spi-topcliff-pch: supports a spi mode setup and bit order setup by IO control
[zen-stable.git] / net / openvswitch / flow.c
blob1252c3081ef12740a0b818fbd58ae3ab6e9b870e
1 /*
2 * Copyright (c) 2007-2011 Nicira Networks.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public License
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
16 * 02110-1301, USA
19 #include "flow.h"
20 #include "datapath.h"
21 #include <linux/uaccess.h>
22 #include <linux/netdevice.h>
23 #include <linux/etherdevice.h>
24 #include <linux/if_ether.h>
25 #include <linux/if_vlan.h>
26 #include <net/llc_pdu.h>
27 #include <linux/kernel.h>
28 #include <linux/jhash.h>
29 #include <linux/jiffies.h>
30 #include <linux/llc.h>
31 #include <linux/module.h>
32 #include <linux/in.h>
33 #include <linux/rcupdate.h>
34 #include <linux/if_arp.h>
35 #include <linux/ip.h>
36 #include <linux/ipv6.h>
37 #include <linux/tcp.h>
38 #include <linux/udp.h>
39 #include <linux/icmp.h>
40 #include <linux/icmpv6.h>
41 #include <linux/rculist.h>
42 #include <net/ip.h>
43 #include <net/ipv6.h>
44 #include <net/ndisc.h>
46 static struct kmem_cache *flow_cache;
48 static int check_header(struct sk_buff *skb, int len)
50 if (unlikely(skb->len < len))
51 return -EINVAL;
52 if (unlikely(!pskb_may_pull(skb, len)))
53 return -ENOMEM;
54 return 0;
57 static bool arphdr_ok(struct sk_buff *skb)
59 return pskb_may_pull(skb, skb_network_offset(skb) +
60 sizeof(struct arp_eth_header));
63 static int check_iphdr(struct sk_buff *skb)
65 unsigned int nh_ofs = skb_network_offset(skb);
66 unsigned int ip_len;
67 int err;
69 err = check_header(skb, nh_ofs + sizeof(struct iphdr));
70 if (unlikely(err))
71 return err;
73 ip_len = ip_hdrlen(skb);
74 if (unlikely(ip_len < sizeof(struct iphdr) ||
75 skb->len < nh_ofs + ip_len))
76 return -EINVAL;
78 skb_set_transport_header(skb, nh_ofs + ip_len);
79 return 0;
82 static bool tcphdr_ok(struct sk_buff *skb)
84 int th_ofs = skb_transport_offset(skb);
85 int tcp_len;
87 if (unlikely(!pskb_may_pull(skb, th_ofs + sizeof(struct tcphdr))))
88 return false;
90 tcp_len = tcp_hdrlen(skb);
91 if (unlikely(tcp_len < sizeof(struct tcphdr) ||
92 skb->len < th_ofs + tcp_len))
93 return false;
95 return true;
98 static bool udphdr_ok(struct sk_buff *skb)
100 return pskb_may_pull(skb, skb_transport_offset(skb) +
101 sizeof(struct udphdr));
104 static bool icmphdr_ok(struct sk_buff *skb)
106 return pskb_may_pull(skb, skb_transport_offset(skb) +
107 sizeof(struct icmphdr));
110 u64 ovs_flow_used_time(unsigned long flow_jiffies)
112 struct timespec cur_ts;
113 u64 cur_ms, idle_ms;
115 ktime_get_ts(&cur_ts);
116 idle_ms = jiffies_to_msecs(jiffies - flow_jiffies);
117 cur_ms = (u64)cur_ts.tv_sec * MSEC_PER_SEC +
118 cur_ts.tv_nsec / NSEC_PER_MSEC;
120 return cur_ms - idle_ms;
123 #define SW_FLOW_KEY_OFFSET(field) \
124 (offsetof(struct sw_flow_key, field) + \
125 FIELD_SIZEOF(struct sw_flow_key, field))
127 static int parse_ipv6hdr(struct sk_buff *skb, struct sw_flow_key *key,
128 int *key_lenp)
130 unsigned int nh_ofs = skb_network_offset(skb);
131 unsigned int nh_len;
132 int payload_ofs;
133 struct ipv6hdr *nh;
134 uint8_t nexthdr;
135 __be16 frag_off;
136 int err;
138 *key_lenp = SW_FLOW_KEY_OFFSET(ipv6.label);
140 err = check_header(skb, nh_ofs + sizeof(*nh));
141 if (unlikely(err))
142 return err;
144 nh = ipv6_hdr(skb);
145 nexthdr = nh->nexthdr;
146 payload_ofs = (u8 *)(nh + 1) - skb->data;
148 key->ip.proto = NEXTHDR_NONE;
149 key->ip.tos = ipv6_get_dsfield(nh);
150 key->ip.ttl = nh->hop_limit;
151 key->ipv6.label = *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
152 key->ipv6.addr.src = nh->saddr;
153 key->ipv6.addr.dst = nh->daddr;
155 payload_ofs = ipv6_skip_exthdr(skb, payload_ofs, &nexthdr, &frag_off);
156 if (unlikely(payload_ofs < 0))
157 return -EINVAL;
159 if (frag_off) {
160 if (frag_off & htons(~0x7))
161 key->ip.frag = OVS_FRAG_TYPE_LATER;
162 else
163 key->ip.frag = OVS_FRAG_TYPE_FIRST;
166 nh_len = payload_ofs - nh_ofs;
167 skb_set_transport_header(skb, nh_ofs + nh_len);
168 key->ip.proto = nexthdr;
169 return nh_len;
172 static bool icmp6hdr_ok(struct sk_buff *skb)
174 return pskb_may_pull(skb, skb_transport_offset(skb) +
175 sizeof(struct icmp6hdr));
178 #define TCP_FLAGS_OFFSET 13
179 #define TCP_FLAG_MASK 0x3f
181 void ovs_flow_used(struct sw_flow *flow, struct sk_buff *skb)
183 u8 tcp_flags = 0;
185 if (flow->key.eth.type == htons(ETH_P_IP) &&
186 flow->key.ip.proto == IPPROTO_TCP) {
187 u8 *tcp = (u8 *)tcp_hdr(skb);
188 tcp_flags = *(tcp + TCP_FLAGS_OFFSET) & TCP_FLAG_MASK;
191 spin_lock(&flow->lock);
192 flow->used = jiffies;
193 flow->packet_count++;
194 flow->byte_count += skb->len;
195 flow->tcp_flags |= tcp_flags;
196 spin_unlock(&flow->lock);
199 struct sw_flow_actions *ovs_flow_actions_alloc(const struct nlattr *actions)
201 int actions_len = nla_len(actions);
202 struct sw_flow_actions *sfa;
204 /* At least DP_MAX_PORTS actions are required to be able to flood a
205 * packet to every port. Factor of 2 allows for setting VLAN tags,
206 * etc. */
207 if (actions_len > 2 * DP_MAX_PORTS * nla_total_size(4))
208 return ERR_PTR(-EINVAL);
210 sfa = kmalloc(sizeof(*sfa) + actions_len, GFP_KERNEL);
211 if (!sfa)
212 return ERR_PTR(-ENOMEM);
214 sfa->actions_len = actions_len;
215 memcpy(sfa->actions, nla_data(actions), actions_len);
216 return sfa;
219 struct sw_flow *ovs_flow_alloc(void)
221 struct sw_flow *flow;
223 flow = kmem_cache_alloc(flow_cache, GFP_KERNEL);
224 if (!flow)
225 return ERR_PTR(-ENOMEM);
227 spin_lock_init(&flow->lock);
228 flow->sf_acts = NULL;
230 return flow;
233 static struct hlist_head *find_bucket(struct flow_table *table, u32 hash)
235 hash = jhash_1word(hash, table->hash_seed);
236 return flex_array_get(table->buckets,
237 (hash & (table->n_buckets - 1)));
240 static struct flex_array *alloc_buckets(unsigned int n_buckets)
242 struct flex_array *buckets;
243 int i, err;
245 buckets = flex_array_alloc(sizeof(struct hlist_head *),
246 n_buckets, GFP_KERNEL);
247 if (!buckets)
248 return NULL;
250 err = flex_array_prealloc(buckets, 0, n_buckets, GFP_KERNEL);
251 if (err) {
252 flex_array_free(buckets);
253 return NULL;
256 for (i = 0; i < n_buckets; i++)
257 INIT_HLIST_HEAD((struct hlist_head *)
258 flex_array_get(buckets, i));
260 return buckets;
263 static void free_buckets(struct flex_array *buckets)
265 flex_array_free(buckets);
268 struct flow_table *ovs_flow_tbl_alloc(int new_size)
270 struct flow_table *table = kmalloc(sizeof(*table), GFP_KERNEL);
272 if (!table)
273 return NULL;
275 table->buckets = alloc_buckets(new_size);
277 if (!table->buckets) {
278 kfree(table);
279 return NULL;
281 table->n_buckets = new_size;
282 table->count = 0;
283 table->node_ver = 0;
284 table->keep_flows = false;
285 get_random_bytes(&table->hash_seed, sizeof(u32));
287 return table;
290 void ovs_flow_tbl_destroy(struct flow_table *table)
292 int i;
294 if (!table)
295 return;
297 if (table->keep_flows)
298 goto skip_flows;
300 for (i = 0; i < table->n_buckets; i++) {
301 struct sw_flow *flow;
302 struct hlist_head *head = flex_array_get(table->buckets, i);
303 struct hlist_node *node, *n;
304 int ver = table->node_ver;
306 hlist_for_each_entry_safe(flow, node, n, head, hash_node[ver]) {
307 hlist_del_rcu(&flow->hash_node[ver]);
308 ovs_flow_free(flow);
312 skip_flows:
313 free_buckets(table->buckets);
314 kfree(table);
317 static void flow_tbl_destroy_rcu_cb(struct rcu_head *rcu)
319 struct flow_table *table = container_of(rcu, struct flow_table, rcu);
321 ovs_flow_tbl_destroy(table);
324 void ovs_flow_tbl_deferred_destroy(struct flow_table *table)
326 if (!table)
327 return;
329 call_rcu(&table->rcu, flow_tbl_destroy_rcu_cb);
332 struct sw_flow *ovs_flow_tbl_next(struct flow_table *table, u32 *bucket, u32 *last)
334 struct sw_flow *flow;
335 struct hlist_head *head;
336 struct hlist_node *n;
337 int ver;
338 int i;
340 ver = table->node_ver;
341 while (*bucket < table->n_buckets) {
342 i = 0;
343 head = flex_array_get(table->buckets, *bucket);
344 hlist_for_each_entry_rcu(flow, n, head, hash_node[ver]) {
345 if (i < *last) {
346 i++;
347 continue;
349 *last = i + 1;
350 return flow;
352 (*bucket)++;
353 *last = 0;
356 return NULL;
359 static void flow_table_copy_flows(struct flow_table *old, struct flow_table *new)
361 int old_ver;
362 int i;
364 old_ver = old->node_ver;
365 new->node_ver = !old_ver;
367 /* Insert in new table. */
368 for (i = 0; i < old->n_buckets; i++) {
369 struct sw_flow *flow;
370 struct hlist_head *head;
371 struct hlist_node *n;
373 head = flex_array_get(old->buckets, i);
375 hlist_for_each_entry(flow, n, head, hash_node[old_ver])
376 ovs_flow_tbl_insert(new, flow);
378 old->keep_flows = true;
381 static struct flow_table *__flow_tbl_rehash(struct flow_table *table, int n_buckets)
383 struct flow_table *new_table;
385 new_table = ovs_flow_tbl_alloc(n_buckets);
386 if (!new_table)
387 return ERR_PTR(-ENOMEM);
389 flow_table_copy_flows(table, new_table);
391 return new_table;
394 struct flow_table *ovs_flow_tbl_rehash(struct flow_table *table)
396 return __flow_tbl_rehash(table, table->n_buckets);
399 struct flow_table *ovs_flow_tbl_expand(struct flow_table *table)
401 return __flow_tbl_rehash(table, table->n_buckets * 2);
404 void ovs_flow_free(struct sw_flow *flow)
406 if (unlikely(!flow))
407 return;
409 kfree((struct sf_flow_acts __force *)flow->sf_acts);
410 kmem_cache_free(flow_cache, flow);
413 /* RCU callback used by ovs_flow_deferred_free. */
414 static void rcu_free_flow_callback(struct rcu_head *rcu)
416 struct sw_flow *flow = container_of(rcu, struct sw_flow, rcu);
418 ovs_flow_free(flow);
421 /* Schedules 'flow' to be freed after the next RCU grace period.
422 * The caller must hold rcu_read_lock for this to be sensible. */
423 void ovs_flow_deferred_free(struct sw_flow *flow)
425 call_rcu(&flow->rcu, rcu_free_flow_callback);
428 /* RCU callback used by ovs_flow_deferred_free_acts. */
429 static void rcu_free_acts_callback(struct rcu_head *rcu)
431 struct sw_flow_actions *sf_acts = container_of(rcu,
432 struct sw_flow_actions, rcu);
433 kfree(sf_acts);
436 /* Schedules 'sf_acts' to be freed after the next RCU grace period.
437 * The caller must hold rcu_read_lock for this to be sensible. */
438 void ovs_flow_deferred_free_acts(struct sw_flow_actions *sf_acts)
440 call_rcu(&sf_acts->rcu, rcu_free_acts_callback);
443 static int parse_vlan(struct sk_buff *skb, struct sw_flow_key *key)
445 struct qtag_prefix {
446 __be16 eth_type; /* ETH_P_8021Q */
447 __be16 tci;
449 struct qtag_prefix *qp;
451 if (unlikely(skb->len < sizeof(struct qtag_prefix) + sizeof(__be16)))
452 return 0;
454 if (unlikely(!pskb_may_pull(skb, sizeof(struct qtag_prefix) +
455 sizeof(__be16))))
456 return -ENOMEM;
458 qp = (struct qtag_prefix *) skb->data;
459 key->eth.tci = qp->tci | htons(VLAN_TAG_PRESENT);
460 __skb_pull(skb, sizeof(struct qtag_prefix));
462 return 0;
465 static __be16 parse_ethertype(struct sk_buff *skb)
467 struct llc_snap_hdr {
468 u8 dsap; /* Always 0xAA */
469 u8 ssap; /* Always 0xAA */
470 u8 ctrl;
471 u8 oui[3];
472 __be16 ethertype;
474 struct llc_snap_hdr *llc;
475 __be16 proto;
477 proto = *(__be16 *) skb->data;
478 __skb_pull(skb, sizeof(__be16));
480 if (ntohs(proto) >= 1536)
481 return proto;
483 if (skb->len < sizeof(struct llc_snap_hdr))
484 return htons(ETH_P_802_2);
486 if (unlikely(!pskb_may_pull(skb, sizeof(struct llc_snap_hdr))))
487 return htons(0);
489 llc = (struct llc_snap_hdr *) skb->data;
490 if (llc->dsap != LLC_SAP_SNAP ||
491 llc->ssap != LLC_SAP_SNAP ||
492 (llc->oui[0] | llc->oui[1] | llc->oui[2]) != 0)
493 return htons(ETH_P_802_2);
495 __skb_pull(skb, sizeof(struct llc_snap_hdr));
496 return llc->ethertype;
499 static int parse_icmpv6(struct sk_buff *skb, struct sw_flow_key *key,
500 int *key_lenp, int nh_len)
502 struct icmp6hdr *icmp = icmp6_hdr(skb);
503 int error = 0;
504 int key_len;
506 /* The ICMPv6 type and code fields use the 16-bit transport port
507 * fields, so we need to store them in 16-bit network byte order.
509 key->ipv6.tp.src = htons(icmp->icmp6_type);
510 key->ipv6.tp.dst = htons(icmp->icmp6_code);
511 key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
513 if (icmp->icmp6_code == 0 &&
514 (icmp->icmp6_type == NDISC_NEIGHBOUR_SOLICITATION ||
515 icmp->icmp6_type == NDISC_NEIGHBOUR_ADVERTISEMENT)) {
516 int icmp_len = skb->len - skb_transport_offset(skb);
517 struct nd_msg *nd;
518 int offset;
520 key_len = SW_FLOW_KEY_OFFSET(ipv6.nd);
522 /* In order to process neighbor discovery options, we need the
523 * entire packet.
525 if (unlikely(icmp_len < sizeof(*nd)))
526 goto out;
527 if (unlikely(skb_linearize(skb))) {
528 error = -ENOMEM;
529 goto out;
532 nd = (struct nd_msg *)skb_transport_header(skb);
533 key->ipv6.nd.target = nd->target;
534 key_len = SW_FLOW_KEY_OFFSET(ipv6.nd);
536 icmp_len -= sizeof(*nd);
537 offset = 0;
538 while (icmp_len >= 8) {
539 struct nd_opt_hdr *nd_opt =
540 (struct nd_opt_hdr *)(nd->opt + offset);
541 int opt_len = nd_opt->nd_opt_len * 8;
543 if (unlikely(!opt_len || opt_len > icmp_len))
544 goto invalid;
546 /* Store the link layer address if the appropriate
547 * option is provided. It is considered an error if
548 * the same link layer option is specified twice.
550 if (nd_opt->nd_opt_type == ND_OPT_SOURCE_LL_ADDR
551 && opt_len == 8) {
552 if (unlikely(!is_zero_ether_addr(key->ipv6.nd.sll)))
553 goto invalid;
554 memcpy(key->ipv6.nd.sll,
555 &nd->opt[offset+sizeof(*nd_opt)], ETH_ALEN);
556 } else if (nd_opt->nd_opt_type == ND_OPT_TARGET_LL_ADDR
557 && opt_len == 8) {
558 if (unlikely(!is_zero_ether_addr(key->ipv6.nd.tll)))
559 goto invalid;
560 memcpy(key->ipv6.nd.tll,
561 &nd->opt[offset+sizeof(*nd_opt)], ETH_ALEN);
564 icmp_len -= opt_len;
565 offset += opt_len;
569 goto out;
571 invalid:
572 memset(&key->ipv6.nd.target, 0, sizeof(key->ipv6.nd.target));
573 memset(key->ipv6.nd.sll, 0, sizeof(key->ipv6.nd.sll));
574 memset(key->ipv6.nd.tll, 0, sizeof(key->ipv6.nd.tll));
576 out:
577 *key_lenp = key_len;
578 return error;
582 * ovs_flow_extract - extracts a flow key from an Ethernet frame.
583 * @skb: sk_buff that contains the frame, with skb->data pointing to the
584 * Ethernet header
585 * @in_port: port number on which @skb was received.
586 * @key: output flow key
587 * @key_lenp: length of output flow key
589 * The caller must ensure that skb->len >= ETH_HLEN.
591 * Returns 0 if successful, otherwise a negative errno value.
593 * Initializes @skb header pointers as follows:
595 * - skb->mac_header: the Ethernet header.
597 * - skb->network_header: just past the Ethernet header, or just past the
598 * VLAN header, to the first byte of the Ethernet payload.
600 * - skb->transport_header: If key->dl_type is ETH_P_IP or ETH_P_IPV6
601 * on output, then just past the IP header, if one is present and
602 * of a correct length, otherwise the same as skb->network_header.
603 * For other key->dl_type values it is left untouched.
605 int ovs_flow_extract(struct sk_buff *skb, u16 in_port, struct sw_flow_key *key,
606 int *key_lenp)
608 int error = 0;
609 int key_len = SW_FLOW_KEY_OFFSET(eth);
610 struct ethhdr *eth;
612 memset(key, 0, sizeof(*key));
614 key->phy.priority = skb->priority;
615 key->phy.in_port = in_port;
617 skb_reset_mac_header(skb);
619 /* Link layer. We are guaranteed to have at least the 14 byte Ethernet
620 * header in the linear data area.
622 eth = eth_hdr(skb);
623 memcpy(key->eth.src, eth->h_source, ETH_ALEN);
624 memcpy(key->eth.dst, eth->h_dest, ETH_ALEN);
626 __skb_pull(skb, 2 * ETH_ALEN);
628 if (vlan_tx_tag_present(skb))
629 key->eth.tci = htons(skb->vlan_tci);
630 else if (eth->h_proto == htons(ETH_P_8021Q))
631 if (unlikely(parse_vlan(skb, key)))
632 return -ENOMEM;
634 key->eth.type = parse_ethertype(skb);
635 if (unlikely(key->eth.type == htons(0)))
636 return -ENOMEM;
638 skb_reset_network_header(skb);
639 __skb_push(skb, skb->data - skb_mac_header(skb));
641 /* Network layer. */
642 if (key->eth.type == htons(ETH_P_IP)) {
643 struct iphdr *nh;
644 __be16 offset;
646 key_len = SW_FLOW_KEY_OFFSET(ipv4.addr);
648 error = check_iphdr(skb);
649 if (unlikely(error)) {
650 if (error == -EINVAL) {
651 skb->transport_header = skb->network_header;
652 error = 0;
654 goto out;
657 nh = ip_hdr(skb);
658 key->ipv4.addr.src = nh->saddr;
659 key->ipv4.addr.dst = nh->daddr;
661 key->ip.proto = nh->protocol;
662 key->ip.tos = nh->tos;
663 key->ip.ttl = nh->ttl;
665 offset = nh->frag_off & htons(IP_OFFSET);
666 if (offset) {
667 key->ip.frag = OVS_FRAG_TYPE_LATER;
668 goto out;
670 if (nh->frag_off & htons(IP_MF) ||
671 skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
672 key->ip.frag = OVS_FRAG_TYPE_FIRST;
674 /* Transport layer. */
675 if (key->ip.proto == IPPROTO_TCP) {
676 key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
677 if (tcphdr_ok(skb)) {
678 struct tcphdr *tcp = tcp_hdr(skb);
679 key->ipv4.tp.src = tcp->source;
680 key->ipv4.tp.dst = tcp->dest;
682 } else if (key->ip.proto == IPPROTO_UDP) {
683 key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
684 if (udphdr_ok(skb)) {
685 struct udphdr *udp = udp_hdr(skb);
686 key->ipv4.tp.src = udp->source;
687 key->ipv4.tp.dst = udp->dest;
689 } else if (key->ip.proto == IPPROTO_ICMP) {
690 key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
691 if (icmphdr_ok(skb)) {
692 struct icmphdr *icmp = icmp_hdr(skb);
693 /* The ICMP type and code fields use the 16-bit
694 * transport port fields, so we need to store
695 * them in 16-bit network byte order. */
696 key->ipv4.tp.src = htons(icmp->type);
697 key->ipv4.tp.dst = htons(icmp->code);
701 } else if (key->eth.type == htons(ETH_P_ARP) && arphdr_ok(skb)) {
702 struct arp_eth_header *arp;
704 arp = (struct arp_eth_header *)skb_network_header(skb);
706 if (arp->ar_hrd == htons(ARPHRD_ETHER)
707 && arp->ar_pro == htons(ETH_P_IP)
708 && arp->ar_hln == ETH_ALEN
709 && arp->ar_pln == 4) {
711 /* We only match on the lower 8 bits of the opcode. */
712 if (ntohs(arp->ar_op) <= 0xff)
713 key->ip.proto = ntohs(arp->ar_op);
715 if (key->ip.proto == ARPOP_REQUEST
716 || key->ip.proto == ARPOP_REPLY) {
717 memcpy(&key->ipv4.addr.src, arp->ar_sip, sizeof(key->ipv4.addr.src));
718 memcpy(&key->ipv4.addr.dst, arp->ar_tip, sizeof(key->ipv4.addr.dst));
719 memcpy(key->ipv4.arp.sha, arp->ar_sha, ETH_ALEN);
720 memcpy(key->ipv4.arp.tha, arp->ar_tha, ETH_ALEN);
721 key_len = SW_FLOW_KEY_OFFSET(ipv4.arp);
724 } else if (key->eth.type == htons(ETH_P_IPV6)) {
725 int nh_len; /* IPv6 Header + Extensions */
727 nh_len = parse_ipv6hdr(skb, key, &key_len);
728 if (unlikely(nh_len < 0)) {
729 if (nh_len == -EINVAL)
730 skb->transport_header = skb->network_header;
731 else
732 error = nh_len;
733 goto out;
736 if (key->ip.frag == OVS_FRAG_TYPE_LATER)
737 goto out;
738 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
739 key->ip.frag = OVS_FRAG_TYPE_FIRST;
741 /* Transport layer. */
742 if (key->ip.proto == NEXTHDR_TCP) {
743 key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
744 if (tcphdr_ok(skb)) {
745 struct tcphdr *tcp = tcp_hdr(skb);
746 key->ipv6.tp.src = tcp->source;
747 key->ipv6.tp.dst = tcp->dest;
749 } else if (key->ip.proto == NEXTHDR_UDP) {
750 key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
751 if (udphdr_ok(skb)) {
752 struct udphdr *udp = udp_hdr(skb);
753 key->ipv6.tp.src = udp->source;
754 key->ipv6.tp.dst = udp->dest;
756 } else if (key->ip.proto == NEXTHDR_ICMP) {
757 key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
758 if (icmp6hdr_ok(skb)) {
759 error = parse_icmpv6(skb, key, &key_len, nh_len);
760 if (error < 0)
761 goto out;
766 out:
767 *key_lenp = key_len;
768 return error;
771 u32 ovs_flow_hash(const struct sw_flow_key *key, int key_len)
773 return jhash2((u32 *)key, DIV_ROUND_UP(key_len, sizeof(u32)), 0);
776 struct sw_flow *ovs_flow_tbl_lookup(struct flow_table *table,
777 struct sw_flow_key *key, int key_len)
779 struct sw_flow *flow;
780 struct hlist_node *n;
781 struct hlist_head *head;
782 u32 hash;
784 hash = ovs_flow_hash(key, key_len);
786 head = find_bucket(table, hash);
787 hlist_for_each_entry_rcu(flow, n, head, hash_node[table->node_ver]) {
789 if (flow->hash == hash &&
790 !memcmp(&flow->key, key, key_len)) {
791 return flow;
794 return NULL;
797 void ovs_flow_tbl_insert(struct flow_table *table, struct sw_flow *flow)
799 struct hlist_head *head;
801 head = find_bucket(table, flow->hash);
802 hlist_add_head_rcu(&flow->hash_node[table->node_ver], head);
803 table->count++;
806 void ovs_flow_tbl_remove(struct flow_table *table, struct sw_flow *flow)
808 hlist_del_rcu(&flow->hash_node[table->node_ver]);
809 table->count--;
810 BUG_ON(table->count < 0);
813 /* The size of the argument for each %OVS_KEY_ATTR_* Netlink attribute. */
814 const int ovs_key_lens[OVS_KEY_ATTR_MAX + 1] = {
815 [OVS_KEY_ATTR_ENCAP] = -1,
816 [OVS_KEY_ATTR_PRIORITY] = sizeof(u32),
817 [OVS_KEY_ATTR_IN_PORT] = sizeof(u32),
818 [OVS_KEY_ATTR_ETHERNET] = sizeof(struct ovs_key_ethernet),
819 [OVS_KEY_ATTR_VLAN] = sizeof(__be16),
820 [OVS_KEY_ATTR_ETHERTYPE] = sizeof(__be16),
821 [OVS_KEY_ATTR_IPV4] = sizeof(struct ovs_key_ipv4),
822 [OVS_KEY_ATTR_IPV6] = sizeof(struct ovs_key_ipv6),
823 [OVS_KEY_ATTR_TCP] = sizeof(struct ovs_key_tcp),
824 [OVS_KEY_ATTR_UDP] = sizeof(struct ovs_key_udp),
825 [OVS_KEY_ATTR_ICMP] = sizeof(struct ovs_key_icmp),
826 [OVS_KEY_ATTR_ICMPV6] = sizeof(struct ovs_key_icmpv6),
827 [OVS_KEY_ATTR_ARP] = sizeof(struct ovs_key_arp),
828 [OVS_KEY_ATTR_ND] = sizeof(struct ovs_key_nd),
831 static int ipv4_flow_from_nlattrs(struct sw_flow_key *swkey, int *key_len,
832 const struct nlattr *a[], u32 *attrs)
834 const struct ovs_key_icmp *icmp_key;
835 const struct ovs_key_tcp *tcp_key;
836 const struct ovs_key_udp *udp_key;
838 switch (swkey->ip.proto) {
839 case IPPROTO_TCP:
840 if (!(*attrs & (1 << OVS_KEY_ATTR_TCP)))
841 return -EINVAL;
842 *attrs &= ~(1 << OVS_KEY_ATTR_TCP);
844 *key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
845 tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]);
846 swkey->ipv4.tp.src = tcp_key->tcp_src;
847 swkey->ipv4.tp.dst = tcp_key->tcp_dst;
848 break;
850 case IPPROTO_UDP:
851 if (!(*attrs & (1 << OVS_KEY_ATTR_UDP)))
852 return -EINVAL;
853 *attrs &= ~(1 << OVS_KEY_ATTR_UDP);
855 *key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
856 udp_key = nla_data(a[OVS_KEY_ATTR_UDP]);
857 swkey->ipv4.tp.src = udp_key->udp_src;
858 swkey->ipv4.tp.dst = udp_key->udp_dst;
859 break;
861 case IPPROTO_ICMP:
862 if (!(*attrs & (1 << OVS_KEY_ATTR_ICMP)))
863 return -EINVAL;
864 *attrs &= ~(1 << OVS_KEY_ATTR_ICMP);
866 *key_len = SW_FLOW_KEY_OFFSET(ipv4.tp);
867 icmp_key = nla_data(a[OVS_KEY_ATTR_ICMP]);
868 swkey->ipv4.tp.src = htons(icmp_key->icmp_type);
869 swkey->ipv4.tp.dst = htons(icmp_key->icmp_code);
870 break;
873 return 0;
876 static int ipv6_flow_from_nlattrs(struct sw_flow_key *swkey, int *key_len,
877 const struct nlattr *a[], u32 *attrs)
879 const struct ovs_key_icmpv6 *icmpv6_key;
880 const struct ovs_key_tcp *tcp_key;
881 const struct ovs_key_udp *udp_key;
883 switch (swkey->ip.proto) {
884 case IPPROTO_TCP:
885 if (!(*attrs & (1 << OVS_KEY_ATTR_TCP)))
886 return -EINVAL;
887 *attrs &= ~(1 << OVS_KEY_ATTR_TCP);
889 *key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
890 tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]);
891 swkey->ipv6.tp.src = tcp_key->tcp_src;
892 swkey->ipv6.tp.dst = tcp_key->tcp_dst;
893 break;
895 case IPPROTO_UDP:
896 if (!(*attrs & (1 << OVS_KEY_ATTR_UDP)))
897 return -EINVAL;
898 *attrs &= ~(1 << OVS_KEY_ATTR_UDP);
900 *key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
901 udp_key = nla_data(a[OVS_KEY_ATTR_UDP]);
902 swkey->ipv6.tp.src = udp_key->udp_src;
903 swkey->ipv6.tp.dst = udp_key->udp_dst;
904 break;
906 case IPPROTO_ICMPV6:
907 if (!(*attrs & (1 << OVS_KEY_ATTR_ICMPV6)))
908 return -EINVAL;
909 *attrs &= ~(1 << OVS_KEY_ATTR_ICMPV6);
911 *key_len = SW_FLOW_KEY_OFFSET(ipv6.tp);
912 icmpv6_key = nla_data(a[OVS_KEY_ATTR_ICMPV6]);
913 swkey->ipv6.tp.src = htons(icmpv6_key->icmpv6_type);
914 swkey->ipv6.tp.dst = htons(icmpv6_key->icmpv6_code);
916 if (swkey->ipv6.tp.src == htons(NDISC_NEIGHBOUR_SOLICITATION) ||
917 swkey->ipv6.tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) {
918 const struct ovs_key_nd *nd_key;
920 if (!(*attrs & (1 << OVS_KEY_ATTR_ND)))
921 return -EINVAL;
922 *attrs &= ~(1 << OVS_KEY_ATTR_ND);
924 *key_len = SW_FLOW_KEY_OFFSET(ipv6.nd);
925 nd_key = nla_data(a[OVS_KEY_ATTR_ND]);
926 memcpy(&swkey->ipv6.nd.target, nd_key->nd_target,
927 sizeof(swkey->ipv6.nd.target));
928 memcpy(swkey->ipv6.nd.sll, nd_key->nd_sll, ETH_ALEN);
929 memcpy(swkey->ipv6.nd.tll, nd_key->nd_tll, ETH_ALEN);
931 break;
934 return 0;
937 static int parse_flow_nlattrs(const struct nlattr *attr,
938 const struct nlattr *a[], u32 *attrsp)
940 const struct nlattr *nla;
941 u32 attrs;
942 int rem;
944 attrs = 0;
945 nla_for_each_nested(nla, attr, rem) {
946 u16 type = nla_type(nla);
947 int expected_len;
949 if (type > OVS_KEY_ATTR_MAX || attrs & (1 << type))
950 return -EINVAL;
952 expected_len = ovs_key_lens[type];
953 if (nla_len(nla) != expected_len && expected_len != -1)
954 return -EINVAL;
956 attrs |= 1 << type;
957 a[type] = nla;
959 if (rem)
960 return -EINVAL;
962 *attrsp = attrs;
963 return 0;
967 * ovs_flow_from_nlattrs - parses Netlink attributes into a flow key.
968 * @swkey: receives the extracted flow key.
969 * @key_lenp: number of bytes used in @swkey.
970 * @attr: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
971 * sequence.
973 int ovs_flow_from_nlattrs(struct sw_flow_key *swkey, int *key_lenp,
974 const struct nlattr *attr)
976 const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
977 const struct ovs_key_ethernet *eth_key;
978 int key_len;
979 u32 attrs;
980 int err;
982 memset(swkey, 0, sizeof(struct sw_flow_key));
983 key_len = SW_FLOW_KEY_OFFSET(eth);
985 err = parse_flow_nlattrs(attr, a, &attrs);
986 if (err)
987 return err;
989 /* Metadata attributes. */
990 if (attrs & (1 << OVS_KEY_ATTR_PRIORITY)) {
991 swkey->phy.priority = nla_get_u32(a[OVS_KEY_ATTR_PRIORITY]);
992 attrs &= ~(1 << OVS_KEY_ATTR_PRIORITY);
994 if (attrs & (1 << OVS_KEY_ATTR_IN_PORT)) {
995 u32 in_port = nla_get_u32(a[OVS_KEY_ATTR_IN_PORT]);
996 if (in_port >= DP_MAX_PORTS)
997 return -EINVAL;
998 swkey->phy.in_port = in_port;
999 attrs &= ~(1 << OVS_KEY_ATTR_IN_PORT);
1000 } else {
1001 swkey->phy.in_port = USHRT_MAX;
1004 /* Data attributes. */
1005 if (!(attrs & (1 << OVS_KEY_ATTR_ETHERNET)))
1006 return -EINVAL;
1007 attrs &= ~(1 << OVS_KEY_ATTR_ETHERNET);
1009 eth_key = nla_data(a[OVS_KEY_ATTR_ETHERNET]);
1010 memcpy(swkey->eth.src, eth_key->eth_src, ETH_ALEN);
1011 memcpy(swkey->eth.dst, eth_key->eth_dst, ETH_ALEN);
1013 if (attrs & (1u << OVS_KEY_ATTR_ETHERTYPE) &&
1014 nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]) == htons(ETH_P_8021Q)) {
1015 const struct nlattr *encap;
1016 __be16 tci;
1018 if (attrs != ((1 << OVS_KEY_ATTR_VLAN) |
1019 (1 << OVS_KEY_ATTR_ETHERTYPE) |
1020 (1 << OVS_KEY_ATTR_ENCAP)))
1021 return -EINVAL;
1023 encap = a[OVS_KEY_ATTR_ENCAP];
1024 tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
1025 if (tci & htons(VLAN_TAG_PRESENT)) {
1026 swkey->eth.tci = tci;
1028 err = parse_flow_nlattrs(encap, a, &attrs);
1029 if (err)
1030 return err;
1031 } else if (!tci) {
1032 /* Corner case for truncated 802.1Q header. */
1033 if (nla_len(encap))
1034 return -EINVAL;
1036 swkey->eth.type = htons(ETH_P_8021Q);
1037 *key_lenp = key_len;
1038 return 0;
1039 } else {
1040 return -EINVAL;
1044 if (attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) {
1045 swkey->eth.type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
1046 if (ntohs(swkey->eth.type) < 1536)
1047 return -EINVAL;
1048 attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
1049 } else {
1050 swkey->eth.type = htons(ETH_P_802_2);
1053 if (swkey->eth.type == htons(ETH_P_IP)) {
1054 const struct ovs_key_ipv4 *ipv4_key;
1056 if (!(attrs & (1 << OVS_KEY_ATTR_IPV4)))
1057 return -EINVAL;
1058 attrs &= ~(1 << OVS_KEY_ATTR_IPV4);
1060 key_len = SW_FLOW_KEY_OFFSET(ipv4.addr);
1061 ipv4_key = nla_data(a[OVS_KEY_ATTR_IPV4]);
1062 if (ipv4_key->ipv4_frag > OVS_FRAG_TYPE_MAX)
1063 return -EINVAL;
1064 swkey->ip.proto = ipv4_key->ipv4_proto;
1065 swkey->ip.tos = ipv4_key->ipv4_tos;
1066 swkey->ip.ttl = ipv4_key->ipv4_ttl;
1067 swkey->ip.frag = ipv4_key->ipv4_frag;
1068 swkey->ipv4.addr.src = ipv4_key->ipv4_src;
1069 swkey->ipv4.addr.dst = ipv4_key->ipv4_dst;
1071 if (swkey->ip.frag != OVS_FRAG_TYPE_LATER) {
1072 err = ipv4_flow_from_nlattrs(swkey, &key_len, a, &attrs);
1073 if (err)
1074 return err;
1076 } else if (swkey->eth.type == htons(ETH_P_IPV6)) {
1077 const struct ovs_key_ipv6 *ipv6_key;
1079 if (!(attrs & (1 << OVS_KEY_ATTR_IPV6)))
1080 return -EINVAL;
1081 attrs &= ~(1 << OVS_KEY_ATTR_IPV6);
1083 key_len = SW_FLOW_KEY_OFFSET(ipv6.label);
1084 ipv6_key = nla_data(a[OVS_KEY_ATTR_IPV6]);
1085 if (ipv6_key->ipv6_frag > OVS_FRAG_TYPE_MAX)
1086 return -EINVAL;
1087 swkey->ipv6.label = ipv6_key->ipv6_label;
1088 swkey->ip.proto = ipv6_key->ipv6_proto;
1089 swkey->ip.tos = ipv6_key->ipv6_tclass;
1090 swkey->ip.ttl = ipv6_key->ipv6_hlimit;
1091 swkey->ip.frag = ipv6_key->ipv6_frag;
1092 memcpy(&swkey->ipv6.addr.src, ipv6_key->ipv6_src,
1093 sizeof(swkey->ipv6.addr.src));
1094 memcpy(&swkey->ipv6.addr.dst, ipv6_key->ipv6_dst,
1095 sizeof(swkey->ipv6.addr.dst));
1097 if (swkey->ip.frag != OVS_FRAG_TYPE_LATER) {
1098 err = ipv6_flow_from_nlattrs(swkey, &key_len, a, &attrs);
1099 if (err)
1100 return err;
1102 } else if (swkey->eth.type == htons(ETH_P_ARP)) {
1103 const struct ovs_key_arp *arp_key;
1105 if (!(attrs & (1 << OVS_KEY_ATTR_ARP)))
1106 return -EINVAL;
1107 attrs &= ~(1 << OVS_KEY_ATTR_ARP);
1109 key_len = SW_FLOW_KEY_OFFSET(ipv4.arp);
1110 arp_key = nla_data(a[OVS_KEY_ATTR_ARP]);
1111 swkey->ipv4.addr.src = arp_key->arp_sip;
1112 swkey->ipv4.addr.dst = arp_key->arp_tip;
1113 if (arp_key->arp_op & htons(0xff00))
1114 return -EINVAL;
1115 swkey->ip.proto = ntohs(arp_key->arp_op);
1116 memcpy(swkey->ipv4.arp.sha, arp_key->arp_sha, ETH_ALEN);
1117 memcpy(swkey->ipv4.arp.tha, arp_key->arp_tha, ETH_ALEN);
1120 if (attrs)
1121 return -EINVAL;
1122 *key_lenp = key_len;
1124 return 0;
1128 * ovs_flow_metadata_from_nlattrs - parses Netlink attributes into a flow key.
1129 * @in_port: receives the extracted input port.
1130 * @key: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
1131 * sequence.
1133 * This parses a series of Netlink attributes that form a flow key, which must
1134 * take the same form accepted by flow_from_nlattrs(), but only enough of it to
1135 * get the metadata, that is, the parts of the flow key that cannot be
1136 * extracted from the packet itself.
1138 int ovs_flow_metadata_from_nlattrs(u32 *priority, u16 *in_port,
1139 const struct nlattr *attr)
1141 const struct nlattr *nla;
1142 int rem;
1144 *in_port = USHRT_MAX;
1145 *priority = 0;
1147 nla_for_each_nested(nla, attr, rem) {
1148 int type = nla_type(nla);
1150 if (type <= OVS_KEY_ATTR_MAX && ovs_key_lens[type] > 0) {
1151 if (nla_len(nla) != ovs_key_lens[type])
1152 return -EINVAL;
1154 switch (type) {
1155 case OVS_KEY_ATTR_PRIORITY:
1156 *priority = nla_get_u32(nla);
1157 break;
1159 case OVS_KEY_ATTR_IN_PORT:
1160 if (nla_get_u32(nla) >= DP_MAX_PORTS)
1161 return -EINVAL;
1162 *in_port = nla_get_u32(nla);
1163 break;
1167 if (rem)
1168 return -EINVAL;
1169 return 0;
1172 int ovs_flow_to_nlattrs(const struct sw_flow_key *swkey, struct sk_buff *skb)
1174 struct ovs_key_ethernet *eth_key;
1175 struct nlattr *nla, *encap;
1177 if (swkey->phy.priority)
1178 NLA_PUT_U32(skb, OVS_KEY_ATTR_PRIORITY, swkey->phy.priority);
1180 if (swkey->phy.in_port != USHRT_MAX)
1181 NLA_PUT_U32(skb, OVS_KEY_ATTR_IN_PORT, swkey->phy.in_port);
1183 nla = nla_reserve(skb, OVS_KEY_ATTR_ETHERNET, sizeof(*eth_key));
1184 if (!nla)
1185 goto nla_put_failure;
1186 eth_key = nla_data(nla);
1187 memcpy(eth_key->eth_src, swkey->eth.src, ETH_ALEN);
1188 memcpy(eth_key->eth_dst, swkey->eth.dst, ETH_ALEN);
1190 if (swkey->eth.tci || swkey->eth.type == htons(ETH_P_8021Q)) {
1191 NLA_PUT_BE16(skb, OVS_KEY_ATTR_ETHERTYPE, htons(ETH_P_8021Q));
1192 NLA_PUT_BE16(skb, OVS_KEY_ATTR_VLAN, swkey->eth.tci);
1193 encap = nla_nest_start(skb, OVS_KEY_ATTR_ENCAP);
1194 if (!swkey->eth.tci)
1195 goto unencap;
1196 } else {
1197 encap = NULL;
1200 if (swkey->eth.type == htons(ETH_P_802_2))
1201 goto unencap;
1203 NLA_PUT_BE16(skb, OVS_KEY_ATTR_ETHERTYPE, swkey->eth.type);
1205 if (swkey->eth.type == htons(ETH_P_IP)) {
1206 struct ovs_key_ipv4 *ipv4_key;
1208 nla = nla_reserve(skb, OVS_KEY_ATTR_IPV4, sizeof(*ipv4_key));
1209 if (!nla)
1210 goto nla_put_failure;
1211 ipv4_key = nla_data(nla);
1212 ipv4_key->ipv4_src = swkey->ipv4.addr.src;
1213 ipv4_key->ipv4_dst = swkey->ipv4.addr.dst;
1214 ipv4_key->ipv4_proto = swkey->ip.proto;
1215 ipv4_key->ipv4_tos = swkey->ip.tos;
1216 ipv4_key->ipv4_ttl = swkey->ip.ttl;
1217 ipv4_key->ipv4_frag = swkey->ip.frag;
1218 } else if (swkey->eth.type == htons(ETH_P_IPV6)) {
1219 struct ovs_key_ipv6 *ipv6_key;
1221 nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6, sizeof(*ipv6_key));
1222 if (!nla)
1223 goto nla_put_failure;
1224 ipv6_key = nla_data(nla);
1225 memcpy(ipv6_key->ipv6_src, &swkey->ipv6.addr.src,
1226 sizeof(ipv6_key->ipv6_src));
1227 memcpy(ipv6_key->ipv6_dst, &swkey->ipv6.addr.dst,
1228 sizeof(ipv6_key->ipv6_dst));
1229 ipv6_key->ipv6_label = swkey->ipv6.label;
1230 ipv6_key->ipv6_proto = swkey->ip.proto;
1231 ipv6_key->ipv6_tclass = swkey->ip.tos;
1232 ipv6_key->ipv6_hlimit = swkey->ip.ttl;
1233 ipv6_key->ipv6_frag = swkey->ip.frag;
1234 } else if (swkey->eth.type == htons(ETH_P_ARP)) {
1235 struct ovs_key_arp *arp_key;
1237 nla = nla_reserve(skb, OVS_KEY_ATTR_ARP, sizeof(*arp_key));
1238 if (!nla)
1239 goto nla_put_failure;
1240 arp_key = nla_data(nla);
1241 memset(arp_key, 0, sizeof(struct ovs_key_arp));
1242 arp_key->arp_sip = swkey->ipv4.addr.src;
1243 arp_key->arp_tip = swkey->ipv4.addr.dst;
1244 arp_key->arp_op = htons(swkey->ip.proto);
1245 memcpy(arp_key->arp_sha, swkey->ipv4.arp.sha, ETH_ALEN);
1246 memcpy(arp_key->arp_tha, swkey->ipv4.arp.tha, ETH_ALEN);
1249 if ((swkey->eth.type == htons(ETH_P_IP) ||
1250 swkey->eth.type == htons(ETH_P_IPV6)) &&
1251 swkey->ip.frag != OVS_FRAG_TYPE_LATER) {
1253 if (swkey->ip.proto == IPPROTO_TCP) {
1254 struct ovs_key_tcp *tcp_key;
1256 nla = nla_reserve(skb, OVS_KEY_ATTR_TCP, sizeof(*tcp_key));
1257 if (!nla)
1258 goto nla_put_failure;
1259 tcp_key = nla_data(nla);
1260 if (swkey->eth.type == htons(ETH_P_IP)) {
1261 tcp_key->tcp_src = swkey->ipv4.tp.src;
1262 tcp_key->tcp_dst = swkey->ipv4.tp.dst;
1263 } else if (swkey->eth.type == htons(ETH_P_IPV6)) {
1264 tcp_key->tcp_src = swkey->ipv6.tp.src;
1265 tcp_key->tcp_dst = swkey->ipv6.tp.dst;
1267 } else if (swkey->ip.proto == IPPROTO_UDP) {
1268 struct ovs_key_udp *udp_key;
1270 nla = nla_reserve(skb, OVS_KEY_ATTR_UDP, sizeof(*udp_key));
1271 if (!nla)
1272 goto nla_put_failure;
1273 udp_key = nla_data(nla);
1274 if (swkey->eth.type == htons(ETH_P_IP)) {
1275 udp_key->udp_src = swkey->ipv4.tp.src;
1276 udp_key->udp_dst = swkey->ipv4.tp.dst;
1277 } else if (swkey->eth.type == htons(ETH_P_IPV6)) {
1278 udp_key->udp_src = swkey->ipv6.tp.src;
1279 udp_key->udp_dst = swkey->ipv6.tp.dst;
1281 } else if (swkey->eth.type == htons(ETH_P_IP) &&
1282 swkey->ip.proto == IPPROTO_ICMP) {
1283 struct ovs_key_icmp *icmp_key;
1285 nla = nla_reserve(skb, OVS_KEY_ATTR_ICMP, sizeof(*icmp_key));
1286 if (!nla)
1287 goto nla_put_failure;
1288 icmp_key = nla_data(nla);
1289 icmp_key->icmp_type = ntohs(swkey->ipv4.tp.src);
1290 icmp_key->icmp_code = ntohs(swkey->ipv4.tp.dst);
1291 } else if (swkey->eth.type == htons(ETH_P_IPV6) &&
1292 swkey->ip.proto == IPPROTO_ICMPV6) {
1293 struct ovs_key_icmpv6 *icmpv6_key;
1295 nla = nla_reserve(skb, OVS_KEY_ATTR_ICMPV6,
1296 sizeof(*icmpv6_key));
1297 if (!nla)
1298 goto nla_put_failure;
1299 icmpv6_key = nla_data(nla);
1300 icmpv6_key->icmpv6_type = ntohs(swkey->ipv6.tp.src);
1301 icmpv6_key->icmpv6_code = ntohs(swkey->ipv6.tp.dst);
1303 if (icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_SOLICITATION ||
1304 icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_ADVERTISEMENT) {
1305 struct ovs_key_nd *nd_key;
1307 nla = nla_reserve(skb, OVS_KEY_ATTR_ND, sizeof(*nd_key));
1308 if (!nla)
1309 goto nla_put_failure;
1310 nd_key = nla_data(nla);
1311 memcpy(nd_key->nd_target, &swkey->ipv6.nd.target,
1312 sizeof(nd_key->nd_target));
1313 memcpy(nd_key->nd_sll, swkey->ipv6.nd.sll, ETH_ALEN);
1314 memcpy(nd_key->nd_tll, swkey->ipv6.nd.tll, ETH_ALEN);
1319 unencap:
1320 if (encap)
1321 nla_nest_end(skb, encap);
1323 return 0;
1325 nla_put_failure:
1326 return -EMSGSIZE;
1329 /* Initializes the flow module.
1330 * Returns zero if successful or a negative error code. */
1331 int ovs_flow_init(void)
1333 flow_cache = kmem_cache_create("sw_flow", sizeof(struct sw_flow), 0,
1334 0, NULL);
1335 if (flow_cache == NULL)
1336 return -ENOMEM;
1338 return 0;
1341 /* Uninitializes the flow module. */
1342 void ovs_flow_exit(void)
1344 kmem_cache_destroy(flow_cache);