spi-topcliff-pch: supports a spi mode setup and bit order setup by IO control
[zen-stable.git] / mm / mmap.c
blobda15a79b1441b665b0e4b962eea38a92407018fd
1 /*
2 * mm/mmap.c
4 * Written by obz.
6 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
7 */
9 #include <linux/slab.h>
10 #include <linux/backing-dev.h>
11 #include <linux/mm.h>
12 #include <linux/shm.h>
13 #include <linux/mman.h>
14 #include <linux/pagemap.h>
15 #include <linux/swap.h>
16 #include <linux/syscalls.h>
17 #include <linux/capability.h>
18 #include <linux/init.h>
19 #include <linux/file.h>
20 #include <linux/fs.h>
21 #include <linux/personality.h>
22 #include <linux/security.h>
23 #include <linux/hugetlb.h>
24 #include <linux/profile.h>
25 #include <linux/export.h>
26 #include <linux/mount.h>
27 #include <linux/mempolicy.h>
28 #include <linux/rmap.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/perf_event.h>
31 #include <linux/audit.h>
32 #include <linux/khugepaged.h>
34 #include <asm/uaccess.h>
35 #include <asm/cacheflush.h>
36 #include <asm/tlb.h>
37 #include <asm/mmu_context.h>
39 #include "internal.h"
41 #ifndef arch_mmap_check
42 #define arch_mmap_check(addr, len, flags) (0)
43 #endif
45 #ifndef arch_rebalance_pgtables
46 #define arch_rebalance_pgtables(addr, len) (addr)
47 #endif
49 static void unmap_region(struct mm_struct *mm,
50 struct vm_area_struct *vma, struct vm_area_struct *prev,
51 unsigned long start, unsigned long end);
54 * WARNING: the debugging will use recursive algorithms so never enable this
55 * unless you know what you are doing.
57 #undef DEBUG_MM_RB
59 /* description of effects of mapping type and prot in current implementation.
60 * this is due to the limited x86 page protection hardware. The expected
61 * behavior is in parens:
63 * map_type prot
64 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
65 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
66 * w: (no) no w: (no) no w: (yes) yes w: (no) no
67 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
69 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
70 * w: (no) no w: (no) no w: (copy) copy w: (no) no
71 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
74 pgprot_t protection_map[16] = {
75 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
76 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
79 pgprot_t vm_get_page_prot(unsigned long vm_flags)
81 return __pgprot(pgprot_val(protection_map[vm_flags &
82 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
83 pgprot_val(arch_vm_get_page_prot(vm_flags)));
85 EXPORT_SYMBOL(vm_get_page_prot);
87 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS; /* heuristic overcommit */
88 int sysctl_overcommit_ratio __read_mostly = 50; /* default is 50% */
89 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
91 * Make sure vm_committed_as in one cacheline and not cacheline shared with
92 * other variables. It can be updated by several CPUs frequently.
94 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
97 * Check that a process has enough memory to allocate a new virtual
98 * mapping. 0 means there is enough memory for the allocation to
99 * succeed and -ENOMEM implies there is not.
101 * We currently support three overcommit policies, which are set via the
102 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
104 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
105 * Additional code 2002 Jul 20 by Robert Love.
107 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
109 * Note this is a helper function intended to be used by LSMs which
110 * wish to use this logic.
112 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
114 unsigned long free, allowed;
116 vm_acct_memory(pages);
119 * Sometimes we want to use more memory than we have
121 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
122 return 0;
124 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
125 free = global_page_state(NR_FREE_PAGES);
126 free += global_page_state(NR_FILE_PAGES);
129 * shmem pages shouldn't be counted as free in this
130 * case, they can't be purged, only swapped out, and
131 * that won't affect the overall amount of available
132 * memory in the system.
134 free -= global_page_state(NR_SHMEM);
136 free += nr_swap_pages;
139 * Any slabs which are created with the
140 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
141 * which are reclaimable, under pressure. The dentry
142 * cache and most inode caches should fall into this
144 free += global_page_state(NR_SLAB_RECLAIMABLE);
147 * Leave reserved pages. The pages are not for anonymous pages.
149 if (free <= totalreserve_pages)
150 goto error;
151 else
152 free -= totalreserve_pages;
155 * Leave the last 3% for root
157 if (!cap_sys_admin)
158 free -= free / 32;
160 if (free > pages)
161 return 0;
163 goto error;
166 allowed = (totalram_pages - hugetlb_total_pages())
167 * sysctl_overcommit_ratio / 100;
169 * Leave the last 3% for root
171 if (!cap_sys_admin)
172 allowed -= allowed / 32;
173 allowed += total_swap_pages;
175 /* Don't let a single process grow too big:
176 leave 3% of the size of this process for other processes */
177 if (mm)
178 allowed -= mm->total_vm / 32;
180 if (percpu_counter_read_positive(&vm_committed_as) < allowed)
181 return 0;
182 error:
183 vm_unacct_memory(pages);
185 return -ENOMEM;
189 * Requires inode->i_mapping->i_mmap_mutex
191 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
192 struct file *file, struct address_space *mapping)
194 if (vma->vm_flags & VM_DENYWRITE)
195 atomic_inc(&file->f_path.dentry->d_inode->i_writecount);
196 if (vma->vm_flags & VM_SHARED)
197 mapping->i_mmap_writable--;
199 flush_dcache_mmap_lock(mapping);
200 if (unlikely(vma->vm_flags & VM_NONLINEAR))
201 list_del_init(&vma->shared.vm_set.list);
202 else
203 vma_prio_tree_remove(vma, &mapping->i_mmap);
204 flush_dcache_mmap_unlock(mapping);
208 * Unlink a file-based vm structure from its prio_tree, to hide
209 * vma from rmap and vmtruncate before freeing its page tables.
211 void unlink_file_vma(struct vm_area_struct *vma)
213 struct file *file = vma->vm_file;
215 if (file) {
216 struct address_space *mapping = file->f_mapping;
217 mutex_lock(&mapping->i_mmap_mutex);
218 __remove_shared_vm_struct(vma, file, mapping);
219 mutex_unlock(&mapping->i_mmap_mutex);
224 * Close a vm structure and free it, returning the next.
226 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
228 struct vm_area_struct *next = vma->vm_next;
230 might_sleep();
231 if (vma->vm_ops && vma->vm_ops->close)
232 vma->vm_ops->close(vma);
233 if (vma->vm_file) {
234 fput(vma->vm_file);
235 if (vma->vm_flags & VM_EXECUTABLE)
236 removed_exe_file_vma(vma->vm_mm);
238 mpol_put(vma_policy(vma));
239 kmem_cache_free(vm_area_cachep, vma);
240 return next;
243 SYSCALL_DEFINE1(brk, unsigned long, brk)
245 unsigned long rlim, retval;
246 unsigned long newbrk, oldbrk;
247 struct mm_struct *mm = current->mm;
248 unsigned long min_brk;
250 down_write(&mm->mmap_sem);
252 #ifdef CONFIG_COMPAT_BRK
254 * CONFIG_COMPAT_BRK can still be overridden by setting
255 * randomize_va_space to 2, which will still cause mm->start_brk
256 * to be arbitrarily shifted
258 if (current->brk_randomized)
259 min_brk = mm->start_brk;
260 else
261 min_brk = mm->end_data;
262 #else
263 min_brk = mm->start_brk;
264 #endif
265 if (brk < min_brk)
266 goto out;
269 * Check against rlimit here. If this check is done later after the test
270 * of oldbrk with newbrk then it can escape the test and let the data
271 * segment grow beyond its set limit the in case where the limit is
272 * not page aligned -Ram Gupta
274 rlim = rlimit(RLIMIT_DATA);
275 if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
276 (mm->end_data - mm->start_data) > rlim)
277 goto out;
279 newbrk = PAGE_ALIGN(brk);
280 oldbrk = PAGE_ALIGN(mm->brk);
281 if (oldbrk == newbrk)
282 goto set_brk;
284 /* Always allow shrinking brk. */
285 if (brk <= mm->brk) {
286 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
287 goto set_brk;
288 goto out;
291 /* Check against existing mmap mappings. */
292 if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
293 goto out;
295 /* Ok, looks good - let it rip. */
296 if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
297 goto out;
298 set_brk:
299 mm->brk = brk;
300 out:
301 retval = mm->brk;
302 up_write(&mm->mmap_sem);
303 return retval;
306 #ifdef DEBUG_MM_RB
307 static int browse_rb(struct rb_root *root)
309 int i = 0, j;
310 struct rb_node *nd, *pn = NULL;
311 unsigned long prev = 0, pend = 0;
313 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
314 struct vm_area_struct *vma;
315 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
316 if (vma->vm_start < prev)
317 printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1;
318 if (vma->vm_start < pend)
319 printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
320 if (vma->vm_start > vma->vm_end)
321 printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start);
322 i++;
323 pn = nd;
324 prev = vma->vm_start;
325 pend = vma->vm_end;
327 j = 0;
328 for (nd = pn; nd; nd = rb_prev(nd)) {
329 j++;
331 if (i != j)
332 printk("backwards %d, forwards %d\n", j, i), i = 0;
333 return i;
336 void validate_mm(struct mm_struct *mm)
338 int bug = 0;
339 int i = 0;
340 struct vm_area_struct *tmp = mm->mmap;
341 while (tmp) {
342 tmp = tmp->vm_next;
343 i++;
345 if (i != mm->map_count)
346 printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1;
347 i = browse_rb(&mm->mm_rb);
348 if (i != mm->map_count)
349 printk("map_count %d rb %d\n", mm->map_count, i), bug = 1;
350 BUG_ON(bug);
352 #else
353 #define validate_mm(mm) do { } while (0)
354 #endif
356 static struct vm_area_struct *
357 find_vma_prepare(struct mm_struct *mm, unsigned long addr,
358 struct vm_area_struct **pprev, struct rb_node ***rb_link,
359 struct rb_node ** rb_parent)
361 struct vm_area_struct * vma;
362 struct rb_node ** __rb_link, * __rb_parent, * rb_prev;
364 __rb_link = &mm->mm_rb.rb_node;
365 rb_prev = __rb_parent = NULL;
366 vma = NULL;
368 while (*__rb_link) {
369 struct vm_area_struct *vma_tmp;
371 __rb_parent = *__rb_link;
372 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
374 if (vma_tmp->vm_end > addr) {
375 vma = vma_tmp;
376 if (vma_tmp->vm_start <= addr)
377 break;
378 __rb_link = &__rb_parent->rb_left;
379 } else {
380 rb_prev = __rb_parent;
381 __rb_link = &__rb_parent->rb_right;
385 *pprev = NULL;
386 if (rb_prev)
387 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
388 *rb_link = __rb_link;
389 *rb_parent = __rb_parent;
390 return vma;
393 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
394 struct rb_node **rb_link, struct rb_node *rb_parent)
396 rb_link_node(&vma->vm_rb, rb_parent, rb_link);
397 rb_insert_color(&vma->vm_rb, &mm->mm_rb);
400 static void __vma_link_file(struct vm_area_struct *vma)
402 struct file *file;
404 file = vma->vm_file;
405 if (file) {
406 struct address_space *mapping = file->f_mapping;
408 if (vma->vm_flags & VM_DENYWRITE)
409 atomic_dec(&file->f_path.dentry->d_inode->i_writecount);
410 if (vma->vm_flags & VM_SHARED)
411 mapping->i_mmap_writable++;
413 flush_dcache_mmap_lock(mapping);
414 if (unlikely(vma->vm_flags & VM_NONLINEAR))
415 vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
416 else
417 vma_prio_tree_insert(vma, &mapping->i_mmap);
418 flush_dcache_mmap_unlock(mapping);
422 static void
423 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
424 struct vm_area_struct *prev, struct rb_node **rb_link,
425 struct rb_node *rb_parent)
427 __vma_link_list(mm, vma, prev, rb_parent);
428 __vma_link_rb(mm, vma, rb_link, rb_parent);
431 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
432 struct vm_area_struct *prev, struct rb_node **rb_link,
433 struct rb_node *rb_parent)
435 struct address_space *mapping = NULL;
437 if (vma->vm_file)
438 mapping = vma->vm_file->f_mapping;
440 if (mapping)
441 mutex_lock(&mapping->i_mmap_mutex);
443 __vma_link(mm, vma, prev, rb_link, rb_parent);
444 __vma_link_file(vma);
446 if (mapping)
447 mutex_unlock(&mapping->i_mmap_mutex);
449 mm->map_count++;
450 validate_mm(mm);
454 * Helper for vma_adjust in the split_vma insert case:
455 * insert vm structure into list and rbtree and anon_vma,
456 * but it has already been inserted into prio_tree earlier.
458 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
460 struct vm_area_struct *__vma, *prev;
461 struct rb_node **rb_link, *rb_parent;
463 __vma = find_vma_prepare(mm, vma->vm_start,&prev, &rb_link, &rb_parent);
464 BUG_ON(__vma && __vma->vm_start < vma->vm_end);
465 __vma_link(mm, vma, prev, rb_link, rb_parent);
466 mm->map_count++;
469 static inline void
470 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
471 struct vm_area_struct *prev)
473 struct vm_area_struct *next = vma->vm_next;
475 prev->vm_next = next;
476 if (next)
477 next->vm_prev = prev;
478 rb_erase(&vma->vm_rb, &mm->mm_rb);
479 if (mm->mmap_cache == vma)
480 mm->mmap_cache = prev;
484 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
485 * is already present in an i_mmap tree without adjusting the tree.
486 * The following helper function should be used when such adjustments
487 * are necessary. The "insert" vma (if any) is to be inserted
488 * before we drop the necessary locks.
490 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
491 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
493 struct mm_struct *mm = vma->vm_mm;
494 struct vm_area_struct *next = vma->vm_next;
495 struct vm_area_struct *importer = NULL;
496 struct address_space *mapping = NULL;
497 struct prio_tree_root *root = NULL;
498 struct anon_vma *anon_vma = NULL;
499 struct file *file = vma->vm_file;
500 long adjust_next = 0;
501 int remove_next = 0;
503 if (next && !insert) {
504 struct vm_area_struct *exporter = NULL;
506 if (end >= next->vm_end) {
508 * vma expands, overlapping all the next, and
509 * perhaps the one after too (mprotect case 6).
511 again: remove_next = 1 + (end > next->vm_end);
512 end = next->vm_end;
513 exporter = next;
514 importer = vma;
515 } else if (end > next->vm_start) {
517 * vma expands, overlapping part of the next:
518 * mprotect case 5 shifting the boundary up.
520 adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
521 exporter = next;
522 importer = vma;
523 } else if (end < vma->vm_end) {
525 * vma shrinks, and !insert tells it's not
526 * split_vma inserting another: so it must be
527 * mprotect case 4 shifting the boundary down.
529 adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
530 exporter = vma;
531 importer = next;
535 * Easily overlooked: when mprotect shifts the boundary,
536 * make sure the expanding vma has anon_vma set if the
537 * shrinking vma had, to cover any anon pages imported.
539 if (exporter && exporter->anon_vma && !importer->anon_vma) {
540 if (anon_vma_clone(importer, exporter))
541 return -ENOMEM;
542 importer->anon_vma = exporter->anon_vma;
546 if (file) {
547 mapping = file->f_mapping;
548 if (!(vma->vm_flags & VM_NONLINEAR))
549 root = &mapping->i_mmap;
550 mutex_lock(&mapping->i_mmap_mutex);
551 if (insert) {
553 * Put into prio_tree now, so instantiated pages
554 * are visible to arm/parisc __flush_dcache_page
555 * throughout; but we cannot insert into address
556 * space until vma start or end is updated.
558 __vma_link_file(insert);
562 vma_adjust_trans_huge(vma, start, end, adjust_next);
565 * When changing only vma->vm_end, we don't really need anon_vma
566 * lock. This is a fairly rare case by itself, but the anon_vma
567 * lock may be shared between many sibling processes. Skipping
568 * the lock for brk adjustments makes a difference sometimes.
570 if (vma->anon_vma && (importer || start != vma->vm_start)) {
571 anon_vma = vma->anon_vma;
572 anon_vma_lock(anon_vma);
575 if (root) {
576 flush_dcache_mmap_lock(mapping);
577 vma_prio_tree_remove(vma, root);
578 if (adjust_next)
579 vma_prio_tree_remove(next, root);
582 vma->vm_start = start;
583 vma->vm_end = end;
584 vma->vm_pgoff = pgoff;
585 if (adjust_next) {
586 next->vm_start += adjust_next << PAGE_SHIFT;
587 next->vm_pgoff += adjust_next;
590 if (root) {
591 if (adjust_next)
592 vma_prio_tree_insert(next, root);
593 vma_prio_tree_insert(vma, root);
594 flush_dcache_mmap_unlock(mapping);
597 if (remove_next) {
599 * vma_merge has merged next into vma, and needs
600 * us to remove next before dropping the locks.
602 __vma_unlink(mm, next, vma);
603 if (file)
604 __remove_shared_vm_struct(next, file, mapping);
605 } else if (insert) {
607 * split_vma has split insert from vma, and needs
608 * us to insert it before dropping the locks
609 * (it may either follow vma or precede it).
611 __insert_vm_struct(mm, insert);
614 if (anon_vma)
615 anon_vma_unlock(anon_vma);
616 if (mapping)
617 mutex_unlock(&mapping->i_mmap_mutex);
619 if (remove_next) {
620 if (file) {
621 fput(file);
622 if (next->vm_flags & VM_EXECUTABLE)
623 removed_exe_file_vma(mm);
625 if (next->anon_vma)
626 anon_vma_merge(vma, next);
627 mm->map_count--;
628 mpol_put(vma_policy(next));
629 kmem_cache_free(vm_area_cachep, next);
631 * In mprotect's case 6 (see comments on vma_merge),
632 * we must remove another next too. It would clutter
633 * up the code too much to do both in one go.
635 if (remove_next == 2) {
636 next = vma->vm_next;
637 goto again;
641 validate_mm(mm);
643 return 0;
647 * If the vma has a ->close operation then the driver probably needs to release
648 * per-vma resources, so we don't attempt to merge those.
650 static inline int is_mergeable_vma(struct vm_area_struct *vma,
651 struct file *file, unsigned long vm_flags)
653 /* VM_CAN_NONLINEAR may get set later by f_op->mmap() */
654 if ((vma->vm_flags ^ vm_flags) & ~VM_CAN_NONLINEAR)
655 return 0;
656 if (vma->vm_file != file)
657 return 0;
658 if (vma->vm_ops && vma->vm_ops->close)
659 return 0;
660 return 1;
663 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
664 struct anon_vma *anon_vma2,
665 struct vm_area_struct *vma)
668 * The list_is_singular() test is to avoid merging VMA cloned from
669 * parents. This can improve scalability caused by anon_vma lock.
671 if ((!anon_vma1 || !anon_vma2) && (!vma ||
672 list_is_singular(&vma->anon_vma_chain)))
673 return 1;
674 return anon_vma1 == anon_vma2;
678 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
679 * in front of (at a lower virtual address and file offset than) the vma.
681 * We cannot merge two vmas if they have differently assigned (non-NULL)
682 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
684 * We don't check here for the merged mmap wrapping around the end of pagecache
685 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
686 * wrap, nor mmaps which cover the final page at index -1UL.
688 static int
689 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
690 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
692 if (is_mergeable_vma(vma, file, vm_flags) &&
693 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
694 if (vma->vm_pgoff == vm_pgoff)
695 return 1;
697 return 0;
701 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
702 * beyond (at a higher virtual address and file offset than) the vma.
704 * We cannot merge two vmas if they have differently assigned (non-NULL)
705 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
707 static int
708 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
709 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
711 if (is_mergeable_vma(vma, file, vm_flags) &&
712 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
713 pgoff_t vm_pglen;
714 vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
715 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
716 return 1;
718 return 0;
722 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
723 * whether that can be merged with its predecessor or its successor.
724 * Or both (it neatly fills a hole).
726 * In most cases - when called for mmap, brk or mremap - [addr,end) is
727 * certain not to be mapped by the time vma_merge is called; but when
728 * called for mprotect, it is certain to be already mapped (either at
729 * an offset within prev, or at the start of next), and the flags of
730 * this area are about to be changed to vm_flags - and the no-change
731 * case has already been eliminated.
733 * The following mprotect cases have to be considered, where AAAA is
734 * the area passed down from mprotect_fixup, never extending beyond one
735 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
737 * AAAA AAAA AAAA AAAA
738 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
739 * cannot merge might become might become might become
740 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
741 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
742 * mremap move: PPPPNNNNNNNN 8
743 * AAAA
744 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
745 * might become case 1 below case 2 below case 3 below
747 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
748 * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
750 struct vm_area_struct *vma_merge(struct mm_struct *mm,
751 struct vm_area_struct *prev, unsigned long addr,
752 unsigned long end, unsigned long vm_flags,
753 struct anon_vma *anon_vma, struct file *file,
754 pgoff_t pgoff, struct mempolicy *policy)
756 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
757 struct vm_area_struct *area, *next;
758 int err;
761 * We later require that vma->vm_flags == vm_flags,
762 * so this tests vma->vm_flags & VM_SPECIAL, too.
764 if (vm_flags & VM_SPECIAL)
765 return NULL;
767 if (prev)
768 next = prev->vm_next;
769 else
770 next = mm->mmap;
771 area = next;
772 if (next && next->vm_end == end) /* cases 6, 7, 8 */
773 next = next->vm_next;
776 * Can it merge with the predecessor?
778 if (prev && prev->vm_end == addr &&
779 mpol_equal(vma_policy(prev), policy) &&
780 can_vma_merge_after(prev, vm_flags,
781 anon_vma, file, pgoff)) {
783 * OK, it can. Can we now merge in the successor as well?
785 if (next && end == next->vm_start &&
786 mpol_equal(policy, vma_policy(next)) &&
787 can_vma_merge_before(next, vm_flags,
788 anon_vma, file, pgoff+pglen) &&
789 is_mergeable_anon_vma(prev->anon_vma,
790 next->anon_vma, NULL)) {
791 /* cases 1, 6 */
792 err = vma_adjust(prev, prev->vm_start,
793 next->vm_end, prev->vm_pgoff, NULL);
794 } else /* cases 2, 5, 7 */
795 err = vma_adjust(prev, prev->vm_start,
796 end, prev->vm_pgoff, NULL);
797 if (err)
798 return NULL;
799 khugepaged_enter_vma_merge(prev);
800 return prev;
804 * Can this new request be merged in front of next?
806 if (next && end == next->vm_start &&
807 mpol_equal(policy, vma_policy(next)) &&
808 can_vma_merge_before(next, vm_flags,
809 anon_vma, file, pgoff+pglen)) {
810 if (prev && addr < prev->vm_end) /* case 4 */
811 err = vma_adjust(prev, prev->vm_start,
812 addr, prev->vm_pgoff, NULL);
813 else /* cases 3, 8 */
814 err = vma_adjust(area, addr, next->vm_end,
815 next->vm_pgoff - pglen, NULL);
816 if (err)
817 return NULL;
818 khugepaged_enter_vma_merge(area);
819 return area;
822 return NULL;
826 * Rough compatbility check to quickly see if it's even worth looking
827 * at sharing an anon_vma.
829 * They need to have the same vm_file, and the flags can only differ
830 * in things that mprotect may change.
832 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
833 * we can merge the two vma's. For example, we refuse to merge a vma if
834 * there is a vm_ops->close() function, because that indicates that the
835 * driver is doing some kind of reference counting. But that doesn't
836 * really matter for the anon_vma sharing case.
838 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
840 return a->vm_end == b->vm_start &&
841 mpol_equal(vma_policy(a), vma_policy(b)) &&
842 a->vm_file == b->vm_file &&
843 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC)) &&
844 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
848 * Do some basic sanity checking to see if we can re-use the anon_vma
849 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
850 * the same as 'old', the other will be the new one that is trying
851 * to share the anon_vma.
853 * NOTE! This runs with mm_sem held for reading, so it is possible that
854 * the anon_vma of 'old' is concurrently in the process of being set up
855 * by another page fault trying to merge _that_. But that's ok: if it
856 * is being set up, that automatically means that it will be a singleton
857 * acceptable for merging, so we can do all of this optimistically. But
858 * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
860 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
861 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
862 * is to return an anon_vma that is "complex" due to having gone through
863 * a fork).
865 * We also make sure that the two vma's are compatible (adjacent,
866 * and with the same memory policies). That's all stable, even with just
867 * a read lock on the mm_sem.
869 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
871 if (anon_vma_compatible(a, b)) {
872 struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma);
874 if (anon_vma && list_is_singular(&old->anon_vma_chain))
875 return anon_vma;
877 return NULL;
881 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
882 * neighbouring vmas for a suitable anon_vma, before it goes off
883 * to allocate a new anon_vma. It checks because a repetitive
884 * sequence of mprotects and faults may otherwise lead to distinct
885 * anon_vmas being allocated, preventing vma merge in subsequent
886 * mprotect.
888 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
890 struct anon_vma *anon_vma;
891 struct vm_area_struct *near;
893 near = vma->vm_next;
894 if (!near)
895 goto try_prev;
897 anon_vma = reusable_anon_vma(near, vma, near);
898 if (anon_vma)
899 return anon_vma;
900 try_prev:
901 near = vma->vm_prev;
902 if (!near)
903 goto none;
905 anon_vma = reusable_anon_vma(near, near, vma);
906 if (anon_vma)
907 return anon_vma;
908 none:
910 * There's no absolute need to look only at touching neighbours:
911 * we could search further afield for "compatible" anon_vmas.
912 * But it would probably just be a waste of time searching,
913 * or lead to too many vmas hanging off the same anon_vma.
914 * We're trying to allow mprotect remerging later on,
915 * not trying to minimize memory used for anon_vmas.
917 return NULL;
920 #ifdef CONFIG_PROC_FS
921 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
922 struct file *file, long pages)
924 const unsigned long stack_flags
925 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
927 if (file) {
928 mm->shared_vm += pages;
929 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
930 mm->exec_vm += pages;
931 } else if (flags & stack_flags)
932 mm->stack_vm += pages;
933 if (flags & (VM_RESERVED|VM_IO))
934 mm->reserved_vm += pages;
936 #endif /* CONFIG_PROC_FS */
939 * The caller must hold down_write(&current->mm->mmap_sem).
942 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
943 unsigned long len, unsigned long prot,
944 unsigned long flags, unsigned long pgoff)
946 struct mm_struct * mm = current->mm;
947 struct inode *inode;
948 vm_flags_t vm_flags;
949 int error;
950 unsigned long reqprot = prot;
953 * Does the application expect PROT_READ to imply PROT_EXEC?
955 * (the exception is when the underlying filesystem is noexec
956 * mounted, in which case we dont add PROT_EXEC.)
958 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
959 if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
960 prot |= PROT_EXEC;
962 if (!len)
963 return -EINVAL;
965 if (!(flags & MAP_FIXED))
966 addr = round_hint_to_min(addr);
968 /* Careful about overflows.. */
969 len = PAGE_ALIGN(len);
970 if (!len)
971 return -ENOMEM;
973 /* offset overflow? */
974 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
975 return -EOVERFLOW;
977 /* Too many mappings? */
978 if (mm->map_count > sysctl_max_map_count)
979 return -ENOMEM;
981 /* Obtain the address to map to. we verify (or select) it and ensure
982 * that it represents a valid section of the address space.
984 addr = get_unmapped_area(file, addr, len, pgoff, flags);
985 if (addr & ~PAGE_MASK)
986 return addr;
988 /* Do simple checking here so the lower-level routines won't have
989 * to. we assume access permissions have been handled by the open
990 * of the memory object, so we don't do any here.
992 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
993 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
995 if (flags & MAP_LOCKED)
996 if (!can_do_mlock())
997 return -EPERM;
999 /* mlock MCL_FUTURE? */
1000 if (vm_flags & VM_LOCKED) {
1001 unsigned long locked, lock_limit;
1002 locked = len >> PAGE_SHIFT;
1003 locked += mm->locked_vm;
1004 lock_limit = rlimit(RLIMIT_MEMLOCK);
1005 lock_limit >>= PAGE_SHIFT;
1006 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1007 return -EAGAIN;
1010 inode = file ? file->f_path.dentry->d_inode : NULL;
1012 if (file) {
1013 switch (flags & MAP_TYPE) {
1014 case MAP_SHARED:
1015 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1016 return -EACCES;
1019 * Make sure we don't allow writing to an append-only
1020 * file..
1022 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1023 return -EACCES;
1026 * Make sure there are no mandatory locks on the file.
1028 if (locks_verify_locked(inode))
1029 return -EAGAIN;
1031 vm_flags |= VM_SHARED | VM_MAYSHARE;
1032 if (!(file->f_mode & FMODE_WRITE))
1033 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1035 /* fall through */
1036 case MAP_PRIVATE:
1037 if (!(file->f_mode & FMODE_READ))
1038 return -EACCES;
1039 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1040 if (vm_flags & VM_EXEC)
1041 return -EPERM;
1042 vm_flags &= ~VM_MAYEXEC;
1045 if (!file->f_op || !file->f_op->mmap)
1046 return -ENODEV;
1047 break;
1049 default:
1050 return -EINVAL;
1052 } else {
1053 switch (flags & MAP_TYPE) {
1054 case MAP_SHARED:
1056 * Ignore pgoff.
1058 pgoff = 0;
1059 vm_flags |= VM_SHARED | VM_MAYSHARE;
1060 break;
1061 case MAP_PRIVATE:
1063 * Set pgoff according to addr for anon_vma.
1065 pgoff = addr >> PAGE_SHIFT;
1066 break;
1067 default:
1068 return -EINVAL;
1072 error = security_file_mmap(file, reqprot, prot, flags, addr, 0);
1073 if (error)
1074 return error;
1076 return mmap_region(file, addr, len, flags, vm_flags, pgoff);
1078 EXPORT_SYMBOL(do_mmap_pgoff);
1080 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1081 unsigned long, prot, unsigned long, flags,
1082 unsigned long, fd, unsigned long, pgoff)
1084 struct file *file = NULL;
1085 unsigned long retval = -EBADF;
1087 if (!(flags & MAP_ANONYMOUS)) {
1088 audit_mmap_fd(fd, flags);
1089 if (unlikely(flags & MAP_HUGETLB))
1090 return -EINVAL;
1091 file = fget(fd);
1092 if (!file)
1093 goto out;
1094 } else if (flags & MAP_HUGETLB) {
1095 struct user_struct *user = NULL;
1097 * VM_NORESERVE is used because the reservations will be
1098 * taken when vm_ops->mmap() is called
1099 * A dummy user value is used because we are not locking
1100 * memory so no accounting is necessary
1102 len = ALIGN(len, huge_page_size(&default_hstate));
1103 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len, VM_NORESERVE,
1104 &user, HUGETLB_ANONHUGE_INODE);
1105 if (IS_ERR(file))
1106 return PTR_ERR(file);
1109 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1111 down_write(&current->mm->mmap_sem);
1112 retval = do_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1113 up_write(&current->mm->mmap_sem);
1115 if (file)
1116 fput(file);
1117 out:
1118 return retval;
1121 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1122 struct mmap_arg_struct {
1123 unsigned long addr;
1124 unsigned long len;
1125 unsigned long prot;
1126 unsigned long flags;
1127 unsigned long fd;
1128 unsigned long offset;
1131 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1133 struct mmap_arg_struct a;
1135 if (copy_from_user(&a, arg, sizeof(a)))
1136 return -EFAULT;
1137 if (a.offset & ~PAGE_MASK)
1138 return -EINVAL;
1140 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1141 a.offset >> PAGE_SHIFT);
1143 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1146 * Some shared mappigns will want the pages marked read-only
1147 * to track write events. If so, we'll downgrade vm_page_prot
1148 * to the private version (using protection_map[] without the
1149 * VM_SHARED bit).
1151 int vma_wants_writenotify(struct vm_area_struct *vma)
1153 vm_flags_t vm_flags = vma->vm_flags;
1155 /* If it was private or non-writable, the write bit is already clear */
1156 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1157 return 0;
1159 /* The backer wishes to know when pages are first written to? */
1160 if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1161 return 1;
1163 /* The open routine did something to the protections already? */
1164 if (pgprot_val(vma->vm_page_prot) !=
1165 pgprot_val(vm_get_page_prot(vm_flags)))
1166 return 0;
1168 /* Specialty mapping? */
1169 if (vm_flags & (VM_PFNMAP|VM_INSERTPAGE))
1170 return 0;
1172 /* Can the mapping track the dirty pages? */
1173 return vma->vm_file && vma->vm_file->f_mapping &&
1174 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1178 * We account for memory if it's a private writeable mapping,
1179 * not hugepages and VM_NORESERVE wasn't set.
1181 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1184 * hugetlb has its own accounting separate from the core VM
1185 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1187 if (file && is_file_hugepages(file))
1188 return 0;
1190 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1193 unsigned long mmap_region(struct file *file, unsigned long addr,
1194 unsigned long len, unsigned long flags,
1195 vm_flags_t vm_flags, unsigned long pgoff)
1197 struct mm_struct *mm = current->mm;
1198 struct vm_area_struct *vma, *prev;
1199 int correct_wcount = 0;
1200 int error;
1201 struct rb_node **rb_link, *rb_parent;
1202 unsigned long charged = 0;
1203 struct inode *inode = file ? file->f_path.dentry->d_inode : NULL;
1205 /* Clear old maps */
1206 error = -ENOMEM;
1207 munmap_back:
1208 vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
1209 if (vma && vma->vm_start < addr + len) {
1210 if (do_munmap(mm, addr, len))
1211 return -ENOMEM;
1212 goto munmap_back;
1215 /* Check against address space limit. */
1216 if (!may_expand_vm(mm, len >> PAGE_SHIFT))
1217 return -ENOMEM;
1220 * Set 'VM_NORESERVE' if we should not account for the
1221 * memory use of this mapping.
1223 if ((flags & MAP_NORESERVE)) {
1224 /* We honor MAP_NORESERVE if allowed to overcommit */
1225 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1226 vm_flags |= VM_NORESERVE;
1228 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1229 if (file && is_file_hugepages(file))
1230 vm_flags |= VM_NORESERVE;
1234 * Private writable mapping: check memory availability
1236 if (accountable_mapping(file, vm_flags)) {
1237 charged = len >> PAGE_SHIFT;
1238 if (security_vm_enough_memory(charged))
1239 return -ENOMEM;
1240 vm_flags |= VM_ACCOUNT;
1244 * Can we just expand an old mapping?
1246 vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
1247 if (vma)
1248 goto out;
1251 * Determine the object being mapped and call the appropriate
1252 * specific mapper. the address has already been validated, but
1253 * not unmapped, but the maps are removed from the list.
1255 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1256 if (!vma) {
1257 error = -ENOMEM;
1258 goto unacct_error;
1261 vma->vm_mm = mm;
1262 vma->vm_start = addr;
1263 vma->vm_end = addr + len;
1264 vma->vm_flags = vm_flags;
1265 vma->vm_page_prot = vm_get_page_prot(vm_flags);
1266 vma->vm_pgoff = pgoff;
1267 INIT_LIST_HEAD(&vma->anon_vma_chain);
1269 error = -EINVAL; /* when rejecting VM_GROWSDOWN|VM_GROWSUP */
1271 if (file) {
1272 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1273 goto free_vma;
1274 if (vm_flags & VM_DENYWRITE) {
1275 error = deny_write_access(file);
1276 if (error)
1277 goto free_vma;
1278 correct_wcount = 1;
1280 vma->vm_file = file;
1281 get_file(file);
1282 error = file->f_op->mmap(file, vma);
1283 if (error)
1284 goto unmap_and_free_vma;
1285 if (vm_flags & VM_EXECUTABLE)
1286 added_exe_file_vma(mm);
1288 /* Can addr have changed??
1290 * Answer: Yes, several device drivers can do it in their
1291 * f_op->mmap method. -DaveM
1293 addr = vma->vm_start;
1294 pgoff = vma->vm_pgoff;
1295 vm_flags = vma->vm_flags;
1296 } else if (vm_flags & VM_SHARED) {
1297 if (unlikely(vm_flags & (VM_GROWSDOWN|VM_GROWSUP)))
1298 goto free_vma;
1299 error = shmem_zero_setup(vma);
1300 if (error)
1301 goto free_vma;
1304 if (vma_wants_writenotify(vma)) {
1305 pgprot_t pprot = vma->vm_page_prot;
1307 /* Can vma->vm_page_prot have changed??
1309 * Answer: Yes, drivers may have changed it in their
1310 * f_op->mmap method.
1312 * Ensures that vmas marked as uncached stay that way.
1314 vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1315 if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot)))
1316 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1319 vma_link(mm, vma, prev, rb_link, rb_parent);
1320 file = vma->vm_file;
1322 /* Once vma denies write, undo our temporary denial count */
1323 if (correct_wcount)
1324 atomic_inc(&inode->i_writecount);
1325 out:
1326 perf_event_mmap(vma);
1328 mm->total_vm += len >> PAGE_SHIFT;
1329 vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1330 if (vm_flags & VM_LOCKED) {
1331 if (!mlock_vma_pages_range(vma, addr, addr + len))
1332 mm->locked_vm += (len >> PAGE_SHIFT);
1333 } else if ((flags & MAP_POPULATE) && !(flags & MAP_NONBLOCK))
1334 make_pages_present(addr, addr + len);
1335 return addr;
1337 unmap_and_free_vma:
1338 if (correct_wcount)
1339 atomic_inc(&inode->i_writecount);
1340 vma->vm_file = NULL;
1341 fput(file);
1343 /* Undo any partial mapping done by a device driver. */
1344 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1345 charged = 0;
1346 free_vma:
1347 kmem_cache_free(vm_area_cachep, vma);
1348 unacct_error:
1349 if (charged)
1350 vm_unacct_memory(charged);
1351 return error;
1354 /* Get an address range which is currently unmapped.
1355 * For shmat() with addr=0.
1357 * Ugly calling convention alert:
1358 * Return value with the low bits set means error value,
1359 * ie
1360 * if (ret & ~PAGE_MASK)
1361 * error = ret;
1363 * This function "knows" that -ENOMEM has the bits set.
1365 #ifndef HAVE_ARCH_UNMAPPED_AREA
1366 unsigned long
1367 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1368 unsigned long len, unsigned long pgoff, unsigned long flags)
1370 struct mm_struct *mm = current->mm;
1371 struct vm_area_struct *vma;
1372 unsigned long start_addr;
1374 if (len > TASK_SIZE)
1375 return -ENOMEM;
1377 if (flags & MAP_FIXED)
1378 return addr;
1380 if (addr) {
1381 addr = PAGE_ALIGN(addr);
1382 vma = find_vma(mm, addr);
1383 if (TASK_SIZE - len >= addr &&
1384 (!vma || addr + len <= vma->vm_start))
1385 return addr;
1387 if (len > mm->cached_hole_size) {
1388 start_addr = addr = mm->free_area_cache;
1389 } else {
1390 start_addr = addr = TASK_UNMAPPED_BASE;
1391 mm->cached_hole_size = 0;
1394 full_search:
1395 for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
1396 /* At this point: (!vma || addr < vma->vm_end). */
1397 if (TASK_SIZE - len < addr) {
1399 * Start a new search - just in case we missed
1400 * some holes.
1402 if (start_addr != TASK_UNMAPPED_BASE) {
1403 addr = TASK_UNMAPPED_BASE;
1404 start_addr = addr;
1405 mm->cached_hole_size = 0;
1406 goto full_search;
1408 return -ENOMEM;
1410 if (!vma || addr + len <= vma->vm_start) {
1412 * Remember the place where we stopped the search:
1414 mm->free_area_cache = addr + len;
1415 return addr;
1417 if (addr + mm->cached_hole_size < vma->vm_start)
1418 mm->cached_hole_size = vma->vm_start - addr;
1419 addr = vma->vm_end;
1422 #endif
1424 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1427 * Is this a new hole at the lowest possible address?
1429 if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache) {
1430 mm->free_area_cache = addr;
1431 mm->cached_hole_size = ~0UL;
1436 * This mmap-allocator allocates new areas top-down from below the
1437 * stack's low limit (the base):
1439 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1440 unsigned long
1441 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1442 const unsigned long len, const unsigned long pgoff,
1443 const unsigned long flags)
1445 struct vm_area_struct *vma;
1446 struct mm_struct *mm = current->mm;
1447 unsigned long addr = addr0;
1449 /* requested length too big for entire address space */
1450 if (len > TASK_SIZE)
1451 return -ENOMEM;
1453 if (flags & MAP_FIXED)
1454 return addr;
1456 /* requesting a specific address */
1457 if (addr) {
1458 addr = PAGE_ALIGN(addr);
1459 vma = find_vma(mm, addr);
1460 if (TASK_SIZE - len >= addr &&
1461 (!vma || addr + len <= vma->vm_start))
1462 return addr;
1465 /* check if free_area_cache is useful for us */
1466 if (len <= mm->cached_hole_size) {
1467 mm->cached_hole_size = 0;
1468 mm->free_area_cache = mm->mmap_base;
1471 /* either no address requested or can't fit in requested address hole */
1472 addr = mm->free_area_cache;
1474 /* make sure it can fit in the remaining address space */
1475 if (addr > len) {
1476 vma = find_vma(mm, addr-len);
1477 if (!vma || addr <= vma->vm_start)
1478 /* remember the address as a hint for next time */
1479 return (mm->free_area_cache = addr-len);
1482 if (mm->mmap_base < len)
1483 goto bottomup;
1485 addr = mm->mmap_base-len;
1487 do {
1489 * Lookup failure means no vma is above this address,
1490 * else if new region fits below vma->vm_start,
1491 * return with success:
1493 vma = find_vma(mm, addr);
1494 if (!vma || addr+len <= vma->vm_start)
1495 /* remember the address as a hint for next time */
1496 return (mm->free_area_cache = addr);
1498 /* remember the largest hole we saw so far */
1499 if (addr + mm->cached_hole_size < vma->vm_start)
1500 mm->cached_hole_size = vma->vm_start - addr;
1502 /* try just below the current vma->vm_start */
1503 addr = vma->vm_start-len;
1504 } while (len < vma->vm_start);
1506 bottomup:
1508 * A failed mmap() very likely causes application failure,
1509 * so fall back to the bottom-up function here. This scenario
1510 * can happen with large stack limits and large mmap()
1511 * allocations.
1513 mm->cached_hole_size = ~0UL;
1514 mm->free_area_cache = TASK_UNMAPPED_BASE;
1515 addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
1517 * Restore the topdown base:
1519 mm->free_area_cache = mm->mmap_base;
1520 mm->cached_hole_size = ~0UL;
1522 return addr;
1524 #endif
1526 void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr)
1529 * Is this a new hole at the highest possible address?
1531 if (addr > mm->free_area_cache)
1532 mm->free_area_cache = addr;
1534 /* dont allow allocations above current base */
1535 if (mm->free_area_cache > mm->mmap_base)
1536 mm->free_area_cache = mm->mmap_base;
1539 unsigned long
1540 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1541 unsigned long pgoff, unsigned long flags)
1543 unsigned long (*get_area)(struct file *, unsigned long,
1544 unsigned long, unsigned long, unsigned long);
1546 unsigned long error = arch_mmap_check(addr, len, flags);
1547 if (error)
1548 return error;
1550 /* Careful about overflows.. */
1551 if (len > TASK_SIZE)
1552 return -ENOMEM;
1554 get_area = current->mm->get_unmapped_area;
1555 if (file && file->f_op && file->f_op->get_unmapped_area)
1556 get_area = file->f_op->get_unmapped_area;
1557 addr = get_area(file, addr, len, pgoff, flags);
1558 if (IS_ERR_VALUE(addr))
1559 return addr;
1561 if (addr > TASK_SIZE - len)
1562 return -ENOMEM;
1563 if (addr & ~PAGE_MASK)
1564 return -EINVAL;
1566 return arch_rebalance_pgtables(addr, len);
1569 EXPORT_SYMBOL(get_unmapped_area);
1571 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1572 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1574 struct vm_area_struct *vma = NULL;
1576 if (mm) {
1577 /* Check the cache first. */
1578 /* (Cache hit rate is typically around 35%.) */
1579 vma = mm->mmap_cache;
1580 if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
1581 struct rb_node * rb_node;
1583 rb_node = mm->mm_rb.rb_node;
1584 vma = NULL;
1586 while (rb_node) {
1587 struct vm_area_struct * vma_tmp;
1589 vma_tmp = rb_entry(rb_node,
1590 struct vm_area_struct, vm_rb);
1592 if (vma_tmp->vm_end > addr) {
1593 vma = vma_tmp;
1594 if (vma_tmp->vm_start <= addr)
1595 break;
1596 rb_node = rb_node->rb_left;
1597 } else
1598 rb_node = rb_node->rb_right;
1600 if (vma)
1601 mm->mmap_cache = vma;
1604 return vma;
1607 EXPORT_SYMBOL(find_vma);
1610 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
1612 struct vm_area_struct *
1613 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1614 struct vm_area_struct **pprev)
1616 struct vm_area_struct *vma;
1618 vma = find_vma(mm, addr);
1619 if (vma) {
1620 *pprev = vma->vm_prev;
1621 } else {
1622 struct rb_node *rb_node = mm->mm_rb.rb_node;
1623 *pprev = NULL;
1624 while (rb_node) {
1625 *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1626 rb_node = rb_node->rb_right;
1629 return vma;
1633 * Verify that the stack growth is acceptable and
1634 * update accounting. This is shared with both the
1635 * grow-up and grow-down cases.
1637 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
1639 struct mm_struct *mm = vma->vm_mm;
1640 struct rlimit *rlim = current->signal->rlim;
1641 unsigned long new_start;
1643 /* address space limit tests */
1644 if (!may_expand_vm(mm, grow))
1645 return -ENOMEM;
1647 /* Stack limit test */
1648 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur))
1649 return -ENOMEM;
1651 /* mlock limit tests */
1652 if (vma->vm_flags & VM_LOCKED) {
1653 unsigned long locked;
1654 unsigned long limit;
1655 locked = mm->locked_vm + grow;
1656 limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
1657 limit >>= PAGE_SHIFT;
1658 if (locked > limit && !capable(CAP_IPC_LOCK))
1659 return -ENOMEM;
1662 /* Check to ensure the stack will not grow into a hugetlb-only region */
1663 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1664 vma->vm_end - size;
1665 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1666 return -EFAULT;
1669 * Overcommit.. This must be the final test, as it will
1670 * update security statistics.
1672 if (security_vm_enough_memory_mm(mm, grow))
1673 return -ENOMEM;
1675 /* Ok, everything looks good - let it rip */
1676 mm->total_vm += grow;
1677 if (vma->vm_flags & VM_LOCKED)
1678 mm->locked_vm += grow;
1679 vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
1680 return 0;
1683 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1685 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1686 * vma is the last one with address > vma->vm_end. Have to extend vma.
1688 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1690 int error;
1692 if (!(vma->vm_flags & VM_GROWSUP))
1693 return -EFAULT;
1696 * We must make sure the anon_vma is allocated
1697 * so that the anon_vma locking is not a noop.
1699 if (unlikely(anon_vma_prepare(vma)))
1700 return -ENOMEM;
1701 vma_lock_anon_vma(vma);
1704 * vma->vm_start/vm_end cannot change under us because the caller
1705 * is required to hold the mmap_sem in read mode. We need the
1706 * anon_vma lock to serialize against concurrent expand_stacks.
1707 * Also guard against wrapping around to address 0.
1709 if (address < PAGE_ALIGN(address+4))
1710 address = PAGE_ALIGN(address+4);
1711 else {
1712 vma_unlock_anon_vma(vma);
1713 return -ENOMEM;
1715 error = 0;
1717 /* Somebody else might have raced and expanded it already */
1718 if (address > vma->vm_end) {
1719 unsigned long size, grow;
1721 size = address - vma->vm_start;
1722 grow = (address - vma->vm_end) >> PAGE_SHIFT;
1724 error = -ENOMEM;
1725 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
1726 error = acct_stack_growth(vma, size, grow);
1727 if (!error) {
1728 vma->vm_end = address;
1729 perf_event_mmap(vma);
1733 vma_unlock_anon_vma(vma);
1734 khugepaged_enter_vma_merge(vma);
1735 return error;
1737 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
1740 * vma is the first one with address < vma->vm_start. Have to extend vma.
1742 int expand_downwards(struct vm_area_struct *vma,
1743 unsigned long address)
1745 int error;
1748 * We must make sure the anon_vma is allocated
1749 * so that the anon_vma locking is not a noop.
1751 if (unlikely(anon_vma_prepare(vma)))
1752 return -ENOMEM;
1754 address &= PAGE_MASK;
1755 error = security_file_mmap(NULL, 0, 0, 0, address, 1);
1756 if (error)
1757 return error;
1759 vma_lock_anon_vma(vma);
1762 * vma->vm_start/vm_end cannot change under us because the caller
1763 * is required to hold the mmap_sem in read mode. We need the
1764 * anon_vma lock to serialize against concurrent expand_stacks.
1767 /* Somebody else might have raced and expanded it already */
1768 if (address < vma->vm_start) {
1769 unsigned long size, grow;
1771 size = vma->vm_end - address;
1772 grow = (vma->vm_start - address) >> PAGE_SHIFT;
1774 error = -ENOMEM;
1775 if (grow <= vma->vm_pgoff) {
1776 error = acct_stack_growth(vma, size, grow);
1777 if (!error) {
1778 vma->vm_start = address;
1779 vma->vm_pgoff -= grow;
1780 perf_event_mmap(vma);
1784 vma_unlock_anon_vma(vma);
1785 khugepaged_enter_vma_merge(vma);
1786 return error;
1789 #ifdef CONFIG_STACK_GROWSUP
1790 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1792 return expand_upwards(vma, address);
1795 struct vm_area_struct *
1796 find_extend_vma(struct mm_struct *mm, unsigned long addr)
1798 struct vm_area_struct *vma, *prev;
1800 addr &= PAGE_MASK;
1801 vma = find_vma_prev(mm, addr, &prev);
1802 if (vma && (vma->vm_start <= addr))
1803 return vma;
1804 if (!prev || expand_stack(prev, addr))
1805 return NULL;
1806 if (prev->vm_flags & VM_LOCKED) {
1807 mlock_vma_pages_range(prev, addr, prev->vm_end);
1809 return prev;
1811 #else
1812 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1814 return expand_downwards(vma, address);
1817 struct vm_area_struct *
1818 find_extend_vma(struct mm_struct * mm, unsigned long addr)
1820 struct vm_area_struct * vma;
1821 unsigned long start;
1823 addr &= PAGE_MASK;
1824 vma = find_vma(mm,addr);
1825 if (!vma)
1826 return NULL;
1827 if (vma->vm_start <= addr)
1828 return vma;
1829 if (!(vma->vm_flags & VM_GROWSDOWN))
1830 return NULL;
1831 start = vma->vm_start;
1832 if (expand_stack(vma, addr))
1833 return NULL;
1834 if (vma->vm_flags & VM_LOCKED) {
1835 mlock_vma_pages_range(vma, addr, start);
1837 return vma;
1839 #endif
1842 * Ok - we have the memory areas we should free on the vma list,
1843 * so release them, and do the vma updates.
1845 * Called with the mm semaphore held.
1847 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
1849 /* Update high watermark before we lower total_vm */
1850 update_hiwater_vm(mm);
1851 do {
1852 long nrpages = vma_pages(vma);
1854 mm->total_vm -= nrpages;
1855 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
1856 vma = remove_vma(vma);
1857 } while (vma);
1858 validate_mm(mm);
1862 * Get rid of page table information in the indicated region.
1864 * Called with the mm semaphore held.
1866 static void unmap_region(struct mm_struct *mm,
1867 struct vm_area_struct *vma, struct vm_area_struct *prev,
1868 unsigned long start, unsigned long end)
1870 struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
1871 struct mmu_gather tlb;
1872 unsigned long nr_accounted = 0;
1874 lru_add_drain();
1875 tlb_gather_mmu(&tlb, mm, 0);
1876 update_hiwater_rss(mm);
1877 unmap_vmas(&tlb, vma, start, end, &nr_accounted, NULL);
1878 vm_unacct_memory(nr_accounted);
1879 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
1880 next ? next->vm_start : 0);
1881 tlb_finish_mmu(&tlb, start, end);
1885 * Create a list of vma's touched by the unmap, removing them from the mm's
1886 * vma list as we go..
1888 static void
1889 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
1890 struct vm_area_struct *prev, unsigned long end)
1892 struct vm_area_struct **insertion_point;
1893 struct vm_area_struct *tail_vma = NULL;
1894 unsigned long addr;
1896 insertion_point = (prev ? &prev->vm_next : &mm->mmap);
1897 vma->vm_prev = NULL;
1898 do {
1899 rb_erase(&vma->vm_rb, &mm->mm_rb);
1900 mm->map_count--;
1901 tail_vma = vma;
1902 vma = vma->vm_next;
1903 } while (vma && vma->vm_start < end);
1904 *insertion_point = vma;
1905 if (vma)
1906 vma->vm_prev = prev;
1907 tail_vma->vm_next = NULL;
1908 if (mm->unmap_area == arch_unmap_area)
1909 addr = prev ? prev->vm_end : mm->mmap_base;
1910 else
1911 addr = vma ? vma->vm_start : mm->mmap_base;
1912 mm->unmap_area(mm, addr);
1913 mm->mmap_cache = NULL; /* Kill the cache. */
1917 * __split_vma() bypasses sysctl_max_map_count checking. We use this on the
1918 * munmap path where it doesn't make sense to fail.
1920 static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
1921 unsigned long addr, int new_below)
1923 struct mempolicy *pol;
1924 struct vm_area_struct *new;
1925 int err = -ENOMEM;
1927 if (is_vm_hugetlb_page(vma) && (addr &
1928 ~(huge_page_mask(hstate_vma(vma)))))
1929 return -EINVAL;
1931 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1932 if (!new)
1933 goto out_err;
1935 /* most fields are the same, copy all, and then fixup */
1936 *new = *vma;
1938 INIT_LIST_HEAD(&new->anon_vma_chain);
1940 if (new_below)
1941 new->vm_end = addr;
1942 else {
1943 new->vm_start = addr;
1944 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
1947 pol = mpol_dup(vma_policy(vma));
1948 if (IS_ERR(pol)) {
1949 err = PTR_ERR(pol);
1950 goto out_free_vma;
1952 vma_set_policy(new, pol);
1954 if (anon_vma_clone(new, vma))
1955 goto out_free_mpol;
1957 if (new->vm_file) {
1958 get_file(new->vm_file);
1959 if (vma->vm_flags & VM_EXECUTABLE)
1960 added_exe_file_vma(mm);
1963 if (new->vm_ops && new->vm_ops->open)
1964 new->vm_ops->open(new);
1966 if (new_below)
1967 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
1968 ((addr - new->vm_start) >> PAGE_SHIFT), new);
1969 else
1970 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
1972 /* Success. */
1973 if (!err)
1974 return 0;
1976 /* Clean everything up if vma_adjust failed. */
1977 if (new->vm_ops && new->vm_ops->close)
1978 new->vm_ops->close(new);
1979 if (new->vm_file) {
1980 if (vma->vm_flags & VM_EXECUTABLE)
1981 removed_exe_file_vma(mm);
1982 fput(new->vm_file);
1984 unlink_anon_vmas(new);
1985 out_free_mpol:
1986 mpol_put(pol);
1987 out_free_vma:
1988 kmem_cache_free(vm_area_cachep, new);
1989 out_err:
1990 return err;
1994 * Split a vma into two pieces at address 'addr', a new vma is allocated
1995 * either for the first part or the tail.
1997 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1998 unsigned long addr, int new_below)
2000 if (mm->map_count >= sysctl_max_map_count)
2001 return -ENOMEM;
2003 return __split_vma(mm, vma, addr, new_below);
2006 /* Munmap is split into 2 main parts -- this part which finds
2007 * what needs doing, and the areas themselves, which do the
2008 * work. This now handles partial unmappings.
2009 * Jeremy Fitzhardinge <jeremy@goop.org>
2011 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2013 unsigned long end;
2014 struct vm_area_struct *vma, *prev, *last;
2016 if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
2017 return -EINVAL;
2019 if ((len = PAGE_ALIGN(len)) == 0)
2020 return -EINVAL;
2022 /* Find the first overlapping VMA */
2023 vma = find_vma(mm, start);
2024 if (!vma)
2025 return 0;
2026 prev = vma->vm_prev;
2027 /* we have start < vma->vm_end */
2029 /* if it doesn't overlap, we have nothing.. */
2030 end = start + len;
2031 if (vma->vm_start >= end)
2032 return 0;
2035 * If we need to split any vma, do it now to save pain later.
2037 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2038 * unmapped vm_area_struct will remain in use: so lower split_vma
2039 * places tmp vma above, and higher split_vma places tmp vma below.
2041 if (start > vma->vm_start) {
2042 int error;
2045 * Make sure that map_count on return from munmap() will
2046 * not exceed its limit; but let map_count go just above
2047 * its limit temporarily, to help free resources as expected.
2049 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2050 return -ENOMEM;
2052 error = __split_vma(mm, vma, start, 0);
2053 if (error)
2054 return error;
2055 prev = vma;
2058 /* Does it split the last one? */
2059 last = find_vma(mm, end);
2060 if (last && end > last->vm_start) {
2061 int error = __split_vma(mm, last, end, 1);
2062 if (error)
2063 return error;
2065 vma = prev? prev->vm_next: mm->mmap;
2068 * unlock any mlock()ed ranges before detaching vmas
2070 if (mm->locked_vm) {
2071 struct vm_area_struct *tmp = vma;
2072 while (tmp && tmp->vm_start < end) {
2073 if (tmp->vm_flags & VM_LOCKED) {
2074 mm->locked_vm -= vma_pages(tmp);
2075 munlock_vma_pages_all(tmp);
2077 tmp = tmp->vm_next;
2082 * Remove the vma's, and unmap the actual pages
2084 detach_vmas_to_be_unmapped(mm, vma, prev, end);
2085 unmap_region(mm, vma, prev, start, end);
2087 /* Fix up all other VM information */
2088 remove_vma_list(mm, vma);
2090 return 0;
2093 EXPORT_SYMBOL(do_munmap);
2095 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2097 int ret;
2098 struct mm_struct *mm = current->mm;
2100 profile_munmap(addr);
2102 down_write(&mm->mmap_sem);
2103 ret = do_munmap(mm, addr, len);
2104 up_write(&mm->mmap_sem);
2105 return ret;
2108 static inline void verify_mm_writelocked(struct mm_struct *mm)
2110 #ifdef CONFIG_DEBUG_VM
2111 if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2112 WARN_ON(1);
2113 up_read(&mm->mmap_sem);
2115 #endif
2119 * this is really a simplified "do_mmap". it only handles
2120 * anonymous maps. eventually we may be able to do some
2121 * brk-specific accounting here.
2123 unsigned long do_brk(unsigned long addr, unsigned long len)
2125 struct mm_struct * mm = current->mm;
2126 struct vm_area_struct * vma, * prev;
2127 unsigned long flags;
2128 struct rb_node ** rb_link, * rb_parent;
2129 pgoff_t pgoff = addr >> PAGE_SHIFT;
2130 int error;
2132 len = PAGE_ALIGN(len);
2133 if (!len)
2134 return addr;
2136 error = security_file_mmap(NULL, 0, 0, 0, addr, 1);
2137 if (error)
2138 return error;
2140 flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2142 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2143 if (error & ~PAGE_MASK)
2144 return error;
2147 * mlock MCL_FUTURE?
2149 if (mm->def_flags & VM_LOCKED) {
2150 unsigned long locked, lock_limit;
2151 locked = len >> PAGE_SHIFT;
2152 locked += mm->locked_vm;
2153 lock_limit = rlimit(RLIMIT_MEMLOCK);
2154 lock_limit >>= PAGE_SHIFT;
2155 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
2156 return -EAGAIN;
2160 * mm->mmap_sem is required to protect against another thread
2161 * changing the mappings in case we sleep.
2163 verify_mm_writelocked(mm);
2166 * Clear old maps. this also does some error checking for us
2168 munmap_back:
2169 vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2170 if (vma && vma->vm_start < addr + len) {
2171 if (do_munmap(mm, addr, len))
2172 return -ENOMEM;
2173 goto munmap_back;
2176 /* Check against address space limits *after* clearing old maps... */
2177 if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2178 return -ENOMEM;
2180 if (mm->map_count > sysctl_max_map_count)
2181 return -ENOMEM;
2183 if (security_vm_enough_memory(len >> PAGE_SHIFT))
2184 return -ENOMEM;
2186 /* Can we just expand an old private anonymous mapping? */
2187 vma = vma_merge(mm, prev, addr, addr + len, flags,
2188 NULL, NULL, pgoff, NULL);
2189 if (vma)
2190 goto out;
2193 * create a vma struct for an anonymous mapping
2195 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2196 if (!vma) {
2197 vm_unacct_memory(len >> PAGE_SHIFT);
2198 return -ENOMEM;
2201 INIT_LIST_HEAD(&vma->anon_vma_chain);
2202 vma->vm_mm = mm;
2203 vma->vm_start = addr;
2204 vma->vm_end = addr + len;
2205 vma->vm_pgoff = pgoff;
2206 vma->vm_flags = flags;
2207 vma->vm_page_prot = vm_get_page_prot(flags);
2208 vma_link(mm, vma, prev, rb_link, rb_parent);
2209 out:
2210 perf_event_mmap(vma);
2211 mm->total_vm += len >> PAGE_SHIFT;
2212 if (flags & VM_LOCKED) {
2213 if (!mlock_vma_pages_range(vma, addr, addr + len))
2214 mm->locked_vm += (len >> PAGE_SHIFT);
2216 return addr;
2219 EXPORT_SYMBOL(do_brk);
2221 /* Release all mmaps. */
2222 void exit_mmap(struct mm_struct *mm)
2224 struct mmu_gather tlb;
2225 struct vm_area_struct *vma;
2226 unsigned long nr_accounted = 0;
2227 unsigned long end;
2229 /* mm's last user has gone, and its about to be pulled down */
2230 mmu_notifier_release(mm);
2232 if (mm->locked_vm) {
2233 vma = mm->mmap;
2234 while (vma) {
2235 if (vma->vm_flags & VM_LOCKED)
2236 munlock_vma_pages_all(vma);
2237 vma = vma->vm_next;
2241 arch_exit_mmap(mm);
2243 vma = mm->mmap;
2244 if (!vma) /* Can happen if dup_mmap() received an OOM */
2245 return;
2247 lru_add_drain();
2248 flush_cache_mm(mm);
2249 tlb_gather_mmu(&tlb, mm, 1);
2250 /* update_hiwater_rss(mm) here? but nobody should be looking */
2251 /* Use -1 here to ensure all VMAs in the mm are unmapped */
2252 end = unmap_vmas(&tlb, vma, 0, -1, &nr_accounted, NULL);
2253 vm_unacct_memory(nr_accounted);
2255 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, 0);
2256 tlb_finish_mmu(&tlb, 0, end);
2259 * Walk the list again, actually closing and freeing it,
2260 * with preemption enabled, without holding any MM locks.
2262 while (vma)
2263 vma = remove_vma(vma);
2265 BUG_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2268 /* Insert vm structure into process list sorted by address
2269 * and into the inode's i_mmap tree. If vm_file is non-NULL
2270 * then i_mmap_mutex is taken here.
2272 int insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma)
2274 struct vm_area_struct * __vma, * prev;
2275 struct rb_node ** rb_link, * rb_parent;
2278 * The vm_pgoff of a purely anonymous vma should be irrelevant
2279 * until its first write fault, when page's anon_vma and index
2280 * are set. But now set the vm_pgoff it will almost certainly
2281 * end up with (unless mremap moves it elsewhere before that
2282 * first wfault), so /proc/pid/maps tells a consistent story.
2284 * By setting it to reflect the virtual start address of the
2285 * vma, merges and splits can happen in a seamless way, just
2286 * using the existing file pgoff checks and manipulations.
2287 * Similarly in do_mmap_pgoff and in do_brk.
2289 if (!vma->vm_file) {
2290 BUG_ON(vma->anon_vma);
2291 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2293 __vma = find_vma_prepare(mm,vma->vm_start,&prev,&rb_link,&rb_parent);
2294 if (__vma && __vma->vm_start < vma->vm_end)
2295 return -ENOMEM;
2296 if ((vma->vm_flags & VM_ACCOUNT) &&
2297 security_vm_enough_memory_mm(mm, vma_pages(vma)))
2298 return -ENOMEM;
2299 vma_link(mm, vma, prev, rb_link, rb_parent);
2300 return 0;
2304 * Copy the vma structure to a new location in the same mm,
2305 * prior to moving page table entries, to effect an mremap move.
2307 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2308 unsigned long addr, unsigned long len, pgoff_t pgoff)
2310 struct vm_area_struct *vma = *vmap;
2311 unsigned long vma_start = vma->vm_start;
2312 struct mm_struct *mm = vma->vm_mm;
2313 struct vm_area_struct *new_vma, *prev;
2314 struct rb_node **rb_link, *rb_parent;
2315 struct mempolicy *pol;
2316 bool faulted_in_anon_vma = true;
2319 * If anonymous vma has not yet been faulted, update new pgoff
2320 * to match new location, to increase its chance of merging.
2322 if (unlikely(!vma->vm_file && !vma->anon_vma)) {
2323 pgoff = addr >> PAGE_SHIFT;
2324 faulted_in_anon_vma = false;
2327 find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2328 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2329 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2330 if (new_vma) {
2332 * Source vma may have been merged into new_vma
2334 if (unlikely(vma_start >= new_vma->vm_start &&
2335 vma_start < new_vma->vm_end)) {
2337 * The only way we can get a vma_merge with
2338 * self during an mremap is if the vma hasn't
2339 * been faulted in yet and we were allowed to
2340 * reset the dst vma->vm_pgoff to the
2341 * destination address of the mremap to allow
2342 * the merge to happen. mremap must change the
2343 * vm_pgoff linearity between src and dst vmas
2344 * (in turn preventing a vma_merge) to be
2345 * safe. It is only safe to keep the vm_pgoff
2346 * linear if there are no pages mapped yet.
2348 VM_BUG_ON(faulted_in_anon_vma);
2349 *vmap = new_vma;
2350 } else
2351 anon_vma_moveto_tail(new_vma);
2352 } else {
2353 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2354 if (new_vma) {
2355 *new_vma = *vma;
2356 pol = mpol_dup(vma_policy(vma));
2357 if (IS_ERR(pol))
2358 goto out_free_vma;
2359 INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2360 if (anon_vma_clone(new_vma, vma))
2361 goto out_free_mempol;
2362 vma_set_policy(new_vma, pol);
2363 new_vma->vm_start = addr;
2364 new_vma->vm_end = addr + len;
2365 new_vma->vm_pgoff = pgoff;
2366 if (new_vma->vm_file) {
2367 get_file(new_vma->vm_file);
2368 if (vma->vm_flags & VM_EXECUTABLE)
2369 added_exe_file_vma(mm);
2371 if (new_vma->vm_ops && new_vma->vm_ops->open)
2372 new_vma->vm_ops->open(new_vma);
2373 vma_link(mm, new_vma, prev, rb_link, rb_parent);
2376 return new_vma;
2378 out_free_mempol:
2379 mpol_put(pol);
2380 out_free_vma:
2381 kmem_cache_free(vm_area_cachep, new_vma);
2382 return NULL;
2386 * Return true if the calling process may expand its vm space by the passed
2387 * number of pages
2389 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2391 unsigned long cur = mm->total_vm; /* pages */
2392 unsigned long lim;
2394 lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
2396 if (cur + npages > lim)
2397 return 0;
2398 return 1;
2402 static int special_mapping_fault(struct vm_area_struct *vma,
2403 struct vm_fault *vmf)
2405 pgoff_t pgoff;
2406 struct page **pages;
2409 * special mappings have no vm_file, and in that case, the mm
2410 * uses vm_pgoff internally. So we have to subtract it from here.
2411 * We are allowed to do this because we are the mm; do not copy
2412 * this code into drivers!
2414 pgoff = vmf->pgoff - vma->vm_pgoff;
2416 for (pages = vma->vm_private_data; pgoff && *pages; ++pages)
2417 pgoff--;
2419 if (*pages) {
2420 struct page *page = *pages;
2421 get_page(page);
2422 vmf->page = page;
2423 return 0;
2426 return VM_FAULT_SIGBUS;
2430 * Having a close hook prevents vma merging regardless of flags.
2432 static void special_mapping_close(struct vm_area_struct *vma)
2436 static const struct vm_operations_struct special_mapping_vmops = {
2437 .close = special_mapping_close,
2438 .fault = special_mapping_fault,
2442 * Called with mm->mmap_sem held for writing.
2443 * Insert a new vma covering the given region, with the given flags.
2444 * Its pages are supplied by the given array of struct page *.
2445 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2446 * The region past the last page supplied will always produce SIGBUS.
2447 * The array pointer and the pages it points to are assumed to stay alive
2448 * for as long as this mapping might exist.
2450 int install_special_mapping(struct mm_struct *mm,
2451 unsigned long addr, unsigned long len,
2452 unsigned long vm_flags, struct page **pages)
2454 int ret;
2455 struct vm_area_struct *vma;
2457 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2458 if (unlikely(vma == NULL))
2459 return -ENOMEM;
2461 INIT_LIST_HEAD(&vma->anon_vma_chain);
2462 vma->vm_mm = mm;
2463 vma->vm_start = addr;
2464 vma->vm_end = addr + len;
2466 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND;
2467 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2469 vma->vm_ops = &special_mapping_vmops;
2470 vma->vm_private_data = pages;
2472 ret = security_file_mmap(NULL, 0, 0, 0, vma->vm_start, 1);
2473 if (ret)
2474 goto out;
2476 ret = insert_vm_struct(mm, vma);
2477 if (ret)
2478 goto out;
2480 mm->total_vm += len >> PAGE_SHIFT;
2482 perf_event_mmap(vma);
2484 return 0;
2486 out:
2487 kmem_cache_free(vm_area_cachep, vma);
2488 return ret;
2491 static DEFINE_MUTEX(mm_all_locks_mutex);
2493 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
2495 if (!test_bit(0, (unsigned long *) &anon_vma->root->head.next)) {
2497 * The LSB of head.next can't change from under us
2498 * because we hold the mm_all_locks_mutex.
2500 mutex_lock_nest_lock(&anon_vma->root->mutex, &mm->mmap_sem);
2502 * We can safely modify head.next after taking the
2503 * anon_vma->root->mutex. If some other vma in this mm shares
2504 * the same anon_vma we won't take it again.
2506 * No need of atomic instructions here, head.next
2507 * can't change from under us thanks to the
2508 * anon_vma->root->mutex.
2510 if (__test_and_set_bit(0, (unsigned long *)
2511 &anon_vma->root->head.next))
2512 BUG();
2516 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
2518 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2520 * AS_MM_ALL_LOCKS can't change from under us because
2521 * we hold the mm_all_locks_mutex.
2523 * Operations on ->flags have to be atomic because
2524 * even if AS_MM_ALL_LOCKS is stable thanks to the
2525 * mm_all_locks_mutex, there may be other cpus
2526 * changing other bitflags in parallel to us.
2528 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
2529 BUG();
2530 mutex_lock_nest_lock(&mapping->i_mmap_mutex, &mm->mmap_sem);
2535 * This operation locks against the VM for all pte/vma/mm related
2536 * operations that could ever happen on a certain mm. This includes
2537 * vmtruncate, try_to_unmap, and all page faults.
2539 * The caller must take the mmap_sem in write mode before calling
2540 * mm_take_all_locks(). The caller isn't allowed to release the
2541 * mmap_sem until mm_drop_all_locks() returns.
2543 * mmap_sem in write mode is required in order to block all operations
2544 * that could modify pagetables and free pages without need of
2545 * altering the vma layout (for example populate_range() with
2546 * nonlinear vmas). It's also needed in write mode to avoid new
2547 * anon_vmas to be associated with existing vmas.
2549 * A single task can't take more than one mm_take_all_locks() in a row
2550 * or it would deadlock.
2552 * The LSB in anon_vma->head.next and the AS_MM_ALL_LOCKS bitflag in
2553 * mapping->flags avoid to take the same lock twice, if more than one
2554 * vma in this mm is backed by the same anon_vma or address_space.
2556 * We can take all the locks in random order because the VM code
2557 * taking i_mmap_mutex or anon_vma->mutex outside the mmap_sem never
2558 * takes more than one of them in a row. Secondly we're protected
2559 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
2561 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
2562 * that may have to take thousand of locks.
2564 * mm_take_all_locks() can fail if it's interrupted by signals.
2566 int mm_take_all_locks(struct mm_struct *mm)
2568 struct vm_area_struct *vma;
2569 struct anon_vma_chain *avc;
2571 BUG_ON(down_read_trylock(&mm->mmap_sem));
2573 mutex_lock(&mm_all_locks_mutex);
2575 for (vma = mm->mmap; vma; vma = vma->vm_next) {
2576 if (signal_pending(current))
2577 goto out_unlock;
2578 if (vma->vm_file && vma->vm_file->f_mapping)
2579 vm_lock_mapping(mm, vma->vm_file->f_mapping);
2582 for (vma = mm->mmap; vma; vma = vma->vm_next) {
2583 if (signal_pending(current))
2584 goto out_unlock;
2585 if (vma->anon_vma)
2586 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2587 vm_lock_anon_vma(mm, avc->anon_vma);
2590 return 0;
2592 out_unlock:
2593 mm_drop_all_locks(mm);
2594 return -EINTR;
2597 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
2599 if (test_bit(0, (unsigned long *) &anon_vma->root->head.next)) {
2601 * The LSB of head.next can't change to 0 from under
2602 * us because we hold the mm_all_locks_mutex.
2604 * We must however clear the bitflag before unlocking
2605 * the vma so the users using the anon_vma->head will
2606 * never see our bitflag.
2608 * No need of atomic instructions here, head.next
2609 * can't change from under us until we release the
2610 * anon_vma->root->mutex.
2612 if (!__test_and_clear_bit(0, (unsigned long *)
2613 &anon_vma->root->head.next))
2614 BUG();
2615 anon_vma_unlock(anon_vma);
2619 static void vm_unlock_mapping(struct address_space *mapping)
2621 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2623 * AS_MM_ALL_LOCKS can't change to 0 from under us
2624 * because we hold the mm_all_locks_mutex.
2626 mutex_unlock(&mapping->i_mmap_mutex);
2627 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
2628 &mapping->flags))
2629 BUG();
2634 * The mmap_sem cannot be released by the caller until
2635 * mm_drop_all_locks() returns.
2637 void mm_drop_all_locks(struct mm_struct *mm)
2639 struct vm_area_struct *vma;
2640 struct anon_vma_chain *avc;
2642 BUG_ON(down_read_trylock(&mm->mmap_sem));
2643 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
2645 for (vma = mm->mmap; vma; vma = vma->vm_next) {
2646 if (vma->anon_vma)
2647 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2648 vm_unlock_anon_vma(avc->anon_vma);
2649 if (vma->vm_file && vma->vm_file->f_mapping)
2650 vm_unlock_mapping(vma->vm_file->f_mapping);
2653 mutex_unlock(&mm_all_locks_mutex);
2657 * initialise the VMA slab
2659 void __init mmap_init(void)
2661 int ret;
2663 ret = percpu_counter_init(&vm_committed_as, 0);
2664 VM_BUG_ON(ret);