spi-topcliff-pch: supports a spi mode setup and bit order setup by IO control
[zen-stable.git] / mm / swap.c
blob14380e9fbe3380b927cb58d75c5a950a5ec14f77
1 /*
2 * linux/mm/swap.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
7 /*
8 * This file contains the default values for the operation of the
9 * Linux VM subsystem. Fine-tuning documentation can be found in
10 * Documentation/sysctl/vm.txt.
11 * Started 18.12.91
12 * Swap aging added 23.2.95, Stephen Tweedie.
13 * Buffermem limits added 12.3.98, Rik van Riel.
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/swap.h>
20 #include <linux/mman.h>
21 #include <linux/pagemap.h>
22 #include <linux/pagevec.h>
23 #include <linux/init.h>
24 #include <linux/export.h>
25 #include <linux/mm_inline.h>
26 #include <linux/percpu_counter.h>
27 #include <linux/percpu.h>
28 #include <linux/cpu.h>
29 #include <linux/notifier.h>
30 #include <linux/backing-dev.h>
31 #include <linux/memcontrol.h>
32 #include <linux/gfp.h>
34 #include "internal.h"
36 /* How many pages do we try to swap or page in/out together? */
37 int page_cluster;
39 static DEFINE_PER_CPU(struct pagevec[NR_LRU_LISTS], lru_add_pvecs);
40 static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs);
41 static DEFINE_PER_CPU(struct pagevec, lru_deactivate_pvecs);
44 * This path almost never happens for VM activity - pages are normally
45 * freed via pagevecs. But it gets used by networking.
47 static void __page_cache_release(struct page *page)
49 if (PageLRU(page)) {
50 unsigned long flags;
51 struct zone *zone = page_zone(page);
53 spin_lock_irqsave(&zone->lru_lock, flags);
54 VM_BUG_ON(!PageLRU(page));
55 __ClearPageLRU(page);
56 del_page_from_lru_list(zone, page, page_off_lru(page));
57 spin_unlock_irqrestore(&zone->lru_lock, flags);
61 static void __put_single_page(struct page *page)
63 __page_cache_release(page);
64 free_hot_cold_page(page, 0);
67 static void __put_compound_page(struct page *page)
69 compound_page_dtor *dtor;
71 __page_cache_release(page);
72 dtor = get_compound_page_dtor(page);
73 (*dtor)(page);
76 static void put_compound_page(struct page *page)
78 if (unlikely(PageTail(page))) {
79 /* __split_huge_page_refcount can run under us */
80 struct page *page_head = compound_trans_head(page);
82 if (likely(page != page_head &&
83 get_page_unless_zero(page_head))) {
84 unsigned long flags;
86 * page_head wasn't a dangling pointer but it
87 * may not be a head page anymore by the time
88 * we obtain the lock. That is ok as long as it
89 * can't be freed from under us.
91 flags = compound_lock_irqsave(page_head);
92 if (unlikely(!PageTail(page))) {
93 /* __split_huge_page_refcount run before us */
94 compound_unlock_irqrestore(page_head, flags);
95 VM_BUG_ON(PageHead(page_head));
96 if (put_page_testzero(page_head))
97 __put_single_page(page_head);
98 out_put_single:
99 if (put_page_testzero(page))
100 __put_single_page(page);
101 return;
103 VM_BUG_ON(page_head != page->first_page);
105 * We can release the refcount taken by
106 * get_page_unless_zero() now that
107 * __split_huge_page_refcount() is blocked on
108 * the compound_lock.
110 if (put_page_testzero(page_head))
111 VM_BUG_ON(1);
112 /* __split_huge_page_refcount will wait now */
113 VM_BUG_ON(page_mapcount(page) <= 0);
114 atomic_dec(&page->_mapcount);
115 VM_BUG_ON(atomic_read(&page_head->_count) <= 0);
116 VM_BUG_ON(atomic_read(&page->_count) != 0);
117 compound_unlock_irqrestore(page_head, flags);
118 if (put_page_testzero(page_head)) {
119 if (PageHead(page_head))
120 __put_compound_page(page_head);
121 else
122 __put_single_page(page_head);
124 } else {
125 /* page_head is a dangling pointer */
126 VM_BUG_ON(PageTail(page));
127 goto out_put_single;
129 } else if (put_page_testzero(page)) {
130 if (PageHead(page))
131 __put_compound_page(page);
132 else
133 __put_single_page(page);
137 void put_page(struct page *page)
139 if (unlikely(PageCompound(page)))
140 put_compound_page(page);
141 else if (put_page_testzero(page))
142 __put_single_page(page);
144 EXPORT_SYMBOL(put_page);
147 * This function is exported but must not be called by anything other
148 * than get_page(). It implements the slow path of get_page().
150 bool __get_page_tail(struct page *page)
153 * This takes care of get_page() if run on a tail page
154 * returned by one of the get_user_pages/follow_page variants.
155 * get_user_pages/follow_page itself doesn't need the compound
156 * lock because it runs __get_page_tail_foll() under the
157 * proper PT lock that already serializes against
158 * split_huge_page().
160 unsigned long flags;
161 bool got = false;
162 struct page *page_head = compound_trans_head(page);
164 if (likely(page != page_head && get_page_unless_zero(page_head))) {
166 * page_head wasn't a dangling pointer but it
167 * may not be a head page anymore by the time
168 * we obtain the lock. That is ok as long as it
169 * can't be freed from under us.
171 flags = compound_lock_irqsave(page_head);
172 /* here __split_huge_page_refcount won't run anymore */
173 if (likely(PageTail(page))) {
174 __get_page_tail_foll(page, false);
175 got = true;
177 compound_unlock_irqrestore(page_head, flags);
178 if (unlikely(!got))
179 put_page(page_head);
181 return got;
183 EXPORT_SYMBOL(__get_page_tail);
186 * put_pages_list() - release a list of pages
187 * @pages: list of pages threaded on page->lru
189 * Release a list of pages which are strung together on page.lru. Currently
190 * used by read_cache_pages() and related error recovery code.
192 void put_pages_list(struct list_head *pages)
194 while (!list_empty(pages)) {
195 struct page *victim;
197 victim = list_entry(pages->prev, struct page, lru);
198 list_del(&victim->lru);
199 page_cache_release(victim);
202 EXPORT_SYMBOL(put_pages_list);
204 static void pagevec_lru_move_fn(struct pagevec *pvec,
205 void (*move_fn)(struct page *page, void *arg),
206 void *arg)
208 int i;
209 struct zone *zone = NULL;
210 unsigned long flags = 0;
212 for (i = 0; i < pagevec_count(pvec); i++) {
213 struct page *page = pvec->pages[i];
214 struct zone *pagezone = page_zone(page);
216 if (pagezone != zone) {
217 if (zone)
218 spin_unlock_irqrestore(&zone->lru_lock, flags);
219 zone = pagezone;
220 spin_lock_irqsave(&zone->lru_lock, flags);
223 (*move_fn)(page, arg);
225 if (zone)
226 spin_unlock_irqrestore(&zone->lru_lock, flags);
227 release_pages(pvec->pages, pvec->nr, pvec->cold);
228 pagevec_reinit(pvec);
231 static void pagevec_move_tail_fn(struct page *page, void *arg)
233 int *pgmoved = arg;
235 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
236 enum lru_list lru = page_lru_base_type(page);
237 struct lruvec *lruvec;
239 lruvec = mem_cgroup_lru_move_lists(page_zone(page),
240 page, lru, lru);
241 list_move_tail(&page->lru, &lruvec->lists[lru]);
242 (*pgmoved)++;
247 * pagevec_move_tail() must be called with IRQ disabled.
248 * Otherwise this may cause nasty races.
250 static void pagevec_move_tail(struct pagevec *pvec)
252 int pgmoved = 0;
254 pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved);
255 __count_vm_events(PGROTATED, pgmoved);
259 * Writeback is about to end against a page which has been marked for immediate
260 * reclaim. If it still appears to be reclaimable, move it to the tail of the
261 * inactive list.
263 void rotate_reclaimable_page(struct page *page)
265 if (!PageLocked(page) && !PageDirty(page) && !PageActive(page) &&
266 !PageUnevictable(page) && PageLRU(page)) {
267 struct pagevec *pvec;
268 unsigned long flags;
270 page_cache_get(page);
271 local_irq_save(flags);
272 pvec = &__get_cpu_var(lru_rotate_pvecs);
273 if (!pagevec_add(pvec, page))
274 pagevec_move_tail(pvec);
275 local_irq_restore(flags);
279 static void update_page_reclaim_stat(struct zone *zone, struct page *page,
280 int file, int rotated)
282 struct zone_reclaim_stat *reclaim_stat = &zone->reclaim_stat;
283 struct zone_reclaim_stat *memcg_reclaim_stat;
285 memcg_reclaim_stat = mem_cgroup_get_reclaim_stat_from_page(page);
287 reclaim_stat->recent_scanned[file]++;
288 if (rotated)
289 reclaim_stat->recent_rotated[file]++;
291 if (!memcg_reclaim_stat)
292 return;
294 memcg_reclaim_stat->recent_scanned[file]++;
295 if (rotated)
296 memcg_reclaim_stat->recent_rotated[file]++;
299 static void __activate_page(struct page *page, void *arg)
301 struct zone *zone = page_zone(page);
303 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
304 int file = page_is_file_cache(page);
305 int lru = page_lru_base_type(page);
306 del_page_from_lru_list(zone, page, lru);
308 SetPageActive(page);
309 lru += LRU_ACTIVE;
310 add_page_to_lru_list(zone, page, lru);
311 __count_vm_event(PGACTIVATE);
313 update_page_reclaim_stat(zone, page, file, 1);
317 #ifdef CONFIG_SMP
318 static DEFINE_PER_CPU(struct pagevec, activate_page_pvecs);
320 static void activate_page_drain(int cpu)
322 struct pagevec *pvec = &per_cpu(activate_page_pvecs, cpu);
324 if (pagevec_count(pvec))
325 pagevec_lru_move_fn(pvec, __activate_page, NULL);
328 void activate_page(struct page *page)
330 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
331 struct pagevec *pvec = &get_cpu_var(activate_page_pvecs);
333 page_cache_get(page);
334 if (!pagevec_add(pvec, page))
335 pagevec_lru_move_fn(pvec, __activate_page, NULL);
336 put_cpu_var(activate_page_pvecs);
340 #else
341 static inline void activate_page_drain(int cpu)
345 void activate_page(struct page *page)
347 struct zone *zone = page_zone(page);
349 spin_lock_irq(&zone->lru_lock);
350 __activate_page(page, NULL);
351 spin_unlock_irq(&zone->lru_lock);
353 #endif
356 * Mark a page as having seen activity.
358 * inactive,unreferenced -> inactive,referenced
359 * inactive,referenced -> active,unreferenced
360 * active,unreferenced -> active,referenced
362 void mark_page_accessed(struct page *page)
364 if (!PageActive(page) && !PageUnevictable(page) &&
365 PageReferenced(page) && PageLRU(page)) {
366 activate_page(page);
367 ClearPageReferenced(page);
368 } else if (!PageReferenced(page)) {
369 SetPageReferenced(page);
372 EXPORT_SYMBOL(mark_page_accessed);
374 void __lru_cache_add(struct page *page, enum lru_list lru)
376 struct pagevec *pvec = &get_cpu_var(lru_add_pvecs)[lru];
378 page_cache_get(page);
379 if (!pagevec_add(pvec, page))
380 __pagevec_lru_add(pvec, lru);
381 put_cpu_var(lru_add_pvecs);
383 EXPORT_SYMBOL(__lru_cache_add);
386 * lru_cache_add_lru - add a page to a page list
387 * @page: the page to be added to the LRU.
388 * @lru: the LRU list to which the page is added.
390 void lru_cache_add_lru(struct page *page, enum lru_list lru)
392 if (PageActive(page)) {
393 VM_BUG_ON(PageUnevictable(page));
394 ClearPageActive(page);
395 } else if (PageUnevictable(page)) {
396 VM_BUG_ON(PageActive(page));
397 ClearPageUnevictable(page);
400 VM_BUG_ON(PageLRU(page) || PageActive(page) || PageUnevictable(page));
401 __lru_cache_add(page, lru);
405 * add_page_to_unevictable_list - add a page to the unevictable list
406 * @page: the page to be added to the unevictable list
408 * Add page directly to its zone's unevictable list. To avoid races with
409 * tasks that might be making the page evictable, through eg. munlock,
410 * munmap or exit, while it's not on the lru, we want to add the page
411 * while it's locked or otherwise "invisible" to other tasks. This is
412 * difficult to do when using the pagevec cache, so bypass that.
414 void add_page_to_unevictable_list(struct page *page)
416 struct zone *zone = page_zone(page);
418 spin_lock_irq(&zone->lru_lock);
419 SetPageUnevictable(page);
420 SetPageLRU(page);
421 add_page_to_lru_list(zone, page, LRU_UNEVICTABLE);
422 spin_unlock_irq(&zone->lru_lock);
426 * If the page can not be invalidated, it is moved to the
427 * inactive list to speed up its reclaim. It is moved to the
428 * head of the list, rather than the tail, to give the flusher
429 * threads some time to write it out, as this is much more
430 * effective than the single-page writeout from reclaim.
432 * If the page isn't page_mapped and dirty/writeback, the page
433 * could reclaim asap using PG_reclaim.
435 * 1. active, mapped page -> none
436 * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
437 * 3. inactive, mapped page -> none
438 * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
439 * 5. inactive, clean -> inactive, tail
440 * 6. Others -> none
442 * In 4, why it moves inactive's head, the VM expects the page would
443 * be write it out by flusher threads as this is much more effective
444 * than the single-page writeout from reclaim.
446 static void lru_deactivate_fn(struct page *page, void *arg)
448 int lru, file;
449 bool active;
450 struct zone *zone = page_zone(page);
452 if (!PageLRU(page))
453 return;
455 if (PageUnevictable(page))
456 return;
458 /* Some processes are using the page */
459 if (page_mapped(page))
460 return;
462 active = PageActive(page);
464 file = page_is_file_cache(page);
465 lru = page_lru_base_type(page);
466 del_page_from_lru_list(zone, page, lru + active);
467 ClearPageActive(page);
468 ClearPageReferenced(page);
469 add_page_to_lru_list(zone, page, lru);
471 if (PageWriteback(page) || PageDirty(page)) {
473 * PG_reclaim could be raced with end_page_writeback
474 * It can make readahead confusing. But race window
475 * is _really_ small and it's non-critical problem.
477 SetPageReclaim(page);
478 } else {
479 struct lruvec *lruvec;
481 * The page's writeback ends up during pagevec
482 * We moves tha page into tail of inactive.
484 lruvec = mem_cgroup_lru_move_lists(zone, page, lru, lru);
485 list_move_tail(&page->lru, &lruvec->lists[lru]);
486 __count_vm_event(PGROTATED);
489 if (active)
490 __count_vm_event(PGDEACTIVATE);
491 update_page_reclaim_stat(zone, page, file, 0);
495 * Drain pages out of the cpu's pagevecs.
496 * Either "cpu" is the current CPU, and preemption has already been
497 * disabled; or "cpu" is being hot-unplugged, and is already dead.
499 static void drain_cpu_pagevecs(int cpu)
501 struct pagevec *pvecs = per_cpu(lru_add_pvecs, cpu);
502 struct pagevec *pvec;
503 int lru;
505 for_each_lru(lru) {
506 pvec = &pvecs[lru - LRU_BASE];
507 if (pagevec_count(pvec))
508 __pagevec_lru_add(pvec, lru);
511 pvec = &per_cpu(lru_rotate_pvecs, cpu);
512 if (pagevec_count(pvec)) {
513 unsigned long flags;
515 /* No harm done if a racing interrupt already did this */
516 local_irq_save(flags);
517 pagevec_move_tail(pvec);
518 local_irq_restore(flags);
521 pvec = &per_cpu(lru_deactivate_pvecs, cpu);
522 if (pagevec_count(pvec))
523 pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
525 activate_page_drain(cpu);
529 * deactivate_page - forcefully deactivate a page
530 * @page: page to deactivate
532 * This function hints the VM that @page is a good reclaim candidate,
533 * for example if its invalidation fails due to the page being dirty
534 * or under writeback.
536 void deactivate_page(struct page *page)
539 * In a workload with many unevictable page such as mprotect, unevictable
540 * page deactivation for accelerating reclaim is pointless.
542 if (PageUnevictable(page))
543 return;
545 if (likely(get_page_unless_zero(page))) {
546 struct pagevec *pvec = &get_cpu_var(lru_deactivate_pvecs);
548 if (!pagevec_add(pvec, page))
549 pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
550 put_cpu_var(lru_deactivate_pvecs);
554 void lru_add_drain(void)
556 drain_cpu_pagevecs(get_cpu());
557 put_cpu();
560 static void lru_add_drain_per_cpu(struct work_struct *dummy)
562 lru_add_drain();
566 * Returns 0 for success
568 int lru_add_drain_all(void)
570 return schedule_on_each_cpu(lru_add_drain_per_cpu);
574 * Batched page_cache_release(). Decrement the reference count on all the
575 * passed pages. If it fell to zero then remove the page from the LRU and
576 * free it.
578 * Avoid taking zone->lru_lock if possible, but if it is taken, retain it
579 * for the remainder of the operation.
581 * The locking in this function is against shrink_inactive_list(): we recheck
582 * the page count inside the lock to see whether shrink_inactive_list()
583 * grabbed the page via the LRU. If it did, give up: shrink_inactive_list()
584 * will free it.
586 void release_pages(struct page **pages, int nr, int cold)
588 int i;
589 LIST_HEAD(pages_to_free);
590 struct zone *zone = NULL;
591 unsigned long uninitialized_var(flags);
593 for (i = 0; i < nr; i++) {
594 struct page *page = pages[i];
596 if (unlikely(PageCompound(page))) {
597 if (zone) {
598 spin_unlock_irqrestore(&zone->lru_lock, flags);
599 zone = NULL;
601 put_compound_page(page);
602 continue;
605 if (!put_page_testzero(page))
606 continue;
608 if (PageLRU(page)) {
609 struct zone *pagezone = page_zone(page);
611 if (pagezone != zone) {
612 if (zone)
613 spin_unlock_irqrestore(&zone->lru_lock,
614 flags);
615 zone = pagezone;
616 spin_lock_irqsave(&zone->lru_lock, flags);
618 VM_BUG_ON(!PageLRU(page));
619 __ClearPageLRU(page);
620 del_page_from_lru_list(zone, page, page_off_lru(page));
623 list_add(&page->lru, &pages_to_free);
625 if (zone)
626 spin_unlock_irqrestore(&zone->lru_lock, flags);
628 free_hot_cold_page_list(&pages_to_free, cold);
630 EXPORT_SYMBOL(release_pages);
633 * The pages which we're about to release may be in the deferred lru-addition
634 * queues. That would prevent them from really being freed right now. That's
635 * OK from a correctness point of view but is inefficient - those pages may be
636 * cache-warm and we want to give them back to the page allocator ASAP.
638 * So __pagevec_release() will drain those queues here. __pagevec_lru_add()
639 * and __pagevec_lru_add_active() call release_pages() directly to avoid
640 * mutual recursion.
642 void __pagevec_release(struct pagevec *pvec)
644 lru_add_drain();
645 release_pages(pvec->pages, pagevec_count(pvec), pvec->cold);
646 pagevec_reinit(pvec);
648 EXPORT_SYMBOL(__pagevec_release);
650 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
651 /* used by __split_huge_page_refcount() */
652 void lru_add_page_tail(struct zone* zone,
653 struct page *page, struct page *page_tail)
655 int uninitialized_var(active);
656 enum lru_list lru;
657 const int file = 0;
659 VM_BUG_ON(!PageHead(page));
660 VM_BUG_ON(PageCompound(page_tail));
661 VM_BUG_ON(PageLRU(page_tail));
662 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&zone->lru_lock));
664 SetPageLRU(page_tail);
666 if (page_evictable(page_tail, NULL)) {
667 if (PageActive(page)) {
668 SetPageActive(page_tail);
669 active = 1;
670 lru = LRU_ACTIVE_ANON;
671 } else {
672 active = 0;
673 lru = LRU_INACTIVE_ANON;
675 } else {
676 SetPageUnevictable(page_tail);
677 lru = LRU_UNEVICTABLE;
680 if (likely(PageLRU(page)))
681 list_add_tail(&page_tail->lru, &page->lru);
682 else {
683 struct list_head *list_head;
685 * Head page has not yet been counted, as an hpage,
686 * so we must account for each subpage individually.
688 * Use the standard add function to put page_tail on the list,
689 * but then correct its position so they all end up in order.
691 add_page_to_lru_list(zone, page_tail, lru);
692 list_head = page_tail->lru.prev;
693 list_move_tail(&page_tail->lru, list_head);
696 if (!PageUnevictable(page))
697 update_page_reclaim_stat(zone, page_tail, file, active);
699 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
701 static void __pagevec_lru_add_fn(struct page *page, void *arg)
703 enum lru_list lru = (enum lru_list)arg;
704 struct zone *zone = page_zone(page);
705 int file = is_file_lru(lru);
706 int active = is_active_lru(lru);
708 VM_BUG_ON(PageActive(page));
709 VM_BUG_ON(PageUnevictable(page));
710 VM_BUG_ON(PageLRU(page));
712 SetPageLRU(page);
713 if (active)
714 SetPageActive(page);
715 add_page_to_lru_list(zone, page, lru);
716 update_page_reclaim_stat(zone, page, file, active);
720 * Add the passed pages to the LRU, then drop the caller's refcount
721 * on them. Reinitialises the caller's pagevec.
723 void __pagevec_lru_add(struct pagevec *pvec, enum lru_list lru)
725 VM_BUG_ON(is_unevictable_lru(lru));
727 pagevec_lru_move_fn(pvec, __pagevec_lru_add_fn, (void *)lru);
729 EXPORT_SYMBOL(__pagevec_lru_add);
732 * pagevec_lookup - gang pagecache lookup
733 * @pvec: Where the resulting pages are placed
734 * @mapping: The address_space to search
735 * @start: The starting page index
736 * @nr_pages: The maximum number of pages
738 * pagevec_lookup() will search for and return a group of up to @nr_pages pages
739 * in the mapping. The pages are placed in @pvec. pagevec_lookup() takes a
740 * reference against the pages in @pvec.
742 * The search returns a group of mapping-contiguous pages with ascending
743 * indexes. There may be holes in the indices due to not-present pages.
745 * pagevec_lookup() returns the number of pages which were found.
747 unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping,
748 pgoff_t start, unsigned nr_pages)
750 pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages);
751 return pagevec_count(pvec);
753 EXPORT_SYMBOL(pagevec_lookup);
755 unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping,
756 pgoff_t *index, int tag, unsigned nr_pages)
758 pvec->nr = find_get_pages_tag(mapping, index, tag,
759 nr_pages, pvec->pages);
760 return pagevec_count(pvec);
762 EXPORT_SYMBOL(pagevec_lookup_tag);
765 * Perform any setup for the swap system
767 void __init swap_setup(void)
769 unsigned long megs = totalram_pages >> (20 - PAGE_SHIFT);
771 #ifdef CONFIG_SWAP
772 bdi_init(swapper_space.backing_dev_info);
773 #endif
775 /* Use a smaller cluster for small-memory machines */
776 if (megs < 16)
777 page_cluster = 2;
778 else
779 page_cluster = 3;
781 * Right now other parts of the system means that we
782 * _really_ don't want to cluster much more