;
786 * This probably indicates that somebody messed
787 * up a mnt_want/drop_write() pair. If this
788 * happens, the filesystem was probably unable
789 * to make r/w->r/o transitions.
792 * The locking used to deal with mnt_count decrement provides barriers,
793 * so mnt_get_writers() below is safe.
795 WARN_ON(mnt_get_writers(mnt));
796 fsnotify_vfsmount_delete(m);
797 dput(m->mnt_root);
798 free_vfsmnt(mnt);
799 deactivate_super(sb);
802 static void mntput_no_expire(struct mount *mnt)
804 put_again:
805 #ifdef CONFIG_SMP
806 br_read_lock(vfsmount_lock);
807 if (likely(atomic_read(&mnt->mnt_longterm))) {
808 mnt_add_count(mnt, -1);
809 br_read_unlock(vfsmount_lock);
810 return;
812 br_read_unlock(vfsmount_lock);
814 br_write_lock(vfsmount_lock);
815 mnt_add_count(mnt, -1);
816 if (mnt_get_count(mnt)) {
817 br_write_unlock(vfsmount_lock);
818 return;
820 #else
821 mnt_add_count(mnt, -1);
822 if (likely(mnt_get_count(mnt)))
823 return;
824 br_write_lock(vfsmount_lock);
825 #endif
826 if (unlikely(mnt->mnt_pinned)) {
827 mnt_add_count(mnt, mnt->mnt_pinned + 1);
828 mnt->mnt_pinned = 0;
829 br_write_unlock(vfsmount_lock);
830 acct_auto_close_mnt(&mnt->mnt);
831 goto put_again;
833 list_del(&mnt->mnt_instance);
834 br_write_unlock(vfsmount_lock);
835 mntfree(mnt);
838 void mntput(struct vfsmount *mnt)
840 if (mnt) {
841 struct mount *m = real_mount(mnt);
842 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
843 if (unlikely(m->mnt_expiry_mark))
844 m->mnt_expiry_mark = 0;
845 mntput_no_expire(m);
848 EXPORT_SYMBOL(mntput);
850 struct vfsmount *mntget(struct vfsmount *mnt)
852 if (mnt)
853 mnt_add_count(real_mount(mnt), 1);
854 return mnt;
856 EXPORT_SYMBOL(mntget);
858 void mnt_pin(struct vfsmount *mnt)
860 br_write_lock(vfsmount_lock);
861 real_mount(mnt)->mnt_pinned++;
862 br_write_unlock(vfsmount_lock);
864 EXPORT_SYMBOL(mnt_pin);
866 void mnt_unpin(struct vfsmount *m)
868 struct mount *mnt = real_mount(m);
869 br_write_lock(vfsmount_lock);
870 if (mnt->mnt_pinned) {
871 mnt_add_count(mnt, 1);
872 mnt->mnt_pinned--;
874 br_write_unlock(vfsmount_lock);
876 EXPORT_SYMBOL(mnt_unpin);
878 static inline void mangle(struct seq_file *m, const char *s)
880 seq_escape(m, s, " \t\n\\");
884 * Simple .show_options callback for filesystems which don't want to
885 * implement more complex mount option showing.
887 * See also save_mount_options().
889 int generic_show_options(struct seq_file *m, struct dentry *root)
891 const char *options;
893 rcu_read_lock();
894 options = rcu_dereference(root->d_sb->s_options);
896 if (options != NULL && options[0]) {
897 seq_putc(m, ',');
898 mangle(m, options);
900 rcu_read_unlock();
902 return 0;
904 EXPORT_SYMBOL(generic_show_options);
907 * If filesystem uses generic_show_options(), this function should be
908 * called from the fill_super() callback.
910 * The .remount_fs callback usually needs to be handled in a special
911 * way, to make sure, that previous options are not overwritten if the
912 * remount fails.
914 * Also note, that if the filesystem's .remount_fs function doesn't
915 * reset all options to their default value, but changes only newly
916 * given options, then the displayed options will not reflect reality
917 * any more.
919 void save_mount_options(struct super_block *sb, char *options)
921 BUG_ON(sb->s_options);
922 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
924 EXPORT_SYMBOL(save_mount_options);
926 void replace_mount_options(struct super_block *sb, char *options)
928 char *old = sb->s_options;
929 rcu_assign_pointer(sb->s_options, options);
930 if (old) {
931 synchronize_rcu();
932 kfree(old);
935 EXPORT_SYMBOL(replace_mount_options);
937 #ifdef CONFIG_PROC_FS
938 /* iterator; we want it to have access to namespace_sem, thus here... */
939 static void *m_start(struct seq_file *m, loff_t *pos)
941 struct proc_mounts *p = container_of(m, struct proc_mounts, m);
943 down_read(&namespace_sem);
944 return seq_list_start(&p->ns->list, *pos);
947 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
949 struct proc_mounts *p = container_of(m, struct proc_mounts, m);
951 return seq_list_next(v, &p->ns->list, pos);
954 static void m_stop(struct seq_file *m, void *v)
956 up_read(&namespace_sem);
959 static int m_show(struct seq_file *m, void *v)
961 struct proc_mounts *p = container_of(m, struct proc_mounts, m);
962 struct mount *r = list_entry(v, struct mount, mnt_list);
963 return p->show(m, &r->mnt);
966 const struct seq_operations mounts_op = {
967 .start = m_start,
968 .next = m_next,
969 .stop = m_stop,
970 .show = m_show,
972 #endif /* CONFIG_PROC_FS */
975 * may_umount_tree - check if a mount tree is busy
976 * @mnt: root of mount tree
978 * This is called to check if a tree of mounts has any
979 * open files, pwds, chroots or sub mounts that are
980 * busy.
982 int may_umount_tree(struct vfsmount *m)
984 struct mount *mnt = real_mount(m);
985 int actual_refs = 0;
986 int minimum_refs = 0;
987 struct mount *p;
988 BUG_ON(!m);
990 /* write lock needed for mnt_get_count */
991 br_write_lock(vfsmount_lock);
992 for (p = mnt; p; p = next_mnt(p, mnt)) {
993 actual_refs += mnt_get_count(p);
994 minimum_refs += 2;
996 br_write_unlock(vfsmount_lock);
998 if (actual_refs > minimum_refs)
999 return 0;
1001 return 1;
1004 EXPORT_SYMBOL(may_umount_tree);
1007 * may_umount - check if a mount point is busy
1008 * @mnt: root of mount
1010 * This is called to check if a mount point has any
1011 * open files, pwds, chroots or sub mounts. If the
1012 * mount has sub mounts this will return busy
1013 * regardless of whether the sub mounts are busy.
1015 * Doesn't take quota and stuff into account. IOW, in some cases it will
1016 * give false negatives. The main reason why it's here is that we need
1017 * a non-destructive way to look for easily umountable filesystems.
1019 int may_umount(struct vfsmount *mnt)
1021 int ret = 1;
1022 down_read(&namespace_sem);
1023 br_write_lock(vfsmount_lock);
1024 if (propagate_mount_busy(real_mount(mnt), 2))
1025 ret = 0;
1026 br_write_unlock(vfsmount_lock);
1027 up_read(&namespace_sem);
1028 return ret;
1031 EXPORT_SYMBOL(may_umount);
1033 void release_mounts(struct list_head *head)
1035 struct mount *mnt;
1036 while (!list_empty(head)) {
1037 mnt = list_first_entry(head, struct mount, mnt_hash);
1038 list_del_init(&mnt->mnt_hash);
1039 if (mnt_has_parent(mnt)) {
1040 struct dentry *dentry;
1041 struct mount *m;
1043 br_write_lock(vfsmount_lock);
1044 dentry = mnt->mnt_mountpoint;
1045 m = mnt->mnt_parent;
1046 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1047 mnt->mnt_parent = mnt;
1048 m->mnt_ghosts--;
1049 br_write_unlock(vfsmount_lock);
1050 dput(dentry);
1051 mntput(&m->mnt);
1053 mntput(&mnt->mnt);
1058 * vfsmount lock must be held for write
1059 * namespace_sem must be held for write
1061 void umount_tree(struct mount *mnt, int propagate, struct list_head *kill)
1063 LIST_HEAD(tmp_list);
1064 struct mount *p;
1066 for (p = mnt; p; p = next_mnt(p, mnt))
1067 list_move(&p->mnt_hash, &tmp_list);
1069 if (propagate)
1070 propagate_umount(&tmp_list);
1072 list_for_each_entry(p, &tmp_list, mnt_hash) {
1073 list_del_init(&p->mnt_expire);
1074 list_del_init(&p->mnt_list);
1075 __touch_mnt_namespace(p->mnt_ns);
1076 p->mnt_ns = NULL;
1077 __mnt_make_shortterm(p);
1078 list_del_init(&p->mnt_child);
1079 if (mnt_has_parent(p)) {
1080 p->mnt_parent->mnt_ghosts++;
1081 dentry_reset_mounted(p->mnt_mountpoint);
1083 change_mnt_propagation(p, MS_PRIVATE);
1085 list_splice(&tmp_list, kill);
1088 static void shrink_submounts(struct mount *mnt, struct list_head *umounts);
1090 static int do_umount(struct mount *mnt, int flags)
1092 struct super_block *sb = mnt->mnt.mnt_sb;
1093 int retval;
1094 LIST_HEAD(umount_list);
1096 retval = security_sb_umount(&mnt->mnt, flags);
1097 if (retval)
1098 return retval;
1101 * Allow userspace to request a mountpoint be expired rather than
1102 * unmounting unconditionally. Unmount only happens if:
1103 * (1) the mark is already set (the mark is cleared by mntput())
1104 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1106 if (flags & MNT_EXPIRE) {
1107 if (&mnt->mnt == current->fs->root.mnt ||
1108 flags & (MNT_FORCE | MNT_DETACH))
1109 return -EINVAL;
1112 * probably don't strictly need the lock here if we examined
1113 * all race cases, but it's a slowpath.
1115 br_write_lock(vfsmount_lock);
1116 if (mnt_get_count(mnt) != 2) {
1117 br_write_unlock(vfsmount_lock);
1118 return -EBUSY;
1120 br_write_unlock(vfsmount_lock);
1122 if (!xchg(&mnt->mnt_expiry_mark, 1))
1123 return -EAGAIN;
1127 * If we may have to abort operations to get out of this
1128 * mount, and they will themselves hold resources we must
1129 * allow the fs to do things. In the Unix tradition of
1130 * 'Gee thats tricky lets do it in userspace' the umount_begin
1131 * might fail to complete on the first run through as other tasks
1132 * must return, and the like. Thats for the mount program to worry
1133 * about for the moment.
1136 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1137 sb->s_op->umount_begin(sb);
1141 * No sense to grab the lock for this test, but test itself looks
1142 * somewhat bogus. Suggestions for better replacement?
1143 * Ho-hum... In principle, we might treat that as umount + switch
1144 * to rootfs. GC would eventually take care of the old vfsmount.
1145 * Actually it makes sense, especially if rootfs would contain a
1146 * /reboot - static binary that would close all descriptors and
1147 * call reboot(9). Then init(8) could umount root and exec /reboot.
1149 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1151 * Special case for "unmounting" root ...
1152 * we just try to remount it readonly.
1154 down_write(&sb->s_umount);
1155 if (!(sb->s_flags & MS_RDONLY))
1156 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1157 up_write(&sb->s_umount);
1158 return retval;
1161 down_write(&namespace_sem);
1162 br_write_lock(vfsmount_lock);
1163 event++;
1165 if (!(flags & MNT_DETACH))
1166 shrink_submounts(mnt, &umount_list);
1168 retval = -EBUSY;
1169 if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
1170 if (!list_empty(&mnt->mnt_list))
1171 umount_tree(mnt, 1, &umount_list);
1172 retval = 0;
1174 br_write_unlock(vfsmount_lock);
1175 up_write(&namespace_sem);
1176 release_mounts(&umount_list);
1177 return retval;
1181 * Now umount can handle mount points as well as block devices.
1182 * This is important for filesystems which use unnamed block devices.
1184 * We now support a flag for forced unmount like the other 'big iron'
1185 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1188 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1190 struct path path;
1191 struct mount *mnt;
1192 int retval;
1193 int lookup_flags = 0;
1195 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1196 return -EINVAL;
1198 if (!(flags & UMOUNT_NOFOLLOW))
1199 lookup_flags |= LOOKUP_FOLLOW;
1201 retval = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1202 if (retval)
1203 goto out;
1204 mnt = real_mount(path.mnt);
1205 retval = -EINVAL;
1206 if (path.dentry != path.mnt->mnt_root)
1207 goto dput_and_out;
1208 if (!check_mnt(mnt))
1209 goto dput_and_out;
1211 retval = -EPERM;
1212 if (!capable(CAP_SYS_ADMIN))
1213 goto dput_and_out;
1215 retval = do_umount(mnt, flags);
1216 dput_and_out:
1217 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1218 dput(path.dentry);
1219 mntput_no_expire(mnt);
1220 out:
1221 return retval;
1224 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1227 * The 2.0 compatible umount. No flags.
1229 SYSCALL_DEFINE1(oldumount, char __user *, name)
1231 return sys_umount(name, 0);
1234 #endif
1236 static int mount_is_safe(struct path *path)
1238 if (capable(CAP_SYS_ADMIN))
1239 return 0;
1240 return -EPERM;
1241 #ifdef notyet
1242 if (S_ISLNK(path->dentry->d_inode->i_mode))
1243 return -EPERM;
1244 if (path->dentry->d_inode->i_mode & S_ISVTX) {
1245 if (current_uid() != path->dentry->d_inode->i_uid)
1246 return -EPERM;
1248 if (inode_permission(path->dentry->d_inode, MAY_WRITE))
1249 return -EPERM;
1250 return 0;
1251 #endif
1254 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1255 int flag)
1257 struct mount *res, *p, *q, *r;
1258 struct path path;
1260 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
1261 return NULL;
1263 res = q = clone_mnt(mnt, dentry, flag);
1264 if (!q)
1265 goto Enomem;
1266 q->mnt_mountpoint = mnt->mnt_mountpoint;
1268 p = mnt;
1269 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1270 struct mount *s;
1271 if (!is_subdir(r->mnt_mountpoint, dentry))
1272 continue;
1274 for (s = r; s; s = next_mnt(s, r)) {
1275 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
1276 s = skip_mnt_tree(s);
1277 continue;
1279 while (p != s->mnt_parent) {
1280 p = p->mnt_parent;
1281 q = q->mnt_parent;
1283 p = s;
1284 path.mnt = &q->mnt;
1285 path.dentry = p->mnt_mountpoint;
1286 q = clone_mnt(p, p->mnt.mnt_root, flag);
1287 if (!q)
1288 goto Enomem;
1289 br_write_lock(vfsmount_lock);
1290 list_add_tail(&q->mnt_list, &res->mnt_list);
1291 attach_mnt(q, &path);
1292 br_write_unlock(vfsmount_lock);
1295 return res;
1296 Enomem:
1297 if (res) {
1298 LIST_HEAD(umount_list);
1299 br_write_lock(vfsmount_lock);
1300 umount_tree(res, 0, &umount_list);
1301 br_write_unlock(vfsmount_lock);
1302 release_mounts(&umount_list);
1304 return NULL;
1307 struct vfsmount *collect_mounts(struct path *path)
1309 struct mount *tree;
1310 down_write(&namespace_sem);
1311 tree = copy_tree(real_mount(path->mnt), path->dentry,
1312 CL_COPY_ALL | CL_PRIVATE);
1313 up_write(&namespace_sem);
1314 return tree ? &tree->mnt : NULL;
1317 void drop_collected_mounts(struct vfsmount *mnt)
1319 LIST_HEAD(umount_list);
1320 down_write(&namespace_sem);
1321 br_write_lock(vfsmount_lock);
1322 umount_tree(real_mount(mnt), 0, &umount_list);
1323 br_write_unlock(vfsmount_lock);
1324 up_write(&namespace_sem);
1325 release_mounts(&umount_list);
1328 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1329 struct vfsmount *root)
1331 struct mount *mnt;
1332 int res = f(root, arg);
1333 if (res)
1334 return res;
1335 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1336 res = f(&mnt->mnt, arg);
1337 if (res)
1338 return res;
1340 return 0;
1343 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1345 struct mount *p;
1347 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1348 if (p->mnt_group_id && !IS_MNT_SHARED(p))
1349 mnt_release_group_id(p);
1353 static int invent_group_ids(struct mount *mnt, bool recurse)
1355 struct mount *p;
1357 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1358 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1359 int err = mnt_alloc_group_id(p);
1360 if (err) {
1361 cleanup_group_ids(mnt, p);
1362 return err;
1367 return 0;
1371 * @source_mnt : mount tree to be attached
1372 * @nd : place the mount tree @source_mnt is attached
1373 * @parent_nd : if non-null, detach the source_mnt from its parent and
1374 * store the parent mount and mountpoint dentry.
1375 * (done when source_mnt is moved)
1377 * NOTE: in the table below explains the semantics when a source mount
1378 * of a given type is attached to a destination mount of a given type.
1379 * ---------------------------------------------------------------------------
1380 * | BIND MOUNT OPERATION |
1381 * |**************************************************************************
1382 * | source-->| shared | private | slave | unbindable |
1383 * | dest | | | | |
1384 * | | | | | | |
1385 * | v | | | | |
1386 * |**************************************************************************
1387 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1388 * | | | | | |
1389 * |non-shared| shared (+) | private | slave (*) | invalid |
1390 * ***************************************************************************
1391 * A bind operation clones the source mount and mounts the clone on the
1392 * destination mount.
1394 * (++) the cloned mount is propagated to all the mounts in the propagation
1395 * tree of the destination mount and the cloned mount is added to
1396 * the peer group of the source mount.
1397 * (+) the cloned mount is created under the destination mount and is marked
1398 * as shared. The cloned mount is added to the peer group of the source
1399 * mount.
1400 * (+++) the mount is propagated to all the mounts in the propagation tree
1401 * of the destination mount and the cloned mount is made slave
1402 * of the same master as that of the source mount. The cloned mount
1403 * is marked as 'shared and slave'.
1404 * (*) the cloned mount is made a slave of the same master as that of the
1405 * source mount.
1407 * ---------------------------------------------------------------------------
1408 * | MOVE MOUNT OPERATION |
1409 * |**************************************************************************
1410 * | source-->| shared | private | slave | unbindable |
1411 * | dest | | | | |
1412 * | | | | | | |
1413 * | v | | | | |
1414 * |**************************************************************************
1415 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1416 * | | | | | |
1417 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1418 * ***************************************************************************
1420 * (+) the mount is moved to the destination. And is then propagated to
1421 * all the mounts in the propagation tree of the destination mount.
1422 * (+*) the mount is moved to the destination.
1423 * (+++) the mount is moved to the destination and is then propagated to
1424 * all the mounts belonging to the destination mount's propagation tree.
1425 * the mount is marked as 'shared and slave'.
1426 * (*) the mount continues to be a slave at the new location.
1428 * if the source mount is a tree, the operations explained above is
1429 * applied to each mount in the tree.
1430 * Must be called without spinlocks held, since this function can sleep
1431 * in allocations.
1433 static int attach_recursive_mnt(struct mount *source_mnt,
1434 struct path *path, struct path *parent_path)
1436 LIST_HEAD(tree_list);
1437 struct mount *dest_mnt = real_mount(path->mnt);
1438 struct dentry *dest_dentry = path->dentry;
1439 struct mount *child, *p;
1440 int err;
1442 if (IS_MNT_SHARED(dest_mnt)) {
1443 err = invent_group_ids(source_mnt, true);
1444 if (err)
1445 goto out;
1447 err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list);
1448 if (err)
1449 goto out_cleanup_ids;
1451 br_write_lock(vfsmount_lock);
1453 if (IS_MNT_SHARED(dest_mnt)) {
1454 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1455 set_mnt_shared(p);
1457 if (parent_path) {
1458 detach_mnt(source_mnt, parent_path);
1459 attach_mnt(source_mnt, path);
1460 touch_mnt_namespace(source_mnt->mnt_ns);
1461 } else {
1462 mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
1463 commit_tree(source_mnt);
1466 list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
1467 list_del_init(&child->mnt_hash);
1468 commit_tree(child);
1470 br_write_unlock(vfsmount_lock);
1472 return 0;
1474 out_cleanup_ids:
1475 if (IS_MNT_SHARED(dest_mnt))
1476 cleanup_group_ids(source_mnt, NULL);
1477 out:
1478 return err;
1481 static int lock_mount(struct path *path)
1483 struct vfsmount *mnt;
1484 retry:
1485 mutex_lock(&path->dentry->d_inode->i_mutex);
1486 if (unlikely(cant_mount(path->dentry))) {
1487 mutex_unlock(&path->dentry->d_inode->i_mutex);
1488 return -ENOENT;
1490 down_write(&namespace_sem);
1491 mnt = lookup_mnt(path);
1492 if (likely(!mnt))
1493 return 0;
1494 up_write(&namespace_sem);
1495 mutex_unlock(&path->dentry->d_inode->i_mutex);
1496 path_put(path);
1497 path->mnt = mnt;
1498 path->dentry = dget(mnt->mnt_root);
1499 goto retry;
1502 static void unlock_mount(struct path *path)
1504 up_write(&namespace_sem);
1505 mutex_unlock(&path->dentry->d_inode->i_mutex);
1508 static int graft_tree(struct mount *mnt, struct path *path)
1510 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
1511 return -EINVAL;
1513 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1514 S_ISDIR(mnt->mnt.mnt_root->d_inode->i_mode))
1515 return -ENOTDIR;
1517 if (d_unlinked(path->dentry))
1518 return -ENOENT;
1520 return attach_recursive_mnt(mnt, path, NULL);
1524 * Sanity check the flags to change_mnt_propagation.
1527 static int flags_to_propagation_type(int flags)
1529 int type = flags & ~(MS_REC | MS_SILENT);
1531 /* Fail if any non-propagation flags are set */
1532 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1533 return 0;
1534 /* Only one propagation flag should be set */
1535 if (!is_power_of_2(type))
1536 return 0;
1537 return type;
1541 * recursively change the type of the mountpoint.
1543 static int do_change_type(struct path *path, int flag)
1545 struct mount *m;
1546 struct mount *mnt = real_mount(path->mnt);
1547 int recurse = flag & MS_REC;
1548 int type;
1549 int err = 0;
1551 if (!capable(CAP_SYS_ADMIN))
1552 return -EPERM;
1554 if (path->dentry != path->mnt->mnt_root)
1555 return -EINVAL;
1557 type = flags_to_propagation_type(flag);
1558 if (!type)
1559 return -EINVAL;
1561 down_write(&namespace_sem);
1562 if (type == MS_SHARED) {
1563 err = invent_group_ids(mnt, recurse);
1564 if (err)
1565 goto out_unlock;
1568 br_write_lock(vfsmount_lock);
1569 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
1570 change_mnt_propagation(m, type);
1571 br_write_unlock(vfsmount_lock);
1573 out_unlock:
1574 up_write(&namespace_sem);
1575 return err;
1579 * do loopback mount.
1581 static int do_loopback(struct path *path, char *old_name,
1582 int recurse)
1584 LIST_HEAD(umount_list);
1585 struct path old_path;
1586 struct mount *mnt = NULL, *old;
1587 int err = mount_is_safe(path);
1588 if (err)
1589 return err;
1590 if (!old_name || !*old_name)
1591 return -EINVAL;
1592 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1593 if (err)
1594 return err;
1596 err = lock_mount(path);
1597 if (err)
1598 goto out;
1600 old = real_mount(old_path.mnt);
1602 err = -EINVAL;
1603 if (IS_MNT_UNBINDABLE(old))
1604 goto out2;
1606 if (!check_mnt(real_mount(path->mnt)) || !check_mnt(old))
1607 goto out2;
1609 err = -ENOMEM;
1610 if (recurse)
1611 mnt = copy_tree(old, old_path.dentry, 0);
1612 else
1613 mnt = clone_mnt(old, old_path.dentry, 0);
1615 if (!mnt)
1616 goto out2;
1618 err = graft_tree(mnt, path);
1619 if (err) {
1620 br_write_lock(vfsmount_lock);
1621 umount_tree(mnt, 0, &umount_list);
1622 br_write_unlock(vfsmount_lock);
1624 out2:
1625 unlock_mount(path);
1626 release_mounts(&umount_list);
1627 out:
1628 path_put(&old_path);
1629 return err;
1632 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1634 int error = 0;
1635 int readonly_request = 0;
1637 if (ms_flags & MS_RDONLY)
1638 readonly_request = 1;
1639 if (readonly_request == __mnt_is_readonly(mnt))
1640 return 0;
1642 if (readonly_request)
1643 error = mnt_make_readonly(real_mount(mnt));
1644 else
1645 __mnt_unmake_readonly(real_mount(mnt));
1646 return error;
1650 * change filesystem flags. dir should be a physical root of filesystem.
1651 * If you've mounted a non-root directory somewhere and want to do remount
1652 * on it - tough luck.
1654 static int do_remount(struct path *path, int flags, int mnt_flags,
1655 void *data)
1657 int err;
1658 struct super_block *sb = path->mnt->mnt_sb;
1659 struct mount *mnt = real_mount(path->mnt);
1661 if (!capable(CAP_SYS_ADMIN))
1662 return -EPERM;
1664 if (!check_mnt(mnt))
1665 return -EINVAL;
1667 if (path->dentry != path->mnt->mnt_root)
1668 return -EINVAL;
1670 err = security_sb_remount(sb, data);
1671 if (err)
1672 return err;
1674 down_write(&sb->s_umount);
1675 if (flags & MS_BIND)
1676 err = change_mount_flags(path->mnt, flags);
1677 else
1678 err = do_remount_sb(sb, flags, data, 0);
1679 if (!err) {
1680 br_write_lock(vfsmount_lock);
1681 mnt_flags |= mnt->mnt.mnt_flags & MNT_PROPAGATION_MASK;
1682 mnt->mnt.mnt_flags = mnt_flags;
1683 br_write_unlock(vfsmount_lock);
1685 up_write(&sb->s_umount);
1686 if (!err) {
1687 br_write_lock(vfsmount_lock);
1688 touch_mnt_namespace(mnt->mnt_ns);
1689 br_write_unlock(vfsmount_lock);
1691 return err;
1694 static inline int tree_contains_unbindable(struct mount *mnt)
1696 struct mount *p;
1697 for (p = mnt; p; p = next_mnt(p, mnt)) {
1698 if (IS_MNT_UNBINDABLE(p))
1699 return 1;
1701 return 0;
1704 static int do_move_mount(struct path *path, char *old_name)
1706 struct path old_path, parent_path;
1707 struct mount *p;
1708 struct mount *old;
1709 int err = 0;
1710 if (!capable(CAP_SYS_ADMIN))
1711 return -EPERM;
1712 if (!old_name || !*old_name)
1713 return -EINVAL;
1714 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1715 if (err)
1716 return err;
1718 err = lock_mount(path);
1719 if (err < 0)
1720 goto out;
1722 old = real_mount(old_path.mnt);
1723 p = real_mount(path->mnt);
1725 err = -EINVAL;
1726 if (!check_mnt(p) || !check_mnt(old))
1727 goto out1;
1729 if (d_unlinked(path->dentry))
1730 goto out1;
1732 err = -EINVAL;
1733 if (old_path.dentry != old_path.mnt->mnt_root)
1734 goto out1;
1736 if (!mnt_has_parent(old))
1737 goto out1;
1739 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1740 S_ISDIR(old_path.dentry->d_inode->i_mode))
1741 goto out1;
1743 * Don't move a mount residing in a shared parent.
1745 if (IS_MNT_SHARED(old->mnt_parent))
1746 goto out1;
1748 * Don't move a mount tree containing unbindable mounts to a destination
1749 * mount which is shared.
1751 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
1752 goto out1;
1753 err = -ELOOP;
1754 for (; mnt_has_parent(p); p = p->mnt_parent)
1755 if (p == old)
1756 goto out1;
1758 err = attach_recursive_mnt(old, path, &parent_path);
1759 if (err)
1760 goto out1;
1762 /* if the mount is moved, it should no longer be expire
1763 * automatically */
1764 list_del_init(&old->mnt_expire);
1765 out1:
1766 unlock_mount(path);
1767 out:
1768 if (!err)
1769 path_put(&parent_path);
1770 path_put(&old_path);
1771 return err;
1774 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
1776 int err;
1777 const char *subtype = strchr(fstype, '.');
1778 if (subtype) {
1779 subtype++;
1780 err = -EINVAL;
1781 if (!subtype[0])
1782 goto err;
1783 } else
1784 subtype = "";
1786 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
1787 err = -ENOMEM;
1788 if (!mnt->mnt_sb->s_subtype)
1789 goto err;
1790 return mnt;
1792 err:
1793 mntput(mnt);
1794 return ERR_PTR(err);
1797 static struct vfsmount *
1798 do_kern_mount(const char *fstype, int flags, const char *name, void *data)
1800 struct file_system_type *type = get_fs_type(fstype);
1801 struct vfsmount *mnt;
1802 if (!type)
1803 return ERR_PTR(-ENODEV);
1804 mnt = vfs_kern_mount(type, flags, name, data);
1805 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
1806 !mnt->mnt_sb->s_subtype)
1807 mnt = fs_set_subtype(mnt, fstype);
1808 put_filesystem(type);
1809 return mnt;
1813 * add a mount into a namespace's mount tree
1815 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
1817 int err;
1819 mnt_flags &= ~(MNT_SHARED | MNT_WRITE_HOLD | MNT_INTERNAL);
1821 err = lock_mount(path);
1822 if (err)
1823 return err;
1825 err = -EINVAL;
1826 if (!(mnt_flags & MNT_SHRINKABLE) && !check_mnt(real_mount(path->mnt)))
1827 goto unlock;
1829 /* Refuse the same filesystem on the same mount point */
1830 err = -EBUSY;
1831 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
1832 path->mnt->mnt_root == path->dentry)
1833 goto unlock;
1835 err = -EINVAL;
1836 if (S_ISLNK(newmnt->mnt.mnt_root->d_inode->i_mode))
1837 goto unlock;
1839 newmnt->mnt.mnt_flags = mnt_flags;
1840 err = graft_tree(newmnt, path);
1842 unlock:
1843 unlock_mount(path);
1844 return err;
1848 * create a new mount for userspace and request it to be added into the
1849 * namespace's tree
1851 static int do_new_mount(struct path *path, char *type, int flags,
1852 int mnt_flags, char *name, void *data)
1854 struct vfsmount *mnt;
1855 int err;
1857 if (!type)
1858 return -EINVAL;
1860 /* we need capabilities... */
1861 if (!capable(CAP_SYS_ADMIN))
1862 return -EPERM;
1864 mnt = do_kern_mount(type, flags, name, data);
1865 if (IS_ERR(mnt))
1866 return PTR_ERR(mnt);
1868 err = do_add_mount(real_mount(mnt), path, mnt_flags);
1869 if (err)
1870 mntput(mnt);
1871 return err;
1874 int finish_automount(struct vfsmount *m, struct path *path)
1876 struct mount *mnt = real_mount(m);
1877 int err;
1878 /* The new mount record should have at least 2 refs to prevent it being
1879 * expired before we get a chance to add it
1881 BUG_ON(mnt_get_count(mnt) < 2);
1883 if (m->mnt_sb == path->mnt->mnt_sb &&
1884 m->mnt_root == path->dentry) {
1885 err = -ELOOP;
1886 goto fail;
1889 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
1890 if (!err)
1891 return 0;
1892 fail:
1893 /* remove m from any expiration list it may be on */
1894 if (!list_empty(&mnt->mnt_expire)) {
1895 down_write(&namespace_sem);
1896 br_write_lock(vfsmount_lock);
1897 list_del_init(&mnt->mnt_expire);
1898 br_write_unlock(vfsmount_lock);
1899 up_write(&namespace_sem);
1901 mntput(m);
1902 mntput(m);
1903 return err;
1907 * mnt_set_expiry - Put a mount on an expiration list
1908 * @mnt: The mount to list.
1909 * @expiry_list: The list to add the mount to.
1911 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
1913 down_write(&namespace_sem);
1914 br_write_lock(vfsmount_lock);
1916 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
1918 br_write_unlock(vfsmount_lock);
1919 up_write(&namespace_sem);
1921 EXPORT_SYMBOL(mnt_set_expiry);
1924 * process a list of expirable mountpoints with the intent of discarding any
1925 * mountpoints that aren't in use and haven't been touched since last we came
1926 * here
1928 void mark_mounts_for_expiry(struct list_head *mounts)
1930 struct mount *mnt, *next;
1931 LIST_HEAD(graveyard);
1932 LIST_HEAD(umounts);
1934 if (list_empty(mounts))
1935 return;
1937 down_write(&namespace_sem);
1938 br_write_lock(vfsmount_lock);
1940 /* extract from the expiration list every vfsmount that matches the
1941 * following criteria:
1942 * - only referenced by its parent vfsmount
1943 * - still marked for expiry (marked on the last call here; marks are
1944 * cleared by mntput())
1946 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
1947 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1948 propagate_mount_busy(mnt, 1))
1949 continue;
1950 list_move(&mnt->mnt_expire, &graveyard);
1952 while (!list_empty(&graveyard)) {
1953 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
1954 touch_mnt_namespace(mnt->mnt_ns);
1955 umount_tree(mnt, 1, &umounts);
1957 br_write_unlock(vfsmount_lock);
1958 up_write(&namespace_sem);
1960 release_mounts(&umounts);
1963 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
1966 * Ripoff of 'select_parent()'
1968 * search the list of submounts for a given mountpoint, and move any
1969 * shrinkable submounts to the 'graveyard' list.
1971 static int select_submounts(struct mount *parent, struct list_head *graveyard)
1973 struct mount *this_parent = parent;
1974 struct list_head *next;
1975 int found = 0;
1977 repeat:
1978 next = this_parent->mnt_mounts.next;
1979 resume:
1980 while (next != &this_parent->mnt_mounts) {
1981 struct list_head *tmp = next;
1982 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
1984 next = tmp->next;
1985 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
1986 continue;
1988 * Descend a level if the d_mounts list is non-empty.
1990 if (!list_empty(&mnt->mnt_mounts)) {
1991 this_parent = mnt;
1992 goto repeat;
1995 if (!propagate_mount_busy(mnt, 1)) {
1996 list_move_tail(&mnt->mnt_expire, graveyard);
1997 found++;
2001 * All done at this level ... ascend and resume the search
2003 if (this_parent != parent) {
2004 next = this_parent->mnt_child.next;
2005 this_parent = this_parent->mnt_parent;
2006 goto resume;
2008 return found;
2012 * process a list of expirable mountpoints with the intent of discarding any
2013 * submounts of a specific parent mountpoint
2015 * vfsmount_lock must be held for write
2017 static void shrink_submounts(struct mount *mnt, struct list_head *umounts)
2019 LIST_HEAD(graveyard);
2020 struct mount *m;
2022 /* extract submounts of 'mountpoint' from the expiration list */
2023 while (select_submounts(mnt, &graveyard)) {
2024 while (!list_empty(&graveyard)) {
2025 m = list_first_entry(&graveyard, struct mount,
2026 mnt_expire);
2027 touch_mnt_namespace(m->mnt_ns);
2028 umount_tree(m, 1, umounts);
2034 * Some copy_from_user() implementations do not return the exact number of
2035 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2036 * Note that this function differs from copy_from_user() in that it will oops
2037 * on bad values of `to', rather than returning a short copy.
2039 static long exact_copy_from_user(void *to, const void __user * from,
2040 unsigned long n)
2042 char *t = to;
2043 const char __user *f = from;
2044 char c;
2046 if (!access_ok(VERIFY_READ, from, n))
2047 return n;
2049 while (n) {
2050 if (__get_user(c, f)) {
2051 memset(t, 0, n);
2052 break;
2054 *t++ = c;
2055 f++;
2056 n--;
2058 return n;
2061 int copy_mount_options(const void __user * data, unsigned long *where)
2063 int i;
2064 unsigned long page;
2065 unsigned long size;
2067 *where = 0;
2068 if (!data)
2069 return 0;
2071 if (!(page = __get_free_page(GFP_KERNEL)))
2072 return -ENOMEM;
2074 /* We only care that *some* data at the address the user
2075 * gave us is valid. Just in case, we'll zero
2076 * the remainder of the page.
2078 /* copy_from_user cannot cross TASK_SIZE ! */
2079 size = TASK_SIZE - (unsigned long)data;
2080 if (size > PAGE_SIZE)
2081 size = PAGE_SIZE;
2083 i = size - exact_copy_from_user((void *)page, data, size);
2084 if (!i) {
2085 free_page(page);
2086 return -EFAULT;
2088 if (i != PAGE_SIZE)
2089 memset((char *)page + i, 0, PAGE_SIZE - i);
2090 *where = page;
2091 return 0;
2094 int copy_mount_string(const void __user *data, char **where)
2096 char *tmp;
2098 if (!data) {
2099 *where = NULL;
2100 return 0;
2103 tmp = strndup_user(data, PAGE_SIZE);
2104 if (IS_ERR(tmp))
2105 return PTR_ERR(tmp);
2107 *where = tmp;
2108 return 0;
2112 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2113 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2115 * data is a (void *) that can point to any structure up to
2116 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2117 * information (or be NULL).
2119 * Pre-0.97 versions of mount() didn't have a flags word.
2120 * When the flags word was introduced its top half was required
2121 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2122 * Therefore, if this magic number is present, it carries no information
2123 * and must be discarded.
2125 long do_mount(char *dev_name, char *dir_name, char *type_page,
2126 unsigned long flags, void *data_page)
2128 struct path path;
2129 int retval = 0;
2130 int mnt_flags = 0;
2132 /* Discard magic */
2133 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2134 flags &= ~MS_MGC_MSK;
2136 /* Basic sanity checks */
2138 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
2139 return -EINVAL;
2141 if (data_page)
2142 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2144 /* ... and get the mountpoint */
2145 retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
2146 if (retval)
2147 return retval;
2149 retval = security_sb_mount(dev_name, &path,
2150 type_page, flags, data_page);
2151 if (retval)
2152 goto dput_out;
2154 /* Default to relatime unless overriden */
2155 if (!(flags & MS_NOATIME))
2156 mnt_flags |= MNT_RELATIME;
2158 /* Separate the per-mountpoint flags */
2159 if (flags & MS_NOSUID)
2160 mnt_flags |= MNT_NOSUID;
2161 if (flags & MS_NODEV)
2162 mnt_flags |= MNT_NODEV;
2163 if (flags & MS_NOEXEC)
2164 mnt_flags |= MNT_NOEXEC;
2165 if (flags & MS_NOATIME)
2166 mnt_flags |= MNT_NOATIME;
2167 if (flags & MS_NODIRATIME)
2168 mnt_flags |= MNT_NODIRATIME;
2169 if (flags & MS_STRICTATIME)
2170 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2171 if (flags & MS_RDONLY)
2172 mnt_flags |= MNT_READONLY;
2174 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
2175 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2176 MS_STRICTATIME);
2178 if (flags & MS_REMOUNT)
2179 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
2180 data_page);
2181 else if (flags & MS_BIND)
2182 retval = do_loopback(&path, dev_name, flags & MS_REC);
2183 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2184 retval = do_change_type(&path, flags);
2185 else if (flags & MS_MOVE)
2186 retval = do_move_mount(&path, dev_name);
2187 else
2188 retval = do_new_mount(&path, type_page, flags, mnt_flags,
2189 dev_name, data_page);
2190 dput_out:
2191 path_put(&path);
2192 return retval;
2195 static struct mnt_namespace *alloc_mnt_ns(void)
2197 struct mnt_namespace *new_ns;
2199 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2200 if (!new_ns)
2201 return ERR_PTR(-ENOMEM);
2202 atomic_set(&new_ns->count, 1);
2203 new_ns->root = NULL;
2204 INIT_LIST_HEAD(&new_ns->list);
2205 init_waitqueue_head(&new_ns->poll);
2206 new_ns->event = 0;
2207 return new_ns;
2210 void mnt_make_longterm(struct vfsmount *mnt)
2212 __mnt_make_longterm(real_mount(mnt));
2215 void mnt_make_shortterm(struct vfsmount *m)
2217 #ifdef CONFIG_SMP
2218 struct mount *mnt = real_mount(m);
2219 if (atomic_add_unless(&mnt->mnt_longterm, -1, 1))
2220 return;
2221 br_write_lock(vfsmount_lock);
2222 atomic_dec(&mnt->mnt_longterm);
2223 br_write_unlock(vfsmount_lock);
2224 #endif
2228 * Allocate a new namespace structure and populate it with contents
2229 * copied from the namespace of the passed in task structure.
2231 static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
2232 struct fs_struct *fs)
2234 struct mnt_namespace *new_ns;
2235 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2236 struct mount *p, *q;
2237 struct mount *old = mnt_ns->root;
2238 struct mount *new;
2240 new_ns = alloc_mnt_ns();
2241 if (IS_ERR(new_ns))
2242 return new_ns;
2244 down_write(&namespace_sem);
2245 /* First pass: copy the tree topology */
2246 new = copy_tree(old, old->mnt.mnt_root, CL_COPY_ALL | CL_EXPIRE);
2247 if (!new) {
2248 up_write(&namespace_sem);
2249 kfree(new_ns);
2250 return ERR_PTR(-ENOMEM);
2252 new_ns->root = new;
2253 br_write_lock(vfsmount_lock);
2254 list_add_tail(&new_ns->list, &new->mnt_list);
2255 br_write_unlock(vfsmount_lock);
2258 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2259 * as belonging to new namespace. We have already acquired a private
2260 * fs_struct, so tsk->fs->lock is not needed.
2262 p = old;
2263 q = new;
2264 while (p) {
2265 q->mnt_ns = new_ns;
2266 __mnt_make_longterm(q);
2267 if (fs) {
2268 if (&p->mnt == fs->root.mnt) {
2269 fs->root.mnt = mntget(&q->mnt);
2270 __mnt_make_longterm(q);
2271 mnt_make_shortterm(&p->mnt);
2272 rootmnt = &p->mnt;
2274 if (&p->mnt == fs->pwd.mnt) {
2275 fs->pwd.mnt = mntget(&q->mnt);
2276 __mnt_make_longterm(q);
2277 mnt_make_shortterm(&p->mnt);
2278 pwdmnt = &p->mnt;
2281 p = next_mnt(p, old);
2282 q = next_mnt(q, new);
2284 up_write(&namespace_sem);
2286 if (rootmnt)
2287 mntput(rootmnt);
2288 if (pwdmnt)
2289 mntput(pwdmnt);
2291 return new_ns;
2294 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2295 struct fs_struct *new_fs)
2297 struct mnt_namespace *new_ns;
2299 BUG_ON(!ns);
2300 get_mnt_ns(ns);
2302 if (!(flags & CLONE_NEWNS))
2303 return ns;
2305 new_ns = dup_mnt_ns(ns, new_fs);
2307 put_mnt_ns(ns);
2308 return new_ns;
2312 * create_mnt_ns - creates a private namespace and adds a root filesystem
2313 * @mnt: pointer to the new root filesystem mountpoint
2315 static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
2317 struct mnt_namespace *new_ns = alloc_mnt_ns();
2318 if (!IS_ERR(new_ns)) {
2319 struct mount *mnt = real_mount(m);
2320 mnt->mnt_ns = new_ns;
2321 __mnt_make_longterm(mnt);
2322 new_ns->root = mnt;
2323 list_add(&new_ns->list, &mnt->mnt_list);
2324 } else {
2325 mntput(m);
2327 return new_ns;
2330 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2332 struct mnt_namespace *ns;
2333 struct super_block *s;
2334 struct path path;
2335 int err;
2337 ns = create_mnt_ns(mnt);
2338 if (IS_ERR(ns))
2339 return ERR_CAST(ns);
2341 err = vfs_path_lookup(mnt->mnt_root, mnt,
2342 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2344 put_mnt_ns(ns);
2346 if (err)
2347 return ERR_PTR(err);
2349 /* trade a vfsmount reference for active sb one */
2350 s = path.mnt->mnt_sb;
2351 atomic_inc(&s->s_active);
2352 mntput(path.mnt);
2353 /* lock the sucker */
2354 down_write(&s->s_umount);
2355 /* ... and return the root of (sub)tree on it */
2356 return path.dentry;
2358 EXPORT_SYMBOL(mount_subtree);
2360 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2361 char __user *, type, unsigned long, flags, void __user *, data)
2363 int ret;
2364 char *kernel_type;
2365 char *kernel_dir;
2366 char *kernel_dev;
2367 unsigned long data_page;
2369 ret = copy_mount_string(type, &kernel_type);
2370 if (ret < 0)
2371 goto out_type;
2373 kernel_dir = getname(dir_name);
2374 if (IS_ERR(kernel_dir)) {
2375 ret = PTR_ERR(kernel_dir);
2376 goto out_dir;
2379 ret = copy_mount_string(dev_name, &kernel_dev);
2380 if (ret < 0)
2381 goto out_dev;
2383 ret = copy_mount_options(data, &data_page);
2384 if (ret < 0)
2385 goto out_data;
2387 ret = do_mount(kernel_dev, kernel_dir, kernel_type, flags,
2388 (void *) data_page);
2390 free_page(data_page);
2391 out_data:
2392 kfree(kernel_dev);
2393 out_dev:
2394 putname(kernel_dir);
2395 out_dir:
2396 kfree(kernel_type);
2397 out_type:
2398 return ret;
2402 * Return true if path is reachable from root
2404 * namespace_sem or vfsmount_lock is held
2406 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
2407 const struct path *root)
2409 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
2410 dentry = mnt->mnt_mountpoint;
2411 mnt = mnt->mnt_parent;
2413 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
2416 int path_is_under(struct path *path1, struct path *path2)
2418 int res;
2419 br_read_lock(vfsmount_lock);
2420 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
2421 br_read_unlock(vfsmount_lock);
2422 return res;
2424 EXPORT_SYMBOL(path_is_under);
2427 * pivot_root Semantics:
2428 * Moves the root file system of the current process to the directory put_old,
2429 * makes new_root as the new root file system of the current process, and sets
2430 * root/cwd of all processes which had them on the current root to new_root.
2432 * Restrictions:
2433 * The new_root and put_old must be directories, and must not be on the
2434 * same file system as the current process root. The put_old must be
2435 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2436 * pointed to by put_old must yield the same directory as new_root. No other
2437 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2439 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2440 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2441 * in this situation.
2443 * Notes:
2444 * - we don't move root/cwd if they are not at the root (reason: if something
2445 * cared enough to change them, it's probably wrong to force them elsewhere)
2446 * - it's okay to pick a root that isn't the root of a file system, e.g.
2447 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2448 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2449 * first.
2451 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2452 const char __user *, put_old)
2454 struct path new, old, parent_path, root_parent, root;
2455 struct mount *new_mnt, *root_mnt;
2456 int error;
2458 if (!capable(CAP_SYS_ADMIN))
2459 return -EPERM;
2461 error = user_path_dir(new_root, &new);
2462 if (error)
2463 goto out0;
2465 error = user_path_dir(put_old, &old);
2466 if (error)
2467 goto out1;
2469 error = security_sb_pivotroot(&old, &new);
2470 if (error)
2471 goto out2;
2473 get_fs_root(current->fs, &root);
2474 error = lock_mount(&old);
2475 if (error)
2476 goto out3;
2478 error = -EINVAL;
2479 new_mnt = real_mount(new.mnt);
2480 root_mnt = real_mount(root.mnt);
2481 if (IS_MNT_SHARED(real_mount(old.mnt)) ||
2482 IS_MNT_SHARED(new_mnt->mnt_parent) ||
2483 IS_MNT_SHARED(root_mnt->mnt_parent))
2484 goto out4;
2485 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
2486 goto out4;
2487 error = -ENOENT;
2488 if (d_unlinked(new.dentry))
2489 goto out4;
2490 if (d_unlinked(old.dentry))
2491 goto out4;
2492 error = -EBUSY;
2493 if (new.mnt == root.mnt ||
2494 old.mnt == root.mnt)
2495 goto out4; /* loop, on the same file system */
2496 error = -EINVAL;
2497 if (root.mnt->mnt_root != root.dentry)
2498 goto out4; /* not a mountpoint */
2499 if (!mnt_has_parent(root_mnt))
2500 goto out4; /* not attached */
2501 if (new.mnt->mnt_root != new.dentry)
2502 goto out4; /* not a mountpoint */
2503 if (!mnt_has_parent(new_mnt))
2504 goto out4; /* not attached */
2505 /* make sure we can reach put_old from new_root */
2506 if (!is_path_reachable(real_mount(old.mnt), old.dentry, &new))
2507 goto out4;
2508 br_write_lock(vfsmount_lock);
2509 detach_mnt(new_mnt, &parent_path);
2510 detach_mnt(root_mnt, &root_parent);
2511 /* mount old root on put_old */
2512 attach_mnt(root_mnt, &old);
2513 /* mount new_root on / */
2514 attach_mnt(new_mnt, &root_parent);
2515 touch_mnt_namespace(current->nsproxy->mnt_ns);
2516 br_write_unlock(vfsmount_lock);
2517 chroot_fs_refs(&root, &new);
2518 error = 0;
2519 out4:
2520 unlock_mount(&old);
2521 if (!error) {
2522 path_put(&root_parent);
2523 path_put(&parent_path);
2525 out3:
2526 path_put(&root);
2527 out2:
2528 path_put(&old);
2529 out1:
2530 path_put(&new);
2531 out0:
2532 return error;
2535 static void __init init_mount_tree(void)
2537 struct vfsmount *mnt;
2538 struct mnt_namespace *ns;
2539 struct path root;
2541 mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
2542 if (IS_ERR(mnt))
2543 panic("Can't create rootfs");
2545 ns = create_mnt_ns(mnt);
2546 if (IS_ERR(ns))
2547 panic("Can't allocate initial namespace");
2549 init_task.nsproxy->mnt_ns = ns;
2550 get_mnt_ns(ns);
2552 root.mnt = mnt;
2553 root.dentry = mnt->mnt_root;
2555 set_fs_pwd(current->fs, &root);
2556 set_fs_root(current->fs, &root);
2559 void __init mnt_init(void)
2561 unsigned u;
2562 int err;
2564 init_rwsem(&namespace_sem);
2566 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
2567 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
2569 mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
2571 if (!mount_hashtable)
2572 panic("Failed to allocate mount hash table\n");
2574 printk(KERN_INFO "Mount-cache hash table entries: %lu\n", HASH_SIZE);
2576 for (u = 0; u < HASH_SIZE; u++)
2577 INIT_LIST_HEAD(&mount_hashtable[u]);
2579 br_lock_init(vfsmount_lock);
2581 err = sysfs_init();
2582 if (err)
2583 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
2584 __func__, err);
2585 fs_kobj = kobject_create_and_add("fs", NULL);
2586 if (!fs_kobj)
2587 printk(KERN_WARNING "%s: kobj create error\n", __func__);
2588 init_rootfs();
2589 init_mount_tree();
2592 void put_mnt_ns(struct mnt_namespace *ns)
2594 LIST_HEAD(umount_list);
2596 if (!atomic_dec_and_test(&ns->count))
2597 return;
2598 down_write(&namespace_sem);
2599 br_write_lock(vfsmount_lock);
2600 umount_tree(ns->root, 0, &umount_list);
2601 br_write_unlock(vfsmount_lock);
2602 up_write(&namespace_sem);
2603 release_mounts(&umount_list);
2604 kfree(ns);
2607 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
2609 struct vfsmount *mnt;
2610 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
2611 if (!IS_ERR(mnt)) {
2613 * it is a longterm mount, don't release mnt until
2614 * we unmount before file sys is unregistered
2616 mnt_make_longterm(mnt);
2618 return mnt;
2620 EXPORT_SYMBOL_GPL(kern_mount_data);
2622 void kern_unmount(struct vfsmount *mnt)
2624 /* release long term mount so mount point can be released */
2625 if (!IS_ERR_OR_NULL(mnt)) {
2626 mnt_make_shortterm(mnt);
2627 mntput(mnt);
2630 EXPORT_SYMBOL(kern_unmount);
2632 bool our_mnt(struct vfsmount *mnt)
2634 return check_mnt(real_mount(mnt));