spi-topcliff-pch: supports a spi mode setup and bit order setup by IO control
[zen-stable.git] / fs / nilfs2 / the_nilfs.c
blob501b7f8b739fc2ed8079c0bc664481933d8d9d74
1 /*
2 * the_nilfs.c - the_nilfs shared structure.
4 * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 * Written by Ryusuke Konishi <ryusuke@osrg.net>
24 #include <linux/buffer_head.h>
25 #include <linux/slab.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/random.h>
29 #include <linux/crc32.h>
30 #include "nilfs.h"
31 #include "segment.h"
32 #include "alloc.h"
33 #include "cpfile.h"
34 #include "sufile.h"
35 #include "dat.h"
36 #include "segbuf.h"
39 static int nilfs_valid_sb(struct nilfs_super_block *sbp);
41 void nilfs_set_last_segment(struct the_nilfs *nilfs,
42 sector_t start_blocknr, u64 seq, __u64 cno)
44 spin_lock(&nilfs->ns_last_segment_lock);
45 nilfs->ns_last_pseg = start_blocknr;
46 nilfs->ns_last_seq = seq;
47 nilfs->ns_last_cno = cno;
49 if (!nilfs_sb_dirty(nilfs)) {
50 if (nilfs->ns_prev_seq == nilfs->ns_last_seq)
51 goto stay_cursor;
53 set_nilfs_sb_dirty(nilfs);
55 nilfs->ns_prev_seq = nilfs->ns_last_seq;
57 stay_cursor:
58 spin_unlock(&nilfs->ns_last_segment_lock);
61 /**
62 * alloc_nilfs - allocate a nilfs object
63 * @bdev: block device to which the_nilfs is related
65 * Return Value: On success, pointer to the_nilfs is returned.
66 * On error, NULL is returned.
68 struct the_nilfs *alloc_nilfs(struct block_device *bdev)
70 struct the_nilfs *nilfs;
72 nilfs = kzalloc(sizeof(*nilfs), GFP_KERNEL);
73 if (!nilfs)
74 return NULL;
76 nilfs->ns_bdev = bdev;
77 atomic_set(&nilfs->ns_ndirtyblks, 0);
78 init_rwsem(&nilfs->ns_sem);
79 INIT_LIST_HEAD(&nilfs->ns_dirty_files);
80 INIT_LIST_HEAD(&nilfs->ns_gc_inodes);
81 spin_lock_init(&nilfs->ns_inode_lock);
82 spin_lock_init(&nilfs->ns_next_gen_lock);
83 spin_lock_init(&nilfs->ns_last_segment_lock);
84 nilfs->ns_cptree = RB_ROOT;
85 spin_lock_init(&nilfs->ns_cptree_lock);
86 init_rwsem(&nilfs->ns_segctor_sem);
88 return nilfs;
91 /**
92 * destroy_nilfs - destroy nilfs object
93 * @nilfs: nilfs object to be released
95 void destroy_nilfs(struct the_nilfs *nilfs)
97 might_sleep();
98 if (nilfs_init(nilfs)) {
99 brelse(nilfs->ns_sbh[0]);
100 brelse(nilfs->ns_sbh[1]);
102 kfree(nilfs);
105 static int nilfs_load_super_root(struct the_nilfs *nilfs,
106 struct super_block *sb, sector_t sr_block)
108 struct buffer_head *bh_sr;
109 struct nilfs_super_root *raw_sr;
110 struct nilfs_super_block **sbp = nilfs->ns_sbp;
111 struct nilfs_inode *rawi;
112 unsigned dat_entry_size, segment_usage_size, checkpoint_size;
113 unsigned inode_size;
114 int err;
116 err = nilfs_read_super_root_block(nilfs, sr_block, &bh_sr, 1);
117 if (unlikely(err))
118 return err;
120 down_read(&nilfs->ns_sem);
121 dat_entry_size = le16_to_cpu(sbp[0]->s_dat_entry_size);
122 checkpoint_size = le16_to_cpu(sbp[0]->s_checkpoint_size);
123 segment_usage_size = le16_to_cpu(sbp[0]->s_segment_usage_size);
124 up_read(&nilfs->ns_sem);
126 inode_size = nilfs->ns_inode_size;
128 rawi = (void *)bh_sr->b_data + NILFS_SR_DAT_OFFSET(inode_size);
129 err = nilfs_dat_read(sb, dat_entry_size, rawi, &nilfs->ns_dat);
130 if (err)
131 goto failed;
133 rawi = (void *)bh_sr->b_data + NILFS_SR_CPFILE_OFFSET(inode_size);
134 err = nilfs_cpfile_read(sb, checkpoint_size, rawi, &nilfs->ns_cpfile);
135 if (err)
136 goto failed_dat;
138 rawi = (void *)bh_sr->b_data + NILFS_SR_SUFILE_OFFSET(inode_size);
139 err = nilfs_sufile_read(sb, segment_usage_size, rawi,
140 &nilfs->ns_sufile);
141 if (err)
142 goto failed_cpfile;
144 raw_sr = (struct nilfs_super_root *)bh_sr->b_data;
145 nilfs->ns_nongc_ctime = le64_to_cpu(raw_sr->sr_nongc_ctime);
147 failed:
148 brelse(bh_sr);
149 return err;
151 failed_cpfile:
152 iput(nilfs->ns_cpfile);
154 failed_dat:
155 iput(nilfs->ns_dat);
156 goto failed;
159 static void nilfs_init_recovery_info(struct nilfs_recovery_info *ri)
161 memset(ri, 0, sizeof(*ri));
162 INIT_LIST_HEAD(&ri->ri_used_segments);
165 static void nilfs_clear_recovery_info(struct nilfs_recovery_info *ri)
167 nilfs_dispose_segment_list(&ri->ri_used_segments);
171 * nilfs_store_log_cursor - load log cursor from a super block
172 * @nilfs: nilfs object
173 * @sbp: buffer storing super block to be read
175 * nilfs_store_log_cursor() reads the last position of the log
176 * containing a super root from a given super block, and initializes
177 * relevant information on the nilfs object preparatory for log
178 * scanning and recovery.
180 static int nilfs_store_log_cursor(struct the_nilfs *nilfs,
181 struct nilfs_super_block *sbp)
183 int ret = 0;
185 nilfs->ns_last_pseg = le64_to_cpu(sbp->s_last_pseg);
186 nilfs->ns_last_cno = le64_to_cpu(sbp->s_last_cno);
187 nilfs->ns_last_seq = le64_to_cpu(sbp->s_last_seq);
189 nilfs->ns_prev_seq = nilfs->ns_last_seq;
190 nilfs->ns_seg_seq = nilfs->ns_last_seq;
191 nilfs->ns_segnum =
192 nilfs_get_segnum_of_block(nilfs, nilfs->ns_last_pseg);
193 nilfs->ns_cno = nilfs->ns_last_cno + 1;
194 if (nilfs->ns_segnum >= nilfs->ns_nsegments) {
195 printk(KERN_ERR "NILFS invalid last segment number.\n");
196 ret = -EINVAL;
198 return ret;
202 * load_nilfs - load and recover the nilfs
203 * @nilfs: the_nilfs structure to be released
204 * @sb: super block isntance used to recover past segment
206 * load_nilfs() searches and load the latest super root,
207 * attaches the last segment, and does recovery if needed.
208 * The caller must call this exclusively for simultaneous mounts.
210 int load_nilfs(struct the_nilfs *nilfs, struct super_block *sb)
212 struct nilfs_recovery_info ri;
213 unsigned int s_flags = sb->s_flags;
214 int really_read_only = bdev_read_only(nilfs->ns_bdev);
215 int valid_fs = nilfs_valid_fs(nilfs);
216 int err;
218 if (!valid_fs) {
219 printk(KERN_WARNING "NILFS warning: mounting unchecked fs\n");
220 if (s_flags & MS_RDONLY) {
221 printk(KERN_INFO "NILFS: INFO: recovery "
222 "required for readonly filesystem.\n");
223 printk(KERN_INFO "NILFS: write access will "
224 "be enabled during recovery.\n");
228 nilfs_init_recovery_info(&ri);
230 err = nilfs_search_super_root(nilfs, &ri);
231 if (unlikely(err)) {
232 struct nilfs_super_block **sbp = nilfs->ns_sbp;
233 int blocksize;
235 if (err != -EINVAL)
236 goto scan_error;
238 if (!nilfs_valid_sb(sbp[1])) {
239 printk(KERN_WARNING
240 "NILFS warning: unable to fall back to spare"
241 "super block\n");
242 goto scan_error;
244 printk(KERN_INFO
245 "NILFS: try rollback from an earlier position\n");
248 * restore super block with its spare and reconfigure
249 * relevant states of the nilfs object.
251 memcpy(sbp[0], sbp[1], nilfs->ns_sbsize);
252 nilfs->ns_crc_seed = le32_to_cpu(sbp[0]->s_crc_seed);
253 nilfs->ns_sbwtime = le64_to_cpu(sbp[0]->s_wtime);
255 /* verify consistency between two super blocks */
256 blocksize = BLOCK_SIZE << le32_to_cpu(sbp[0]->s_log_block_size);
257 if (blocksize != nilfs->ns_blocksize) {
258 printk(KERN_WARNING
259 "NILFS warning: blocksize differs between "
260 "two super blocks (%d != %d)\n",
261 blocksize, nilfs->ns_blocksize);
262 goto scan_error;
265 err = nilfs_store_log_cursor(nilfs, sbp[0]);
266 if (err)
267 goto scan_error;
269 /* drop clean flag to allow roll-forward and recovery */
270 nilfs->ns_mount_state &= ~NILFS_VALID_FS;
271 valid_fs = 0;
273 err = nilfs_search_super_root(nilfs, &ri);
274 if (err)
275 goto scan_error;
278 err = nilfs_load_super_root(nilfs, sb, ri.ri_super_root);
279 if (unlikely(err)) {
280 printk(KERN_ERR "NILFS: error loading super root.\n");
281 goto failed;
284 if (valid_fs)
285 goto skip_recovery;
287 if (s_flags & MS_RDONLY) {
288 __u64 features;
290 if (nilfs_test_opt(nilfs, NORECOVERY)) {
291 printk(KERN_INFO "NILFS: norecovery option specified. "
292 "skipping roll-forward recovery\n");
293 goto skip_recovery;
295 features = le64_to_cpu(nilfs->ns_sbp[0]->s_feature_compat_ro) &
296 ~NILFS_FEATURE_COMPAT_RO_SUPP;
297 if (features) {
298 printk(KERN_ERR "NILFS: couldn't proceed with "
299 "recovery because of unsupported optional "
300 "features (%llx)\n",
301 (unsigned long long)features);
302 err = -EROFS;
303 goto failed_unload;
305 if (really_read_only) {
306 printk(KERN_ERR "NILFS: write access "
307 "unavailable, cannot proceed.\n");
308 err = -EROFS;
309 goto failed_unload;
311 sb->s_flags &= ~MS_RDONLY;
312 } else if (nilfs_test_opt(nilfs, NORECOVERY)) {
313 printk(KERN_ERR "NILFS: recovery cancelled because norecovery "
314 "option was specified for a read/write mount\n");
315 err = -EINVAL;
316 goto failed_unload;
319 err = nilfs_salvage_orphan_logs(nilfs, sb, &ri);
320 if (err)
321 goto failed_unload;
323 down_write(&nilfs->ns_sem);
324 nilfs->ns_mount_state |= NILFS_VALID_FS; /* set "clean" flag */
325 err = nilfs_cleanup_super(sb);
326 up_write(&nilfs->ns_sem);
328 if (err) {
329 printk(KERN_ERR "NILFS: failed to update super block. "
330 "recovery unfinished.\n");
331 goto failed_unload;
333 printk(KERN_INFO "NILFS: recovery complete.\n");
335 skip_recovery:
336 nilfs_clear_recovery_info(&ri);
337 sb->s_flags = s_flags;
338 return 0;
340 scan_error:
341 printk(KERN_ERR "NILFS: error searching super root.\n");
342 goto failed;
344 failed_unload:
345 iput(nilfs->ns_cpfile);
346 iput(nilfs->ns_sufile);
347 iput(nilfs->ns_dat);
349 failed:
350 nilfs_clear_recovery_info(&ri);
351 sb->s_flags = s_flags;
352 return err;
355 static unsigned long long nilfs_max_size(unsigned int blkbits)
357 unsigned int max_bits;
358 unsigned long long res = MAX_LFS_FILESIZE; /* page cache limit */
360 max_bits = blkbits + NILFS_BMAP_KEY_BIT; /* bmap size limit */
361 if (max_bits < 64)
362 res = min_t(unsigned long long, res, (1ULL << max_bits) - 1);
363 return res;
367 * nilfs_nrsvsegs - calculate the number of reserved segments
368 * @nilfs: nilfs object
369 * @nsegs: total number of segments
371 unsigned long nilfs_nrsvsegs(struct the_nilfs *nilfs, unsigned long nsegs)
373 return max_t(unsigned long, NILFS_MIN_NRSVSEGS,
374 DIV_ROUND_UP(nsegs * nilfs->ns_r_segments_percentage,
375 100));
378 void nilfs_set_nsegments(struct the_nilfs *nilfs, unsigned long nsegs)
380 nilfs->ns_nsegments = nsegs;
381 nilfs->ns_nrsvsegs = nilfs_nrsvsegs(nilfs, nsegs);
384 static int nilfs_store_disk_layout(struct the_nilfs *nilfs,
385 struct nilfs_super_block *sbp)
387 if (le32_to_cpu(sbp->s_rev_level) < NILFS_MIN_SUPP_REV) {
388 printk(KERN_ERR "NILFS: unsupported revision "
389 "(superblock rev.=%d.%d, current rev.=%d.%d). "
390 "Please check the version of mkfs.nilfs.\n",
391 le32_to_cpu(sbp->s_rev_level),
392 le16_to_cpu(sbp->s_minor_rev_level),
393 NILFS_CURRENT_REV, NILFS_MINOR_REV);
394 return -EINVAL;
396 nilfs->ns_sbsize = le16_to_cpu(sbp->s_bytes);
397 if (nilfs->ns_sbsize > BLOCK_SIZE)
398 return -EINVAL;
400 nilfs->ns_inode_size = le16_to_cpu(sbp->s_inode_size);
401 nilfs->ns_first_ino = le32_to_cpu(sbp->s_first_ino);
403 nilfs->ns_blocks_per_segment = le32_to_cpu(sbp->s_blocks_per_segment);
404 if (nilfs->ns_blocks_per_segment < NILFS_SEG_MIN_BLOCKS) {
405 printk(KERN_ERR "NILFS: too short segment.\n");
406 return -EINVAL;
409 nilfs->ns_first_data_block = le64_to_cpu(sbp->s_first_data_block);
410 nilfs->ns_r_segments_percentage =
411 le32_to_cpu(sbp->s_r_segments_percentage);
412 if (nilfs->ns_r_segments_percentage < 1 ||
413 nilfs->ns_r_segments_percentage > 99) {
414 printk(KERN_ERR "NILFS: invalid reserved segments percentage.\n");
415 return -EINVAL;
418 nilfs_set_nsegments(nilfs, le64_to_cpu(sbp->s_nsegments));
419 nilfs->ns_crc_seed = le32_to_cpu(sbp->s_crc_seed);
420 return 0;
423 static int nilfs_valid_sb(struct nilfs_super_block *sbp)
425 static unsigned char sum[4];
426 const int sumoff = offsetof(struct nilfs_super_block, s_sum);
427 size_t bytes;
428 u32 crc;
430 if (!sbp || le16_to_cpu(sbp->s_magic) != NILFS_SUPER_MAGIC)
431 return 0;
432 bytes = le16_to_cpu(sbp->s_bytes);
433 if (bytes > BLOCK_SIZE)
434 return 0;
435 crc = crc32_le(le32_to_cpu(sbp->s_crc_seed), (unsigned char *)sbp,
436 sumoff);
437 crc = crc32_le(crc, sum, 4);
438 crc = crc32_le(crc, (unsigned char *)sbp + sumoff + 4,
439 bytes - sumoff - 4);
440 return crc == le32_to_cpu(sbp->s_sum);
443 static int nilfs_sb2_bad_offset(struct nilfs_super_block *sbp, u64 offset)
445 return offset < ((le64_to_cpu(sbp->s_nsegments) *
446 le32_to_cpu(sbp->s_blocks_per_segment)) <<
447 (le32_to_cpu(sbp->s_log_block_size) + 10));
450 static void nilfs_release_super_block(struct the_nilfs *nilfs)
452 int i;
454 for (i = 0; i < 2; i++) {
455 if (nilfs->ns_sbp[i]) {
456 brelse(nilfs->ns_sbh[i]);
457 nilfs->ns_sbh[i] = NULL;
458 nilfs->ns_sbp[i] = NULL;
463 void nilfs_fall_back_super_block(struct the_nilfs *nilfs)
465 brelse(nilfs->ns_sbh[0]);
466 nilfs->ns_sbh[0] = nilfs->ns_sbh[1];
467 nilfs->ns_sbp[0] = nilfs->ns_sbp[1];
468 nilfs->ns_sbh[1] = NULL;
469 nilfs->ns_sbp[1] = NULL;
472 void nilfs_swap_super_block(struct the_nilfs *nilfs)
474 struct buffer_head *tsbh = nilfs->ns_sbh[0];
475 struct nilfs_super_block *tsbp = nilfs->ns_sbp[0];
477 nilfs->ns_sbh[0] = nilfs->ns_sbh[1];
478 nilfs->ns_sbp[0] = nilfs->ns_sbp[1];
479 nilfs->ns_sbh[1] = tsbh;
480 nilfs->ns_sbp[1] = tsbp;
483 static int nilfs_load_super_block(struct the_nilfs *nilfs,
484 struct super_block *sb, int blocksize,
485 struct nilfs_super_block **sbpp)
487 struct nilfs_super_block **sbp = nilfs->ns_sbp;
488 struct buffer_head **sbh = nilfs->ns_sbh;
489 u64 sb2off = NILFS_SB2_OFFSET_BYTES(nilfs->ns_bdev->bd_inode->i_size);
490 int valid[2], swp = 0;
492 sbp[0] = nilfs_read_super_block(sb, NILFS_SB_OFFSET_BYTES, blocksize,
493 &sbh[0]);
494 sbp[1] = nilfs_read_super_block(sb, sb2off, blocksize, &sbh[1]);
496 if (!sbp[0]) {
497 if (!sbp[1]) {
498 printk(KERN_ERR "NILFS: unable to read superblock\n");
499 return -EIO;
501 printk(KERN_WARNING
502 "NILFS warning: unable to read primary superblock "
503 "(blocksize = %d)\n", blocksize);
504 } else if (!sbp[1]) {
505 printk(KERN_WARNING
506 "NILFS warning: unable to read secondary superblock "
507 "(blocksize = %d)\n", blocksize);
511 * Compare two super blocks and set 1 in swp if the secondary
512 * super block is valid and newer. Otherwise, set 0 in swp.
514 valid[0] = nilfs_valid_sb(sbp[0]);
515 valid[1] = nilfs_valid_sb(sbp[1]);
516 swp = valid[1] && (!valid[0] ||
517 le64_to_cpu(sbp[1]->s_last_cno) >
518 le64_to_cpu(sbp[0]->s_last_cno));
520 if (valid[swp] && nilfs_sb2_bad_offset(sbp[swp], sb2off)) {
521 brelse(sbh[1]);
522 sbh[1] = NULL;
523 sbp[1] = NULL;
524 valid[1] = 0;
525 swp = 0;
527 if (!valid[swp]) {
528 nilfs_release_super_block(nilfs);
529 printk(KERN_ERR "NILFS: Can't find nilfs on dev %s.\n",
530 sb->s_id);
531 return -EINVAL;
534 if (!valid[!swp])
535 printk(KERN_WARNING "NILFS warning: broken superblock. "
536 "using spare superblock (blocksize = %d).\n", blocksize);
537 if (swp)
538 nilfs_swap_super_block(nilfs);
540 nilfs->ns_sbwcount = 0;
541 nilfs->ns_sbwtime = le64_to_cpu(sbp[0]->s_wtime);
542 nilfs->ns_prot_seq = le64_to_cpu(sbp[valid[1] & !swp]->s_last_seq);
543 *sbpp = sbp[0];
544 return 0;
548 * init_nilfs - initialize a NILFS instance.
549 * @nilfs: the_nilfs structure
550 * @sb: super block
551 * @data: mount options
553 * init_nilfs() performs common initialization per block device (e.g.
554 * reading the super block, getting disk layout information, initializing
555 * shared fields in the_nilfs).
557 * Return Value: On success, 0 is returned. On error, a negative error
558 * code is returned.
560 int init_nilfs(struct the_nilfs *nilfs, struct super_block *sb, char *data)
562 struct nilfs_super_block *sbp;
563 int blocksize;
564 int err;
566 down_write(&nilfs->ns_sem);
568 blocksize = sb_min_blocksize(sb, NILFS_MIN_BLOCK_SIZE);
569 if (!blocksize) {
570 printk(KERN_ERR "NILFS: unable to set blocksize\n");
571 err = -EINVAL;
572 goto out;
574 err = nilfs_load_super_block(nilfs, sb, blocksize, &sbp);
575 if (err)
576 goto out;
578 err = nilfs_store_magic_and_option(sb, sbp, data);
579 if (err)
580 goto failed_sbh;
582 err = nilfs_check_feature_compatibility(sb, sbp);
583 if (err)
584 goto failed_sbh;
586 blocksize = BLOCK_SIZE << le32_to_cpu(sbp->s_log_block_size);
587 if (blocksize < NILFS_MIN_BLOCK_SIZE ||
588 blocksize > NILFS_MAX_BLOCK_SIZE) {
589 printk(KERN_ERR "NILFS: couldn't mount because of unsupported "
590 "filesystem blocksize %d\n", blocksize);
591 err = -EINVAL;
592 goto failed_sbh;
594 if (sb->s_blocksize != blocksize) {
595 int hw_blocksize = bdev_logical_block_size(sb->s_bdev);
597 if (blocksize < hw_blocksize) {
598 printk(KERN_ERR
599 "NILFS: blocksize %d too small for device "
600 "(sector-size = %d).\n",
601 blocksize, hw_blocksize);
602 err = -EINVAL;
603 goto failed_sbh;
605 nilfs_release_super_block(nilfs);
606 sb_set_blocksize(sb, blocksize);
608 err = nilfs_load_super_block(nilfs, sb, blocksize, &sbp);
609 if (err)
610 goto out;
611 /* not failed_sbh; sbh is released automatically
612 when reloading fails. */
614 nilfs->ns_blocksize_bits = sb->s_blocksize_bits;
615 nilfs->ns_blocksize = blocksize;
617 get_random_bytes(&nilfs->ns_next_generation,
618 sizeof(nilfs->ns_next_generation));
620 err = nilfs_store_disk_layout(nilfs, sbp);
621 if (err)
622 goto failed_sbh;
624 sb->s_maxbytes = nilfs_max_size(sb->s_blocksize_bits);
626 nilfs->ns_mount_state = le16_to_cpu(sbp->s_state);
628 err = nilfs_store_log_cursor(nilfs, sbp);
629 if (err)
630 goto failed_sbh;
632 set_nilfs_init(nilfs);
633 err = 0;
634 out:
635 up_write(&nilfs->ns_sem);
636 return err;
638 failed_sbh:
639 nilfs_release_super_block(nilfs);
640 goto out;
643 int nilfs_discard_segments(struct the_nilfs *nilfs, __u64 *segnump,
644 size_t nsegs)
646 sector_t seg_start, seg_end;
647 sector_t start = 0, nblocks = 0;
648 unsigned int sects_per_block;
649 __u64 *sn;
650 int ret = 0;
652 sects_per_block = (1 << nilfs->ns_blocksize_bits) /
653 bdev_logical_block_size(nilfs->ns_bdev);
654 for (sn = segnump; sn < segnump + nsegs; sn++) {
655 nilfs_get_segment_range(nilfs, *sn, &seg_start, &seg_end);
657 if (!nblocks) {
658 start = seg_start;
659 nblocks = seg_end - seg_start + 1;
660 } else if (start + nblocks == seg_start) {
661 nblocks += seg_end - seg_start + 1;
662 } else {
663 ret = blkdev_issue_discard(nilfs->ns_bdev,
664 start * sects_per_block,
665 nblocks * sects_per_block,
666 GFP_NOFS, 0);
667 if (ret < 0)
668 return ret;
669 nblocks = 0;
672 if (nblocks)
673 ret = blkdev_issue_discard(nilfs->ns_bdev,
674 start * sects_per_block,
675 nblocks * sects_per_block,
676 GFP_NOFS, 0);
677 return ret;
680 int nilfs_count_free_blocks(struct the_nilfs *nilfs, sector_t *nblocks)
682 unsigned long ncleansegs;
684 down_read(&NILFS_MDT(nilfs->ns_dat)->mi_sem);
685 ncleansegs = nilfs_sufile_get_ncleansegs(nilfs->ns_sufile);
686 up_read(&NILFS_MDT(nilfs->ns_dat)->mi_sem);
687 *nblocks = (sector_t)ncleansegs * nilfs->ns_blocks_per_segment;
688 return 0;
691 int nilfs_near_disk_full(struct the_nilfs *nilfs)
693 unsigned long ncleansegs, nincsegs;
695 ncleansegs = nilfs_sufile_get_ncleansegs(nilfs->ns_sufile);
696 nincsegs = atomic_read(&nilfs->ns_ndirtyblks) /
697 nilfs->ns_blocks_per_segment + 1;
699 return ncleansegs <= nilfs->ns_nrsvsegs + nincsegs;
702 struct nilfs_root *nilfs_lookup_root(struct the_nilfs *nilfs, __u64 cno)
704 struct rb_node *n;
705 struct nilfs_root *root;
707 spin_lock(&nilfs->ns_cptree_lock);
708 n = nilfs->ns_cptree.rb_node;
709 while (n) {
710 root = rb_entry(n, struct nilfs_root, rb_node);
712 if (cno < root->cno) {
713 n = n->rb_left;
714 } else if (cno > root->cno) {
715 n = n->rb_right;
716 } else {
717 atomic_inc(&root->count);
718 spin_unlock(&nilfs->ns_cptree_lock);
719 return root;
722 spin_unlock(&nilfs->ns_cptree_lock);
724 return NULL;
727 struct nilfs_root *
728 nilfs_find_or_create_root(struct the_nilfs *nilfs, __u64 cno)
730 struct rb_node **p, *parent;
731 struct nilfs_root *root, *new;
733 root = nilfs_lookup_root(nilfs, cno);
734 if (root)
735 return root;
737 new = kmalloc(sizeof(*root), GFP_KERNEL);
738 if (!new)
739 return NULL;
741 spin_lock(&nilfs->ns_cptree_lock);
743 p = &nilfs->ns_cptree.rb_node;
744 parent = NULL;
746 while (*p) {
747 parent = *p;
748 root = rb_entry(parent, struct nilfs_root, rb_node);
750 if (cno < root->cno) {
751 p = &(*p)->rb_left;
752 } else if (cno > root->cno) {
753 p = &(*p)->rb_right;
754 } else {
755 atomic_inc(&root->count);
756 spin_unlock(&nilfs->ns_cptree_lock);
757 kfree(new);
758 return root;
762 new->cno = cno;
763 new->ifile = NULL;
764 new->nilfs = nilfs;
765 atomic_set(&new->count, 1);
766 atomic_set(&new->inodes_count, 0);
767 atomic_set(&new->blocks_count, 0);
769 rb_link_node(&new->rb_node, parent, p);
770 rb_insert_color(&new->rb_node, &nilfs->ns_cptree);
772 spin_unlock(&nilfs->ns_cptree_lock);
774 return new;
777 void nilfs_put_root(struct nilfs_root *root)
779 if (atomic_dec_and_test(&root->count)) {
780 struct the_nilfs *nilfs = root->nilfs;
782 spin_lock(&nilfs->ns_cptree_lock);
783 rb_erase(&root->rb_node, &nilfs->ns_cptree);
784 spin_unlock(&nilfs->ns_cptree_lock);
785 if (root->ifile)
786 iput(root->ifile);
788 kfree(root);