spi-topcliff-pch: supports a spi mode setup and bit order setup by IO control
[zen-stable.git] / fs / splice.c
blob96d7b2815588f26a163ebdec563b56c8e4783aca
1 /*
2 * "splice": joining two ropes together by interweaving their strands.
4 * This is the "extended pipe" functionality, where a pipe is used as
5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6 * buffer that you can use to transfer data from one end to the other.
8 * The traditional unix read/write is extended with a "splice()" operation
9 * that transfers data buffers to or from a pipe buffer.
11 * Named by Larry McVoy, original implementation from Linus, extended by
12 * Jens to support splicing to files, network, direct splicing, etc and
13 * fixing lots of bugs.
15 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/splice.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm_inline.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/module.h>
29 #include <linux/syscalls.h>
30 #include <linux/uio.h>
31 #include <linux/security.h>
32 #include <linux/gfp.h>
33 #include <linux/socket.h>
36 * Attempt to steal a page from a pipe buffer. This should perhaps go into
37 * a vm helper function, it's already simplified quite a bit by the
38 * addition of remove_mapping(). If success is returned, the caller may
39 * attempt to reuse this page for another destination.
41 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
42 struct pipe_buffer *buf)
44 struct page *page = buf->page;
45 struct address_space *mapping;
47 lock_page(page);
49 mapping = page_mapping(page);
50 if (mapping) {
51 WARN_ON(!PageUptodate(page));
54 * At least for ext2 with nobh option, we need to wait on
55 * writeback completing on this page, since we'll remove it
56 * from the pagecache. Otherwise truncate wont wait on the
57 * page, allowing the disk blocks to be reused by someone else
58 * before we actually wrote our data to them. fs corruption
59 * ensues.
61 wait_on_page_writeback(page);
63 if (page_has_private(page) &&
64 !try_to_release_page(page, GFP_KERNEL))
65 goto out_unlock;
68 * If we succeeded in removing the mapping, set LRU flag
69 * and return good.
71 if (remove_mapping(mapping, page)) {
72 buf->flags |= PIPE_BUF_FLAG_LRU;
73 return 0;
78 * Raced with truncate or failed to remove page from current
79 * address space, unlock and return failure.
81 out_unlock:
82 unlock_page(page);
83 return 1;
86 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
87 struct pipe_buffer *buf)
89 page_cache_release(buf->page);
90 buf->flags &= ~PIPE_BUF_FLAG_LRU;
94 * Check whether the contents of buf is OK to access. Since the content
95 * is a page cache page, IO may be in flight.
97 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
98 struct pipe_buffer *buf)
100 struct page *page = buf->page;
101 int err;
103 if (!PageUptodate(page)) {
104 lock_page(page);
107 * Page got truncated/unhashed. This will cause a 0-byte
108 * splice, if this is the first page.
110 if (!page->mapping) {
111 err = -ENODATA;
112 goto error;
116 * Uh oh, read-error from disk.
118 if (!PageUptodate(page)) {
119 err = -EIO;
120 goto error;
124 * Page is ok afterall, we are done.
126 unlock_page(page);
129 return 0;
130 error:
131 unlock_page(page);
132 return err;
135 const struct pipe_buf_operations page_cache_pipe_buf_ops = {
136 .can_merge = 0,
137 .map = generic_pipe_buf_map,
138 .unmap = generic_pipe_buf_unmap,
139 .confirm = page_cache_pipe_buf_confirm,
140 .release = page_cache_pipe_buf_release,
141 .steal = page_cache_pipe_buf_steal,
142 .get = generic_pipe_buf_get,
145 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
146 struct pipe_buffer *buf)
148 if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
149 return 1;
151 buf->flags |= PIPE_BUF_FLAG_LRU;
152 return generic_pipe_buf_steal(pipe, buf);
155 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
156 .can_merge = 0,
157 .map = generic_pipe_buf_map,
158 .unmap = generic_pipe_buf_unmap,
159 .confirm = generic_pipe_buf_confirm,
160 .release = page_cache_pipe_buf_release,
161 .steal = user_page_pipe_buf_steal,
162 .get = generic_pipe_buf_get,
165 static void wakeup_pipe_readers(struct pipe_inode_info *pipe)
167 smp_mb();
168 if (waitqueue_active(&pipe->wait))
169 wake_up_interruptible(&pipe->wait);
170 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
174 * splice_to_pipe - fill passed data into a pipe
175 * @pipe: pipe to fill
176 * @spd: data to fill
178 * Description:
179 * @spd contains a map of pages and len/offset tuples, along with
180 * the struct pipe_buf_operations associated with these pages. This
181 * function will link that data to the pipe.
184 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
185 struct splice_pipe_desc *spd)
187 unsigned int spd_pages = spd->nr_pages;
188 int ret, do_wakeup, page_nr;
190 ret = 0;
191 do_wakeup = 0;
192 page_nr = 0;
194 pipe_lock(pipe);
196 for (;;) {
197 if (!pipe->readers) {
198 send_sig(SIGPIPE, current, 0);
199 if (!ret)
200 ret = -EPIPE;
201 break;
204 if (pipe->nrbufs < pipe->buffers) {
205 int newbuf = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1);
206 struct pipe_buffer *buf = pipe->bufs + newbuf;
208 buf->page = spd->pages[page_nr];
209 buf->offset = spd->partial[page_nr].offset;
210 buf->len = spd->partial[page_nr].len;
211 buf->private = spd->partial[page_nr].private;
212 buf->ops = spd->ops;
213 if (spd->flags & SPLICE_F_GIFT)
214 buf->flags |= PIPE_BUF_FLAG_GIFT;
216 pipe->nrbufs++;
217 page_nr++;
218 ret += buf->len;
220 if (pipe->inode)
221 do_wakeup = 1;
223 if (!--spd->nr_pages)
224 break;
225 if (pipe->nrbufs < pipe->buffers)
226 continue;
228 break;
231 if (spd->flags & SPLICE_F_NONBLOCK) {
232 if (!ret)
233 ret = -EAGAIN;
234 break;
237 if (signal_pending(current)) {
238 if (!ret)
239 ret = -ERESTARTSYS;
240 break;
243 if (do_wakeup) {
244 smp_mb();
245 if (waitqueue_active(&pipe->wait))
246 wake_up_interruptible_sync(&pipe->wait);
247 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
248 do_wakeup = 0;
251 pipe->waiting_writers++;
252 pipe_wait(pipe);
253 pipe->waiting_writers--;
256 pipe_unlock(pipe);
258 if (do_wakeup)
259 wakeup_pipe_readers(pipe);
261 while (page_nr < spd_pages)
262 spd->spd_release(spd, page_nr++);
264 return ret;
267 void spd_release_page(struct splice_pipe_desc *spd, unsigned int i)
269 page_cache_release(spd->pages[i]);
273 * Check if we need to grow the arrays holding pages and partial page
274 * descriptions.
276 int splice_grow_spd(struct pipe_inode_info *pipe, struct splice_pipe_desc *spd)
278 if (pipe->buffers <= PIPE_DEF_BUFFERS)
279 return 0;
281 spd->pages = kmalloc(pipe->buffers * sizeof(struct page *), GFP_KERNEL);
282 spd->partial = kmalloc(pipe->buffers * sizeof(struct partial_page), GFP_KERNEL);
284 if (spd->pages && spd->partial)
285 return 0;
287 kfree(spd->pages);
288 kfree(spd->partial);
289 return -ENOMEM;
292 void splice_shrink_spd(struct pipe_inode_info *pipe,
293 struct splice_pipe_desc *spd)
295 if (pipe->buffers <= PIPE_DEF_BUFFERS)
296 return;
298 kfree(spd->pages);
299 kfree(spd->partial);
302 static int
303 __generic_file_splice_read(struct file *in, loff_t *ppos,
304 struct pipe_inode_info *pipe, size_t len,
305 unsigned int flags)
307 struct address_space *mapping = in->f_mapping;
308 unsigned int loff, nr_pages, req_pages;
309 struct page *pages[PIPE_DEF_BUFFERS];
310 struct partial_page partial[PIPE_DEF_BUFFERS];
311 struct page *page;
312 pgoff_t index, end_index;
313 loff_t isize;
314 int error, page_nr;
315 struct splice_pipe_desc spd = {
316 .pages = pages,
317 .partial = partial,
318 .flags = flags,
319 .ops = &page_cache_pipe_buf_ops,
320 .spd_release = spd_release_page,
323 if (splice_grow_spd(pipe, &spd))
324 return -ENOMEM;
326 index = *ppos >> PAGE_CACHE_SHIFT;
327 loff = *ppos & ~PAGE_CACHE_MASK;
328 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
329 nr_pages = min(req_pages, pipe->buffers);
332 * Lookup the (hopefully) full range of pages we need.
334 spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, spd.pages);
335 index += spd.nr_pages;
338 * If find_get_pages_contig() returned fewer pages than we needed,
339 * readahead/allocate the rest and fill in the holes.
341 if (spd.nr_pages < nr_pages)
342 page_cache_sync_readahead(mapping, &in->f_ra, in,
343 index, req_pages - spd.nr_pages);
345 error = 0;
346 while (spd.nr_pages < nr_pages) {
348 * Page could be there, find_get_pages_contig() breaks on
349 * the first hole.
351 page = find_get_page(mapping, index);
352 if (!page) {
354 * page didn't exist, allocate one.
356 page = page_cache_alloc_cold(mapping);
357 if (!page)
358 break;
360 error = add_to_page_cache_lru(page, mapping, index,
361 GFP_KERNEL);
362 if (unlikely(error)) {
363 page_cache_release(page);
364 if (error == -EEXIST)
365 continue;
366 break;
369 * add_to_page_cache() locks the page, unlock it
370 * to avoid convoluting the logic below even more.
372 unlock_page(page);
375 spd.pages[spd.nr_pages++] = page;
376 index++;
380 * Now loop over the map and see if we need to start IO on any
381 * pages, fill in the partial map, etc.
383 index = *ppos >> PAGE_CACHE_SHIFT;
384 nr_pages = spd.nr_pages;
385 spd.nr_pages = 0;
386 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
387 unsigned int this_len;
389 if (!len)
390 break;
393 * this_len is the max we'll use from this page
395 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
396 page = spd.pages[page_nr];
398 if (PageReadahead(page))
399 page_cache_async_readahead(mapping, &in->f_ra, in,
400 page, index, req_pages - page_nr);
403 * If the page isn't uptodate, we may need to start io on it
405 if (!PageUptodate(page)) {
406 lock_page(page);
409 * Page was truncated, or invalidated by the
410 * filesystem. Redo the find/create, but this time the
411 * page is kept locked, so there's no chance of another
412 * race with truncate/invalidate.
414 if (!page->mapping) {
415 unlock_page(page);
416 page = find_or_create_page(mapping, index,
417 mapping_gfp_mask(mapping));
419 if (!page) {
420 error = -ENOMEM;
421 break;
423 page_cache_release(spd.pages[page_nr]);
424 spd.pages[page_nr] = page;
427 * page was already under io and is now done, great
429 if (PageUptodate(page)) {
430 unlock_page(page);
431 goto fill_it;
435 * need to read in the page
437 error = mapping->a_ops->readpage(in, page);
438 if (unlikely(error)) {
440 * We really should re-lookup the page here,
441 * but it complicates things a lot. Instead
442 * lets just do what we already stored, and
443 * we'll get it the next time we are called.
445 if (error == AOP_TRUNCATED_PAGE)
446 error = 0;
448 break;
451 fill_it:
453 * i_size must be checked after PageUptodate.
455 isize = i_size_read(mapping->host);
456 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
457 if (unlikely(!isize || index > end_index))
458 break;
461 * if this is the last page, see if we need to shrink
462 * the length and stop
464 if (end_index == index) {
465 unsigned int plen;
468 * max good bytes in this page
470 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
471 if (plen <= loff)
472 break;
475 * force quit after adding this page
477 this_len = min(this_len, plen - loff);
478 len = this_len;
481 spd.partial[page_nr].offset = loff;
482 spd.partial[page_nr].len = this_len;
483 len -= this_len;
484 loff = 0;
485 spd.nr_pages++;
486 index++;
490 * Release any pages at the end, if we quit early. 'page_nr' is how far
491 * we got, 'nr_pages' is how many pages are in the map.
493 while (page_nr < nr_pages)
494 page_cache_release(spd.pages[page_nr++]);
495 in->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT;
497 if (spd.nr_pages)
498 error = splice_to_pipe(pipe, &spd);
500 splice_shrink_spd(pipe, &spd);
501 return error;
505 * generic_file_splice_read - splice data from file to a pipe
506 * @in: file to splice from
507 * @ppos: position in @in
508 * @pipe: pipe to splice to
509 * @len: number of bytes to splice
510 * @flags: splice modifier flags
512 * Description:
513 * Will read pages from given file and fill them into a pipe. Can be
514 * used as long as the address_space operations for the source implements
515 * a readpage() hook.
518 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
519 struct pipe_inode_info *pipe, size_t len,
520 unsigned int flags)
522 loff_t isize, left;
523 int ret;
525 isize = i_size_read(in->f_mapping->host);
526 if (unlikely(*ppos >= isize))
527 return 0;
529 left = isize - *ppos;
530 if (unlikely(left < len))
531 len = left;
533 ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
534 if (ret > 0) {
535 *ppos += ret;
536 file_accessed(in);
539 return ret;
541 EXPORT_SYMBOL(generic_file_splice_read);
543 static const struct pipe_buf_operations default_pipe_buf_ops = {
544 .can_merge = 0,
545 .map = generic_pipe_buf_map,
546 .unmap = generic_pipe_buf_unmap,
547 .confirm = generic_pipe_buf_confirm,
548 .release = generic_pipe_buf_release,
549 .steal = generic_pipe_buf_steal,
550 .get = generic_pipe_buf_get,
553 static ssize_t kernel_readv(struct file *file, const struct iovec *vec,
554 unsigned long vlen, loff_t offset)
556 mm_segment_t old_fs;
557 loff_t pos = offset;
558 ssize_t res;
560 old_fs = get_fs();
561 set_fs(get_ds());
562 /* The cast to a user pointer is valid due to the set_fs() */
563 res = vfs_readv(file, (const struct iovec __user *)vec, vlen, &pos);
564 set_fs(old_fs);
566 return res;
569 static ssize_t kernel_write(struct file *file, const char *buf, size_t count,
570 loff_t pos)
572 mm_segment_t old_fs;
573 ssize_t res;
575 old_fs = get_fs();
576 set_fs(get_ds());
577 /* The cast to a user pointer is valid due to the set_fs() */
578 res = vfs_write(file, (const char __user *)buf, count, &pos);
579 set_fs(old_fs);
581 return res;
584 ssize_t default_file_splice_read(struct file *in, loff_t *ppos,
585 struct pipe_inode_info *pipe, size_t len,
586 unsigned int flags)
588 unsigned int nr_pages;
589 unsigned int nr_freed;
590 size_t offset;
591 struct page *pages[PIPE_DEF_BUFFERS];
592 struct partial_page partial[PIPE_DEF_BUFFERS];
593 struct iovec *vec, __vec[PIPE_DEF_BUFFERS];
594 ssize_t res;
595 size_t this_len;
596 int error;
597 int i;
598 struct splice_pipe_desc spd = {
599 .pages = pages,
600 .partial = partial,
601 .flags = flags,
602 .ops = &default_pipe_buf_ops,
603 .spd_release = spd_release_page,
606 if (splice_grow_spd(pipe, &spd))
607 return -ENOMEM;
609 res = -ENOMEM;
610 vec = __vec;
611 if (pipe->buffers > PIPE_DEF_BUFFERS) {
612 vec = kmalloc(pipe->buffers * sizeof(struct iovec), GFP_KERNEL);
613 if (!vec)
614 goto shrink_ret;
617 offset = *ppos & ~PAGE_CACHE_MASK;
618 nr_pages = (len + offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
620 for (i = 0; i < nr_pages && i < pipe->buffers && len; i++) {
621 struct page *page;
623 page = alloc_page(GFP_USER);
624 error = -ENOMEM;
625 if (!page)
626 goto err;
628 this_len = min_t(size_t, len, PAGE_CACHE_SIZE - offset);
629 vec[i].iov_base = (void __user *) page_address(page);
630 vec[i].iov_len = this_len;
631 spd.pages[i] = page;
632 spd.nr_pages++;
633 len -= this_len;
634 offset = 0;
637 res = kernel_readv(in, vec, spd.nr_pages, *ppos);
638 if (res < 0) {
639 error = res;
640 goto err;
643 error = 0;
644 if (!res)
645 goto err;
647 nr_freed = 0;
648 for (i = 0; i < spd.nr_pages; i++) {
649 this_len = min_t(size_t, vec[i].iov_len, res);
650 spd.partial[i].offset = 0;
651 spd.partial[i].len = this_len;
652 if (!this_len) {
653 __free_page(spd.pages[i]);
654 spd.pages[i] = NULL;
655 nr_freed++;
657 res -= this_len;
659 spd.nr_pages -= nr_freed;
661 res = splice_to_pipe(pipe, &spd);
662 if (res > 0)
663 *ppos += res;
665 shrink_ret:
666 if (vec != __vec)
667 kfree(vec);
668 splice_shrink_spd(pipe, &spd);
669 return res;
671 err:
672 for (i = 0; i < spd.nr_pages; i++)
673 __free_page(spd.pages[i]);
675 res = error;
676 goto shrink_ret;
678 EXPORT_SYMBOL(default_file_splice_read);
681 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
682 * using sendpage(). Return the number of bytes sent.
684 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
685 struct pipe_buffer *buf, struct splice_desc *sd)
687 struct file *file = sd->u.file;
688 loff_t pos = sd->pos;
689 int more;
691 if (!likely(file->f_op && file->f_op->sendpage))
692 return -EINVAL;
694 more = (sd->flags & SPLICE_F_MORE) ? MSG_MORE : 0;
695 if (sd->len < sd->total_len)
696 more |= MSG_SENDPAGE_NOTLAST;
697 return file->f_op->sendpage(file, buf->page, buf->offset,
698 sd->len, &pos, more);
702 * This is a little more tricky than the file -> pipe splicing. There are
703 * basically three cases:
705 * - Destination page already exists in the address space and there
706 * are users of it. For that case we have no other option that
707 * copying the data. Tough luck.
708 * - Destination page already exists in the address space, but there
709 * are no users of it. Make sure it's uptodate, then drop it. Fall
710 * through to last case.
711 * - Destination page does not exist, we can add the pipe page to
712 * the page cache and avoid the copy.
714 * If asked to move pages to the output file (SPLICE_F_MOVE is set in
715 * sd->flags), we attempt to migrate pages from the pipe to the output
716 * file address space page cache. This is possible if no one else has
717 * the pipe page referenced outside of the pipe and page cache. If
718 * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create
719 * a new page in the output file page cache and fill/dirty that.
721 int pipe_to_file(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
722 struct splice_desc *sd)
724 struct file *file = sd->u.file;
725 struct address_space *mapping = file->f_mapping;
726 unsigned int offset, this_len;
727 struct page *page;
728 void *fsdata;
729 int ret;
731 offset = sd->pos & ~PAGE_CACHE_MASK;
733 this_len = sd->len;
734 if (this_len + offset > PAGE_CACHE_SIZE)
735 this_len = PAGE_CACHE_SIZE - offset;
737 ret = pagecache_write_begin(file, mapping, sd->pos, this_len,
738 AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
739 if (unlikely(ret))
740 goto out;
742 if (buf->page != page) {
744 * Careful, ->map() uses KM_USER0!
746 char *src = buf->ops->map(pipe, buf, 1);
747 char *dst = kmap_atomic(page, KM_USER1);
749 memcpy(dst + offset, src + buf->offset, this_len);
750 flush_dcache_page(page);
751 kunmap_atomic(dst, KM_USER1);
752 buf->ops->unmap(pipe, buf, src);
754 ret = pagecache_write_end(file, mapping, sd->pos, this_len, this_len,
755 page, fsdata);
756 out:
757 return ret;
759 EXPORT_SYMBOL(pipe_to_file);
761 static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
763 smp_mb();
764 if (waitqueue_active(&pipe->wait))
765 wake_up_interruptible(&pipe->wait);
766 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
770 * splice_from_pipe_feed - feed available data from a pipe to a file
771 * @pipe: pipe to splice from
772 * @sd: information to @actor
773 * @actor: handler that splices the data
775 * Description:
776 * This function loops over the pipe and calls @actor to do the
777 * actual moving of a single struct pipe_buffer to the desired
778 * destination. It returns when there's no more buffers left in
779 * the pipe or if the requested number of bytes (@sd->total_len)
780 * have been copied. It returns a positive number (one) if the
781 * pipe needs to be filled with more data, zero if the required
782 * number of bytes have been copied and -errno on error.
784 * This, together with splice_from_pipe_{begin,end,next}, may be
785 * used to implement the functionality of __splice_from_pipe() when
786 * locking is required around copying the pipe buffers to the
787 * destination.
789 int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
790 splice_actor *actor)
792 int ret;
794 while (pipe->nrbufs) {
795 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
796 const struct pipe_buf_operations *ops = buf->ops;
798 sd->len = buf->len;
799 if (sd->len > sd->total_len)
800 sd->len = sd->total_len;
802 ret = buf->ops->confirm(pipe, buf);
803 if (unlikely(ret)) {
804 if (ret == -ENODATA)
805 ret = 0;
806 return ret;
809 ret = actor(pipe, buf, sd);
810 if (ret <= 0)
811 return ret;
813 buf->offset += ret;
814 buf->len -= ret;
816 sd->num_spliced += ret;
817 sd->len -= ret;
818 sd->pos += ret;
819 sd->total_len -= ret;
821 if (!buf->len) {
822 buf->ops = NULL;
823 ops->release(pipe, buf);
824 pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
825 pipe->nrbufs--;
826 if (pipe->inode)
827 sd->need_wakeup = true;
830 if (!sd->total_len)
831 return 0;
834 return 1;
836 EXPORT_SYMBOL(splice_from_pipe_feed);
839 * splice_from_pipe_next - wait for some data to splice from
840 * @pipe: pipe to splice from
841 * @sd: information about the splice operation
843 * Description:
844 * This function will wait for some data and return a positive
845 * value (one) if pipe buffers are available. It will return zero
846 * or -errno if no more data needs to be spliced.
848 int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
850 while (!pipe->nrbufs) {
851 if (!pipe->writers)
852 return 0;
854 if (!pipe->waiting_writers && sd->num_spliced)
855 return 0;
857 if (sd->flags & SPLICE_F_NONBLOCK)
858 return -EAGAIN;
860 if (signal_pending(current))
861 return -ERESTARTSYS;
863 if (sd->need_wakeup) {
864 wakeup_pipe_writers(pipe);
865 sd->need_wakeup = false;
868 pipe_wait(pipe);
871 return 1;
873 EXPORT_SYMBOL(splice_from_pipe_next);
876 * splice_from_pipe_begin - start splicing from pipe
877 * @sd: information about the splice operation
879 * Description:
880 * This function should be called before a loop containing
881 * splice_from_pipe_next() and splice_from_pipe_feed() to
882 * initialize the necessary fields of @sd.
884 void splice_from_pipe_begin(struct splice_desc *sd)
886 sd->num_spliced = 0;
887 sd->need_wakeup = false;
889 EXPORT_SYMBOL(splice_from_pipe_begin);
892 * splice_from_pipe_end - finish splicing from pipe
893 * @pipe: pipe to splice from
894 * @sd: information about the splice operation
896 * Description:
897 * This function will wake up pipe writers if necessary. It should
898 * be called after a loop containing splice_from_pipe_next() and
899 * splice_from_pipe_feed().
901 void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
903 if (sd->need_wakeup)
904 wakeup_pipe_writers(pipe);
906 EXPORT_SYMBOL(splice_from_pipe_end);
909 * __splice_from_pipe - splice data from a pipe to given actor
910 * @pipe: pipe to splice from
911 * @sd: information to @actor
912 * @actor: handler that splices the data
914 * Description:
915 * This function does little more than loop over the pipe and call
916 * @actor to do the actual moving of a single struct pipe_buffer to
917 * the desired destination. See pipe_to_file, pipe_to_sendpage, or
918 * pipe_to_user.
921 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
922 splice_actor *actor)
924 int ret;
926 splice_from_pipe_begin(sd);
927 do {
928 ret = splice_from_pipe_next(pipe, sd);
929 if (ret > 0)
930 ret = splice_from_pipe_feed(pipe, sd, actor);
931 } while (ret > 0);
932 splice_from_pipe_end(pipe, sd);
934 return sd->num_spliced ? sd->num_spliced : ret;
936 EXPORT_SYMBOL(__splice_from_pipe);
939 * splice_from_pipe - splice data from a pipe to a file
940 * @pipe: pipe to splice from
941 * @out: file to splice to
942 * @ppos: position in @out
943 * @len: how many bytes to splice
944 * @flags: splice modifier flags
945 * @actor: handler that splices the data
947 * Description:
948 * See __splice_from_pipe. This function locks the pipe inode,
949 * otherwise it's identical to __splice_from_pipe().
952 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
953 loff_t *ppos, size_t len, unsigned int flags,
954 splice_actor *actor)
956 ssize_t ret;
957 struct splice_desc sd = {
958 .total_len = len,
959 .flags = flags,
960 .pos = *ppos,
961 .u.file = out,
964 pipe_lock(pipe);
965 ret = __splice_from_pipe(pipe, &sd, actor);
966 pipe_unlock(pipe);
968 return ret;
972 * generic_file_splice_write - splice data from a pipe to a file
973 * @pipe: pipe info
974 * @out: file to write to
975 * @ppos: position in @out
976 * @len: number of bytes to splice
977 * @flags: splice modifier flags
979 * Description:
980 * Will either move or copy pages (determined by @flags options) from
981 * the given pipe inode to the given file.
984 ssize_t
985 generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
986 loff_t *ppos, size_t len, unsigned int flags)
988 struct address_space *mapping = out->f_mapping;
989 struct inode *inode = mapping->host;
990 struct splice_desc sd = {
991 .total_len = len,
992 .flags = flags,
993 .pos = *ppos,
994 .u.file = out,
996 ssize_t ret;
998 pipe_lock(pipe);
1000 splice_from_pipe_begin(&sd);
1001 do {
1002 ret = splice_from_pipe_next(pipe, &sd);
1003 if (ret <= 0)
1004 break;
1006 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
1007 ret = file_remove_suid(out);
1008 if (!ret) {
1009 file_update_time(out);
1010 ret = splice_from_pipe_feed(pipe, &sd, pipe_to_file);
1012 mutex_unlock(&inode->i_mutex);
1013 } while (ret > 0);
1014 splice_from_pipe_end(pipe, &sd);
1016 pipe_unlock(pipe);
1018 if (sd.num_spliced)
1019 ret = sd.num_spliced;
1021 if (ret > 0) {
1022 unsigned long nr_pages;
1023 int err;
1025 nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1027 err = generic_write_sync(out, *ppos, ret);
1028 if (err)
1029 ret = err;
1030 else
1031 *ppos += ret;
1032 balance_dirty_pages_ratelimited_nr(mapping, nr_pages);
1035 return ret;
1038 EXPORT_SYMBOL(generic_file_splice_write);
1040 static int write_pipe_buf(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1041 struct splice_desc *sd)
1043 int ret;
1044 void *data;
1046 data = buf->ops->map(pipe, buf, 0);
1047 ret = kernel_write(sd->u.file, data + buf->offset, sd->len, sd->pos);
1048 buf->ops->unmap(pipe, buf, data);
1050 return ret;
1053 static ssize_t default_file_splice_write(struct pipe_inode_info *pipe,
1054 struct file *out, loff_t *ppos,
1055 size_t len, unsigned int flags)
1057 ssize_t ret;
1059 ret = splice_from_pipe(pipe, out, ppos, len, flags, write_pipe_buf);
1060 if (ret > 0)
1061 *ppos += ret;
1063 return ret;
1067 * generic_splice_sendpage - splice data from a pipe to a socket
1068 * @pipe: pipe to splice from
1069 * @out: socket to write to
1070 * @ppos: position in @out
1071 * @len: number of bytes to splice
1072 * @flags: splice modifier flags
1074 * Description:
1075 * Will send @len bytes from the pipe to a network socket. No data copying
1076 * is involved.
1079 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
1080 loff_t *ppos, size_t len, unsigned int flags)
1082 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
1085 EXPORT_SYMBOL(generic_splice_sendpage);
1088 * Attempt to initiate a splice from pipe to file.
1090 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
1091 loff_t *ppos, size_t len, unsigned int flags)
1093 ssize_t (*splice_write)(struct pipe_inode_info *, struct file *,
1094 loff_t *, size_t, unsigned int);
1095 int ret;
1097 if (unlikely(!(out->f_mode & FMODE_WRITE)))
1098 return -EBADF;
1100 if (unlikely(out->f_flags & O_APPEND))
1101 return -EINVAL;
1103 ret = rw_verify_area(WRITE, out, ppos, len);
1104 if (unlikely(ret < 0))
1105 return ret;
1107 if (out->f_op && out->f_op->splice_write)
1108 splice_write = out->f_op->splice_write;
1109 else
1110 splice_write = default_file_splice_write;
1112 return splice_write(pipe, out, ppos, len, flags);
1116 * Attempt to initiate a splice from a file to a pipe.
1118 static long do_splice_to(struct file *in, loff_t *ppos,
1119 struct pipe_inode_info *pipe, size_t len,
1120 unsigned int flags)
1122 ssize_t (*splice_read)(struct file *, loff_t *,
1123 struct pipe_inode_info *, size_t, unsigned int);
1124 int ret;
1126 if (unlikely(!(in->f_mode & FMODE_READ)))
1127 return -EBADF;
1129 ret = rw_verify_area(READ, in, ppos, len);
1130 if (unlikely(ret < 0))
1131 return ret;
1133 if (in->f_op && in->f_op->splice_read)
1134 splice_read = in->f_op->splice_read;
1135 else
1136 splice_read = default_file_splice_read;
1138 return splice_read(in, ppos, pipe, len, flags);
1142 * splice_direct_to_actor - splices data directly between two non-pipes
1143 * @in: file to splice from
1144 * @sd: actor information on where to splice to
1145 * @actor: handles the data splicing
1147 * Description:
1148 * This is a special case helper to splice directly between two
1149 * points, without requiring an explicit pipe. Internally an allocated
1150 * pipe is cached in the process, and reused during the lifetime of
1151 * that process.
1154 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
1155 splice_direct_actor *actor)
1157 struct pipe_inode_info *pipe;
1158 long ret, bytes;
1159 umode_t i_mode;
1160 size_t len;
1161 int i, flags;
1164 * We require the input being a regular file, as we don't want to
1165 * randomly drop data for eg socket -> socket splicing. Use the
1166 * piped splicing for that!
1168 i_mode = in->f_path.dentry->d_inode->i_mode;
1169 if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
1170 return -EINVAL;
1173 * neither in nor out is a pipe, setup an internal pipe attached to
1174 * 'out' and transfer the wanted data from 'in' to 'out' through that
1176 pipe = current->splice_pipe;
1177 if (unlikely(!pipe)) {
1178 pipe = alloc_pipe_info(NULL);
1179 if (!pipe)
1180 return -ENOMEM;
1183 * We don't have an immediate reader, but we'll read the stuff
1184 * out of the pipe right after the splice_to_pipe(). So set
1185 * PIPE_READERS appropriately.
1187 pipe->readers = 1;
1189 current->splice_pipe = pipe;
1193 * Do the splice.
1195 ret = 0;
1196 bytes = 0;
1197 len = sd->total_len;
1198 flags = sd->flags;
1201 * Don't block on output, we have to drain the direct pipe.
1203 sd->flags &= ~SPLICE_F_NONBLOCK;
1205 while (len) {
1206 size_t read_len;
1207 loff_t pos = sd->pos, prev_pos = pos;
1209 ret = do_splice_to(in, &pos, pipe, len, flags);
1210 if (unlikely(ret <= 0))
1211 goto out_release;
1213 read_len = ret;
1214 sd->total_len = read_len;
1217 * NOTE: nonblocking mode only applies to the input. We
1218 * must not do the output in nonblocking mode as then we
1219 * could get stuck data in the internal pipe:
1221 ret = actor(pipe, sd);
1222 if (unlikely(ret <= 0)) {
1223 sd->pos = prev_pos;
1224 goto out_release;
1227 bytes += ret;
1228 len -= ret;
1229 sd->pos = pos;
1231 if (ret < read_len) {
1232 sd->pos = prev_pos + ret;
1233 goto out_release;
1237 done:
1238 pipe->nrbufs = pipe->curbuf = 0;
1239 file_accessed(in);
1240 return bytes;
1242 out_release:
1244 * If we did an incomplete transfer we must release
1245 * the pipe buffers in question:
1247 for (i = 0; i < pipe->buffers; i++) {
1248 struct pipe_buffer *buf = pipe->bufs + i;
1250 if (buf->ops) {
1251 buf->ops->release(pipe, buf);
1252 buf->ops = NULL;
1256 if (!bytes)
1257 bytes = ret;
1259 goto done;
1261 EXPORT_SYMBOL(splice_direct_to_actor);
1263 static int direct_splice_actor(struct pipe_inode_info *pipe,
1264 struct splice_desc *sd)
1266 struct file *file = sd->u.file;
1268 return do_splice_from(pipe, file, &file->f_pos, sd->total_len,
1269 sd->flags);
1273 * do_splice_direct - splices data directly between two files
1274 * @in: file to splice from
1275 * @ppos: input file offset
1276 * @out: file to splice to
1277 * @len: number of bytes to splice
1278 * @flags: splice modifier flags
1280 * Description:
1281 * For use by do_sendfile(). splice can easily emulate sendfile, but
1282 * doing it in the application would incur an extra system call
1283 * (splice in + splice out, as compared to just sendfile()). So this helper
1284 * can splice directly through a process-private pipe.
1287 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1288 size_t len, unsigned int flags)
1290 struct splice_desc sd = {
1291 .len = len,
1292 .total_len = len,
1293 .flags = flags,
1294 .pos = *ppos,
1295 .u.file = out,
1297 long ret;
1299 ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1300 if (ret > 0)
1301 *ppos = sd.pos;
1303 return ret;
1306 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1307 struct pipe_inode_info *opipe,
1308 size_t len, unsigned int flags);
1311 * Determine where to splice to/from.
1313 static long do_splice(struct file *in, loff_t __user *off_in,
1314 struct file *out, loff_t __user *off_out,
1315 size_t len, unsigned int flags)
1317 struct pipe_inode_info *ipipe;
1318 struct pipe_inode_info *opipe;
1319 loff_t offset, *off;
1320 long ret;
1322 ipipe = get_pipe_info(in);
1323 opipe = get_pipe_info(out);
1325 if (ipipe && opipe) {
1326 if (off_in || off_out)
1327 return -ESPIPE;
1329 if (!(in->f_mode & FMODE_READ))
1330 return -EBADF;
1332 if (!(out->f_mode & FMODE_WRITE))
1333 return -EBADF;
1335 /* Splicing to self would be fun, but... */
1336 if (ipipe == opipe)
1337 return -EINVAL;
1339 return splice_pipe_to_pipe(ipipe, opipe, len, flags);
1342 if (ipipe) {
1343 if (off_in)
1344 return -ESPIPE;
1345 if (off_out) {
1346 if (!(out->f_mode & FMODE_PWRITE))
1347 return -EINVAL;
1348 if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1349 return -EFAULT;
1350 off = &offset;
1351 } else
1352 off = &out->f_pos;
1354 ret = do_splice_from(ipipe, out, off, len, flags);
1356 if (off_out && copy_to_user(off_out, off, sizeof(loff_t)))
1357 ret = -EFAULT;
1359 return ret;
1362 if (opipe) {
1363 if (off_out)
1364 return -ESPIPE;
1365 if (off_in) {
1366 if (!(in->f_mode & FMODE_PREAD))
1367 return -EINVAL;
1368 if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1369 return -EFAULT;
1370 off = &offset;
1371 } else
1372 off = &in->f_pos;
1374 ret = do_splice_to(in, off, opipe, len, flags);
1376 if (off_in && copy_to_user(off_in, off, sizeof(loff_t)))
1377 ret = -EFAULT;
1379 return ret;
1382 return -EINVAL;
1386 * Map an iov into an array of pages and offset/length tupples. With the
1387 * partial_page structure, we can map several non-contiguous ranges into
1388 * our ones pages[] map instead of splitting that operation into pieces.
1389 * Could easily be exported as a generic helper for other users, in which
1390 * case one would probably want to add a 'max_nr_pages' parameter as well.
1392 static int get_iovec_page_array(const struct iovec __user *iov,
1393 unsigned int nr_vecs, struct page **pages,
1394 struct partial_page *partial, int aligned,
1395 unsigned int pipe_buffers)
1397 int buffers = 0, error = 0;
1399 while (nr_vecs) {
1400 unsigned long off, npages;
1401 struct iovec entry;
1402 void __user *base;
1403 size_t len;
1404 int i;
1406 error = -EFAULT;
1407 if (copy_from_user(&entry, iov, sizeof(entry)))
1408 break;
1410 base = entry.iov_base;
1411 len = entry.iov_len;
1414 * Sanity check this iovec. 0 read succeeds.
1416 error = 0;
1417 if (unlikely(!len))
1418 break;
1419 error = -EFAULT;
1420 if (!access_ok(VERIFY_READ, base, len))
1421 break;
1424 * Get this base offset and number of pages, then map
1425 * in the user pages.
1427 off = (unsigned long) base & ~PAGE_MASK;
1430 * If asked for alignment, the offset must be zero and the
1431 * length a multiple of the PAGE_SIZE.
1433 error = -EINVAL;
1434 if (aligned && (off || len & ~PAGE_MASK))
1435 break;
1437 npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1438 if (npages > pipe_buffers - buffers)
1439 npages = pipe_buffers - buffers;
1441 error = get_user_pages_fast((unsigned long)base, npages,
1442 0, &pages[buffers]);
1444 if (unlikely(error <= 0))
1445 break;
1448 * Fill this contiguous range into the partial page map.
1450 for (i = 0; i < error; i++) {
1451 const int plen = min_t(size_t, len, PAGE_SIZE - off);
1453 partial[buffers].offset = off;
1454 partial[buffers].len = plen;
1456 off = 0;
1457 len -= plen;
1458 buffers++;
1462 * We didn't complete this iov, stop here since it probably
1463 * means we have to move some of this into a pipe to
1464 * be able to continue.
1466 if (len)
1467 break;
1470 * Don't continue if we mapped fewer pages than we asked for,
1471 * or if we mapped the max number of pages that we have
1472 * room for.
1474 if (error < npages || buffers == pipe_buffers)
1475 break;
1477 nr_vecs--;
1478 iov++;
1481 if (buffers)
1482 return buffers;
1484 return error;
1487 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1488 struct splice_desc *sd)
1490 char *src;
1491 int ret;
1494 * See if we can use the atomic maps, by prefaulting in the
1495 * pages and doing an atomic copy
1497 if (!fault_in_pages_writeable(sd->u.userptr, sd->len)) {
1498 src = buf->ops->map(pipe, buf, 1);
1499 ret = __copy_to_user_inatomic(sd->u.userptr, src + buf->offset,
1500 sd->len);
1501 buf->ops->unmap(pipe, buf, src);
1502 if (!ret) {
1503 ret = sd->len;
1504 goto out;
1509 * No dice, use slow non-atomic map and copy
1511 src = buf->ops->map(pipe, buf, 0);
1513 ret = sd->len;
1514 if (copy_to_user(sd->u.userptr, src + buf->offset, sd->len))
1515 ret = -EFAULT;
1517 buf->ops->unmap(pipe, buf, src);
1518 out:
1519 if (ret > 0)
1520 sd->u.userptr += ret;
1521 return ret;
1525 * For lack of a better implementation, implement vmsplice() to userspace
1526 * as a simple copy of the pipes pages to the user iov.
1528 static long vmsplice_to_user(struct file *file, const struct iovec __user *iov,
1529 unsigned long nr_segs, unsigned int flags)
1531 struct pipe_inode_info *pipe;
1532 struct splice_desc sd;
1533 ssize_t size;
1534 int error;
1535 long ret;
1537 pipe = get_pipe_info(file);
1538 if (!pipe)
1539 return -EBADF;
1541 pipe_lock(pipe);
1543 error = ret = 0;
1544 while (nr_segs) {
1545 void __user *base;
1546 size_t len;
1549 * Get user address base and length for this iovec.
1551 error = get_user(base, &iov->iov_base);
1552 if (unlikely(error))
1553 break;
1554 error = get_user(len, &iov->iov_len);
1555 if (unlikely(error))
1556 break;
1559 * Sanity check this iovec. 0 read succeeds.
1561 if (unlikely(!len))
1562 break;
1563 if (unlikely(!base)) {
1564 error = -EFAULT;
1565 break;
1568 if (unlikely(!access_ok(VERIFY_WRITE, base, len))) {
1569 error = -EFAULT;
1570 break;
1573 sd.len = 0;
1574 sd.total_len = len;
1575 sd.flags = flags;
1576 sd.u.userptr = base;
1577 sd.pos = 0;
1579 size = __splice_from_pipe(pipe, &sd, pipe_to_user);
1580 if (size < 0) {
1581 if (!ret)
1582 ret = size;
1584 break;
1587 ret += size;
1589 if (size < len)
1590 break;
1592 nr_segs--;
1593 iov++;
1596 pipe_unlock(pipe);
1598 if (!ret)
1599 ret = error;
1601 return ret;
1605 * vmsplice splices a user address range into a pipe. It can be thought of
1606 * as splice-from-memory, where the regular splice is splice-from-file (or
1607 * to file). In both cases the output is a pipe, naturally.
1609 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov,
1610 unsigned long nr_segs, unsigned int flags)
1612 struct pipe_inode_info *pipe;
1613 struct page *pages[PIPE_DEF_BUFFERS];
1614 struct partial_page partial[PIPE_DEF_BUFFERS];
1615 struct splice_pipe_desc spd = {
1616 .pages = pages,
1617 .partial = partial,
1618 .flags = flags,
1619 .ops = &user_page_pipe_buf_ops,
1620 .spd_release = spd_release_page,
1622 long ret;
1624 pipe = get_pipe_info(file);
1625 if (!pipe)
1626 return -EBADF;
1628 if (splice_grow_spd(pipe, &spd))
1629 return -ENOMEM;
1631 spd.nr_pages = get_iovec_page_array(iov, nr_segs, spd.pages,
1632 spd.partial, flags & SPLICE_F_GIFT,
1633 pipe->buffers);
1634 if (spd.nr_pages <= 0)
1635 ret = spd.nr_pages;
1636 else
1637 ret = splice_to_pipe(pipe, &spd);
1639 splice_shrink_spd(pipe, &spd);
1640 return ret;
1644 * Note that vmsplice only really supports true splicing _from_ user memory
1645 * to a pipe, not the other way around. Splicing from user memory is a simple
1646 * operation that can be supported without any funky alignment restrictions
1647 * or nasty vm tricks. We simply map in the user memory and fill them into
1648 * a pipe. The reverse isn't quite as easy, though. There are two possible
1649 * solutions for that:
1651 * - memcpy() the data internally, at which point we might as well just
1652 * do a regular read() on the buffer anyway.
1653 * - Lots of nasty vm tricks, that are neither fast nor flexible (it
1654 * has restriction limitations on both ends of the pipe).
1656 * Currently we punt and implement it as a normal copy, see pipe_to_user().
1659 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov,
1660 unsigned long, nr_segs, unsigned int, flags)
1662 struct file *file;
1663 long error;
1664 int fput;
1666 if (unlikely(nr_segs > UIO_MAXIOV))
1667 return -EINVAL;
1668 else if (unlikely(!nr_segs))
1669 return 0;
1671 error = -EBADF;
1672 file = fget_light(fd, &fput);
1673 if (file) {
1674 if (file->f_mode & FMODE_WRITE)
1675 error = vmsplice_to_pipe(file, iov, nr_segs, flags);
1676 else if (file->f_mode & FMODE_READ)
1677 error = vmsplice_to_user(file, iov, nr_segs, flags);
1679 fput_light(file, fput);
1682 return error;
1685 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1686 int, fd_out, loff_t __user *, off_out,
1687 size_t, len, unsigned int, flags)
1689 long error;
1690 struct file *in, *out;
1691 int fput_in, fput_out;
1693 if (unlikely(!len))
1694 return 0;
1696 error = -EBADF;
1697 in = fget_light(fd_in, &fput_in);
1698 if (in) {
1699 if (in->f_mode & FMODE_READ) {
1700 out = fget_light(fd_out, &fput_out);
1701 if (out) {
1702 if (out->f_mode & FMODE_WRITE)
1703 error = do_splice(in, off_in,
1704 out, off_out,
1705 len, flags);
1706 fput_light(out, fput_out);
1710 fput_light(in, fput_in);
1713 return error;
1717 * Make sure there's data to read. Wait for input if we can, otherwise
1718 * return an appropriate error.
1720 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1722 int ret;
1725 * Check ->nrbufs without the inode lock first. This function
1726 * is speculative anyways, so missing one is ok.
1728 if (pipe->nrbufs)
1729 return 0;
1731 ret = 0;
1732 pipe_lock(pipe);
1734 while (!pipe->nrbufs) {
1735 if (signal_pending(current)) {
1736 ret = -ERESTARTSYS;
1737 break;
1739 if (!pipe->writers)
1740 break;
1741 if (!pipe->waiting_writers) {
1742 if (flags & SPLICE_F_NONBLOCK) {
1743 ret = -EAGAIN;
1744 break;
1747 pipe_wait(pipe);
1750 pipe_unlock(pipe);
1751 return ret;
1755 * Make sure there's writeable room. Wait for room if we can, otherwise
1756 * return an appropriate error.
1758 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1760 int ret;
1763 * Check ->nrbufs without the inode lock first. This function
1764 * is speculative anyways, so missing one is ok.
1766 if (pipe->nrbufs < pipe->buffers)
1767 return 0;
1769 ret = 0;
1770 pipe_lock(pipe);
1772 while (pipe->nrbufs >= pipe->buffers) {
1773 if (!pipe->readers) {
1774 send_sig(SIGPIPE, current, 0);
1775 ret = -EPIPE;
1776 break;
1778 if (flags & SPLICE_F_NONBLOCK) {
1779 ret = -EAGAIN;
1780 break;
1782 if (signal_pending(current)) {
1783 ret = -ERESTARTSYS;
1784 break;
1786 pipe->waiting_writers++;
1787 pipe_wait(pipe);
1788 pipe->waiting_writers--;
1791 pipe_unlock(pipe);
1792 return ret;
1796 * Splice contents of ipipe to opipe.
1798 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1799 struct pipe_inode_info *opipe,
1800 size_t len, unsigned int flags)
1802 struct pipe_buffer *ibuf, *obuf;
1803 int ret = 0, nbuf;
1804 bool input_wakeup = false;
1807 retry:
1808 ret = ipipe_prep(ipipe, flags);
1809 if (ret)
1810 return ret;
1812 ret = opipe_prep(opipe, flags);
1813 if (ret)
1814 return ret;
1817 * Potential ABBA deadlock, work around it by ordering lock
1818 * grabbing by pipe info address. Otherwise two different processes
1819 * could deadlock (one doing tee from A -> B, the other from B -> A).
1821 pipe_double_lock(ipipe, opipe);
1823 do {
1824 if (!opipe->readers) {
1825 send_sig(SIGPIPE, current, 0);
1826 if (!ret)
1827 ret = -EPIPE;
1828 break;
1831 if (!ipipe->nrbufs && !ipipe->writers)
1832 break;
1835 * Cannot make any progress, because either the input
1836 * pipe is empty or the output pipe is full.
1838 if (!ipipe->nrbufs || opipe->nrbufs >= opipe->buffers) {
1839 /* Already processed some buffers, break */
1840 if (ret)
1841 break;
1843 if (flags & SPLICE_F_NONBLOCK) {
1844 ret = -EAGAIN;
1845 break;
1849 * We raced with another reader/writer and haven't
1850 * managed to process any buffers. A zero return
1851 * value means EOF, so retry instead.
1853 pipe_unlock(ipipe);
1854 pipe_unlock(opipe);
1855 goto retry;
1858 ibuf = ipipe->bufs + ipipe->curbuf;
1859 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1860 obuf = opipe->bufs + nbuf;
1862 if (len >= ibuf->len) {
1864 * Simply move the whole buffer from ipipe to opipe
1866 *obuf = *ibuf;
1867 ibuf->ops = NULL;
1868 opipe->nrbufs++;
1869 ipipe->curbuf = (ipipe->curbuf + 1) & (ipipe->buffers - 1);
1870 ipipe->nrbufs--;
1871 input_wakeup = true;
1872 } else {
1874 * Get a reference to this pipe buffer,
1875 * so we can copy the contents over.
1877 ibuf->ops->get(ipipe, ibuf);
1878 *obuf = *ibuf;
1881 * Don't inherit the gift flag, we need to
1882 * prevent multiple steals of this page.
1884 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1886 obuf->len = len;
1887 opipe->nrbufs++;
1888 ibuf->offset += obuf->len;
1889 ibuf->len -= obuf->len;
1891 ret += obuf->len;
1892 len -= obuf->len;
1893 } while (len);
1895 pipe_unlock(ipipe);
1896 pipe_unlock(opipe);
1899 * If we put data in the output pipe, wakeup any potential readers.
1901 if (ret > 0)
1902 wakeup_pipe_readers(opipe);
1904 if (input_wakeup)
1905 wakeup_pipe_writers(ipipe);
1907 return ret;
1911 * Link contents of ipipe to opipe.
1913 static int link_pipe(struct pipe_inode_info *ipipe,
1914 struct pipe_inode_info *opipe,
1915 size_t len, unsigned int flags)
1917 struct pipe_buffer *ibuf, *obuf;
1918 int ret = 0, i = 0, nbuf;
1921 * Potential ABBA deadlock, work around it by ordering lock
1922 * grabbing by pipe info address. Otherwise two different processes
1923 * could deadlock (one doing tee from A -> B, the other from B -> A).
1925 pipe_double_lock(ipipe, opipe);
1927 do {
1928 if (!opipe->readers) {
1929 send_sig(SIGPIPE, current, 0);
1930 if (!ret)
1931 ret = -EPIPE;
1932 break;
1936 * If we have iterated all input buffers or ran out of
1937 * output room, break.
1939 if (i >= ipipe->nrbufs || opipe->nrbufs >= opipe->buffers)
1940 break;
1942 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (ipipe->buffers-1));
1943 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1946 * Get a reference to this pipe buffer,
1947 * so we can copy the contents over.
1949 ibuf->ops->get(ipipe, ibuf);
1951 obuf = opipe->bufs + nbuf;
1952 *obuf = *ibuf;
1955 * Don't inherit the gift flag, we need to
1956 * prevent multiple steals of this page.
1958 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1960 if (obuf->len > len)
1961 obuf->len = len;
1963 opipe->nrbufs++;
1964 ret += obuf->len;
1965 len -= obuf->len;
1966 i++;
1967 } while (len);
1970 * return EAGAIN if we have the potential of some data in the
1971 * future, otherwise just return 0
1973 if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK))
1974 ret = -EAGAIN;
1976 pipe_unlock(ipipe);
1977 pipe_unlock(opipe);
1980 * If we put data in the output pipe, wakeup any potential readers.
1982 if (ret > 0)
1983 wakeup_pipe_readers(opipe);
1985 return ret;
1989 * This is a tee(1) implementation that works on pipes. It doesn't copy
1990 * any data, it simply references the 'in' pages on the 'out' pipe.
1991 * The 'flags' used are the SPLICE_F_* variants, currently the only
1992 * applicable one is SPLICE_F_NONBLOCK.
1994 static long do_tee(struct file *in, struct file *out, size_t len,
1995 unsigned int flags)
1997 struct pipe_inode_info *ipipe = get_pipe_info(in);
1998 struct pipe_inode_info *opipe = get_pipe_info(out);
1999 int ret = -EINVAL;
2002 * Duplicate the contents of ipipe to opipe without actually
2003 * copying the data.
2005 if (ipipe && opipe && ipipe != opipe) {
2007 * Keep going, unless we encounter an error. The ipipe/opipe
2008 * ordering doesn't really matter.
2010 ret = ipipe_prep(ipipe, flags);
2011 if (!ret) {
2012 ret = opipe_prep(opipe, flags);
2013 if (!ret)
2014 ret = link_pipe(ipipe, opipe, len, flags);
2018 return ret;
2021 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
2023 struct file *in;
2024 int error, fput_in;
2026 if (unlikely(!len))
2027 return 0;
2029 error = -EBADF;
2030 in = fget_light(fdin, &fput_in);
2031 if (in) {
2032 if (in->f_mode & FMODE_READ) {
2033 int fput_out;
2034 struct file *out = fget_light(fdout, &fput_out);
2036 if (out) {
2037 if (out->f_mode & FMODE_WRITE)
2038 error = do_tee(in, out, len, flags);
2039 fput_light(out, fput_out);
2042 fput_light(in, fput_in);
2045 return error;