spi-topcliff-pch: supports a spi mode setup and bit order setup by IO control
[zen-stable.git] / tools / perf / builtin-timechart.c
blob3b75b2e21ea55e51739a7200ffeeb61aa8e613ad
1 /*
2 * builtin-timechart.c - make an svg timechart of system activity
4 * (C) Copyright 2009 Intel Corporation
6 * Authors:
7 * Arjan van de Ven <arjan@linux.intel.com>
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation; version 2
12 * of the License.
15 #include "builtin.h"
17 #include "util/util.h"
19 #include "util/color.h"
20 #include <linux/list.h>
21 #include "util/cache.h"
22 #include "util/evsel.h"
23 #include <linux/rbtree.h>
24 #include "util/symbol.h"
25 #include "util/callchain.h"
26 #include "util/strlist.h"
28 #include "perf.h"
29 #include "util/header.h"
30 #include "util/parse-options.h"
31 #include "util/parse-events.h"
32 #include "util/event.h"
33 #include "util/session.h"
34 #include "util/svghelper.h"
35 #include "util/tool.h"
37 #define SUPPORT_OLD_POWER_EVENTS 1
38 #define PWR_EVENT_EXIT -1
41 static const char *input_name;
42 static const char *output_name = "output.svg";
44 static unsigned int numcpus;
45 static u64 min_freq; /* Lowest CPU frequency seen */
46 static u64 max_freq; /* Highest CPU frequency seen */
47 static u64 turbo_frequency;
49 static u64 first_time, last_time;
51 static bool power_only;
54 struct per_pid;
55 struct per_pidcomm;
57 struct cpu_sample;
58 struct power_event;
59 struct wake_event;
61 struct sample_wrapper;
64 * Datastructure layout:
65 * We keep an list of "pid"s, matching the kernels notion of a task struct.
66 * Each "pid" entry, has a list of "comm"s.
67 * this is because we want to track different programs different, while
68 * exec will reuse the original pid (by design).
69 * Each comm has a list of samples that will be used to draw
70 * final graph.
73 struct per_pid {
74 struct per_pid *next;
76 int pid;
77 int ppid;
79 u64 start_time;
80 u64 end_time;
81 u64 total_time;
82 int display;
84 struct per_pidcomm *all;
85 struct per_pidcomm *current;
89 struct per_pidcomm {
90 struct per_pidcomm *next;
92 u64 start_time;
93 u64 end_time;
94 u64 total_time;
96 int Y;
97 int display;
99 long state;
100 u64 state_since;
102 char *comm;
104 struct cpu_sample *samples;
107 struct sample_wrapper {
108 struct sample_wrapper *next;
110 u64 timestamp;
111 unsigned char data[0];
114 #define TYPE_NONE 0
115 #define TYPE_RUNNING 1
116 #define TYPE_WAITING 2
117 #define TYPE_BLOCKED 3
119 struct cpu_sample {
120 struct cpu_sample *next;
122 u64 start_time;
123 u64 end_time;
124 int type;
125 int cpu;
128 static struct per_pid *all_data;
130 #define CSTATE 1
131 #define PSTATE 2
133 struct power_event {
134 struct power_event *next;
135 int type;
136 int state;
137 u64 start_time;
138 u64 end_time;
139 int cpu;
142 struct wake_event {
143 struct wake_event *next;
144 int waker;
145 int wakee;
146 u64 time;
149 static struct power_event *power_events;
150 static struct wake_event *wake_events;
152 struct process_filter;
153 struct process_filter {
154 char *name;
155 int pid;
156 struct process_filter *next;
159 static struct process_filter *process_filter;
162 static struct per_pid *find_create_pid(int pid)
164 struct per_pid *cursor = all_data;
166 while (cursor) {
167 if (cursor->pid == pid)
168 return cursor;
169 cursor = cursor->next;
171 cursor = malloc(sizeof(struct per_pid));
172 assert(cursor != NULL);
173 memset(cursor, 0, sizeof(struct per_pid));
174 cursor->pid = pid;
175 cursor->next = all_data;
176 all_data = cursor;
177 return cursor;
180 static void pid_set_comm(int pid, char *comm)
182 struct per_pid *p;
183 struct per_pidcomm *c;
184 p = find_create_pid(pid);
185 c = p->all;
186 while (c) {
187 if (c->comm && strcmp(c->comm, comm) == 0) {
188 p->current = c;
189 return;
191 if (!c->comm) {
192 c->comm = strdup(comm);
193 p->current = c;
194 return;
196 c = c->next;
198 c = malloc(sizeof(struct per_pidcomm));
199 assert(c != NULL);
200 memset(c, 0, sizeof(struct per_pidcomm));
201 c->comm = strdup(comm);
202 p->current = c;
203 c->next = p->all;
204 p->all = c;
207 static void pid_fork(int pid, int ppid, u64 timestamp)
209 struct per_pid *p, *pp;
210 p = find_create_pid(pid);
211 pp = find_create_pid(ppid);
212 p->ppid = ppid;
213 if (pp->current && pp->current->comm && !p->current)
214 pid_set_comm(pid, pp->current->comm);
216 p->start_time = timestamp;
217 if (p->current) {
218 p->current->start_time = timestamp;
219 p->current->state_since = timestamp;
223 static void pid_exit(int pid, u64 timestamp)
225 struct per_pid *p;
226 p = find_create_pid(pid);
227 p->end_time = timestamp;
228 if (p->current)
229 p->current->end_time = timestamp;
232 static void
233 pid_put_sample(int pid, int type, unsigned int cpu, u64 start, u64 end)
235 struct per_pid *p;
236 struct per_pidcomm *c;
237 struct cpu_sample *sample;
239 p = find_create_pid(pid);
240 c = p->current;
241 if (!c) {
242 c = malloc(sizeof(struct per_pidcomm));
243 assert(c != NULL);
244 memset(c, 0, sizeof(struct per_pidcomm));
245 p->current = c;
246 c->next = p->all;
247 p->all = c;
250 sample = malloc(sizeof(struct cpu_sample));
251 assert(sample != NULL);
252 memset(sample, 0, sizeof(struct cpu_sample));
253 sample->start_time = start;
254 sample->end_time = end;
255 sample->type = type;
256 sample->next = c->samples;
257 sample->cpu = cpu;
258 c->samples = sample;
260 if (sample->type == TYPE_RUNNING && end > start && start > 0) {
261 c->total_time += (end-start);
262 p->total_time += (end-start);
265 if (c->start_time == 0 || c->start_time > start)
266 c->start_time = start;
267 if (p->start_time == 0 || p->start_time > start)
268 p->start_time = start;
271 #define MAX_CPUS 4096
273 static u64 cpus_cstate_start_times[MAX_CPUS];
274 static int cpus_cstate_state[MAX_CPUS];
275 static u64 cpus_pstate_start_times[MAX_CPUS];
276 static u64 cpus_pstate_state[MAX_CPUS];
278 static int process_comm_event(struct perf_tool *tool __used,
279 union perf_event *event,
280 struct perf_sample *sample __used,
281 struct machine *machine __used)
283 pid_set_comm(event->comm.tid, event->comm.comm);
284 return 0;
287 static int process_fork_event(struct perf_tool *tool __used,
288 union perf_event *event,
289 struct perf_sample *sample __used,
290 struct machine *machine __used)
292 pid_fork(event->fork.pid, event->fork.ppid, event->fork.time);
293 return 0;
296 static int process_exit_event(struct perf_tool *tool __used,
297 union perf_event *event,
298 struct perf_sample *sample __used,
299 struct machine *machine __used)
301 pid_exit(event->fork.pid, event->fork.time);
302 return 0;
305 struct trace_entry {
306 unsigned short type;
307 unsigned char flags;
308 unsigned char preempt_count;
309 int pid;
310 int lock_depth;
313 #ifdef SUPPORT_OLD_POWER_EVENTS
314 static int use_old_power_events;
315 struct power_entry_old {
316 struct trace_entry te;
317 u64 type;
318 u64 value;
319 u64 cpu_id;
321 #endif
323 struct power_processor_entry {
324 struct trace_entry te;
325 u32 state;
326 u32 cpu_id;
329 #define TASK_COMM_LEN 16
330 struct wakeup_entry {
331 struct trace_entry te;
332 char comm[TASK_COMM_LEN];
333 int pid;
334 int prio;
335 int success;
339 * trace_flag_type is an enumeration that holds different
340 * states when a trace occurs. These are:
341 * IRQS_OFF - interrupts were disabled
342 * IRQS_NOSUPPORT - arch does not support irqs_disabled_flags
343 * NEED_RESCED - reschedule is requested
344 * HARDIRQ - inside an interrupt handler
345 * SOFTIRQ - inside a softirq handler
347 enum trace_flag_type {
348 TRACE_FLAG_IRQS_OFF = 0x01,
349 TRACE_FLAG_IRQS_NOSUPPORT = 0x02,
350 TRACE_FLAG_NEED_RESCHED = 0x04,
351 TRACE_FLAG_HARDIRQ = 0x08,
352 TRACE_FLAG_SOFTIRQ = 0x10,
357 struct sched_switch {
358 struct trace_entry te;
359 char prev_comm[TASK_COMM_LEN];
360 int prev_pid;
361 int prev_prio;
362 long prev_state; /* Arjan weeps. */
363 char next_comm[TASK_COMM_LEN];
364 int next_pid;
365 int next_prio;
368 static void c_state_start(int cpu, u64 timestamp, int state)
370 cpus_cstate_start_times[cpu] = timestamp;
371 cpus_cstate_state[cpu] = state;
374 static void c_state_end(int cpu, u64 timestamp)
376 struct power_event *pwr;
377 pwr = malloc(sizeof(struct power_event));
378 if (!pwr)
379 return;
380 memset(pwr, 0, sizeof(struct power_event));
382 pwr->state = cpus_cstate_state[cpu];
383 pwr->start_time = cpus_cstate_start_times[cpu];
384 pwr->end_time = timestamp;
385 pwr->cpu = cpu;
386 pwr->type = CSTATE;
387 pwr->next = power_events;
389 power_events = pwr;
392 static void p_state_change(int cpu, u64 timestamp, u64 new_freq)
394 struct power_event *pwr;
395 pwr = malloc(sizeof(struct power_event));
397 if (new_freq > 8000000) /* detect invalid data */
398 return;
400 if (!pwr)
401 return;
402 memset(pwr, 0, sizeof(struct power_event));
404 pwr->state = cpus_pstate_state[cpu];
405 pwr->start_time = cpus_pstate_start_times[cpu];
406 pwr->end_time = timestamp;
407 pwr->cpu = cpu;
408 pwr->type = PSTATE;
409 pwr->next = power_events;
411 if (!pwr->start_time)
412 pwr->start_time = first_time;
414 power_events = pwr;
416 cpus_pstate_state[cpu] = new_freq;
417 cpus_pstate_start_times[cpu] = timestamp;
419 if ((u64)new_freq > max_freq)
420 max_freq = new_freq;
422 if (new_freq < min_freq || min_freq == 0)
423 min_freq = new_freq;
425 if (new_freq == max_freq - 1000)
426 turbo_frequency = max_freq;
429 static void
430 sched_wakeup(int cpu, u64 timestamp, int pid, struct trace_entry *te)
432 struct wake_event *we;
433 struct per_pid *p;
434 struct wakeup_entry *wake = (void *)te;
436 we = malloc(sizeof(struct wake_event));
437 if (!we)
438 return;
440 memset(we, 0, sizeof(struct wake_event));
441 we->time = timestamp;
442 we->waker = pid;
444 if ((te->flags & TRACE_FLAG_HARDIRQ) || (te->flags & TRACE_FLAG_SOFTIRQ))
445 we->waker = -1;
447 we->wakee = wake->pid;
448 we->next = wake_events;
449 wake_events = we;
450 p = find_create_pid(we->wakee);
452 if (p && p->current && p->current->state == TYPE_NONE) {
453 p->current->state_since = timestamp;
454 p->current->state = TYPE_WAITING;
456 if (p && p->current && p->current->state == TYPE_BLOCKED) {
457 pid_put_sample(p->pid, p->current->state, cpu, p->current->state_since, timestamp);
458 p->current->state_since = timestamp;
459 p->current->state = TYPE_WAITING;
463 static void sched_switch(int cpu, u64 timestamp, struct trace_entry *te)
465 struct per_pid *p = NULL, *prev_p;
466 struct sched_switch *sw = (void *)te;
469 prev_p = find_create_pid(sw->prev_pid);
471 p = find_create_pid(sw->next_pid);
473 if (prev_p->current && prev_p->current->state != TYPE_NONE)
474 pid_put_sample(sw->prev_pid, TYPE_RUNNING, cpu, prev_p->current->state_since, timestamp);
475 if (p && p->current) {
476 if (p->current->state != TYPE_NONE)
477 pid_put_sample(sw->next_pid, p->current->state, cpu, p->current->state_since, timestamp);
479 p->current->state_since = timestamp;
480 p->current->state = TYPE_RUNNING;
483 if (prev_p->current) {
484 prev_p->current->state = TYPE_NONE;
485 prev_p->current->state_since = timestamp;
486 if (sw->prev_state & 2)
487 prev_p->current->state = TYPE_BLOCKED;
488 if (sw->prev_state == 0)
489 prev_p->current->state = TYPE_WAITING;
494 static int process_sample_event(struct perf_tool *tool __used,
495 union perf_event *event __used,
496 struct perf_sample *sample,
497 struct perf_evsel *evsel,
498 struct machine *machine __used)
500 struct trace_entry *te;
502 if (evsel->attr.sample_type & PERF_SAMPLE_TIME) {
503 if (!first_time || first_time > sample->time)
504 first_time = sample->time;
505 if (last_time < sample->time)
506 last_time = sample->time;
509 te = (void *)sample->raw_data;
510 if ((evsel->attr.sample_type & PERF_SAMPLE_RAW) && sample->raw_size > 0) {
511 char *event_str;
512 #ifdef SUPPORT_OLD_POWER_EVENTS
513 struct power_entry_old *peo;
514 peo = (void *)te;
515 #endif
517 * FIXME: use evsel, its already mapped from id to perf_evsel,
518 * remove perf_header__find_event infrastructure bits.
519 * Mapping all these "power:cpu_idle" strings to the tracepoint
520 * ID and then just comparing against evsel->attr.config.
522 * e.g.:
524 * if (evsel->attr.config == power_cpu_idle_id)
526 event_str = perf_header__find_event(te->type);
528 if (!event_str)
529 return 0;
531 if (sample->cpu > numcpus)
532 numcpus = sample->cpu;
534 if (strcmp(event_str, "power:cpu_idle") == 0) {
535 struct power_processor_entry *ppe = (void *)te;
536 if (ppe->state == (u32)PWR_EVENT_EXIT)
537 c_state_end(ppe->cpu_id, sample->time);
538 else
539 c_state_start(ppe->cpu_id, sample->time,
540 ppe->state);
542 else if (strcmp(event_str, "power:cpu_frequency") == 0) {
543 struct power_processor_entry *ppe = (void *)te;
544 p_state_change(ppe->cpu_id, sample->time, ppe->state);
547 else if (strcmp(event_str, "sched:sched_wakeup") == 0)
548 sched_wakeup(sample->cpu, sample->time, sample->pid, te);
550 else if (strcmp(event_str, "sched:sched_switch") == 0)
551 sched_switch(sample->cpu, sample->time, te);
553 #ifdef SUPPORT_OLD_POWER_EVENTS
554 if (use_old_power_events) {
555 if (strcmp(event_str, "power:power_start") == 0)
556 c_state_start(peo->cpu_id, sample->time,
557 peo->value);
559 else if (strcmp(event_str, "power:power_end") == 0)
560 c_state_end(sample->cpu, sample->time);
562 else if (strcmp(event_str,
563 "power:power_frequency") == 0)
564 p_state_change(peo->cpu_id, sample->time,
565 peo->value);
567 #endif
569 return 0;
573 * After the last sample we need to wrap up the current C/P state
574 * and close out each CPU for these.
576 static void end_sample_processing(void)
578 u64 cpu;
579 struct power_event *pwr;
581 for (cpu = 0; cpu <= numcpus; cpu++) {
582 pwr = malloc(sizeof(struct power_event));
583 if (!pwr)
584 return;
585 memset(pwr, 0, sizeof(struct power_event));
587 /* C state */
588 #if 0
589 pwr->state = cpus_cstate_state[cpu];
590 pwr->start_time = cpus_cstate_start_times[cpu];
591 pwr->end_time = last_time;
592 pwr->cpu = cpu;
593 pwr->type = CSTATE;
594 pwr->next = power_events;
596 power_events = pwr;
597 #endif
598 /* P state */
600 pwr = malloc(sizeof(struct power_event));
601 if (!pwr)
602 return;
603 memset(pwr, 0, sizeof(struct power_event));
605 pwr->state = cpus_pstate_state[cpu];
606 pwr->start_time = cpus_pstate_start_times[cpu];
607 pwr->end_time = last_time;
608 pwr->cpu = cpu;
609 pwr->type = PSTATE;
610 pwr->next = power_events;
612 if (!pwr->start_time)
613 pwr->start_time = first_time;
614 if (!pwr->state)
615 pwr->state = min_freq;
616 power_events = pwr;
621 * Sort the pid datastructure
623 static void sort_pids(void)
625 struct per_pid *new_list, *p, *cursor, *prev;
626 /* sort by ppid first, then by pid, lowest to highest */
628 new_list = NULL;
630 while (all_data) {
631 p = all_data;
632 all_data = p->next;
633 p->next = NULL;
635 if (new_list == NULL) {
636 new_list = p;
637 p->next = NULL;
638 continue;
640 prev = NULL;
641 cursor = new_list;
642 while (cursor) {
643 if (cursor->ppid > p->ppid ||
644 (cursor->ppid == p->ppid && cursor->pid > p->pid)) {
645 /* must insert before */
646 if (prev) {
647 p->next = prev->next;
648 prev->next = p;
649 cursor = NULL;
650 continue;
651 } else {
652 p->next = new_list;
653 new_list = p;
654 cursor = NULL;
655 continue;
659 prev = cursor;
660 cursor = cursor->next;
661 if (!cursor)
662 prev->next = p;
665 all_data = new_list;
669 static void draw_c_p_states(void)
671 struct power_event *pwr;
672 pwr = power_events;
675 * two pass drawing so that the P state bars are on top of the C state blocks
677 while (pwr) {
678 if (pwr->type == CSTATE)
679 svg_cstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
680 pwr = pwr->next;
683 pwr = power_events;
684 while (pwr) {
685 if (pwr->type == PSTATE) {
686 if (!pwr->state)
687 pwr->state = min_freq;
688 svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
690 pwr = pwr->next;
694 static void draw_wakeups(void)
696 struct wake_event *we;
697 struct per_pid *p;
698 struct per_pidcomm *c;
700 we = wake_events;
701 while (we) {
702 int from = 0, to = 0;
703 char *task_from = NULL, *task_to = NULL;
705 /* locate the column of the waker and wakee */
706 p = all_data;
707 while (p) {
708 if (p->pid == we->waker || p->pid == we->wakee) {
709 c = p->all;
710 while (c) {
711 if (c->Y && c->start_time <= we->time && c->end_time >= we->time) {
712 if (p->pid == we->waker && !from) {
713 from = c->Y;
714 task_from = strdup(c->comm);
716 if (p->pid == we->wakee && !to) {
717 to = c->Y;
718 task_to = strdup(c->comm);
721 c = c->next;
723 c = p->all;
724 while (c) {
725 if (p->pid == we->waker && !from) {
726 from = c->Y;
727 task_from = strdup(c->comm);
729 if (p->pid == we->wakee && !to) {
730 to = c->Y;
731 task_to = strdup(c->comm);
733 c = c->next;
736 p = p->next;
739 if (!task_from) {
740 task_from = malloc(40);
741 sprintf(task_from, "[%i]", we->waker);
743 if (!task_to) {
744 task_to = malloc(40);
745 sprintf(task_to, "[%i]", we->wakee);
748 if (we->waker == -1)
749 svg_interrupt(we->time, to);
750 else if (from && to && abs(from - to) == 1)
751 svg_wakeline(we->time, from, to);
752 else
753 svg_partial_wakeline(we->time, from, task_from, to, task_to);
754 we = we->next;
756 free(task_from);
757 free(task_to);
761 static void draw_cpu_usage(void)
763 struct per_pid *p;
764 struct per_pidcomm *c;
765 struct cpu_sample *sample;
766 p = all_data;
767 while (p) {
768 c = p->all;
769 while (c) {
770 sample = c->samples;
771 while (sample) {
772 if (sample->type == TYPE_RUNNING)
773 svg_process(sample->cpu, sample->start_time, sample->end_time, "sample", c->comm);
775 sample = sample->next;
777 c = c->next;
779 p = p->next;
783 static void draw_process_bars(void)
785 struct per_pid *p;
786 struct per_pidcomm *c;
787 struct cpu_sample *sample;
788 int Y = 0;
790 Y = 2 * numcpus + 2;
792 p = all_data;
793 while (p) {
794 c = p->all;
795 while (c) {
796 if (!c->display) {
797 c->Y = 0;
798 c = c->next;
799 continue;
802 svg_box(Y, c->start_time, c->end_time, "process");
803 sample = c->samples;
804 while (sample) {
805 if (sample->type == TYPE_RUNNING)
806 svg_sample(Y, sample->cpu, sample->start_time, sample->end_time);
807 if (sample->type == TYPE_BLOCKED)
808 svg_box(Y, sample->start_time, sample->end_time, "blocked");
809 if (sample->type == TYPE_WAITING)
810 svg_waiting(Y, sample->start_time, sample->end_time);
811 sample = sample->next;
814 if (c->comm) {
815 char comm[256];
816 if (c->total_time > 5000000000) /* 5 seconds */
817 sprintf(comm, "%s:%i (%2.2fs)", c->comm, p->pid, c->total_time / 1000000000.0);
818 else
819 sprintf(comm, "%s:%i (%3.1fms)", c->comm, p->pid, c->total_time / 1000000.0);
821 svg_text(Y, c->start_time, comm);
823 c->Y = Y;
824 Y++;
825 c = c->next;
827 p = p->next;
831 static void add_process_filter(const char *string)
833 struct process_filter *filt;
834 int pid;
836 pid = strtoull(string, NULL, 10);
837 filt = malloc(sizeof(struct process_filter));
838 if (!filt)
839 return;
841 filt->name = strdup(string);
842 filt->pid = pid;
843 filt->next = process_filter;
845 process_filter = filt;
848 static int passes_filter(struct per_pid *p, struct per_pidcomm *c)
850 struct process_filter *filt;
851 if (!process_filter)
852 return 1;
854 filt = process_filter;
855 while (filt) {
856 if (filt->pid && p->pid == filt->pid)
857 return 1;
858 if (strcmp(filt->name, c->comm) == 0)
859 return 1;
860 filt = filt->next;
862 return 0;
865 static int determine_display_tasks_filtered(void)
867 struct per_pid *p;
868 struct per_pidcomm *c;
869 int count = 0;
871 p = all_data;
872 while (p) {
873 p->display = 0;
874 if (p->start_time == 1)
875 p->start_time = first_time;
877 /* no exit marker, task kept running to the end */
878 if (p->end_time == 0)
879 p->end_time = last_time;
881 c = p->all;
883 while (c) {
884 c->display = 0;
886 if (c->start_time == 1)
887 c->start_time = first_time;
889 if (passes_filter(p, c)) {
890 c->display = 1;
891 p->display = 1;
892 count++;
895 if (c->end_time == 0)
896 c->end_time = last_time;
898 c = c->next;
900 p = p->next;
902 return count;
905 static int determine_display_tasks(u64 threshold)
907 struct per_pid *p;
908 struct per_pidcomm *c;
909 int count = 0;
911 if (process_filter)
912 return determine_display_tasks_filtered();
914 p = all_data;
915 while (p) {
916 p->display = 0;
917 if (p->start_time == 1)
918 p->start_time = first_time;
920 /* no exit marker, task kept running to the end */
921 if (p->end_time == 0)
922 p->end_time = last_time;
923 if (p->total_time >= threshold && !power_only)
924 p->display = 1;
926 c = p->all;
928 while (c) {
929 c->display = 0;
931 if (c->start_time == 1)
932 c->start_time = first_time;
934 if (c->total_time >= threshold && !power_only) {
935 c->display = 1;
936 count++;
939 if (c->end_time == 0)
940 c->end_time = last_time;
942 c = c->next;
944 p = p->next;
946 return count;
951 #define TIME_THRESH 10000000
953 static void write_svg_file(const char *filename)
955 u64 i;
956 int count;
958 numcpus++;
961 count = determine_display_tasks(TIME_THRESH);
963 /* We'd like to show at least 15 tasks; be less picky if we have fewer */
964 if (count < 15)
965 count = determine_display_tasks(TIME_THRESH / 10);
967 open_svg(filename, numcpus, count, first_time, last_time);
969 svg_time_grid();
970 svg_legenda();
972 for (i = 0; i < numcpus; i++)
973 svg_cpu_box(i, max_freq, turbo_frequency);
975 draw_cpu_usage();
976 draw_process_bars();
977 draw_c_p_states();
978 draw_wakeups();
980 svg_close();
983 static struct perf_tool perf_timechart = {
984 .comm = process_comm_event,
985 .fork = process_fork_event,
986 .exit = process_exit_event,
987 .sample = process_sample_event,
988 .ordered_samples = true,
991 static int __cmd_timechart(void)
993 struct perf_session *session = perf_session__new(input_name, O_RDONLY,
994 0, false, &perf_timechart);
995 int ret = -EINVAL;
997 if (session == NULL)
998 return -ENOMEM;
1000 if (!perf_session__has_traces(session, "timechart record"))
1001 goto out_delete;
1003 ret = perf_session__process_events(session, &perf_timechart);
1004 if (ret)
1005 goto out_delete;
1007 end_sample_processing();
1009 sort_pids();
1011 write_svg_file(output_name);
1013 pr_info("Written %2.1f seconds of trace to %s.\n",
1014 (last_time - first_time) / 1000000000.0, output_name);
1015 out_delete:
1016 perf_session__delete(session);
1017 return ret;
1020 static const char * const timechart_usage[] = {
1021 "perf timechart [<options>] {record}",
1022 NULL
1025 #ifdef SUPPORT_OLD_POWER_EVENTS
1026 static const char * const record_old_args[] = {
1027 "record",
1028 "-a",
1029 "-R",
1030 "-f",
1031 "-c", "1",
1032 "-e", "power:power_start",
1033 "-e", "power:power_end",
1034 "-e", "power:power_frequency",
1035 "-e", "sched:sched_wakeup",
1036 "-e", "sched:sched_switch",
1038 #endif
1040 static const char * const record_new_args[] = {
1041 "record",
1042 "-a",
1043 "-R",
1044 "-f",
1045 "-c", "1",
1046 "-e", "power:cpu_frequency",
1047 "-e", "power:cpu_idle",
1048 "-e", "sched:sched_wakeup",
1049 "-e", "sched:sched_switch",
1052 static int __cmd_record(int argc, const char **argv)
1054 unsigned int rec_argc, i, j;
1055 const char **rec_argv;
1056 const char * const *record_args = record_new_args;
1057 unsigned int record_elems = ARRAY_SIZE(record_new_args);
1059 #ifdef SUPPORT_OLD_POWER_EVENTS
1060 if (!is_valid_tracepoint("power:cpu_idle") &&
1061 is_valid_tracepoint("power:power_start")) {
1062 use_old_power_events = 1;
1063 record_args = record_old_args;
1064 record_elems = ARRAY_SIZE(record_old_args);
1066 #endif
1068 rec_argc = record_elems + argc - 1;
1069 rec_argv = calloc(rec_argc + 1, sizeof(char *));
1071 if (rec_argv == NULL)
1072 return -ENOMEM;
1074 for (i = 0; i < record_elems; i++)
1075 rec_argv[i] = strdup(record_args[i]);
1077 for (j = 1; j < (unsigned int)argc; j++, i++)
1078 rec_argv[i] = argv[j];
1080 return cmd_record(i, rec_argv, NULL);
1083 static int
1084 parse_process(const struct option *opt __used, const char *arg, int __used unset)
1086 if (arg)
1087 add_process_filter(arg);
1088 return 0;
1091 static const struct option options[] = {
1092 OPT_STRING('i', "input", &input_name, "file",
1093 "input file name"),
1094 OPT_STRING('o', "output", &output_name, "file",
1095 "output file name"),
1096 OPT_INTEGER('w', "width", &svg_page_width,
1097 "page width"),
1098 OPT_BOOLEAN('P', "power-only", &power_only,
1099 "output power data only"),
1100 OPT_CALLBACK('p', "process", NULL, "process",
1101 "process selector. Pass a pid or process name.",
1102 parse_process),
1103 OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory",
1104 "Look for files with symbols relative to this directory"),
1105 OPT_END()
1109 int cmd_timechart(int argc, const char **argv, const char *prefix __used)
1111 argc = parse_options(argc, argv, options, timechart_usage,
1112 PARSE_OPT_STOP_AT_NON_OPTION);
1114 symbol__init();
1116 if (argc && !strncmp(argv[0], "rec", 3))
1117 return __cmd_record(argc, argv);
1118 else if (argc)
1119 usage_with_options(timechart_usage, options);
1121 setup_pager();
1123 return __cmd_timechart();