3 * BRIEF MODULE DESCRIPTION
4 * The Descriptor Based DMA channel manager that first appeared
5 * on the Au1550. I started with dma.c, but I think all that is
6 * left is this initial comment :-)
8 * Copyright 2004 Embedded Edge, LLC
11 * This program is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the
13 * Free Software Foundation; either version 2 of the License, or (at your
14 * option) any later version.
16 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
17 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
18 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
19 * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
22 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
23 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 * You should have received a copy of the GNU General Public License along
28 * with this program; if not, write to the Free Software Foundation, Inc.,
29 * 675 Mass Ave, Cambridge, MA 02139, USA.
33 #include <linux/init.h>
34 #include <linux/kernel.h>
35 #include <linux/slab.h>
36 #include <linux/spinlock.h>
37 #include <linux/interrupt.h>
38 #include <linux/module.h>
39 #include <linux/syscore_ops.h>
40 #include <asm/mach-au1x00/au1000.h>
41 #include <asm/mach-au1x00/au1xxx_dbdma.h>
44 * The Descriptor Based DMA supports up to 16 channels.
46 * There are 32 devices defined. We keep an internal structure
47 * of devices using these channels, along with additional
50 * We allocate the descriptors and allow access to them through various
51 * functions. The drivers allocate the data buffers and assign them
54 static DEFINE_SPINLOCK(au1xxx_dbdma_spin_lock
);
56 /* I couldn't find a macro that did this... */
57 #define ALIGN_ADDR(x, a) ((((u32)(x)) + (a-1)) & ~(a-1))
59 static dbdma_global_t
*dbdma_gptr
=
60 (dbdma_global_t
*)KSEG1ADDR(AU1550_DBDMA_CONF_PHYS_ADDR
);
61 static int dbdma_initialized
;
63 static dbdev_tab_t
*dbdev_tab
;
65 static dbdev_tab_t au1550_dbdev_tab
[] __initdata
= {
67 { AU1550_DSCR_CMD0_UART0_TX
, DEV_FLAGS_OUT
, 0, 8, 0x11100004, 0, 0 },
68 { AU1550_DSCR_CMD0_UART0_RX
, DEV_FLAGS_IN
, 0, 8, 0x11100000, 0, 0 },
69 { AU1550_DSCR_CMD0_UART3_TX
, DEV_FLAGS_OUT
, 0, 8, 0x11400004, 0, 0 },
70 { AU1550_DSCR_CMD0_UART3_RX
, DEV_FLAGS_IN
, 0, 8, 0x11400000, 0, 0 },
73 { AU1550_DSCR_CMD0_DMA_REQ0
, 0, 0, 0, 0x00000000, 0, 0 },
74 { AU1550_DSCR_CMD0_DMA_REQ1
, 0, 0, 0, 0x00000000, 0, 0 },
75 { AU1550_DSCR_CMD0_DMA_REQ2
, 0, 0, 0, 0x00000000, 0, 0 },
76 { AU1550_DSCR_CMD0_DMA_REQ3
, 0, 0, 0, 0x00000000, 0, 0 },
79 { AU1550_DSCR_CMD0_USBDEV_RX0
, DEV_FLAGS_IN
, 4, 8, 0x10200000, 0, 0 },
80 { AU1550_DSCR_CMD0_USBDEV_TX0
, DEV_FLAGS_OUT
, 4, 8, 0x10200004, 0, 0 },
81 { AU1550_DSCR_CMD0_USBDEV_TX1
, DEV_FLAGS_OUT
, 4, 8, 0x10200008, 0, 0 },
82 { AU1550_DSCR_CMD0_USBDEV_TX2
, DEV_FLAGS_OUT
, 4, 8, 0x1020000c, 0, 0 },
83 { AU1550_DSCR_CMD0_USBDEV_RX3
, DEV_FLAGS_IN
, 4, 8, 0x10200010, 0, 0 },
84 { AU1550_DSCR_CMD0_USBDEV_RX4
, DEV_FLAGS_IN
, 4, 8, 0x10200014, 0, 0 },
87 { AU1550_DSCR_CMD0_PSC0_TX
, DEV_FLAGS_OUT
, 0, 0, 0x11a0001c, 0, 0 },
88 { AU1550_DSCR_CMD0_PSC0_RX
, DEV_FLAGS_IN
, 0, 0, 0x11a0001c, 0, 0 },
89 { AU1550_DSCR_CMD0_PSC1_TX
, DEV_FLAGS_OUT
, 0, 0, 0x11b0001c, 0, 0 },
90 { AU1550_DSCR_CMD0_PSC1_RX
, DEV_FLAGS_IN
, 0, 0, 0x11b0001c, 0, 0 },
91 { AU1550_DSCR_CMD0_PSC2_TX
, DEV_FLAGS_OUT
, 0, 0, 0x10a0001c, 0, 0 },
92 { AU1550_DSCR_CMD0_PSC2_RX
, DEV_FLAGS_IN
, 0, 0, 0x10a0001c, 0, 0 },
93 { AU1550_DSCR_CMD0_PSC3_TX
, DEV_FLAGS_OUT
, 0, 0, 0x10b0001c, 0, 0 },
94 { AU1550_DSCR_CMD0_PSC3_RX
, DEV_FLAGS_IN
, 0, 0, 0x10b0001c, 0, 0 },
96 { AU1550_DSCR_CMD0_PCI_WRITE
, 0, 0, 0, 0x00000000, 0, 0 }, /* PCI */
97 { AU1550_DSCR_CMD0_NAND_FLASH
, 0, 0, 0, 0x00000000, 0, 0 }, /* NAND */
100 { AU1550_DSCR_CMD0_MAC0_RX
, DEV_FLAGS_IN
, 0, 0, 0x00000000, 0, 0 },
101 { AU1550_DSCR_CMD0_MAC0_TX
, DEV_FLAGS_OUT
, 0, 0, 0x00000000, 0, 0 },
104 { AU1550_DSCR_CMD0_MAC1_RX
, DEV_FLAGS_IN
, 0, 0, 0x00000000, 0, 0 },
105 { AU1550_DSCR_CMD0_MAC1_TX
, DEV_FLAGS_OUT
, 0, 0, 0x00000000, 0, 0 },
107 { DSCR_CMD0_THROTTLE
, DEV_FLAGS_ANYUSE
, 0, 0, 0x00000000, 0, 0 },
108 { DSCR_CMD0_ALWAYS
, DEV_FLAGS_ANYUSE
, 0, 0, 0x00000000, 0, 0 },
111 static dbdev_tab_t au1200_dbdev_tab
[] __initdata
= {
112 { AU1200_DSCR_CMD0_UART0_TX
, DEV_FLAGS_OUT
, 0, 8, 0x11100004, 0, 0 },
113 { AU1200_DSCR_CMD0_UART0_RX
, DEV_FLAGS_IN
, 0, 8, 0x11100000, 0, 0 },
114 { AU1200_DSCR_CMD0_UART1_TX
, DEV_FLAGS_OUT
, 0, 8, 0x11200004, 0, 0 },
115 { AU1200_DSCR_CMD0_UART1_RX
, DEV_FLAGS_IN
, 0, 8, 0x11200000, 0, 0 },
117 { AU1200_DSCR_CMD0_DMA_REQ0
, 0, 0, 0, 0x00000000, 0, 0 },
118 { AU1200_DSCR_CMD0_DMA_REQ1
, 0, 0, 0, 0x00000000, 0, 0 },
120 { AU1200_DSCR_CMD0_MAE_BE
, DEV_FLAGS_ANYUSE
, 0, 0, 0x00000000, 0, 0 },
121 { AU1200_DSCR_CMD0_MAE_FE
, DEV_FLAGS_ANYUSE
, 0, 0, 0x00000000, 0, 0 },
122 { AU1200_DSCR_CMD0_MAE_BOTH
, DEV_FLAGS_ANYUSE
, 0, 0, 0x00000000, 0, 0 },
123 { AU1200_DSCR_CMD0_LCD
, DEV_FLAGS_ANYUSE
, 0, 0, 0x00000000, 0, 0 },
125 { AU1200_DSCR_CMD0_SDMS_TX0
, DEV_FLAGS_OUT
, 4, 8, 0x10600000, 0, 0 },
126 { AU1200_DSCR_CMD0_SDMS_RX0
, DEV_FLAGS_IN
, 4, 8, 0x10600004, 0, 0 },
127 { AU1200_DSCR_CMD0_SDMS_TX1
, DEV_FLAGS_OUT
, 4, 8, 0x10680000, 0, 0 },
128 { AU1200_DSCR_CMD0_SDMS_RX1
, DEV_FLAGS_IN
, 4, 8, 0x10680004, 0, 0 },
130 { AU1200_DSCR_CMD0_AES_RX
, DEV_FLAGS_IN
, 4, 32, 0x10300008, 0, 0 },
131 { AU1200_DSCR_CMD0_AES_TX
, DEV_FLAGS_OUT
, 4, 32, 0x10300004, 0, 0 },
133 { AU1200_DSCR_CMD0_PSC0_TX
, DEV_FLAGS_OUT
, 0, 16, 0x11a0001c, 0, 0 },
134 { AU1200_DSCR_CMD0_PSC0_RX
, DEV_FLAGS_IN
, 0, 16, 0x11a0001c, 0, 0 },
135 { AU1200_DSCR_CMD0_PSC0_SYNC
, DEV_FLAGS_ANYUSE
, 0, 0, 0x00000000, 0, 0 },
136 { AU1200_DSCR_CMD0_PSC1_TX
, DEV_FLAGS_OUT
, 0, 16, 0x11b0001c, 0, 0 },
137 { AU1200_DSCR_CMD0_PSC1_RX
, DEV_FLAGS_IN
, 0, 16, 0x11b0001c, 0, 0 },
138 { AU1200_DSCR_CMD0_PSC1_SYNC
, DEV_FLAGS_ANYUSE
, 0, 0, 0x00000000, 0, 0 },
140 { AU1200_DSCR_CMD0_CIM_RXA
, DEV_FLAGS_IN
, 0, 32, 0x14004020, 0, 0 },
141 { AU1200_DSCR_CMD0_CIM_RXB
, DEV_FLAGS_IN
, 0, 32, 0x14004040, 0, 0 },
142 { AU1200_DSCR_CMD0_CIM_RXC
, DEV_FLAGS_IN
, 0, 32, 0x14004060, 0, 0 },
143 { AU1200_DSCR_CMD0_CIM_SYNC
, DEV_FLAGS_ANYUSE
, 0, 0, 0x00000000, 0, 0 },
145 { AU1200_DSCR_CMD0_NAND_FLASH
, DEV_FLAGS_IN
, 0, 0, 0x00000000, 0, 0 },
147 { DSCR_CMD0_THROTTLE
, DEV_FLAGS_ANYUSE
, 0, 0, 0x00000000, 0, 0 },
148 { DSCR_CMD0_ALWAYS
, DEV_FLAGS_ANYUSE
, 0, 0, 0x00000000, 0, 0 },
151 /* 32 predefined plus 32 custom */
152 #define DBDEV_TAB_SIZE 64
154 static chan_tab_t
*chan_tab_ptr
[NUM_DBDMA_CHANS
];
156 static dbdev_tab_t
*find_dbdev_id(u32 id
)
160 for (i
= 0; i
< DBDEV_TAB_SIZE
; ++i
) {
168 void *au1xxx_ddma_get_nextptr_virt(au1x_ddma_desc_t
*dp
)
170 return phys_to_virt(DSCR_GET_NXTPTR(dp
->dscr_nxtptr
));
172 EXPORT_SYMBOL(au1xxx_ddma_get_nextptr_virt
);
174 u32
au1xxx_ddma_add_device(dbdev_tab_t
*dev
)
178 static u16 new_id
= 0x1000;
180 p
= find_dbdev_id(~0);
182 memcpy(p
, dev
, sizeof(dbdev_tab_t
));
183 p
->dev_id
= DSCR_DEV2CUSTOM_ID(new_id
, dev
->dev_id
);
187 printk(KERN_DEBUG
"add_device: id:%x flags:%x padd:%x\n",
188 p
->dev_id
, p
->dev_flags
, p
->dev_physaddr
);
194 EXPORT_SYMBOL(au1xxx_ddma_add_device
);
196 void au1xxx_ddma_del_device(u32 devid
)
198 dbdev_tab_t
*p
= find_dbdev_id(devid
);
201 memset(p
, 0, sizeof(dbdev_tab_t
));
205 EXPORT_SYMBOL(au1xxx_ddma_del_device
);
207 /* Allocate a channel and return a non-zero descriptor if successful. */
208 u32
au1xxx_dbdma_chan_alloc(u32 srcid
, u32 destid
,
209 void (*callback
)(int, void *), void *callparam
)
215 dbdev_tab_t
*stp
, *dtp
;
220 * We do the intialization on the first channel allocation.
221 * We have to wait because of the interrupt handler initialization
222 * which can't be done successfully during board set up.
224 if (!dbdma_initialized
)
227 stp
= find_dbdev_id(srcid
);
230 dtp
= find_dbdev_id(destid
);
236 /* Check to see if we can get both channels. */
237 spin_lock_irqsave(&au1xxx_dbdma_spin_lock
, flags
);
238 if (!(stp
->dev_flags
& DEV_FLAGS_INUSE
) ||
239 (stp
->dev_flags
& DEV_FLAGS_ANYUSE
)) {
241 stp
->dev_flags
|= DEV_FLAGS_INUSE
;
242 if (!(dtp
->dev_flags
& DEV_FLAGS_INUSE
) ||
243 (dtp
->dev_flags
& DEV_FLAGS_ANYUSE
)) {
244 /* Got destination */
245 dtp
->dev_flags
|= DEV_FLAGS_INUSE
;
247 /* Can't get dest. Release src. */
248 stp
->dev_flags
&= ~DEV_FLAGS_INUSE
;
253 spin_unlock_irqrestore(&au1xxx_dbdma_spin_lock
, flags
);
258 /* Let's see if we can allocate a channel for it. */
261 spin_lock_irqsave(&au1xxx_dbdma_spin_lock
, flags
);
262 for (i
= 0; i
< NUM_DBDMA_CHANS
; i
++)
263 if (chan_tab_ptr
[i
] == NULL
) {
265 * If kmalloc fails, it is caught below same
266 * as a channel not available.
268 ctp
= kmalloc(sizeof(chan_tab_t
), GFP_ATOMIC
);
269 chan_tab_ptr
[i
] = ctp
;
272 spin_unlock_irqrestore(&au1xxx_dbdma_spin_lock
, flags
);
275 memset(ctp
, 0, sizeof(chan_tab_t
));
276 ctp
->chan_index
= chan
= i
;
277 dcp
= KSEG1ADDR(AU1550_DBDMA_PHYS_ADDR
);
278 dcp
+= (0x0100 * chan
);
279 ctp
->chan_ptr
= (au1x_dma_chan_t
*)dcp
;
280 cp
= (au1x_dma_chan_t
*)dcp
;
282 ctp
->chan_dest
= dtp
;
283 ctp
->chan_callback
= callback
;
284 ctp
->chan_callparam
= callparam
;
286 /* Initialize channel configuration. */
288 if (stp
->dev_intlevel
)
290 if (stp
->dev_intpolarity
)
292 if (dtp
->dev_intlevel
)
294 if (dtp
->dev_intpolarity
)
296 if ((stp
->dev_flags
& DEV_FLAGS_SYNC
) ||
297 (dtp
->dev_flags
& DEV_FLAGS_SYNC
))
303 * Return a non-zero value that can be used to find the channel
304 * information in subsequent operations.
306 return (u32
)(&chan_tab_ptr
[chan
]);
309 /* Release devices */
310 stp
->dev_flags
&= ~DEV_FLAGS_INUSE
;
311 dtp
->dev_flags
&= ~DEV_FLAGS_INUSE
;
315 EXPORT_SYMBOL(au1xxx_dbdma_chan_alloc
);
318 * Set the device width if source or destination is a FIFO.
319 * Should be 8, 16, or 32 bits.
321 u32
au1xxx_dbdma_set_devwidth(u32 chanid
, int bits
)
325 dbdev_tab_t
*stp
, *dtp
;
327 ctp
= *((chan_tab_t
**)chanid
);
329 dtp
= ctp
->chan_dest
;
332 if (stp
->dev_flags
& DEV_FLAGS_IN
) { /* Source in fifo */
333 rv
= stp
->dev_devwidth
;
334 stp
->dev_devwidth
= bits
;
336 if (dtp
->dev_flags
& DEV_FLAGS_OUT
) { /* Destination out fifo */
337 rv
= dtp
->dev_devwidth
;
338 dtp
->dev_devwidth
= bits
;
343 EXPORT_SYMBOL(au1xxx_dbdma_set_devwidth
);
345 /* Allocate a descriptor ring, initializing as much as possible. */
346 u32
au1xxx_dbdma_ring_alloc(u32 chanid
, int entries
)
349 u32 desc_base
, srcid
, destid
;
350 u32 cmd0
, cmd1
, src1
, dest1
;
353 dbdev_tab_t
*stp
, *dtp
;
354 au1x_ddma_desc_t
*dp
;
357 * I guess we could check this to be within the
358 * range of the table......
360 ctp
= *((chan_tab_t
**)chanid
);
362 dtp
= ctp
->chan_dest
;
365 * The descriptors must be 32-byte aligned. There is a
366 * possibility the allocation will give us such an address,
367 * and if we try that first we are likely to not waste larger
370 desc_base
= (u32
)kmalloc(entries
* sizeof(au1x_ddma_desc_t
),
375 if (desc_base
& 0x1f) {
377 * Lost....do it again, allocate extra, and round
380 kfree((const void *)desc_base
);
381 i
= entries
* sizeof(au1x_ddma_desc_t
);
382 i
+= (sizeof(au1x_ddma_desc_t
) - 1);
383 desc_base
= (u32
)kmalloc(i
, GFP_KERNEL
|GFP_DMA
);
387 ctp
->cdb_membase
= desc_base
;
388 desc_base
= ALIGN_ADDR(desc_base
, sizeof(au1x_ddma_desc_t
));
390 ctp
->cdb_membase
= desc_base
;
392 dp
= (au1x_ddma_desc_t
*)desc_base
;
394 /* Keep track of the base descriptor. */
395 ctp
->chan_desc_base
= dp
;
397 /* Initialize the rings with as much information as we know. */
399 destid
= dtp
->dev_id
;
401 cmd0
= cmd1
= src1
= dest1
= 0;
404 cmd0
|= DSCR_CMD0_SID(srcid
);
405 cmd0
|= DSCR_CMD0_DID(destid
);
406 cmd0
|= DSCR_CMD0_IE
| DSCR_CMD0_CV
;
407 cmd0
|= DSCR_CMD0_ST(DSCR_CMD0_ST_NOCHANGE
);
409 /* Is it mem to mem transfer? */
410 if (((DSCR_CUSTOM2DEV_ID(srcid
) == DSCR_CMD0_THROTTLE
) ||
411 (DSCR_CUSTOM2DEV_ID(srcid
) == DSCR_CMD0_ALWAYS
)) &&
412 ((DSCR_CUSTOM2DEV_ID(destid
) == DSCR_CMD0_THROTTLE
) ||
413 (DSCR_CUSTOM2DEV_ID(destid
) == DSCR_CMD0_ALWAYS
)))
414 cmd0
|= DSCR_CMD0_MEM
;
416 switch (stp
->dev_devwidth
) {
418 cmd0
|= DSCR_CMD0_SW(DSCR_CMD0_BYTE
);
421 cmd0
|= DSCR_CMD0_SW(DSCR_CMD0_HALFWORD
);
425 cmd0
|= DSCR_CMD0_SW(DSCR_CMD0_WORD
);
429 switch (dtp
->dev_devwidth
) {
431 cmd0
|= DSCR_CMD0_DW(DSCR_CMD0_BYTE
);
434 cmd0
|= DSCR_CMD0_DW(DSCR_CMD0_HALFWORD
);
438 cmd0
|= DSCR_CMD0_DW(DSCR_CMD0_WORD
);
443 * If the device is marked as an in/out FIFO, ensure it is
446 if (stp
->dev_flags
& DEV_FLAGS_IN
)
447 cmd0
|= DSCR_CMD0_SN
; /* Source in FIFO */
448 if (dtp
->dev_flags
& DEV_FLAGS_OUT
)
449 cmd0
|= DSCR_CMD0_DN
; /* Destination out FIFO */
452 * Set up source1. For now, assume no stride and increment.
453 * A channel attribute update can change this later.
455 switch (stp
->dev_tsize
) {
457 src1
|= DSCR_SRC1_STS(DSCR_xTS_SIZE1
);
460 src1
|= DSCR_SRC1_STS(DSCR_xTS_SIZE2
);
463 src1
|= DSCR_SRC1_STS(DSCR_xTS_SIZE4
);
467 src1
|= DSCR_SRC1_STS(DSCR_xTS_SIZE8
);
471 /* If source input is FIFO, set static address. */
472 if (stp
->dev_flags
& DEV_FLAGS_IN
) {
473 if (stp
->dev_flags
& DEV_FLAGS_BURSTABLE
)
474 src1
|= DSCR_SRC1_SAM(DSCR_xAM_BURST
);
476 src1
|= DSCR_SRC1_SAM(DSCR_xAM_STATIC
);
479 if (stp
->dev_physaddr
)
480 src0
= stp
->dev_physaddr
;
483 * Set up dest1. For now, assume no stride and increment.
484 * A channel attribute update can change this later.
486 switch (dtp
->dev_tsize
) {
488 dest1
|= DSCR_DEST1_DTS(DSCR_xTS_SIZE1
);
491 dest1
|= DSCR_DEST1_DTS(DSCR_xTS_SIZE2
);
494 dest1
|= DSCR_DEST1_DTS(DSCR_xTS_SIZE4
);
498 dest1
|= DSCR_DEST1_DTS(DSCR_xTS_SIZE8
);
502 /* If destination output is FIFO, set static address. */
503 if (dtp
->dev_flags
& DEV_FLAGS_OUT
) {
504 if (dtp
->dev_flags
& DEV_FLAGS_BURSTABLE
)
505 dest1
|= DSCR_DEST1_DAM(DSCR_xAM_BURST
);
507 dest1
|= DSCR_DEST1_DAM(DSCR_xAM_STATIC
);
510 if (dtp
->dev_physaddr
)
511 dest0
= dtp
->dev_physaddr
;
514 printk(KERN_DEBUG
"did:%x sid:%x cmd0:%x cmd1:%x source0:%x "
515 "source1:%x dest0:%x dest1:%x\n",
516 dtp
->dev_id
, stp
->dev_id
, cmd0
, cmd1
, src0
,
519 for (i
= 0; i
< entries
; i
++) {
520 dp
->dscr_cmd0
= cmd0
;
521 dp
->dscr_cmd1
= cmd1
;
522 dp
->dscr_source0
= src0
;
523 dp
->dscr_source1
= src1
;
524 dp
->dscr_dest0
= dest0
;
525 dp
->dscr_dest1
= dest1
;
529 dp
->dscr_nxtptr
= DSCR_NXTPTR(virt_to_phys(dp
+ 1));
533 /* Make last descrptor point to the first. */
535 dp
->dscr_nxtptr
= DSCR_NXTPTR(virt_to_phys(ctp
->chan_desc_base
));
536 ctp
->get_ptr
= ctp
->put_ptr
= ctp
->cur_ptr
= ctp
->chan_desc_base
;
538 return (u32
)ctp
->chan_desc_base
;
540 EXPORT_SYMBOL(au1xxx_dbdma_ring_alloc
);
543 * Put a source buffer into the DMA ring.
544 * This updates the source pointer and byte count. Normally used
545 * for memory to fifo transfers.
547 u32
au1xxx_dbdma_put_source(u32 chanid
, dma_addr_t buf
, int nbytes
, u32 flags
)
550 au1x_ddma_desc_t
*dp
;
553 * I guess we could check this to be within the
554 * range of the table......
556 ctp
= *(chan_tab_t
**)chanid
;
559 * We should have multiple callers for a particular channel,
560 * an interrupt doesn't affect this pointer nor the descriptor,
561 * so no locking should be needed.
566 * If the descriptor is valid, we are way ahead of the DMA
567 * engine, so just return an error condition.
569 if (dp
->dscr_cmd0
& DSCR_CMD0_V
)
572 /* Load up buffer address and byte count. */
573 dp
->dscr_source0
= buf
& ~0UL;
574 dp
->dscr_cmd1
= nbytes
;
576 if (flags
& DDMA_FLAGS_IE
)
577 dp
->dscr_cmd0
|= DSCR_CMD0_IE
;
578 if (flags
& DDMA_FLAGS_NOIE
)
579 dp
->dscr_cmd0
&= ~DSCR_CMD0_IE
;
582 * There is an errata on the Au1200/Au1550 parts that could result
583 * in "stale" data being DMA'ed. It has to do with the snoop logic on
584 * the cache eviction buffer. DMA_NONCOHERENT is on by default for
585 * these parts. If it is fixed in the future, these dma_cache_inv will
586 * just be nothing more than empty macros. See io.h.
588 dma_cache_wback_inv((unsigned long)buf
, nbytes
);
589 dp
->dscr_cmd0
|= DSCR_CMD0_V
; /* Let it rip */
591 dma_cache_wback_inv((unsigned long)dp
, sizeof(*dp
));
592 ctp
->chan_ptr
->ddma_dbell
= 0;
594 /* Get next descriptor pointer. */
595 ctp
->put_ptr
= phys_to_virt(DSCR_GET_NXTPTR(dp
->dscr_nxtptr
));
597 /* Return something non-zero. */
600 EXPORT_SYMBOL(au1xxx_dbdma_put_source
);
602 /* Put a destination buffer into the DMA ring.
603 * This updates the destination pointer and byte count. Normally used
604 * to place an empty buffer into the ring for fifo to memory transfers.
606 u32
au1xxx_dbdma_put_dest(u32 chanid
, dma_addr_t buf
, int nbytes
, u32 flags
)
609 au1x_ddma_desc_t
*dp
;
611 /* I guess we could check this to be within the
612 * range of the table......
614 ctp
= *((chan_tab_t
**)chanid
);
616 /* We should have multiple callers for a particular channel,
617 * an interrupt doesn't affect this pointer nor the descriptor,
618 * so no locking should be needed.
622 /* If the descriptor is valid, we are way ahead of the DMA
623 * engine, so just return an error condition.
625 if (dp
->dscr_cmd0
& DSCR_CMD0_V
)
628 /* Load up buffer address and byte count */
631 if (flags
& DDMA_FLAGS_IE
)
632 dp
->dscr_cmd0
|= DSCR_CMD0_IE
;
633 if (flags
& DDMA_FLAGS_NOIE
)
634 dp
->dscr_cmd0
&= ~DSCR_CMD0_IE
;
636 dp
->dscr_dest0
= buf
& ~0UL;
637 dp
->dscr_cmd1
= nbytes
;
639 printk(KERN_DEBUG
"cmd0:%x cmd1:%x source0:%x source1:%x dest0:%x dest1:%x\n",
640 dp
->dscr_cmd0
, dp
->dscr_cmd1
, dp
->dscr_source0
,
641 dp
->dscr_source1
, dp
->dscr_dest0
, dp
->dscr_dest1
);
644 * There is an errata on the Au1200/Au1550 parts that could result in
645 * "stale" data being DMA'ed. It has to do with the snoop logic on the
646 * cache eviction buffer. DMA_NONCOHERENT is on by default for these
647 * parts. If it is fixed in the future, these dma_cache_inv will just
648 * be nothing more than empty macros. See io.h.
650 dma_cache_inv((unsigned long)buf
, nbytes
);
651 dp
->dscr_cmd0
|= DSCR_CMD0_V
; /* Let it rip */
653 dma_cache_wback_inv((unsigned long)dp
, sizeof(*dp
));
654 ctp
->chan_ptr
->ddma_dbell
= 0;
656 /* Get next descriptor pointer. */
657 ctp
->put_ptr
= phys_to_virt(DSCR_GET_NXTPTR(dp
->dscr_nxtptr
));
659 /* Return something non-zero. */
662 EXPORT_SYMBOL(au1xxx_dbdma_put_dest
);
665 * Get a destination buffer into the DMA ring.
666 * Normally used to get a full buffer from the ring during fifo
667 * to memory transfers. This does not set the valid bit, you will
668 * have to put another destination buffer to keep the DMA going.
670 u32
au1xxx_dbdma_get_dest(u32 chanid
, void **buf
, int *nbytes
)
673 au1x_ddma_desc_t
*dp
;
677 * I guess we could check this to be within the
678 * range of the table......
680 ctp
= *((chan_tab_t
**)chanid
);
683 * We should have multiple callers for a particular channel,
684 * an interrupt doesn't affect this pointer nor the descriptor,
685 * so no locking should be needed.
690 * If the descriptor is valid, we are way ahead of the DMA
691 * engine, so just return an error condition.
693 if (dp
->dscr_cmd0
& DSCR_CMD0_V
)
696 /* Return buffer address and byte count. */
697 *buf
= (void *)(phys_to_virt(dp
->dscr_dest0
));
698 *nbytes
= dp
->dscr_cmd1
;
701 /* Get next descriptor pointer. */
702 ctp
->get_ptr
= phys_to_virt(DSCR_GET_NXTPTR(dp
->dscr_nxtptr
));
704 /* Return something non-zero. */
707 EXPORT_SYMBOL_GPL(au1xxx_dbdma_get_dest
);
709 void au1xxx_dbdma_stop(u32 chanid
)
713 int halt_timeout
= 0;
715 ctp
= *((chan_tab_t
**)chanid
);
718 cp
->ddma_cfg
&= ~DDMA_CFG_EN
; /* Disable channel */
720 while (!(cp
->ddma_stat
& DDMA_STAT_H
)) {
723 if (halt_timeout
> 100) {
724 printk(KERN_WARNING
"warning: DMA channel won't halt\n");
728 /* clear current desc valid and doorbell */
729 cp
->ddma_stat
|= (DDMA_STAT_DB
| DDMA_STAT_V
);
732 EXPORT_SYMBOL(au1xxx_dbdma_stop
);
735 * Start using the current descriptor pointer. If the DBDMA encounters
736 * a non-valid descriptor, it will stop. In this case, we can just
737 * continue by adding a buffer to the list and starting again.
739 void au1xxx_dbdma_start(u32 chanid
)
744 ctp
= *((chan_tab_t
**)chanid
);
746 cp
->ddma_desptr
= virt_to_phys(ctp
->cur_ptr
);
747 cp
->ddma_cfg
|= DDMA_CFG_EN
; /* Enable channel */
752 EXPORT_SYMBOL(au1xxx_dbdma_start
);
754 void au1xxx_dbdma_reset(u32 chanid
)
757 au1x_ddma_desc_t
*dp
;
759 au1xxx_dbdma_stop(chanid
);
761 ctp
= *((chan_tab_t
**)chanid
);
762 ctp
->get_ptr
= ctp
->put_ptr
= ctp
->cur_ptr
= ctp
->chan_desc_base
;
764 /* Run through the descriptors and reset the valid indicator. */
765 dp
= ctp
->chan_desc_base
;
768 dp
->dscr_cmd0
&= ~DSCR_CMD0_V
;
770 * Reset our software status -- this is used to determine
771 * if a descriptor is in use by upper level software. Since
772 * posting can reset 'V' bit.
775 dp
= phys_to_virt(DSCR_GET_NXTPTR(dp
->dscr_nxtptr
));
776 } while (dp
!= ctp
->chan_desc_base
);
778 EXPORT_SYMBOL(au1xxx_dbdma_reset
);
780 u32
au1xxx_get_dma_residue(u32 chanid
)
786 ctp
= *((chan_tab_t
**)chanid
);
789 /* This is only valid if the channel is stopped. */
790 rv
= cp
->ddma_bytecnt
;
795 EXPORT_SYMBOL_GPL(au1xxx_get_dma_residue
);
797 void au1xxx_dbdma_chan_free(u32 chanid
)
800 dbdev_tab_t
*stp
, *dtp
;
802 ctp
= *((chan_tab_t
**)chanid
);
804 dtp
= ctp
->chan_dest
;
806 au1xxx_dbdma_stop(chanid
);
808 kfree((void *)ctp
->cdb_membase
);
810 stp
->dev_flags
&= ~DEV_FLAGS_INUSE
;
811 dtp
->dev_flags
&= ~DEV_FLAGS_INUSE
;
812 chan_tab_ptr
[ctp
->chan_index
] = NULL
;
816 EXPORT_SYMBOL(au1xxx_dbdma_chan_free
);
818 static irqreturn_t
dbdma_interrupt(int irq
, void *dev_id
)
823 au1x_ddma_desc_t
*dp
;
826 intstat
= dbdma_gptr
->ddma_intstat
;
828 chan_index
= __ffs(intstat
);
830 ctp
= chan_tab_ptr
[chan_index
];
834 /* Reset interrupt. */
838 if (ctp
->chan_callback
)
839 ctp
->chan_callback(irq
, ctp
->chan_callparam
);
841 ctp
->cur_ptr
= phys_to_virt(DSCR_GET_NXTPTR(dp
->dscr_nxtptr
));
842 return IRQ_RETVAL(1);
845 void au1xxx_dbdma_dump(u32 chanid
)
848 au1x_ddma_desc_t
*dp
;
849 dbdev_tab_t
*stp
, *dtp
;
853 ctp
= *((chan_tab_t
**)chanid
);
855 dtp
= ctp
->chan_dest
;
858 printk(KERN_DEBUG
"Chan %x, stp %x (dev %d) dtp %x (dev %d)\n",
859 (u32
)ctp
, (u32
)stp
, stp
- dbdev_tab
, (u32
)dtp
,
861 printk(KERN_DEBUG
"desc base %x, get %x, put %x, cur %x\n",
862 (u32
)(ctp
->chan_desc_base
), (u32
)(ctp
->get_ptr
),
863 (u32
)(ctp
->put_ptr
), (u32
)(ctp
->cur_ptr
));
865 printk(KERN_DEBUG
"dbdma chan %x\n", (u32
)cp
);
866 printk(KERN_DEBUG
"cfg %08x, desptr %08x, statptr %08x\n",
867 cp
->ddma_cfg
, cp
->ddma_desptr
, cp
->ddma_statptr
);
868 printk(KERN_DEBUG
"dbell %08x, irq %08x, stat %08x, bytecnt %08x\n",
869 cp
->ddma_dbell
, cp
->ddma_irq
, cp
->ddma_stat
,
872 /* Run through the descriptors */
873 dp
= ctp
->chan_desc_base
;
876 printk(KERN_DEBUG
"Dp[%d]= %08x, cmd0 %08x, cmd1 %08x\n",
877 i
++, (u32
)dp
, dp
->dscr_cmd0
, dp
->dscr_cmd1
);
878 printk(KERN_DEBUG
"src0 %08x, src1 %08x, dest0 %08x, dest1 %08x\n",
879 dp
->dscr_source0
, dp
->dscr_source1
,
880 dp
->dscr_dest0
, dp
->dscr_dest1
);
881 printk(KERN_DEBUG
"stat %08x, nxtptr %08x\n",
882 dp
->dscr_stat
, dp
->dscr_nxtptr
);
883 dp
= phys_to_virt(DSCR_GET_NXTPTR(dp
->dscr_nxtptr
));
884 } while (dp
!= ctp
->chan_desc_base
);
887 /* Put a descriptor into the DMA ring.
888 * This updates the source/destination pointers and byte count.
890 u32
au1xxx_dbdma_put_dscr(u32 chanid
, au1x_ddma_desc_t
*dscr
)
893 au1x_ddma_desc_t
*dp
;
897 * I guess we could check this to be within the
898 * range of the table......
900 ctp
= *((chan_tab_t
**)chanid
);
903 * We should have multiple callers for a particular channel,
904 * an interrupt doesn't affect this pointer nor the descriptor,
905 * so no locking should be needed.
910 * If the descriptor is valid, we are way ahead of the DMA
911 * engine, so just return an error condition.
913 if (dp
->dscr_cmd0
& DSCR_CMD0_V
)
916 /* Load up buffer addresses and byte count. */
917 dp
->dscr_dest0
= dscr
->dscr_dest0
;
918 dp
->dscr_source0
= dscr
->dscr_source0
;
919 dp
->dscr_dest1
= dscr
->dscr_dest1
;
920 dp
->dscr_source1
= dscr
->dscr_source1
;
921 dp
->dscr_cmd1
= dscr
->dscr_cmd1
;
922 nbytes
= dscr
->dscr_cmd1
;
923 /* Allow the caller to specifiy if an interrupt is generated */
924 dp
->dscr_cmd0
&= ~DSCR_CMD0_IE
;
925 dp
->dscr_cmd0
|= dscr
->dscr_cmd0
| DSCR_CMD0_V
;
926 ctp
->chan_ptr
->ddma_dbell
= 0;
928 /* Get next descriptor pointer. */
929 ctp
->put_ptr
= phys_to_virt(DSCR_GET_NXTPTR(dp
->dscr_nxtptr
));
931 /* Return something non-zero. */
936 static unsigned long alchemy_dbdma_pm_data
[NUM_DBDMA_CHANS
+ 1][6];
938 static int alchemy_dbdma_suspend(void)
943 addr
= (void __iomem
*)KSEG1ADDR(AU1550_DBDMA_CONF_PHYS_ADDR
);
944 alchemy_dbdma_pm_data
[0][0] = __raw_readl(addr
+ 0x00);
945 alchemy_dbdma_pm_data
[0][1] = __raw_readl(addr
+ 0x04);
946 alchemy_dbdma_pm_data
[0][2] = __raw_readl(addr
+ 0x08);
947 alchemy_dbdma_pm_data
[0][3] = __raw_readl(addr
+ 0x0c);
949 /* save channel configurations */
950 addr
= (void __iomem
*)KSEG1ADDR(AU1550_DBDMA_PHYS_ADDR
);
951 for (i
= 1; i
<= NUM_DBDMA_CHANS
; i
++) {
952 alchemy_dbdma_pm_data
[i
][0] = __raw_readl(addr
+ 0x00);
953 alchemy_dbdma_pm_data
[i
][1] = __raw_readl(addr
+ 0x04);
954 alchemy_dbdma_pm_data
[i
][2] = __raw_readl(addr
+ 0x08);
955 alchemy_dbdma_pm_data
[i
][3] = __raw_readl(addr
+ 0x0c);
956 alchemy_dbdma_pm_data
[i
][4] = __raw_readl(addr
+ 0x10);
957 alchemy_dbdma_pm_data
[i
][5] = __raw_readl(addr
+ 0x14);
960 __raw_writel(alchemy_dbdma_pm_data
[i
][0] & ~1, addr
+ 0x00);
962 while (!(__raw_readl(addr
+ 0x14) & 1))
965 addr
+= 0x100; /* next channel base */
967 /* disable channel interrupts */
968 addr
= (void __iomem
*)KSEG1ADDR(AU1550_DBDMA_CONF_PHYS_ADDR
);
969 __raw_writel(0, addr
+ 0x0c);
975 static void alchemy_dbdma_resume(void)
980 addr
= (void __iomem
*)KSEG1ADDR(AU1550_DBDMA_CONF_PHYS_ADDR
);
981 __raw_writel(alchemy_dbdma_pm_data
[0][0], addr
+ 0x00);
982 __raw_writel(alchemy_dbdma_pm_data
[0][1], addr
+ 0x04);
983 __raw_writel(alchemy_dbdma_pm_data
[0][2], addr
+ 0x08);
984 __raw_writel(alchemy_dbdma_pm_data
[0][3], addr
+ 0x0c);
986 /* restore channel configurations */
987 addr
= (void __iomem
*)KSEG1ADDR(AU1550_DBDMA_PHYS_ADDR
);
988 for (i
= 1; i
<= NUM_DBDMA_CHANS
; i
++) {
989 __raw_writel(alchemy_dbdma_pm_data
[i
][0], addr
+ 0x00);
990 __raw_writel(alchemy_dbdma_pm_data
[i
][1], addr
+ 0x04);
991 __raw_writel(alchemy_dbdma_pm_data
[i
][2], addr
+ 0x08);
992 __raw_writel(alchemy_dbdma_pm_data
[i
][3], addr
+ 0x0c);
993 __raw_writel(alchemy_dbdma_pm_data
[i
][4], addr
+ 0x10);
994 __raw_writel(alchemy_dbdma_pm_data
[i
][5], addr
+ 0x14);
996 addr
+= 0x100; /* next channel base */
1000 static struct syscore_ops alchemy_dbdma_syscore_ops
= {
1001 .suspend
= alchemy_dbdma_suspend
,
1002 .resume
= alchemy_dbdma_resume
,
1005 static int __init
dbdma_setup(unsigned int irq
, dbdev_tab_t
*idtable
)
1009 dbdev_tab
= kzalloc(sizeof(dbdev_tab_t
) * DBDEV_TAB_SIZE
, GFP_KERNEL
);
1013 memcpy(dbdev_tab
, idtable
, 32 * sizeof(dbdev_tab_t
));
1014 for (ret
= 32; ret
< DBDEV_TAB_SIZE
; ret
++)
1015 dbdev_tab
[ret
].dev_id
= ~0;
1017 dbdma_gptr
->ddma_config
= 0;
1018 dbdma_gptr
->ddma_throttle
= 0;
1019 dbdma_gptr
->ddma_inten
= 0xffff;
1022 ret
= request_irq(irq
, dbdma_interrupt
, IRQF_DISABLED
, "dbdma",
1023 (void *)dbdma_gptr
);
1025 printk(KERN_ERR
"Cannot grab DBDMA interrupt!\n");
1027 dbdma_initialized
= 1;
1028 register_syscore_ops(&alchemy_dbdma_syscore_ops
);
1034 static int __init
alchemy_dbdma_init(void)
1036 switch (alchemy_get_cputype()) {
1037 case ALCHEMY_CPU_AU1550
:
1038 return dbdma_setup(AU1550_DDMA_INT
, au1550_dbdev_tab
);
1039 case ALCHEMY_CPU_AU1200
:
1040 return dbdma_setup(AU1200_DDMA_INT
, au1200_dbdev_tab
);
1044 subsys_initcall(alchemy_dbdma_init
);