spi-topcliff-pch: supports a spi mode setup and bit order setup by IO control
[zen-stable.git] / fs / nfs / dir.c
blobfd9a872fada03bc8e4946185b3cdb0f3ec4f2a62
1 /*
2 * linux/fs/nfs/dir.c
4 * Copyright (C) 1992 Rick Sladkey
6 * nfs directory handling functions
8 * 10 Apr 1996 Added silly rename for unlink --okir
9 * 28 Sep 1996 Improved directory cache --okir
10 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de
11 * Re-implemented silly rename for unlink, newly implemented
12 * silly rename for nfs_rename() following the suggestions
13 * of Olaf Kirch (okir) found in this file.
14 * Following Linus comments on my original hack, this version
15 * depends only on the dcache stuff and doesn't touch the inode
16 * layer (iput() and friends).
17 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM
20 #include <linux/time.h>
21 #include <linux/errno.h>
22 #include <linux/stat.h>
23 #include <linux/fcntl.h>
24 #include <linux/string.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/mm.h>
28 #include <linux/sunrpc/clnt.h>
29 #include <linux/nfs_fs.h>
30 #include <linux/nfs_mount.h>
31 #include <linux/pagemap.h>
32 #include <linux/pagevec.h>
33 #include <linux/namei.h>
34 #include <linux/mount.h>
35 #include <linux/sched.h>
36 #include <linux/kmemleak.h>
37 #include <linux/xattr.h>
39 #include "delegation.h"
40 #include "iostat.h"
41 #include "internal.h"
42 #include "fscache.h"
44 /* #define NFS_DEBUG_VERBOSE 1 */
46 static int nfs_opendir(struct inode *, struct file *);
47 static int nfs_closedir(struct inode *, struct file *);
48 static int nfs_readdir(struct file *, void *, filldir_t);
49 static struct dentry *nfs_lookup(struct inode *, struct dentry *, struct nameidata *);
50 static int nfs_create(struct inode *, struct dentry *, umode_t, struct nameidata *);
51 static int nfs_mkdir(struct inode *, struct dentry *, umode_t);
52 static int nfs_rmdir(struct inode *, struct dentry *);
53 static int nfs_unlink(struct inode *, struct dentry *);
54 static int nfs_symlink(struct inode *, struct dentry *, const char *);
55 static int nfs_link(struct dentry *, struct inode *, struct dentry *);
56 static int nfs_mknod(struct inode *, struct dentry *, umode_t, dev_t);
57 static int nfs_rename(struct inode *, struct dentry *,
58 struct inode *, struct dentry *);
59 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
60 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
61 static void nfs_readdir_clear_array(struct page*);
63 const struct file_operations nfs_dir_operations = {
64 .llseek = nfs_llseek_dir,
65 .read = generic_read_dir,
66 .readdir = nfs_readdir,
67 .open = nfs_opendir,
68 .release = nfs_closedir,
69 .fsync = nfs_fsync_dir,
72 const struct inode_operations nfs_dir_inode_operations = {
73 .create = nfs_create,
74 .lookup = nfs_lookup,
75 .link = nfs_link,
76 .unlink = nfs_unlink,
77 .symlink = nfs_symlink,
78 .mkdir = nfs_mkdir,
79 .rmdir = nfs_rmdir,
80 .mknod = nfs_mknod,
81 .rename = nfs_rename,
82 .permission = nfs_permission,
83 .getattr = nfs_getattr,
84 .setattr = nfs_setattr,
87 const struct address_space_operations nfs_dir_aops = {
88 .freepage = nfs_readdir_clear_array,
91 #ifdef CONFIG_NFS_V3
92 const struct inode_operations nfs3_dir_inode_operations = {
93 .create = nfs_create,
94 .lookup = nfs_lookup,
95 .link = nfs_link,
96 .unlink = nfs_unlink,
97 .symlink = nfs_symlink,
98 .mkdir = nfs_mkdir,
99 .rmdir = nfs_rmdir,
100 .mknod = nfs_mknod,
101 .rename = nfs_rename,
102 .permission = nfs_permission,
103 .getattr = nfs_getattr,
104 .setattr = nfs_setattr,
105 .listxattr = nfs3_listxattr,
106 .getxattr = nfs3_getxattr,
107 .setxattr = nfs3_setxattr,
108 .removexattr = nfs3_removexattr,
110 #endif /* CONFIG_NFS_V3 */
112 #ifdef CONFIG_NFS_V4
114 static struct dentry *nfs_atomic_lookup(struct inode *, struct dentry *, struct nameidata *);
115 static int nfs_open_create(struct inode *dir, struct dentry *dentry, umode_t mode, struct nameidata *nd);
116 const struct inode_operations nfs4_dir_inode_operations = {
117 .create = nfs_open_create,
118 .lookup = nfs_atomic_lookup,
119 .link = nfs_link,
120 .unlink = nfs_unlink,
121 .symlink = nfs_symlink,
122 .mkdir = nfs_mkdir,
123 .rmdir = nfs_rmdir,
124 .mknod = nfs_mknod,
125 .rename = nfs_rename,
126 .permission = nfs_permission,
127 .getattr = nfs_getattr,
128 .setattr = nfs_setattr,
129 .getxattr = generic_getxattr,
130 .setxattr = generic_setxattr,
131 .listxattr = generic_listxattr,
132 .removexattr = generic_removexattr,
135 #endif /* CONFIG_NFS_V4 */
137 static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, struct rpc_cred *cred)
139 struct nfs_open_dir_context *ctx;
140 ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
141 if (ctx != NULL) {
142 ctx->duped = 0;
143 ctx->attr_gencount = NFS_I(dir)->attr_gencount;
144 ctx->dir_cookie = 0;
145 ctx->dup_cookie = 0;
146 ctx->cred = get_rpccred(cred);
147 return ctx;
149 return ERR_PTR(-ENOMEM);
152 static void put_nfs_open_dir_context(struct nfs_open_dir_context *ctx)
154 put_rpccred(ctx->cred);
155 kfree(ctx);
159 * Open file
161 static int
162 nfs_opendir(struct inode *inode, struct file *filp)
164 int res = 0;
165 struct nfs_open_dir_context *ctx;
166 struct rpc_cred *cred;
168 dfprintk(FILE, "NFS: open dir(%s/%s)\n",
169 filp->f_path.dentry->d_parent->d_name.name,
170 filp->f_path.dentry->d_name.name);
172 nfs_inc_stats(inode, NFSIOS_VFSOPEN);
174 cred = rpc_lookup_cred();
175 if (IS_ERR(cred))
176 return PTR_ERR(cred);
177 ctx = alloc_nfs_open_dir_context(inode, cred);
178 if (IS_ERR(ctx)) {
179 res = PTR_ERR(ctx);
180 goto out;
182 filp->private_data = ctx;
183 if (filp->f_path.dentry == filp->f_path.mnt->mnt_root) {
184 /* This is a mountpoint, so d_revalidate will never
185 * have been called, so we need to refresh the
186 * inode (for close-open consistency) ourselves.
188 __nfs_revalidate_inode(NFS_SERVER(inode), inode);
190 out:
191 put_rpccred(cred);
192 return res;
195 static int
196 nfs_closedir(struct inode *inode, struct file *filp)
198 put_nfs_open_dir_context(filp->private_data);
199 return 0;
202 struct nfs_cache_array_entry {
203 u64 cookie;
204 u64 ino;
205 struct qstr string;
206 unsigned char d_type;
209 struct nfs_cache_array {
210 unsigned int size;
211 int eof_index;
212 u64 last_cookie;
213 struct nfs_cache_array_entry array[0];
216 typedef int (*decode_dirent_t)(struct xdr_stream *, struct nfs_entry *, int);
217 typedef struct {
218 struct file *file;
219 struct page *page;
220 unsigned long page_index;
221 u64 *dir_cookie;
222 u64 last_cookie;
223 loff_t current_index;
224 decode_dirent_t decode;
226 unsigned long timestamp;
227 unsigned long gencount;
228 unsigned int cache_entry_index;
229 unsigned int plus:1;
230 unsigned int eof:1;
231 } nfs_readdir_descriptor_t;
234 * The caller is responsible for calling nfs_readdir_release_array(page)
236 static
237 struct nfs_cache_array *nfs_readdir_get_array(struct page *page)
239 void *ptr;
240 if (page == NULL)
241 return ERR_PTR(-EIO);
242 ptr = kmap(page);
243 if (ptr == NULL)
244 return ERR_PTR(-ENOMEM);
245 return ptr;
248 static
249 void nfs_readdir_release_array(struct page *page)
251 kunmap(page);
255 * we are freeing strings created by nfs_add_to_readdir_array()
257 static
258 void nfs_readdir_clear_array(struct page *page)
260 struct nfs_cache_array *array;
261 int i;
263 array = kmap_atomic(page, KM_USER0);
264 for (i = 0; i < array->size; i++)
265 kfree(array->array[i].string.name);
266 kunmap_atomic(array, KM_USER0);
270 * the caller is responsible for freeing qstr.name
271 * when called by nfs_readdir_add_to_array, the strings will be freed in
272 * nfs_clear_readdir_array()
274 static
275 int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len)
277 string->len = len;
278 string->name = kmemdup(name, len, GFP_KERNEL);
279 if (string->name == NULL)
280 return -ENOMEM;
282 * Avoid a kmemleak false positive. The pointer to the name is stored
283 * in a page cache page which kmemleak does not scan.
285 kmemleak_not_leak(string->name);
286 string->hash = full_name_hash(name, len);
287 return 0;
290 static
291 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
293 struct nfs_cache_array *array = nfs_readdir_get_array(page);
294 struct nfs_cache_array_entry *cache_entry;
295 int ret;
297 if (IS_ERR(array))
298 return PTR_ERR(array);
300 cache_entry = &array->array[array->size];
302 /* Check that this entry lies within the page bounds */
303 ret = -ENOSPC;
304 if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE)
305 goto out;
307 cache_entry->cookie = entry->prev_cookie;
308 cache_entry->ino = entry->ino;
309 cache_entry->d_type = entry->d_type;
310 ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len);
311 if (ret)
312 goto out;
313 array->last_cookie = entry->cookie;
314 array->size++;
315 if (entry->eof != 0)
316 array->eof_index = array->size;
317 out:
318 nfs_readdir_release_array(page);
319 return ret;
322 static
323 int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
325 loff_t diff = desc->file->f_pos - desc->current_index;
326 unsigned int index;
328 if (diff < 0)
329 goto out_eof;
330 if (diff >= array->size) {
331 if (array->eof_index >= 0)
332 goto out_eof;
333 return -EAGAIN;
336 index = (unsigned int)diff;
337 *desc->dir_cookie = array->array[index].cookie;
338 desc->cache_entry_index = index;
339 return 0;
340 out_eof:
341 desc->eof = 1;
342 return -EBADCOOKIE;
345 static
346 int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
348 int i;
349 loff_t new_pos;
350 int status = -EAGAIN;
352 for (i = 0; i < array->size; i++) {
353 if (array->array[i].cookie == *desc->dir_cookie) {
354 struct nfs_inode *nfsi = NFS_I(desc->file->f_path.dentry->d_inode);
355 struct nfs_open_dir_context *ctx = desc->file->private_data;
357 new_pos = desc->current_index + i;
358 if (ctx->attr_gencount != nfsi->attr_gencount
359 || (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA))) {
360 ctx->duped = 0;
361 ctx->attr_gencount = nfsi->attr_gencount;
362 } else if (new_pos < desc->file->f_pos) {
363 if (ctx->duped > 0
364 && ctx->dup_cookie == *desc->dir_cookie) {
365 if (printk_ratelimit()) {
366 pr_notice("NFS: directory %s/%s contains a readdir loop."
367 "Please contact your server vendor. "
368 "The file: %s has duplicate cookie %llu\n",
369 desc->file->f_dentry->d_parent->d_name.name,
370 desc->file->f_dentry->d_name.name,
371 array->array[i].string.name,
372 *desc->dir_cookie);
374 status = -ELOOP;
375 goto out;
377 ctx->dup_cookie = *desc->dir_cookie;
378 ctx->duped = -1;
380 desc->file->f_pos = new_pos;
381 desc->cache_entry_index = i;
382 return 0;
385 if (array->eof_index >= 0) {
386 status = -EBADCOOKIE;
387 if (*desc->dir_cookie == array->last_cookie)
388 desc->eof = 1;
390 out:
391 return status;
394 static
395 int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc)
397 struct nfs_cache_array *array;
398 int status;
400 array = nfs_readdir_get_array(desc->page);
401 if (IS_ERR(array)) {
402 status = PTR_ERR(array);
403 goto out;
406 if (*desc->dir_cookie == 0)
407 status = nfs_readdir_search_for_pos(array, desc);
408 else
409 status = nfs_readdir_search_for_cookie(array, desc);
411 if (status == -EAGAIN) {
412 desc->last_cookie = array->last_cookie;
413 desc->current_index += array->size;
414 desc->page_index++;
416 nfs_readdir_release_array(desc->page);
417 out:
418 return status;
421 /* Fill a page with xdr information before transferring to the cache page */
422 static
423 int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc,
424 struct nfs_entry *entry, struct file *file, struct inode *inode)
426 struct nfs_open_dir_context *ctx = file->private_data;
427 struct rpc_cred *cred = ctx->cred;
428 unsigned long timestamp, gencount;
429 int error;
431 again:
432 timestamp = jiffies;
433 gencount = nfs_inc_attr_generation_counter();
434 error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, entry->cookie, pages,
435 NFS_SERVER(inode)->dtsize, desc->plus);
436 if (error < 0) {
437 /* We requested READDIRPLUS, but the server doesn't grok it */
438 if (error == -ENOTSUPP && desc->plus) {
439 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
440 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
441 desc->plus = 0;
442 goto again;
444 goto error;
446 desc->timestamp = timestamp;
447 desc->gencount = gencount;
448 error:
449 return error;
452 static int xdr_decode(nfs_readdir_descriptor_t *desc,
453 struct nfs_entry *entry, struct xdr_stream *xdr)
455 int error;
457 error = desc->decode(xdr, entry, desc->plus);
458 if (error)
459 return error;
460 entry->fattr->time_start = desc->timestamp;
461 entry->fattr->gencount = desc->gencount;
462 return 0;
465 static
466 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
468 if (dentry->d_inode == NULL)
469 goto different;
470 if (nfs_compare_fh(entry->fh, NFS_FH(dentry->d_inode)) != 0)
471 goto different;
472 return 1;
473 different:
474 return 0;
477 static
478 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry)
480 struct qstr filename = {
481 .len = entry->len,
482 .name = entry->name,
484 struct dentry *dentry;
485 struct dentry *alias;
486 struct inode *dir = parent->d_inode;
487 struct inode *inode;
489 if (filename.name[0] == '.') {
490 if (filename.len == 1)
491 return;
492 if (filename.len == 2 && filename.name[1] == '.')
493 return;
495 filename.hash = full_name_hash(filename.name, filename.len);
497 dentry = d_lookup(parent, &filename);
498 if (dentry != NULL) {
499 if (nfs_same_file(dentry, entry)) {
500 nfs_refresh_inode(dentry->d_inode, entry->fattr);
501 goto out;
502 } else {
503 d_drop(dentry);
504 dput(dentry);
508 dentry = d_alloc(parent, &filename);
509 if (dentry == NULL)
510 return;
512 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr);
513 if (IS_ERR(inode))
514 goto out;
516 alias = d_materialise_unique(dentry, inode);
517 if (IS_ERR(alias))
518 goto out;
519 else if (alias) {
520 nfs_set_verifier(alias, nfs_save_change_attribute(dir));
521 dput(alias);
522 } else
523 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
525 out:
526 dput(dentry);
529 /* Perform conversion from xdr to cache array */
530 static
531 int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry,
532 struct page **xdr_pages, struct page *page, unsigned int buflen)
534 struct xdr_stream stream;
535 struct xdr_buf buf;
536 struct page *scratch;
537 struct nfs_cache_array *array;
538 unsigned int count = 0;
539 int status;
541 scratch = alloc_page(GFP_KERNEL);
542 if (scratch == NULL)
543 return -ENOMEM;
545 xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
546 xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE);
548 do {
549 status = xdr_decode(desc, entry, &stream);
550 if (status != 0) {
551 if (status == -EAGAIN)
552 status = 0;
553 break;
556 count++;
558 if (desc->plus != 0)
559 nfs_prime_dcache(desc->file->f_path.dentry, entry);
561 status = nfs_readdir_add_to_array(entry, page);
562 if (status != 0)
563 break;
564 } while (!entry->eof);
566 if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) {
567 array = nfs_readdir_get_array(page);
568 if (!IS_ERR(array)) {
569 array->eof_index = array->size;
570 status = 0;
571 nfs_readdir_release_array(page);
572 } else
573 status = PTR_ERR(array);
576 put_page(scratch);
577 return status;
580 static
581 void nfs_readdir_free_pagearray(struct page **pages, unsigned int npages)
583 unsigned int i;
584 for (i = 0; i < npages; i++)
585 put_page(pages[i]);
588 static
589 void nfs_readdir_free_large_page(void *ptr, struct page **pages,
590 unsigned int npages)
592 nfs_readdir_free_pagearray(pages, npages);
596 * nfs_readdir_large_page will allocate pages that must be freed with a call
597 * to nfs_readdir_free_large_page
599 static
600 int nfs_readdir_large_page(struct page **pages, unsigned int npages)
602 unsigned int i;
604 for (i = 0; i < npages; i++) {
605 struct page *page = alloc_page(GFP_KERNEL);
606 if (page == NULL)
607 goto out_freepages;
608 pages[i] = page;
610 return 0;
612 out_freepages:
613 nfs_readdir_free_pagearray(pages, i);
614 return -ENOMEM;
617 static
618 int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode)
620 struct page *pages[NFS_MAX_READDIR_PAGES];
621 void *pages_ptr = NULL;
622 struct nfs_entry entry;
623 struct file *file = desc->file;
624 struct nfs_cache_array *array;
625 int status = -ENOMEM;
626 unsigned int array_size = ARRAY_SIZE(pages);
628 entry.prev_cookie = 0;
629 entry.cookie = desc->last_cookie;
630 entry.eof = 0;
631 entry.fh = nfs_alloc_fhandle();
632 entry.fattr = nfs_alloc_fattr();
633 entry.server = NFS_SERVER(inode);
634 if (entry.fh == NULL || entry.fattr == NULL)
635 goto out;
637 array = nfs_readdir_get_array(page);
638 if (IS_ERR(array)) {
639 status = PTR_ERR(array);
640 goto out;
642 memset(array, 0, sizeof(struct nfs_cache_array));
643 array->eof_index = -1;
645 status = nfs_readdir_large_page(pages, array_size);
646 if (status < 0)
647 goto out_release_array;
648 do {
649 unsigned int pglen;
650 status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode);
652 if (status < 0)
653 break;
654 pglen = status;
655 status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen);
656 if (status < 0) {
657 if (status == -ENOSPC)
658 status = 0;
659 break;
661 } while (array->eof_index < 0);
663 nfs_readdir_free_large_page(pages_ptr, pages, array_size);
664 out_release_array:
665 nfs_readdir_release_array(page);
666 out:
667 nfs_free_fattr(entry.fattr);
668 nfs_free_fhandle(entry.fh);
669 return status;
673 * Now we cache directories properly, by converting xdr information
674 * to an array that can be used for lookups later. This results in
675 * fewer cache pages, since we can store more information on each page.
676 * We only need to convert from xdr once so future lookups are much simpler
678 static
679 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page* page)
681 struct inode *inode = desc->file->f_path.dentry->d_inode;
682 int ret;
684 ret = nfs_readdir_xdr_to_array(desc, page, inode);
685 if (ret < 0)
686 goto error;
687 SetPageUptodate(page);
689 if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
690 /* Should never happen */
691 nfs_zap_mapping(inode, inode->i_mapping);
693 unlock_page(page);
694 return 0;
695 error:
696 unlock_page(page);
697 return ret;
700 static
701 void cache_page_release(nfs_readdir_descriptor_t *desc)
703 if (!desc->page->mapping)
704 nfs_readdir_clear_array(desc->page);
705 page_cache_release(desc->page);
706 desc->page = NULL;
709 static
710 struct page *get_cache_page(nfs_readdir_descriptor_t *desc)
712 return read_cache_page(desc->file->f_path.dentry->d_inode->i_mapping,
713 desc->page_index, (filler_t *)nfs_readdir_filler, desc);
717 * Returns 0 if desc->dir_cookie was found on page desc->page_index
719 static
720 int find_cache_page(nfs_readdir_descriptor_t *desc)
722 int res;
724 desc->page = get_cache_page(desc);
725 if (IS_ERR(desc->page))
726 return PTR_ERR(desc->page);
728 res = nfs_readdir_search_array(desc);
729 if (res != 0)
730 cache_page_release(desc);
731 return res;
734 /* Search for desc->dir_cookie from the beginning of the page cache */
735 static inline
736 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
738 int res;
740 if (desc->page_index == 0) {
741 desc->current_index = 0;
742 desc->last_cookie = 0;
744 do {
745 res = find_cache_page(desc);
746 } while (res == -EAGAIN);
747 return res;
751 * Once we've found the start of the dirent within a page: fill 'er up...
753 static
754 int nfs_do_filldir(nfs_readdir_descriptor_t *desc, void *dirent,
755 filldir_t filldir)
757 struct file *file = desc->file;
758 int i = 0;
759 int res = 0;
760 struct nfs_cache_array *array = NULL;
761 struct nfs_open_dir_context *ctx = file->private_data;
763 array = nfs_readdir_get_array(desc->page);
764 if (IS_ERR(array)) {
765 res = PTR_ERR(array);
766 goto out;
769 for (i = desc->cache_entry_index; i < array->size; i++) {
770 struct nfs_cache_array_entry *ent;
772 ent = &array->array[i];
773 if (filldir(dirent, ent->string.name, ent->string.len,
774 file->f_pos, nfs_compat_user_ino64(ent->ino),
775 ent->d_type) < 0) {
776 desc->eof = 1;
777 break;
779 file->f_pos++;
780 if (i < (array->size-1))
781 *desc->dir_cookie = array->array[i+1].cookie;
782 else
783 *desc->dir_cookie = array->last_cookie;
784 if (ctx->duped != 0)
785 ctx->duped = 1;
787 if (array->eof_index >= 0)
788 desc->eof = 1;
790 nfs_readdir_release_array(desc->page);
791 out:
792 cache_page_release(desc);
793 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
794 (unsigned long long)*desc->dir_cookie, res);
795 return res;
799 * If we cannot find a cookie in our cache, we suspect that this is
800 * because it points to a deleted file, so we ask the server to return
801 * whatever it thinks is the next entry. We then feed this to filldir.
802 * If all goes well, we should then be able to find our way round the
803 * cache on the next call to readdir_search_pagecache();
805 * NOTE: we cannot add the anonymous page to the pagecache because
806 * the data it contains might not be page aligned. Besides,
807 * we should already have a complete representation of the
808 * directory in the page cache by the time we get here.
810 static inline
811 int uncached_readdir(nfs_readdir_descriptor_t *desc, void *dirent,
812 filldir_t filldir)
814 struct page *page = NULL;
815 int status;
816 struct inode *inode = desc->file->f_path.dentry->d_inode;
817 struct nfs_open_dir_context *ctx = desc->file->private_data;
819 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
820 (unsigned long long)*desc->dir_cookie);
822 page = alloc_page(GFP_HIGHUSER);
823 if (!page) {
824 status = -ENOMEM;
825 goto out;
828 desc->page_index = 0;
829 desc->last_cookie = *desc->dir_cookie;
830 desc->page = page;
831 ctx->duped = 0;
833 status = nfs_readdir_xdr_to_array(desc, page, inode);
834 if (status < 0)
835 goto out_release;
837 status = nfs_do_filldir(desc, dirent, filldir);
839 out:
840 dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
841 __func__, status);
842 return status;
843 out_release:
844 cache_page_release(desc);
845 goto out;
848 /* The file offset position represents the dirent entry number. A
849 last cookie cache takes care of the common case of reading the
850 whole directory.
852 static int nfs_readdir(struct file *filp, void *dirent, filldir_t filldir)
854 struct dentry *dentry = filp->f_path.dentry;
855 struct inode *inode = dentry->d_inode;
856 nfs_readdir_descriptor_t my_desc,
857 *desc = &my_desc;
858 struct nfs_open_dir_context *dir_ctx = filp->private_data;
859 int res;
861 dfprintk(FILE, "NFS: readdir(%s/%s) starting at cookie %llu\n",
862 dentry->d_parent->d_name.name, dentry->d_name.name,
863 (long long)filp->f_pos);
864 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
867 * filp->f_pos points to the dirent entry number.
868 * *desc->dir_cookie has the cookie for the next entry. We have
869 * to either find the entry with the appropriate number or
870 * revalidate the cookie.
872 memset(desc, 0, sizeof(*desc));
874 desc->file = filp;
875 desc->dir_cookie = &dir_ctx->dir_cookie;
876 desc->decode = NFS_PROTO(inode)->decode_dirent;
877 desc->plus = NFS_USE_READDIRPLUS(inode);
879 nfs_block_sillyrename(dentry);
880 res = nfs_revalidate_mapping(inode, filp->f_mapping);
881 if (res < 0)
882 goto out;
884 do {
885 res = readdir_search_pagecache(desc);
887 if (res == -EBADCOOKIE) {
888 res = 0;
889 /* This means either end of directory */
890 if (*desc->dir_cookie && desc->eof == 0) {
891 /* Or that the server has 'lost' a cookie */
892 res = uncached_readdir(desc, dirent, filldir);
893 if (res == 0)
894 continue;
896 break;
898 if (res == -ETOOSMALL && desc->plus) {
899 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
900 nfs_zap_caches(inode);
901 desc->page_index = 0;
902 desc->plus = 0;
903 desc->eof = 0;
904 continue;
906 if (res < 0)
907 break;
909 res = nfs_do_filldir(desc, dirent, filldir);
910 if (res < 0)
911 break;
912 } while (!desc->eof);
913 out:
914 nfs_unblock_sillyrename(dentry);
915 if (res > 0)
916 res = 0;
917 dfprintk(FILE, "NFS: readdir(%s/%s) returns %d\n",
918 dentry->d_parent->d_name.name, dentry->d_name.name,
919 res);
920 return res;
923 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int origin)
925 struct dentry *dentry = filp->f_path.dentry;
926 struct inode *inode = dentry->d_inode;
927 struct nfs_open_dir_context *dir_ctx = filp->private_data;
929 dfprintk(FILE, "NFS: llseek dir(%s/%s, %lld, %d)\n",
930 dentry->d_parent->d_name.name,
931 dentry->d_name.name,
932 offset, origin);
934 mutex_lock(&inode->i_mutex);
935 switch (origin) {
936 case 1:
937 offset += filp->f_pos;
938 case 0:
939 if (offset >= 0)
940 break;
941 default:
942 offset = -EINVAL;
943 goto out;
945 if (offset != filp->f_pos) {
946 filp->f_pos = offset;
947 dir_ctx->dir_cookie = 0;
948 dir_ctx->duped = 0;
950 out:
951 mutex_unlock(&inode->i_mutex);
952 return offset;
956 * All directory operations under NFS are synchronous, so fsync()
957 * is a dummy operation.
959 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
960 int datasync)
962 struct dentry *dentry = filp->f_path.dentry;
963 struct inode *inode = dentry->d_inode;
965 dfprintk(FILE, "NFS: fsync dir(%s/%s) datasync %d\n",
966 dentry->d_parent->d_name.name, dentry->d_name.name,
967 datasync);
969 mutex_lock(&inode->i_mutex);
970 nfs_inc_stats(dentry->d_inode, NFSIOS_VFSFSYNC);
971 mutex_unlock(&inode->i_mutex);
972 return 0;
976 * nfs_force_lookup_revalidate - Mark the directory as having changed
977 * @dir - pointer to directory inode
979 * This forces the revalidation code in nfs_lookup_revalidate() to do a
980 * full lookup on all child dentries of 'dir' whenever a change occurs
981 * on the server that might have invalidated our dcache.
983 * The caller should be holding dir->i_lock
985 void nfs_force_lookup_revalidate(struct inode *dir)
987 NFS_I(dir)->cache_change_attribute++;
991 * A check for whether or not the parent directory has changed.
992 * In the case it has, we assume that the dentries are untrustworthy
993 * and may need to be looked up again.
995 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry)
997 if (IS_ROOT(dentry))
998 return 1;
999 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
1000 return 0;
1001 if (!nfs_verify_change_attribute(dir, dentry->d_time))
1002 return 0;
1003 /* Revalidate nfsi->cache_change_attribute before we declare a match */
1004 if (nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
1005 return 0;
1006 if (!nfs_verify_change_attribute(dir, dentry->d_time))
1007 return 0;
1008 return 1;
1012 * Return the intent data that applies to this particular path component
1014 * Note that the current set of intents only apply to the very last
1015 * component of the path and none of them is set before that last
1016 * component.
1018 static inline unsigned int nfs_lookup_check_intent(struct nameidata *nd,
1019 unsigned int mask)
1021 return nd->flags & mask;
1025 * Use intent information to check whether or not we're going to do
1026 * an O_EXCL create using this path component.
1028 static int nfs_is_exclusive_create(struct inode *dir, struct nameidata *nd)
1030 if (NFS_PROTO(dir)->version == 2)
1031 return 0;
1032 return nd && nfs_lookup_check_intent(nd, LOOKUP_EXCL);
1036 * Inode and filehandle revalidation for lookups.
1038 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1039 * or if the intent information indicates that we're about to open this
1040 * particular file and the "nocto" mount flag is not set.
1043 static inline
1044 int nfs_lookup_verify_inode(struct inode *inode, struct nameidata *nd)
1046 struct nfs_server *server = NFS_SERVER(inode);
1048 if (IS_AUTOMOUNT(inode))
1049 return 0;
1050 if (nd != NULL) {
1051 /* VFS wants an on-the-wire revalidation */
1052 if (nd->flags & LOOKUP_REVAL)
1053 goto out_force;
1054 /* This is an open(2) */
1055 if (nfs_lookup_check_intent(nd, LOOKUP_OPEN) != 0 &&
1056 !(server->flags & NFS_MOUNT_NOCTO) &&
1057 (S_ISREG(inode->i_mode) ||
1058 S_ISDIR(inode->i_mode)))
1059 goto out_force;
1060 return 0;
1062 return nfs_revalidate_inode(server, inode);
1063 out_force:
1064 return __nfs_revalidate_inode(server, inode);
1068 * We judge how long we want to trust negative
1069 * dentries by looking at the parent inode mtime.
1071 * If parent mtime has changed, we revalidate, else we wait for a
1072 * period corresponding to the parent's attribute cache timeout value.
1074 static inline
1075 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1076 struct nameidata *nd)
1078 /* Don't revalidate a negative dentry if we're creating a new file */
1079 if (nd != NULL && nfs_lookup_check_intent(nd, LOOKUP_CREATE) != 0)
1080 return 0;
1081 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1082 return 1;
1083 return !nfs_check_verifier(dir, dentry);
1087 * This is called every time the dcache has a lookup hit,
1088 * and we should check whether we can really trust that
1089 * lookup.
1091 * NOTE! The hit can be a negative hit too, don't assume
1092 * we have an inode!
1094 * If the parent directory is seen to have changed, we throw out the
1095 * cached dentry and do a new lookup.
1097 static int nfs_lookup_revalidate(struct dentry *dentry, struct nameidata *nd)
1099 struct inode *dir;
1100 struct inode *inode;
1101 struct dentry *parent;
1102 struct nfs_fh *fhandle = NULL;
1103 struct nfs_fattr *fattr = NULL;
1104 int error;
1106 if (nd->flags & LOOKUP_RCU)
1107 return -ECHILD;
1109 parent = dget_parent(dentry);
1110 dir = parent->d_inode;
1111 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1112 inode = dentry->d_inode;
1114 if (!inode) {
1115 if (nfs_neg_need_reval(dir, dentry, nd))
1116 goto out_bad;
1117 goto out_valid;
1120 if (is_bad_inode(inode)) {
1121 dfprintk(LOOKUPCACHE, "%s: %s/%s has dud inode\n",
1122 __func__, dentry->d_parent->d_name.name,
1123 dentry->d_name.name);
1124 goto out_bad;
1127 if (nfs_have_delegation(inode, FMODE_READ))
1128 goto out_set_verifier;
1130 /* Force a full look up iff the parent directory has changed */
1131 if (!nfs_is_exclusive_create(dir, nd) && nfs_check_verifier(dir, dentry)) {
1132 if (nfs_lookup_verify_inode(inode, nd))
1133 goto out_zap_parent;
1134 goto out_valid;
1137 if (NFS_STALE(inode))
1138 goto out_bad;
1140 error = -ENOMEM;
1141 fhandle = nfs_alloc_fhandle();
1142 fattr = nfs_alloc_fattr();
1143 if (fhandle == NULL || fattr == NULL)
1144 goto out_error;
1146 error = NFS_PROTO(dir)->lookup(NFS_SERVER(dir)->client, dir, &dentry->d_name, fhandle, fattr);
1147 if (error)
1148 goto out_bad;
1149 if (nfs_compare_fh(NFS_FH(inode), fhandle))
1150 goto out_bad;
1151 if ((error = nfs_refresh_inode(inode, fattr)) != 0)
1152 goto out_bad;
1154 nfs_free_fattr(fattr);
1155 nfs_free_fhandle(fhandle);
1156 out_set_verifier:
1157 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1158 out_valid:
1159 dput(parent);
1160 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is valid\n",
1161 __func__, dentry->d_parent->d_name.name,
1162 dentry->d_name.name);
1163 return 1;
1164 out_zap_parent:
1165 nfs_zap_caches(dir);
1166 out_bad:
1167 nfs_mark_for_revalidate(dir);
1168 if (inode && S_ISDIR(inode->i_mode)) {
1169 /* Purge readdir caches. */
1170 nfs_zap_caches(inode);
1171 /* If we have submounts, don't unhash ! */
1172 if (have_submounts(dentry))
1173 goto out_valid;
1174 if (dentry->d_flags & DCACHE_DISCONNECTED)
1175 goto out_valid;
1176 shrink_dcache_parent(dentry);
1178 d_drop(dentry);
1179 nfs_free_fattr(fattr);
1180 nfs_free_fhandle(fhandle);
1181 dput(parent);
1182 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is invalid\n",
1183 __func__, dentry->d_parent->d_name.name,
1184 dentry->d_name.name);
1185 return 0;
1186 out_error:
1187 nfs_free_fattr(fattr);
1188 nfs_free_fhandle(fhandle);
1189 dput(parent);
1190 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) lookup returned error %d\n",
1191 __func__, dentry->d_parent->d_name.name,
1192 dentry->d_name.name, error);
1193 return error;
1197 * This is called from dput() when d_count is going to 0.
1199 static int nfs_dentry_delete(const struct dentry *dentry)
1201 dfprintk(VFS, "NFS: dentry_delete(%s/%s, %x)\n",
1202 dentry->d_parent->d_name.name, dentry->d_name.name,
1203 dentry->d_flags);
1205 /* Unhash any dentry with a stale inode */
1206 if (dentry->d_inode != NULL && NFS_STALE(dentry->d_inode))
1207 return 1;
1209 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1210 /* Unhash it, so that ->d_iput() would be called */
1211 return 1;
1213 if (!(dentry->d_sb->s_flags & MS_ACTIVE)) {
1214 /* Unhash it, so that ancestors of killed async unlink
1215 * files will be cleaned up during umount */
1216 return 1;
1218 return 0;
1222 static void nfs_drop_nlink(struct inode *inode)
1224 spin_lock(&inode->i_lock);
1225 if (inode->i_nlink > 0)
1226 drop_nlink(inode);
1227 spin_unlock(&inode->i_lock);
1231 * Called when the dentry loses inode.
1232 * We use it to clean up silly-renamed files.
1234 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1236 if (S_ISDIR(inode->i_mode))
1237 /* drop any readdir cache as it could easily be old */
1238 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
1240 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1241 drop_nlink(inode);
1242 nfs_complete_unlink(dentry, inode);
1244 iput(inode);
1247 static void nfs_d_release(struct dentry *dentry)
1249 /* free cached devname value, if it survived that far */
1250 if (unlikely(dentry->d_fsdata)) {
1251 if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1252 WARN_ON(1);
1253 else
1254 kfree(dentry->d_fsdata);
1258 const struct dentry_operations nfs_dentry_operations = {
1259 .d_revalidate = nfs_lookup_revalidate,
1260 .d_delete = nfs_dentry_delete,
1261 .d_iput = nfs_dentry_iput,
1262 .d_automount = nfs_d_automount,
1263 .d_release = nfs_d_release,
1266 static struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
1268 struct dentry *res;
1269 struct dentry *parent;
1270 struct inode *inode = NULL;
1271 struct nfs_fh *fhandle = NULL;
1272 struct nfs_fattr *fattr = NULL;
1273 int error;
1275 dfprintk(VFS, "NFS: lookup(%s/%s)\n",
1276 dentry->d_parent->d_name.name, dentry->d_name.name);
1277 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1279 res = ERR_PTR(-ENAMETOOLONG);
1280 if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1281 goto out;
1284 * If we're doing an exclusive create, optimize away the lookup
1285 * but don't hash the dentry.
1287 if (nfs_is_exclusive_create(dir, nd)) {
1288 d_instantiate(dentry, NULL);
1289 res = NULL;
1290 goto out;
1293 res = ERR_PTR(-ENOMEM);
1294 fhandle = nfs_alloc_fhandle();
1295 fattr = nfs_alloc_fattr();
1296 if (fhandle == NULL || fattr == NULL)
1297 goto out;
1299 parent = dentry->d_parent;
1300 /* Protect against concurrent sillydeletes */
1301 nfs_block_sillyrename(parent);
1302 error = NFS_PROTO(dir)->lookup(NFS_SERVER(dir)->client, dir, &dentry->d_name, fhandle, fattr);
1303 if (error == -ENOENT)
1304 goto no_entry;
1305 if (error < 0) {
1306 res = ERR_PTR(error);
1307 goto out_unblock_sillyrename;
1309 inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1310 res = ERR_CAST(inode);
1311 if (IS_ERR(res))
1312 goto out_unblock_sillyrename;
1314 no_entry:
1315 res = d_materialise_unique(dentry, inode);
1316 if (res != NULL) {
1317 if (IS_ERR(res))
1318 goto out_unblock_sillyrename;
1319 dentry = res;
1321 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1322 out_unblock_sillyrename:
1323 nfs_unblock_sillyrename(parent);
1324 out:
1325 nfs_free_fattr(fattr);
1326 nfs_free_fhandle(fhandle);
1327 return res;
1330 #ifdef CONFIG_NFS_V4
1331 static int nfs_open_revalidate(struct dentry *, struct nameidata *);
1333 const struct dentry_operations nfs4_dentry_operations = {
1334 .d_revalidate = nfs_open_revalidate,
1335 .d_delete = nfs_dentry_delete,
1336 .d_iput = nfs_dentry_iput,
1337 .d_automount = nfs_d_automount,
1338 .d_release = nfs_d_release,
1342 * Use intent information to determine whether we need to substitute
1343 * the NFSv4-style stateful OPEN for the LOOKUP call
1345 static int is_atomic_open(struct nameidata *nd)
1347 if (nd == NULL || nfs_lookup_check_intent(nd, LOOKUP_OPEN) == 0)
1348 return 0;
1349 /* NFS does not (yet) have a stateful open for directories */
1350 if (nd->flags & LOOKUP_DIRECTORY)
1351 return 0;
1352 /* Are we trying to write to a read only partition? */
1353 if (__mnt_is_readonly(nd->path.mnt) &&
1354 (nd->intent.open.flags & (O_CREAT|O_TRUNC|O_ACCMODE)))
1355 return 0;
1356 return 1;
1359 static fmode_t flags_to_mode(int flags)
1361 fmode_t res = (__force fmode_t)flags & FMODE_EXEC;
1362 if ((flags & O_ACCMODE) != O_WRONLY)
1363 res |= FMODE_READ;
1364 if ((flags & O_ACCMODE) != O_RDONLY)
1365 res |= FMODE_WRITE;
1366 return res;
1369 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags)
1371 return alloc_nfs_open_context(dentry, flags_to_mode(open_flags));
1374 static int do_open(struct inode *inode, struct file *filp)
1376 nfs_fscache_set_inode_cookie(inode, filp);
1377 return 0;
1380 static int nfs_intent_set_file(struct nameidata *nd, struct nfs_open_context *ctx)
1382 struct file *filp;
1383 int ret = 0;
1385 /* If the open_intent is for execute, we have an extra check to make */
1386 if (ctx->mode & FMODE_EXEC) {
1387 ret = nfs_may_open(ctx->dentry->d_inode,
1388 ctx->cred,
1389 nd->intent.open.flags);
1390 if (ret < 0)
1391 goto out;
1393 filp = lookup_instantiate_filp(nd, ctx->dentry, do_open);
1394 if (IS_ERR(filp))
1395 ret = PTR_ERR(filp);
1396 else
1397 nfs_file_set_open_context(filp, ctx);
1398 out:
1399 put_nfs_open_context(ctx);
1400 return ret;
1403 static struct dentry *nfs_atomic_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
1405 struct nfs_open_context *ctx;
1406 struct iattr attr;
1407 struct dentry *res = NULL;
1408 struct inode *inode;
1409 int open_flags;
1410 int err;
1412 dfprintk(VFS, "NFS: atomic_lookup(%s/%ld), %s\n",
1413 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1415 /* Check that we are indeed trying to open this file */
1416 if (!is_atomic_open(nd))
1417 goto no_open;
1419 if (dentry->d_name.len > NFS_SERVER(dir)->namelen) {
1420 res = ERR_PTR(-ENAMETOOLONG);
1421 goto out;
1424 /* Let vfs_create() deal with O_EXCL. Instantiate, but don't hash
1425 * the dentry. */
1426 if (nd->flags & LOOKUP_EXCL) {
1427 d_instantiate(dentry, NULL);
1428 goto out;
1431 open_flags = nd->intent.open.flags;
1433 ctx = create_nfs_open_context(dentry, open_flags);
1434 res = ERR_CAST(ctx);
1435 if (IS_ERR(ctx))
1436 goto out;
1438 if (nd->flags & LOOKUP_CREATE) {
1439 attr.ia_mode = nd->intent.open.create_mode;
1440 attr.ia_valid = ATTR_MODE;
1441 attr.ia_mode &= ~current_umask();
1442 } else {
1443 open_flags &= ~(O_EXCL | O_CREAT);
1444 attr.ia_valid = 0;
1447 /* Open the file on the server */
1448 nfs_block_sillyrename(dentry->d_parent);
1449 inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr);
1450 if (IS_ERR(inode)) {
1451 nfs_unblock_sillyrename(dentry->d_parent);
1452 put_nfs_open_context(ctx);
1453 switch (PTR_ERR(inode)) {
1454 /* Make a negative dentry */
1455 case -ENOENT:
1456 d_add(dentry, NULL);
1457 res = NULL;
1458 goto out;
1459 /* This turned out not to be a regular file */
1460 case -EISDIR:
1461 case -ENOTDIR:
1462 goto no_open;
1463 case -ELOOP:
1464 if (!(nd->intent.open.flags & O_NOFOLLOW))
1465 goto no_open;
1466 /* case -EINVAL: */
1467 default:
1468 res = ERR_CAST(inode);
1469 goto out;
1472 res = d_add_unique(dentry, inode);
1473 nfs_unblock_sillyrename(dentry->d_parent);
1474 if (res != NULL) {
1475 dput(ctx->dentry);
1476 ctx->dentry = dget(res);
1477 dentry = res;
1479 err = nfs_intent_set_file(nd, ctx);
1480 if (err < 0) {
1481 if (res != NULL)
1482 dput(res);
1483 return ERR_PTR(err);
1485 out:
1486 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1487 return res;
1488 no_open:
1489 return nfs_lookup(dir, dentry, nd);
1492 static int nfs_open_revalidate(struct dentry *dentry, struct nameidata *nd)
1494 struct dentry *parent = NULL;
1495 struct inode *inode;
1496 struct inode *dir;
1497 struct nfs_open_context *ctx;
1498 int openflags, ret = 0;
1500 if (nd->flags & LOOKUP_RCU)
1501 return -ECHILD;
1503 inode = dentry->d_inode;
1504 if (!is_atomic_open(nd) || d_mountpoint(dentry))
1505 goto no_open;
1507 parent = dget_parent(dentry);
1508 dir = parent->d_inode;
1510 /* We can't create new files in nfs_open_revalidate(), so we
1511 * optimize away revalidation of negative dentries.
1513 if (inode == NULL) {
1514 if (!nfs_neg_need_reval(dir, dentry, nd))
1515 ret = 1;
1516 goto out;
1519 /* NFS only supports OPEN on regular files */
1520 if (!S_ISREG(inode->i_mode))
1521 goto no_open_dput;
1522 openflags = nd->intent.open.flags;
1523 /* We cannot do exclusive creation on a positive dentry */
1524 if ((openflags & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL))
1525 goto no_open_dput;
1526 /* We can't create new files, or truncate existing ones here */
1527 openflags &= ~(O_CREAT|O_EXCL|O_TRUNC);
1529 ctx = create_nfs_open_context(dentry, openflags);
1530 ret = PTR_ERR(ctx);
1531 if (IS_ERR(ctx))
1532 goto out;
1534 * Note: we're not holding inode->i_mutex and so may be racing with
1535 * operations that change the directory. We therefore save the
1536 * change attribute *before* we do the RPC call.
1538 inode = NFS_PROTO(dir)->open_context(dir, ctx, openflags, NULL);
1539 if (IS_ERR(inode)) {
1540 ret = PTR_ERR(inode);
1541 switch (ret) {
1542 case -EPERM:
1543 case -EACCES:
1544 case -EDQUOT:
1545 case -ENOSPC:
1546 case -EROFS:
1547 goto out_put_ctx;
1548 default:
1549 goto out_drop;
1552 iput(inode);
1553 if (inode != dentry->d_inode)
1554 goto out_drop;
1556 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1557 ret = nfs_intent_set_file(nd, ctx);
1558 if (ret >= 0)
1559 ret = 1;
1560 out:
1561 dput(parent);
1562 return ret;
1563 out_drop:
1564 d_drop(dentry);
1565 ret = 0;
1566 out_put_ctx:
1567 put_nfs_open_context(ctx);
1568 goto out;
1570 no_open_dput:
1571 dput(parent);
1572 no_open:
1573 return nfs_lookup_revalidate(dentry, nd);
1576 static int nfs_open_create(struct inode *dir, struct dentry *dentry,
1577 umode_t mode, struct nameidata *nd)
1579 struct nfs_open_context *ctx = NULL;
1580 struct iattr attr;
1581 int error;
1582 int open_flags = O_CREAT|O_EXCL;
1584 dfprintk(VFS, "NFS: create(%s/%ld), %s\n",
1585 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1587 attr.ia_mode = mode;
1588 attr.ia_valid = ATTR_MODE;
1590 if (nd)
1591 open_flags = nd->intent.open.flags;
1593 ctx = create_nfs_open_context(dentry, open_flags);
1594 error = PTR_ERR(ctx);
1595 if (IS_ERR(ctx))
1596 goto out_err_drop;
1598 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags, ctx);
1599 if (error != 0)
1600 goto out_put_ctx;
1601 if (nd) {
1602 error = nfs_intent_set_file(nd, ctx);
1603 if (error < 0)
1604 goto out_err;
1605 } else {
1606 put_nfs_open_context(ctx);
1608 return 0;
1609 out_put_ctx:
1610 put_nfs_open_context(ctx);
1611 out_err_drop:
1612 d_drop(dentry);
1613 out_err:
1614 return error;
1617 #endif /* CONFIG_NFSV4 */
1620 * Code common to create, mkdir, and mknod.
1622 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1623 struct nfs_fattr *fattr)
1625 struct dentry *parent = dget_parent(dentry);
1626 struct inode *dir = parent->d_inode;
1627 struct inode *inode;
1628 int error = -EACCES;
1630 d_drop(dentry);
1632 /* We may have been initialized further down */
1633 if (dentry->d_inode)
1634 goto out;
1635 if (fhandle->size == 0) {
1636 error = NFS_PROTO(dir)->lookup(NFS_SERVER(dir)->client, dir, &dentry->d_name, fhandle, fattr);
1637 if (error)
1638 goto out_error;
1640 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1641 if (!(fattr->valid & NFS_ATTR_FATTR)) {
1642 struct nfs_server *server = NFS_SB(dentry->d_sb);
1643 error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr);
1644 if (error < 0)
1645 goto out_error;
1647 inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1648 error = PTR_ERR(inode);
1649 if (IS_ERR(inode))
1650 goto out_error;
1651 d_add(dentry, inode);
1652 out:
1653 dput(parent);
1654 return 0;
1655 out_error:
1656 nfs_mark_for_revalidate(dir);
1657 dput(parent);
1658 return error;
1662 * Following a failed create operation, we drop the dentry rather
1663 * than retain a negative dentry. This avoids a problem in the event
1664 * that the operation succeeded on the server, but an error in the
1665 * reply path made it appear to have failed.
1667 static int nfs_create(struct inode *dir, struct dentry *dentry,
1668 umode_t mode, struct nameidata *nd)
1670 struct iattr attr;
1671 int error;
1672 int open_flags = O_CREAT|O_EXCL;
1674 dfprintk(VFS, "NFS: create(%s/%ld), %s\n",
1675 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1677 attr.ia_mode = mode;
1678 attr.ia_valid = ATTR_MODE;
1680 if (nd)
1681 open_flags = nd->intent.open.flags;
1683 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags, NULL);
1684 if (error != 0)
1685 goto out_err;
1686 return 0;
1687 out_err:
1688 d_drop(dentry);
1689 return error;
1693 * See comments for nfs_proc_create regarding failed operations.
1695 static int
1696 nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev)
1698 struct iattr attr;
1699 int status;
1701 dfprintk(VFS, "NFS: mknod(%s/%ld), %s\n",
1702 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1704 if (!new_valid_dev(rdev))
1705 return -EINVAL;
1707 attr.ia_mode = mode;
1708 attr.ia_valid = ATTR_MODE;
1710 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1711 if (status != 0)
1712 goto out_err;
1713 return 0;
1714 out_err:
1715 d_drop(dentry);
1716 return status;
1720 * See comments for nfs_proc_create regarding failed operations.
1722 static int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1724 struct iattr attr;
1725 int error;
1727 dfprintk(VFS, "NFS: mkdir(%s/%ld), %s\n",
1728 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1730 attr.ia_valid = ATTR_MODE;
1731 attr.ia_mode = mode | S_IFDIR;
1733 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1734 if (error != 0)
1735 goto out_err;
1736 return 0;
1737 out_err:
1738 d_drop(dentry);
1739 return error;
1742 static void nfs_dentry_handle_enoent(struct dentry *dentry)
1744 if (dentry->d_inode != NULL && !d_unhashed(dentry))
1745 d_delete(dentry);
1748 static int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1750 int error;
1752 dfprintk(VFS, "NFS: rmdir(%s/%ld), %s\n",
1753 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1755 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1756 /* Ensure the VFS deletes this inode */
1757 if (error == 0 && dentry->d_inode != NULL)
1758 clear_nlink(dentry->d_inode);
1759 else if (error == -ENOENT)
1760 nfs_dentry_handle_enoent(dentry);
1762 return error;
1766 * Remove a file after making sure there are no pending writes,
1767 * and after checking that the file has only one user.
1769 * We invalidate the attribute cache and free the inode prior to the operation
1770 * to avoid possible races if the server reuses the inode.
1772 static int nfs_safe_remove(struct dentry *dentry)
1774 struct inode *dir = dentry->d_parent->d_inode;
1775 struct inode *inode = dentry->d_inode;
1776 int error = -EBUSY;
1778 dfprintk(VFS, "NFS: safe_remove(%s/%s)\n",
1779 dentry->d_parent->d_name.name, dentry->d_name.name);
1781 /* If the dentry was sillyrenamed, we simply call d_delete() */
1782 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1783 error = 0;
1784 goto out;
1787 if (inode != NULL) {
1788 nfs_inode_return_delegation(inode);
1789 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1790 /* The VFS may want to delete this inode */
1791 if (error == 0)
1792 nfs_drop_nlink(inode);
1793 nfs_mark_for_revalidate(inode);
1794 } else
1795 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1796 if (error == -ENOENT)
1797 nfs_dentry_handle_enoent(dentry);
1798 out:
1799 return error;
1802 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode
1803 * belongs to an active ".nfs..." file and we return -EBUSY.
1805 * If sillyrename() returns 0, we do nothing, otherwise we unlink.
1807 static int nfs_unlink(struct inode *dir, struct dentry *dentry)
1809 int error;
1810 int need_rehash = 0;
1812 dfprintk(VFS, "NFS: unlink(%s/%ld, %s)\n", dir->i_sb->s_id,
1813 dir->i_ino, dentry->d_name.name);
1815 spin_lock(&dentry->d_lock);
1816 if (dentry->d_count > 1) {
1817 spin_unlock(&dentry->d_lock);
1818 /* Start asynchronous writeout of the inode */
1819 write_inode_now(dentry->d_inode, 0);
1820 error = nfs_sillyrename(dir, dentry);
1821 return error;
1823 if (!d_unhashed(dentry)) {
1824 __d_drop(dentry);
1825 need_rehash = 1;
1827 spin_unlock(&dentry->d_lock);
1828 error = nfs_safe_remove(dentry);
1829 if (!error || error == -ENOENT) {
1830 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1831 } else if (need_rehash)
1832 d_rehash(dentry);
1833 return error;
1837 * To create a symbolic link, most file systems instantiate a new inode,
1838 * add a page to it containing the path, then write it out to the disk
1839 * using prepare_write/commit_write.
1841 * Unfortunately the NFS client can't create the in-core inode first
1842 * because it needs a file handle to create an in-core inode (see
1843 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the
1844 * symlink request has completed on the server.
1846 * So instead we allocate a raw page, copy the symname into it, then do
1847 * the SYMLINK request with the page as the buffer. If it succeeds, we
1848 * now have a new file handle and can instantiate an in-core NFS inode
1849 * and move the raw page into its mapping.
1851 static int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1853 struct pagevec lru_pvec;
1854 struct page *page;
1855 char *kaddr;
1856 struct iattr attr;
1857 unsigned int pathlen = strlen(symname);
1858 int error;
1860 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s)\n", dir->i_sb->s_id,
1861 dir->i_ino, dentry->d_name.name, symname);
1863 if (pathlen > PAGE_SIZE)
1864 return -ENAMETOOLONG;
1866 attr.ia_mode = S_IFLNK | S_IRWXUGO;
1867 attr.ia_valid = ATTR_MODE;
1869 page = alloc_page(GFP_HIGHUSER);
1870 if (!page)
1871 return -ENOMEM;
1873 kaddr = kmap_atomic(page, KM_USER0);
1874 memcpy(kaddr, symname, pathlen);
1875 if (pathlen < PAGE_SIZE)
1876 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1877 kunmap_atomic(kaddr, KM_USER0);
1879 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1880 if (error != 0) {
1881 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s) error %d\n",
1882 dir->i_sb->s_id, dir->i_ino,
1883 dentry->d_name.name, symname, error);
1884 d_drop(dentry);
1885 __free_page(page);
1886 return error;
1890 * No big deal if we can't add this page to the page cache here.
1891 * READLINK will get the missing page from the server if needed.
1893 pagevec_init(&lru_pvec, 0);
1894 if (!add_to_page_cache(page, dentry->d_inode->i_mapping, 0,
1895 GFP_KERNEL)) {
1896 pagevec_add(&lru_pvec, page);
1897 pagevec_lru_add_file(&lru_pvec);
1898 SetPageUptodate(page);
1899 unlock_page(page);
1900 } else
1901 __free_page(page);
1903 return 0;
1906 static int
1907 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1909 struct inode *inode = old_dentry->d_inode;
1910 int error;
1912 dfprintk(VFS, "NFS: link(%s/%s -> %s/%s)\n",
1913 old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1914 dentry->d_parent->d_name.name, dentry->d_name.name);
1916 nfs_inode_return_delegation(inode);
1918 d_drop(dentry);
1919 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
1920 if (error == 0) {
1921 ihold(inode);
1922 d_add(dentry, inode);
1924 return error;
1928 * RENAME
1929 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
1930 * different file handle for the same inode after a rename (e.g. when
1931 * moving to a different directory). A fail-safe method to do so would
1932 * be to look up old_dir/old_name, create a link to new_dir/new_name and
1933 * rename the old file using the sillyrename stuff. This way, the original
1934 * file in old_dir will go away when the last process iput()s the inode.
1936 * FIXED.
1938 * It actually works quite well. One needs to have the possibility for
1939 * at least one ".nfs..." file in each directory the file ever gets
1940 * moved or linked to which happens automagically with the new
1941 * implementation that only depends on the dcache stuff instead of
1942 * using the inode layer
1944 * Unfortunately, things are a little more complicated than indicated
1945 * above. For a cross-directory move, we want to make sure we can get
1946 * rid of the old inode after the operation. This means there must be
1947 * no pending writes (if it's a file), and the use count must be 1.
1948 * If these conditions are met, we can drop the dentries before doing
1949 * the rename.
1951 static int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
1952 struct inode *new_dir, struct dentry *new_dentry)
1954 struct inode *old_inode = old_dentry->d_inode;
1955 struct inode *new_inode = new_dentry->d_inode;
1956 struct dentry *dentry = NULL, *rehash = NULL;
1957 int error = -EBUSY;
1959 dfprintk(VFS, "NFS: rename(%s/%s -> %s/%s, ct=%d)\n",
1960 old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1961 new_dentry->d_parent->d_name.name, new_dentry->d_name.name,
1962 new_dentry->d_count);
1965 * For non-directories, check whether the target is busy and if so,
1966 * make a copy of the dentry and then do a silly-rename. If the
1967 * silly-rename succeeds, the copied dentry is hashed and becomes
1968 * the new target.
1970 if (new_inode && !S_ISDIR(new_inode->i_mode)) {
1972 * To prevent any new references to the target during the
1973 * rename, we unhash the dentry in advance.
1975 if (!d_unhashed(new_dentry)) {
1976 d_drop(new_dentry);
1977 rehash = new_dentry;
1980 if (new_dentry->d_count > 2) {
1981 int err;
1983 /* copy the target dentry's name */
1984 dentry = d_alloc(new_dentry->d_parent,
1985 &new_dentry->d_name);
1986 if (!dentry)
1987 goto out;
1989 /* silly-rename the existing target ... */
1990 err = nfs_sillyrename(new_dir, new_dentry);
1991 if (err)
1992 goto out;
1994 new_dentry = dentry;
1995 rehash = NULL;
1996 new_inode = NULL;
2000 nfs_inode_return_delegation(old_inode);
2001 if (new_inode != NULL)
2002 nfs_inode_return_delegation(new_inode);
2004 error = NFS_PROTO(old_dir)->rename(old_dir, &old_dentry->d_name,
2005 new_dir, &new_dentry->d_name);
2006 nfs_mark_for_revalidate(old_inode);
2007 out:
2008 if (rehash)
2009 d_rehash(rehash);
2010 if (!error) {
2011 if (new_inode != NULL)
2012 nfs_drop_nlink(new_inode);
2013 d_move(old_dentry, new_dentry);
2014 nfs_set_verifier(new_dentry,
2015 nfs_save_change_attribute(new_dir));
2016 } else if (error == -ENOENT)
2017 nfs_dentry_handle_enoent(old_dentry);
2019 /* new dentry created? */
2020 if (dentry)
2021 dput(dentry);
2022 return error;
2025 static DEFINE_SPINLOCK(nfs_access_lru_lock);
2026 static LIST_HEAD(nfs_access_lru_list);
2027 static atomic_long_t nfs_access_nr_entries;
2029 static void nfs_access_free_entry(struct nfs_access_entry *entry)
2031 put_rpccred(entry->cred);
2032 kfree(entry);
2033 smp_mb__before_atomic_dec();
2034 atomic_long_dec(&nfs_access_nr_entries);
2035 smp_mb__after_atomic_dec();
2038 static void nfs_access_free_list(struct list_head *head)
2040 struct nfs_access_entry *cache;
2042 while (!list_empty(head)) {
2043 cache = list_entry(head->next, struct nfs_access_entry, lru);
2044 list_del(&cache->lru);
2045 nfs_access_free_entry(cache);
2049 int nfs_access_cache_shrinker(struct shrinker *shrink,
2050 struct shrink_control *sc)
2052 LIST_HEAD(head);
2053 struct nfs_inode *nfsi, *next;
2054 struct nfs_access_entry *cache;
2055 int nr_to_scan = sc->nr_to_scan;
2056 gfp_t gfp_mask = sc->gfp_mask;
2058 if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2059 return (nr_to_scan == 0) ? 0 : -1;
2061 spin_lock(&nfs_access_lru_lock);
2062 list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2063 struct inode *inode;
2065 if (nr_to_scan-- == 0)
2066 break;
2067 inode = &nfsi->vfs_inode;
2068 spin_lock(&inode->i_lock);
2069 if (list_empty(&nfsi->access_cache_entry_lru))
2070 goto remove_lru_entry;
2071 cache = list_entry(nfsi->access_cache_entry_lru.next,
2072 struct nfs_access_entry, lru);
2073 list_move(&cache->lru, &head);
2074 rb_erase(&cache->rb_node, &nfsi->access_cache);
2075 if (!list_empty(&nfsi->access_cache_entry_lru))
2076 list_move_tail(&nfsi->access_cache_inode_lru,
2077 &nfs_access_lru_list);
2078 else {
2079 remove_lru_entry:
2080 list_del_init(&nfsi->access_cache_inode_lru);
2081 smp_mb__before_clear_bit();
2082 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2083 smp_mb__after_clear_bit();
2085 spin_unlock(&inode->i_lock);
2087 spin_unlock(&nfs_access_lru_lock);
2088 nfs_access_free_list(&head);
2089 return (atomic_long_read(&nfs_access_nr_entries) / 100) * sysctl_vfs_cache_pressure;
2092 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2094 struct rb_root *root_node = &nfsi->access_cache;
2095 struct rb_node *n;
2096 struct nfs_access_entry *entry;
2098 /* Unhook entries from the cache */
2099 while ((n = rb_first(root_node)) != NULL) {
2100 entry = rb_entry(n, struct nfs_access_entry, rb_node);
2101 rb_erase(n, root_node);
2102 list_move(&entry->lru, head);
2104 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2107 void nfs_access_zap_cache(struct inode *inode)
2109 LIST_HEAD(head);
2111 if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2112 return;
2113 /* Remove from global LRU init */
2114 spin_lock(&nfs_access_lru_lock);
2115 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2116 list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2118 spin_lock(&inode->i_lock);
2119 __nfs_access_zap_cache(NFS_I(inode), &head);
2120 spin_unlock(&inode->i_lock);
2121 spin_unlock(&nfs_access_lru_lock);
2122 nfs_access_free_list(&head);
2125 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred)
2127 struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2128 struct nfs_access_entry *entry;
2130 while (n != NULL) {
2131 entry = rb_entry(n, struct nfs_access_entry, rb_node);
2133 if (cred < entry->cred)
2134 n = n->rb_left;
2135 else if (cred > entry->cred)
2136 n = n->rb_right;
2137 else
2138 return entry;
2140 return NULL;
2143 static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
2145 struct nfs_inode *nfsi = NFS_I(inode);
2146 struct nfs_access_entry *cache;
2147 int err = -ENOENT;
2149 spin_lock(&inode->i_lock);
2150 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2151 goto out_zap;
2152 cache = nfs_access_search_rbtree(inode, cred);
2153 if (cache == NULL)
2154 goto out;
2155 if (!nfs_have_delegated_attributes(inode) &&
2156 !time_in_range_open(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo))
2157 goto out_stale;
2158 res->jiffies = cache->jiffies;
2159 res->cred = cache->cred;
2160 res->mask = cache->mask;
2161 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2162 err = 0;
2163 out:
2164 spin_unlock(&inode->i_lock);
2165 return err;
2166 out_stale:
2167 rb_erase(&cache->rb_node, &nfsi->access_cache);
2168 list_del(&cache->lru);
2169 spin_unlock(&inode->i_lock);
2170 nfs_access_free_entry(cache);
2171 return -ENOENT;
2172 out_zap:
2173 spin_unlock(&inode->i_lock);
2174 nfs_access_zap_cache(inode);
2175 return -ENOENT;
2178 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
2180 struct nfs_inode *nfsi = NFS_I(inode);
2181 struct rb_root *root_node = &nfsi->access_cache;
2182 struct rb_node **p = &root_node->rb_node;
2183 struct rb_node *parent = NULL;
2184 struct nfs_access_entry *entry;
2186 spin_lock(&inode->i_lock);
2187 while (*p != NULL) {
2188 parent = *p;
2189 entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2191 if (set->cred < entry->cred)
2192 p = &parent->rb_left;
2193 else if (set->cred > entry->cred)
2194 p = &parent->rb_right;
2195 else
2196 goto found;
2198 rb_link_node(&set->rb_node, parent, p);
2199 rb_insert_color(&set->rb_node, root_node);
2200 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2201 spin_unlock(&inode->i_lock);
2202 return;
2203 found:
2204 rb_replace_node(parent, &set->rb_node, root_node);
2205 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2206 list_del(&entry->lru);
2207 spin_unlock(&inode->i_lock);
2208 nfs_access_free_entry(entry);
2211 static void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
2213 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2214 if (cache == NULL)
2215 return;
2216 RB_CLEAR_NODE(&cache->rb_node);
2217 cache->jiffies = set->jiffies;
2218 cache->cred = get_rpccred(set->cred);
2219 cache->mask = set->mask;
2221 nfs_access_add_rbtree(inode, cache);
2223 /* Update accounting */
2224 smp_mb__before_atomic_inc();
2225 atomic_long_inc(&nfs_access_nr_entries);
2226 smp_mb__after_atomic_inc();
2228 /* Add inode to global LRU list */
2229 if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2230 spin_lock(&nfs_access_lru_lock);
2231 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2232 list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2233 &nfs_access_lru_list);
2234 spin_unlock(&nfs_access_lru_lock);
2238 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask)
2240 struct nfs_access_entry cache;
2241 int status;
2243 status = nfs_access_get_cached(inode, cred, &cache);
2244 if (status == 0)
2245 goto out;
2247 /* Be clever: ask server to check for all possible rights */
2248 cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
2249 cache.cred = cred;
2250 cache.jiffies = jiffies;
2251 status = NFS_PROTO(inode)->access(inode, &cache);
2252 if (status != 0) {
2253 if (status == -ESTALE) {
2254 nfs_zap_caches(inode);
2255 if (!S_ISDIR(inode->i_mode))
2256 set_bit(NFS_INO_STALE, &NFS_I(inode)->flags);
2258 return status;
2260 nfs_access_add_cache(inode, &cache);
2261 out:
2262 if ((mask & ~cache.mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2263 return 0;
2264 return -EACCES;
2267 static int nfs_open_permission_mask(int openflags)
2269 int mask = 0;
2271 if ((openflags & O_ACCMODE) != O_WRONLY)
2272 mask |= MAY_READ;
2273 if ((openflags & O_ACCMODE) != O_RDONLY)
2274 mask |= MAY_WRITE;
2275 if (openflags & __FMODE_EXEC)
2276 mask |= MAY_EXEC;
2277 return mask;
2280 int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags)
2282 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2285 int nfs_permission(struct inode *inode, int mask)
2287 struct rpc_cred *cred;
2288 int res = 0;
2290 if (mask & MAY_NOT_BLOCK)
2291 return -ECHILD;
2293 nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2295 if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2296 goto out;
2297 /* Is this sys_access() ? */
2298 if (mask & (MAY_ACCESS | MAY_CHDIR))
2299 goto force_lookup;
2301 switch (inode->i_mode & S_IFMT) {
2302 case S_IFLNK:
2303 goto out;
2304 case S_IFREG:
2305 /* NFSv4 has atomic_open... */
2306 if (nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN)
2307 && (mask & MAY_OPEN)
2308 && !(mask & MAY_EXEC))
2309 goto out;
2310 break;
2311 case S_IFDIR:
2313 * Optimize away all write operations, since the server
2314 * will check permissions when we perform the op.
2316 if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2317 goto out;
2320 force_lookup:
2321 if (!NFS_PROTO(inode)->access)
2322 goto out_notsup;
2324 cred = rpc_lookup_cred();
2325 if (!IS_ERR(cred)) {
2326 res = nfs_do_access(inode, cred, mask);
2327 put_rpccred(cred);
2328 } else
2329 res = PTR_ERR(cred);
2330 out:
2331 if (!res && (mask & MAY_EXEC) && !execute_ok(inode))
2332 res = -EACCES;
2334 dfprintk(VFS, "NFS: permission(%s/%ld), mask=0x%x, res=%d\n",
2335 inode->i_sb->s_id, inode->i_ino, mask, res);
2336 return res;
2337 out_notsup:
2338 res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
2339 if (res == 0)
2340 res = generic_permission(inode, mask);
2341 goto out;
2345 * Local variables:
2346 * version-control: t
2347 * kept-new-versions: 5
2348 * End: