Revert "drivers: usb: Fix dependency for USB_HWA_HCD"
[zen-stable.git] / fs / btrfs / extent_io.c
blob9d09a4f81875817ebc45a7c5b80cbe6008061b22
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/module.h>
8 #include <linux/spinlock.h>
9 #include <linux/blkdev.h>
10 #include <linux/swap.h>
11 #include <linux/writeback.h>
12 #include <linux/pagevec.h>
13 #include <linux/prefetch.h>
14 #include <linux/cleancache.h>
15 #include "extent_io.h"
16 #include "extent_map.h"
17 #include "compat.h"
18 #include "ctree.h"
19 #include "btrfs_inode.h"
20 #include "volumes.h"
21 #include "check-integrity.h"
23 static struct kmem_cache *extent_state_cache;
24 static struct kmem_cache *extent_buffer_cache;
26 static LIST_HEAD(buffers);
27 static LIST_HEAD(states);
29 #define LEAK_DEBUG 0
30 #if LEAK_DEBUG
31 static DEFINE_SPINLOCK(leak_lock);
32 #endif
34 #define BUFFER_LRU_MAX 64
36 struct tree_entry {
37 u64 start;
38 u64 end;
39 struct rb_node rb_node;
42 struct extent_page_data {
43 struct bio *bio;
44 struct extent_io_tree *tree;
45 get_extent_t *get_extent;
47 /* tells writepage not to lock the state bits for this range
48 * it still does the unlocking
50 unsigned int extent_locked:1;
52 /* tells the submit_bio code to use a WRITE_SYNC */
53 unsigned int sync_io:1;
56 int __init extent_io_init(void)
58 extent_state_cache = kmem_cache_create("extent_state",
59 sizeof(struct extent_state), 0,
60 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
61 if (!extent_state_cache)
62 return -ENOMEM;
64 extent_buffer_cache = kmem_cache_create("extent_buffers",
65 sizeof(struct extent_buffer), 0,
66 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
67 if (!extent_buffer_cache)
68 goto free_state_cache;
69 return 0;
71 free_state_cache:
72 kmem_cache_destroy(extent_state_cache);
73 return -ENOMEM;
76 void extent_io_exit(void)
78 struct extent_state *state;
79 struct extent_buffer *eb;
81 while (!list_empty(&states)) {
82 state = list_entry(states.next, struct extent_state, leak_list);
83 printk(KERN_ERR "btrfs state leak: start %llu end %llu "
84 "state %lu in tree %p refs %d\n",
85 (unsigned long long)state->start,
86 (unsigned long long)state->end,
87 state->state, state->tree, atomic_read(&state->refs));
88 list_del(&state->leak_list);
89 kmem_cache_free(extent_state_cache, state);
93 while (!list_empty(&buffers)) {
94 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
95 printk(KERN_ERR "btrfs buffer leak start %llu len %lu "
96 "refs %d\n", (unsigned long long)eb->start,
97 eb->len, atomic_read(&eb->refs));
98 list_del(&eb->leak_list);
99 kmem_cache_free(extent_buffer_cache, eb);
101 if (extent_state_cache)
102 kmem_cache_destroy(extent_state_cache);
103 if (extent_buffer_cache)
104 kmem_cache_destroy(extent_buffer_cache);
107 void extent_io_tree_init(struct extent_io_tree *tree,
108 struct address_space *mapping)
110 tree->state = RB_ROOT;
111 INIT_RADIX_TREE(&tree->buffer, GFP_ATOMIC);
112 tree->ops = NULL;
113 tree->dirty_bytes = 0;
114 spin_lock_init(&tree->lock);
115 spin_lock_init(&tree->buffer_lock);
116 tree->mapping = mapping;
119 static struct extent_state *alloc_extent_state(gfp_t mask)
121 struct extent_state *state;
122 #if LEAK_DEBUG
123 unsigned long flags;
124 #endif
126 state = kmem_cache_alloc(extent_state_cache, mask);
127 if (!state)
128 return state;
129 state->state = 0;
130 state->private = 0;
131 state->tree = NULL;
132 #if LEAK_DEBUG
133 spin_lock_irqsave(&leak_lock, flags);
134 list_add(&state->leak_list, &states);
135 spin_unlock_irqrestore(&leak_lock, flags);
136 #endif
137 atomic_set(&state->refs, 1);
138 init_waitqueue_head(&state->wq);
139 return state;
142 void free_extent_state(struct extent_state *state)
144 if (!state)
145 return;
146 if (atomic_dec_and_test(&state->refs)) {
147 #if LEAK_DEBUG
148 unsigned long flags;
149 #endif
150 WARN_ON(state->tree);
151 #if LEAK_DEBUG
152 spin_lock_irqsave(&leak_lock, flags);
153 list_del(&state->leak_list);
154 spin_unlock_irqrestore(&leak_lock, flags);
155 #endif
156 kmem_cache_free(extent_state_cache, state);
160 static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
161 struct rb_node *node)
163 struct rb_node **p = &root->rb_node;
164 struct rb_node *parent = NULL;
165 struct tree_entry *entry;
167 while (*p) {
168 parent = *p;
169 entry = rb_entry(parent, struct tree_entry, rb_node);
171 if (offset < entry->start)
172 p = &(*p)->rb_left;
173 else if (offset > entry->end)
174 p = &(*p)->rb_right;
175 else
176 return parent;
179 entry = rb_entry(node, struct tree_entry, rb_node);
180 rb_link_node(node, parent, p);
181 rb_insert_color(node, root);
182 return NULL;
185 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
186 struct rb_node **prev_ret,
187 struct rb_node **next_ret)
189 struct rb_root *root = &tree->state;
190 struct rb_node *n = root->rb_node;
191 struct rb_node *prev = NULL;
192 struct rb_node *orig_prev = NULL;
193 struct tree_entry *entry;
194 struct tree_entry *prev_entry = NULL;
196 while (n) {
197 entry = rb_entry(n, struct tree_entry, rb_node);
198 prev = n;
199 prev_entry = entry;
201 if (offset < entry->start)
202 n = n->rb_left;
203 else if (offset > entry->end)
204 n = n->rb_right;
205 else
206 return n;
209 if (prev_ret) {
210 orig_prev = prev;
211 while (prev && offset > prev_entry->end) {
212 prev = rb_next(prev);
213 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
215 *prev_ret = prev;
216 prev = orig_prev;
219 if (next_ret) {
220 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
221 while (prev && offset < prev_entry->start) {
222 prev = rb_prev(prev);
223 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
225 *next_ret = prev;
227 return NULL;
230 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
231 u64 offset)
233 struct rb_node *prev = NULL;
234 struct rb_node *ret;
236 ret = __etree_search(tree, offset, &prev, NULL);
237 if (!ret)
238 return prev;
239 return ret;
242 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
243 struct extent_state *other)
245 if (tree->ops && tree->ops->merge_extent_hook)
246 tree->ops->merge_extent_hook(tree->mapping->host, new,
247 other);
251 * utility function to look for merge candidates inside a given range.
252 * Any extents with matching state are merged together into a single
253 * extent in the tree. Extents with EXTENT_IO in their state field
254 * are not merged because the end_io handlers need to be able to do
255 * operations on them without sleeping (or doing allocations/splits).
257 * This should be called with the tree lock held.
259 static void merge_state(struct extent_io_tree *tree,
260 struct extent_state *state)
262 struct extent_state *other;
263 struct rb_node *other_node;
265 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
266 return;
268 other_node = rb_prev(&state->rb_node);
269 if (other_node) {
270 other = rb_entry(other_node, struct extent_state, rb_node);
271 if (other->end == state->start - 1 &&
272 other->state == state->state) {
273 merge_cb(tree, state, other);
274 state->start = other->start;
275 other->tree = NULL;
276 rb_erase(&other->rb_node, &tree->state);
277 free_extent_state(other);
280 other_node = rb_next(&state->rb_node);
281 if (other_node) {
282 other = rb_entry(other_node, struct extent_state, rb_node);
283 if (other->start == state->end + 1 &&
284 other->state == state->state) {
285 merge_cb(tree, state, other);
286 state->end = other->end;
287 other->tree = NULL;
288 rb_erase(&other->rb_node, &tree->state);
289 free_extent_state(other);
294 static void set_state_cb(struct extent_io_tree *tree,
295 struct extent_state *state, int *bits)
297 if (tree->ops && tree->ops->set_bit_hook)
298 tree->ops->set_bit_hook(tree->mapping->host, state, bits);
301 static void clear_state_cb(struct extent_io_tree *tree,
302 struct extent_state *state, int *bits)
304 if (tree->ops && tree->ops->clear_bit_hook)
305 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
308 static void set_state_bits(struct extent_io_tree *tree,
309 struct extent_state *state, int *bits);
312 * insert an extent_state struct into the tree. 'bits' are set on the
313 * struct before it is inserted.
315 * This may return -EEXIST if the extent is already there, in which case the
316 * state struct is freed.
318 * The tree lock is not taken internally. This is a utility function and
319 * probably isn't what you want to call (see set/clear_extent_bit).
321 static int insert_state(struct extent_io_tree *tree,
322 struct extent_state *state, u64 start, u64 end,
323 int *bits)
325 struct rb_node *node;
327 if (end < start) {
328 printk(KERN_ERR "btrfs end < start %llu %llu\n",
329 (unsigned long long)end,
330 (unsigned long long)start);
331 WARN_ON(1);
333 state->start = start;
334 state->end = end;
336 set_state_bits(tree, state, bits);
338 node = tree_insert(&tree->state, end, &state->rb_node);
339 if (node) {
340 struct extent_state *found;
341 found = rb_entry(node, struct extent_state, rb_node);
342 printk(KERN_ERR "btrfs found node %llu %llu on insert of "
343 "%llu %llu\n", (unsigned long long)found->start,
344 (unsigned long long)found->end,
345 (unsigned long long)start, (unsigned long long)end);
346 return -EEXIST;
348 state->tree = tree;
349 merge_state(tree, state);
350 return 0;
353 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
354 u64 split)
356 if (tree->ops && tree->ops->split_extent_hook)
357 tree->ops->split_extent_hook(tree->mapping->host, orig, split);
361 * split a given extent state struct in two, inserting the preallocated
362 * struct 'prealloc' as the newly created second half. 'split' indicates an
363 * offset inside 'orig' where it should be split.
365 * Before calling,
366 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
367 * are two extent state structs in the tree:
368 * prealloc: [orig->start, split - 1]
369 * orig: [ split, orig->end ]
371 * The tree locks are not taken by this function. They need to be held
372 * by the caller.
374 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
375 struct extent_state *prealloc, u64 split)
377 struct rb_node *node;
379 split_cb(tree, orig, split);
381 prealloc->start = orig->start;
382 prealloc->end = split - 1;
383 prealloc->state = orig->state;
384 orig->start = split;
386 node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
387 if (node) {
388 free_extent_state(prealloc);
389 return -EEXIST;
391 prealloc->tree = tree;
392 return 0;
396 * utility function to clear some bits in an extent state struct.
397 * it will optionally wake up any one waiting on this state (wake == 1), or
398 * forcibly remove the state from the tree (delete == 1).
400 * If no bits are set on the state struct after clearing things, the
401 * struct is freed and removed from the tree
403 static int clear_state_bit(struct extent_io_tree *tree,
404 struct extent_state *state,
405 int *bits, int wake)
407 int bits_to_clear = *bits & ~EXTENT_CTLBITS;
408 int ret = state->state & bits_to_clear;
410 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
411 u64 range = state->end - state->start + 1;
412 WARN_ON(range > tree->dirty_bytes);
413 tree->dirty_bytes -= range;
415 clear_state_cb(tree, state, bits);
416 state->state &= ~bits_to_clear;
417 if (wake)
418 wake_up(&state->wq);
419 if (state->state == 0) {
420 if (state->tree) {
421 rb_erase(&state->rb_node, &tree->state);
422 state->tree = NULL;
423 free_extent_state(state);
424 } else {
425 WARN_ON(1);
427 } else {
428 merge_state(tree, state);
430 return ret;
433 static struct extent_state *
434 alloc_extent_state_atomic(struct extent_state *prealloc)
436 if (!prealloc)
437 prealloc = alloc_extent_state(GFP_ATOMIC);
439 return prealloc;
443 * clear some bits on a range in the tree. This may require splitting
444 * or inserting elements in the tree, so the gfp mask is used to
445 * indicate which allocations or sleeping are allowed.
447 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
448 * the given range from the tree regardless of state (ie for truncate).
450 * the range [start, end] is inclusive.
452 * This takes the tree lock, and returns < 0 on error, > 0 if any of the
453 * bits were already set, or zero if none of the bits were already set.
455 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
456 int bits, int wake, int delete,
457 struct extent_state **cached_state,
458 gfp_t mask)
460 struct extent_state *state;
461 struct extent_state *cached;
462 struct extent_state *prealloc = NULL;
463 struct rb_node *next_node;
464 struct rb_node *node;
465 u64 last_end;
466 int err;
467 int set = 0;
468 int clear = 0;
470 if (delete)
471 bits |= ~EXTENT_CTLBITS;
472 bits |= EXTENT_FIRST_DELALLOC;
474 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
475 clear = 1;
476 again:
477 if (!prealloc && (mask & __GFP_WAIT)) {
478 prealloc = alloc_extent_state(mask);
479 if (!prealloc)
480 return -ENOMEM;
483 spin_lock(&tree->lock);
484 if (cached_state) {
485 cached = *cached_state;
487 if (clear) {
488 *cached_state = NULL;
489 cached_state = NULL;
492 if (cached && cached->tree && cached->start <= start &&
493 cached->end > start) {
494 if (clear)
495 atomic_dec(&cached->refs);
496 state = cached;
497 goto hit_next;
499 if (clear)
500 free_extent_state(cached);
503 * this search will find the extents that end after
504 * our range starts
506 node = tree_search(tree, start);
507 if (!node)
508 goto out;
509 state = rb_entry(node, struct extent_state, rb_node);
510 hit_next:
511 if (state->start > end)
512 goto out;
513 WARN_ON(state->end < start);
514 last_end = state->end;
517 * | ---- desired range ---- |
518 * | state | or
519 * | ------------- state -------------- |
521 * We need to split the extent we found, and may flip
522 * bits on second half.
524 * If the extent we found extends past our range, we
525 * just split and search again. It'll get split again
526 * the next time though.
528 * If the extent we found is inside our range, we clear
529 * the desired bit on it.
532 if (state->start < start) {
533 prealloc = alloc_extent_state_atomic(prealloc);
534 BUG_ON(!prealloc);
535 err = split_state(tree, state, prealloc, start);
536 BUG_ON(err == -EEXIST);
537 prealloc = NULL;
538 if (err)
539 goto out;
540 if (state->end <= end) {
541 set |= clear_state_bit(tree, state, &bits, wake);
542 if (last_end == (u64)-1)
543 goto out;
544 start = last_end + 1;
546 goto search_again;
549 * | ---- desired range ---- |
550 * | state |
551 * We need to split the extent, and clear the bit
552 * on the first half
554 if (state->start <= end && state->end > end) {
555 prealloc = alloc_extent_state_atomic(prealloc);
556 BUG_ON(!prealloc);
557 err = split_state(tree, state, prealloc, end + 1);
558 BUG_ON(err == -EEXIST);
559 if (wake)
560 wake_up(&state->wq);
562 set |= clear_state_bit(tree, prealloc, &bits, wake);
564 prealloc = NULL;
565 goto out;
568 if (state->end < end && prealloc && !need_resched())
569 next_node = rb_next(&state->rb_node);
570 else
571 next_node = NULL;
573 set |= clear_state_bit(tree, state, &bits, wake);
574 if (last_end == (u64)-1)
575 goto out;
576 start = last_end + 1;
577 if (start <= end && next_node) {
578 state = rb_entry(next_node, struct extent_state,
579 rb_node);
580 if (state->start == start)
581 goto hit_next;
583 goto search_again;
585 out:
586 spin_unlock(&tree->lock);
587 if (prealloc)
588 free_extent_state(prealloc);
590 return set;
592 search_again:
593 if (start > end)
594 goto out;
595 spin_unlock(&tree->lock);
596 if (mask & __GFP_WAIT)
597 cond_resched();
598 goto again;
601 static int wait_on_state(struct extent_io_tree *tree,
602 struct extent_state *state)
603 __releases(tree->lock)
604 __acquires(tree->lock)
606 DEFINE_WAIT(wait);
607 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
608 spin_unlock(&tree->lock);
609 schedule();
610 spin_lock(&tree->lock);
611 finish_wait(&state->wq, &wait);
612 return 0;
616 * waits for one or more bits to clear on a range in the state tree.
617 * The range [start, end] is inclusive.
618 * The tree lock is taken by this function
620 int wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits)
622 struct extent_state *state;
623 struct rb_node *node;
625 spin_lock(&tree->lock);
626 again:
627 while (1) {
629 * this search will find all the extents that end after
630 * our range starts
632 node = tree_search(tree, start);
633 if (!node)
634 break;
636 state = rb_entry(node, struct extent_state, rb_node);
638 if (state->start > end)
639 goto out;
641 if (state->state & bits) {
642 start = state->start;
643 atomic_inc(&state->refs);
644 wait_on_state(tree, state);
645 free_extent_state(state);
646 goto again;
648 start = state->end + 1;
650 if (start > end)
651 break;
653 cond_resched_lock(&tree->lock);
655 out:
656 spin_unlock(&tree->lock);
657 return 0;
660 static void set_state_bits(struct extent_io_tree *tree,
661 struct extent_state *state,
662 int *bits)
664 int bits_to_set = *bits & ~EXTENT_CTLBITS;
666 set_state_cb(tree, state, bits);
667 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
668 u64 range = state->end - state->start + 1;
669 tree->dirty_bytes += range;
671 state->state |= bits_to_set;
674 static void cache_state(struct extent_state *state,
675 struct extent_state **cached_ptr)
677 if (cached_ptr && !(*cached_ptr)) {
678 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) {
679 *cached_ptr = state;
680 atomic_inc(&state->refs);
685 static void uncache_state(struct extent_state **cached_ptr)
687 if (cached_ptr && (*cached_ptr)) {
688 struct extent_state *state = *cached_ptr;
689 *cached_ptr = NULL;
690 free_extent_state(state);
695 * set some bits on a range in the tree. This may require allocations or
696 * sleeping, so the gfp mask is used to indicate what is allowed.
698 * If any of the exclusive bits are set, this will fail with -EEXIST if some
699 * part of the range already has the desired bits set. The start of the
700 * existing range is returned in failed_start in this case.
702 * [start, end] is inclusive This takes the tree lock.
705 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
706 int bits, int exclusive_bits, u64 *failed_start,
707 struct extent_state **cached_state, gfp_t mask)
709 struct extent_state *state;
710 struct extent_state *prealloc = NULL;
711 struct rb_node *node;
712 int err = 0;
713 u64 last_start;
714 u64 last_end;
716 bits |= EXTENT_FIRST_DELALLOC;
717 again:
718 if (!prealloc && (mask & __GFP_WAIT)) {
719 prealloc = alloc_extent_state(mask);
720 BUG_ON(!prealloc);
723 spin_lock(&tree->lock);
724 if (cached_state && *cached_state) {
725 state = *cached_state;
726 if (state->start <= start && state->end > start &&
727 state->tree) {
728 node = &state->rb_node;
729 goto hit_next;
733 * this search will find all the extents that end after
734 * our range starts.
736 node = tree_search(tree, start);
737 if (!node) {
738 prealloc = alloc_extent_state_atomic(prealloc);
739 BUG_ON(!prealloc);
740 err = insert_state(tree, prealloc, start, end, &bits);
741 prealloc = NULL;
742 BUG_ON(err == -EEXIST);
743 goto out;
745 state = rb_entry(node, struct extent_state, rb_node);
746 hit_next:
747 last_start = state->start;
748 last_end = state->end;
751 * | ---- desired range ---- |
752 * | state |
754 * Just lock what we found and keep going
756 if (state->start == start && state->end <= end) {
757 struct rb_node *next_node;
758 if (state->state & exclusive_bits) {
759 *failed_start = state->start;
760 err = -EEXIST;
761 goto out;
764 set_state_bits(tree, state, &bits);
766 cache_state(state, cached_state);
767 merge_state(tree, state);
768 if (last_end == (u64)-1)
769 goto out;
771 start = last_end + 1;
772 next_node = rb_next(&state->rb_node);
773 if (next_node && start < end && prealloc && !need_resched()) {
774 state = rb_entry(next_node, struct extent_state,
775 rb_node);
776 if (state->start == start)
777 goto hit_next;
779 goto search_again;
783 * | ---- desired range ---- |
784 * | state |
785 * or
786 * | ------------- state -------------- |
788 * We need to split the extent we found, and may flip bits on
789 * second half.
791 * If the extent we found extends past our
792 * range, we just split and search again. It'll get split
793 * again the next time though.
795 * If the extent we found is inside our range, we set the
796 * desired bit on it.
798 if (state->start < start) {
799 if (state->state & exclusive_bits) {
800 *failed_start = start;
801 err = -EEXIST;
802 goto out;
805 prealloc = alloc_extent_state_atomic(prealloc);
806 BUG_ON(!prealloc);
807 err = split_state(tree, state, prealloc, start);
808 BUG_ON(err == -EEXIST);
809 prealloc = NULL;
810 if (err)
811 goto out;
812 if (state->end <= end) {
813 set_state_bits(tree, state, &bits);
814 cache_state(state, cached_state);
815 merge_state(tree, state);
816 if (last_end == (u64)-1)
817 goto out;
818 start = last_end + 1;
820 goto search_again;
823 * | ---- desired range ---- |
824 * | state | or | state |
826 * There's a hole, we need to insert something in it and
827 * ignore the extent we found.
829 if (state->start > start) {
830 u64 this_end;
831 if (end < last_start)
832 this_end = end;
833 else
834 this_end = last_start - 1;
836 prealloc = alloc_extent_state_atomic(prealloc);
837 BUG_ON(!prealloc);
840 * Avoid to free 'prealloc' if it can be merged with
841 * the later extent.
843 err = insert_state(tree, prealloc, start, this_end,
844 &bits);
845 BUG_ON(err == -EEXIST);
846 if (err) {
847 free_extent_state(prealloc);
848 prealloc = NULL;
849 goto out;
851 cache_state(prealloc, cached_state);
852 prealloc = NULL;
853 start = this_end + 1;
854 goto search_again;
857 * | ---- desired range ---- |
858 * | state |
859 * We need to split the extent, and set the bit
860 * on the first half
862 if (state->start <= end && state->end > end) {
863 if (state->state & exclusive_bits) {
864 *failed_start = start;
865 err = -EEXIST;
866 goto out;
869 prealloc = alloc_extent_state_atomic(prealloc);
870 BUG_ON(!prealloc);
871 err = split_state(tree, state, prealloc, end + 1);
872 BUG_ON(err == -EEXIST);
874 set_state_bits(tree, prealloc, &bits);
875 cache_state(prealloc, cached_state);
876 merge_state(tree, prealloc);
877 prealloc = NULL;
878 goto out;
881 goto search_again;
883 out:
884 spin_unlock(&tree->lock);
885 if (prealloc)
886 free_extent_state(prealloc);
888 return err;
890 search_again:
891 if (start > end)
892 goto out;
893 spin_unlock(&tree->lock);
894 if (mask & __GFP_WAIT)
895 cond_resched();
896 goto again;
900 * convert_extent - convert all bits in a given range from one bit to another
901 * @tree: the io tree to search
902 * @start: the start offset in bytes
903 * @end: the end offset in bytes (inclusive)
904 * @bits: the bits to set in this range
905 * @clear_bits: the bits to clear in this range
906 * @mask: the allocation mask
908 * This will go through and set bits for the given range. If any states exist
909 * already in this range they are set with the given bit and cleared of the
910 * clear_bits. This is only meant to be used by things that are mergeable, ie
911 * converting from say DELALLOC to DIRTY. This is not meant to be used with
912 * boundary bits like LOCK.
914 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
915 int bits, int clear_bits, gfp_t mask)
917 struct extent_state *state;
918 struct extent_state *prealloc = NULL;
919 struct rb_node *node;
920 int err = 0;
921 u64 last_start;
922 u64 last_end;
924 again:
925 if (!prealloc && (mask & __GFP_WAIT)) {
926 prealloc = alloc_extent_state(mask);
927 if (!prealloc)
928 return -ENOMEM;
931 spin_lock(&tree->lock);
933 * this search will find all the extents that end after
934 * our range starts.
936 node = tree_search(tree, start);
937 if (!node) {
938 prealloc = alloc_extent_state_atomic(prealloc);
939 if (!prealloc) {
940 err = -ENOMEM;
941 goto out;
943 err = insert_state(tree, prealloc, start, end, &bits);
944 prealloc = NULL;
945 BUG_ON(err == -EEXIST);
946 goto out;
948 state = rb_entry(node, struct extent_state, rb_node);
949 hit_next:
950 last_start = state->start;
951 last_end = state->end;
954 * | ---- desired range ---- |
955 * | state |
957 * Just lock what we found and keep going
959 if (state->start == start && state->end <= end) {
960 struct rb_node *next_node;
962 set_state_bits(tree, state, &bits);
963 clear_state_bit(tree, state, &clear_bits, 0);
965 merge_state(tree, state);
966 if (last_end == (u64)-1)
967 goto out;
969 start = last_end + 1;
970 next_node = rb_next(&state->rb_node);
971 if (next_node && start < end && prealloc && !need_resched()) {
972 state = rb_entry(next_node, struct extent_state,
973 rb_node);
974 if (state->start == start)
975 goto hit_next;
977 goto search_again;
981 * | ---- desired range ---- |
982 * | state |
983 * or
984 * | ------------- state -------------- |
986 * We need to split the extent we found, and may flip bits on
987 * second half.
989 * If the extent we found extends past our
990 * range, we just split and search again. It'll get split
991 * again the next time though.
993 * If the extent we found is inside our range, we set the
994 * desired bit on it.
996 if (state->start < start) {
997 prealloc = alloc_extent_state_atomic(prealloc);
998 if (!prealloc) {
999 err = -ENOMEM;
1000 goto out;
1002 err = split_state(tree, state, prealloc, start);
1003 BUG_ON(err == -EEXIST);
1004 prealloc = NULL;
1005 if (err)
1006 goto out;
1007 if (state->end <= end) {
1008 set_state_bits(tree, state, &bits);
1009 clear_state_bit(tree, state, &clear_bits, 0);
1010 merge_state(tree, state);
1011 if (last_end == (u64)-1)
1012 goto out;
1013 start = last_end + 1;
1015 goto search_again;
1018 * | ---- desired range ---- |
1019 * | state | or | state |
1021 * There's a hole, we need to insert something in it and
1022 * ignore the extent we found.
1024 if (state->start > start) {
1025 u64 this_end;
1026 if (end < last_start)
1027 this_end = end;
1028 else
1029 this_end = last_start - 1;
1031 prealloc = alloc_extent_state_atomic(prealloc);
1032 if (!prealloc) {
1033 err = -ENOMEM;
1034 goto out;
1038 * Avoid to free 'prealloc' if it can be merged with
1039 * the later extent.
1041 err = insert_state(tree, prealloc, start, this_end,
1042 &bits);
1043 BUG_ON(err == -EEXIST);
1044 if (err) {
1045 free_extent_state(prealloc);
1046 prealloc = NULL;
1047 goto out;
1049 prealloc = NULL;
1050 start = this_end + 1;
1051 goto search_again;
1054 * | ---- desired range ---- |
1055 * | state |
1056 * We need to split the extent, and set the bit
1057 * on the first half
1059 if (state->start <= end && state->end > end) {
1060 prealloc = alloc_extent_state_atomic(prealloc);
1061 if (!prealloc) {
1062 err = -ENOMEM;
1063 goto out;
1066 err = split_state(tree, state, prealloc, end + 1);
1067 BUG_ON(err == -EEXIST);
1069 set_state_bits(tree, prealloc, &bits);
1070 clear_state_bit(tree, prealloc, &clear_bits, 0);
1072 merge_state(tree, prealloc);
1073 prealloc = NULL;
1074 goto out;
1077 goto search_again;
1079 out:
1080 spin_unlock(&tree->lock);
1081 if (prealloc)
1082 free_extent_state(prealloc);
1084 return err;
1086 search_again:
1087 if (start > end)
1088 goto out;
1089 spin_unlock(&tree->lock);
1090 if (mask & __GFP_WAIT)
1091 cond_resched();
1092 goto again;
1095 /* wrappers around set/clear extent bit */
1096 int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1097 gfp_t mask)
1099 return set_extent_bit(tree, start, end, EXTENT_DIRTY, 0, NULL,
1100 NULL, mask);
1103 int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1104 int bits, gfp_t mask)
1106 return set_extent_bit(tree, start, end, bits, 0, NULL,
1107 NULL, mask);
1110 int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1111 int bits, gfp_t mask)
1113 return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask);
1116 int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
1117 struct extent_state **cached_state, gfp_t mask)
1119 return set_extent_bit(tree, start, end,
1120 EXTENT_DELALLOC | EXTENT_UPTODATE,
1121 0, NULL, cached_state, mask);
1124 int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1125 gfp_t mask)
1127 return clear_extent_bit(tree, start, end,
1128 EXTENT_DIRTY | EXTENT_DELALLOC |
1129 EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
1132 int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
1133 gfp_t mask)
1135 return set_extent_bit(tree, start, end, EXTENT_NEW, 0, NULL,
1136 NULL, mask);
1139 int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1140 struct extent_state **cached_state, gfp_t mask)
1142 return set_extent_bit(tree, start, end, EXTENT_UPTODATE, 0,
1143 NULL, cached_state, mask);
1146 static int clear_extent_uptodate(struct extent_io_tree *tree, u64 start,
1147 u64 end, struct extent_state **cached_state,
1148 gfp_t mask)
1150 return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
1151 cached_state, mask);
1155 * either insert or lock state struct between start and end use mask to tell
1156 * us if waiting is desired.
1158 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1159 int bits, struct extent_state **cached_state, gfp_t mask)
1161 int err;
1162 u64 failed_start;
1163 while (1) {
1164 err = set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
1165 EXTENT_LOCKED, &failed_start,
1166 cached_state, mask);
1167 if (err == -EEXIST && (mask & __GFP_WAIT)) {
1168 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1169 start = failed_start;
1170 } else {
1171 break;
1173 WARN_ON(start > end);
1175 return err;
1178 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end, gfp_t mask)
1180 return lock_extent_bits(tree, start, end, 0, NULL, mask);
1183 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end,
1184 gfp_t mask)
1186 int err;
1187 u64 failed_start;
1189 err = set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1190 &failed_start, NULL, mask);
1191 if (err == -EEXIST) {
1192 if (failed_start > start)
1193 clear_extent_bit(tree, start, failed_start - 1,
1194 EXTENT_LOCKED, 1, 0, NULL, mask);
1195 return 0;
1197 return 1;
1200 int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1201 struct extent_state **cached, gfp_t mask)
1203 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1204 mask);
1207 int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end, gfp_t mask)
1209 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
1210 mask);
1214 * helper function to set both pages and extents in the tree writeback
1216 static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1218 unsigned long index = start >> PAGE_CACHE_SHIFT;
1219 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1220 struct page *page;
1222 while (index <= end_index) {
1223 page = find_get_page(tree->mapping, index);
1224 BUG_ON(!page);
1225 set_page_writeback(page);
1226 page_cache_release(page);
1227 index++;
1229 return 0;
1232 /* find the first state struct with 'bits' set after 'start', and
1233 * return it. tree->lock must be held. NULL will returned if
1234 * nothing was found after 'start'
1236 struct extent_state *find_first_extent_bit_state(struct extent_io_tree *tree,
1237 u64 start, int bits)
1239 struct rb_node *node;
1240 struct extent_state *state;
1243 * this search will find all the extents that end after
1244 * our range starts.
1246 node = tree_search(tree, start);
1247 if (!node)
1248 goto out;
1250 while (1) {
1251 state = rb_entry(node, struct extent_state, rb_node);
1252 if (state->end >= start && (state->state & bits))
1253 return state;
1255 node = rb_next(node);
1256 if (!node)
1257 break;
1259 out:
1260 return NULL;
1264 * find the first offset in the io tree with 'bits' set. zero is
1265 * returned if we find something, and *start_ret and *end_ret are
1266 * set to reflect the state struct that was found.
1268 * If nothing was found, 1 is returned, < 0 on error
1270 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1271 u64 *start_ret, u64 *end_ret, int bits)
1273 struct extent_state *state;
1274 int ret = 1;
1276 spin_lock(&tree->lock);
1277 state = find_first_extent_bit_state(tree, start, bits);
1278 if (state) {
1279 *start_ret = state->start;
1280 *end_ret = state->end;
1281 ret = 0;
1283 spin_unlock(&tree->lock);
1284 return ret;
1288 * find a contiguous range of bytes in the file marked as delalloc, not
1289 * more than 'max_bytes'. start and end are used to return the range,
1291 * 1 is returned if we find something, 0 if nothing was in the tree
1293 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1294 u64 *start, u64 *end, u64 max_bytes,
1295 struct extent_state **cached_state)
1297 struct rb_node *node;
1298 struct extent_state *state;
1299 u64 cur_start = *start;
1300 u64 found = 0;
1301 u64 total_bytes = 0;
1303 spin_lock(&tree->lock);
1306 * this search will find all the extents that end after
1307 * our range starts.
1309 node = tree_search(tree, cur_start);
1310 if (!node) {
1311 if (!found)
1312 *end = (u64)-1;
1313 goto out;
1316 while (1) {
1317 state = rb_entry(node, struct extent_state, rb_node);
1318 if (found && (state->start != cur_start ||
1319 (state->state & EXTENT_BOUNDARY))) {
1320 goto out;
1322 if (!(state->state & EXTENT_DELALLOC)) {
1323 if (!found)
1324 *end = state->end;
1325 goto out;
1327 if (!found) {
1328 *start = state->start;
1329 *cached_state = state;
1330 atomic_inc(&state->refs);
1332 found++;
1333 *end = state->end;
1334 cur_start = state->end + 1;
1335 node = rb_next(node);
1336 if (!node)
1337 break;
1338 total_bytes += state->end - state->start + 1;
1339 if (total_bytes >= max_bytes)
1340 break;
1342 out:
1343 spin_unlock(&tree->lock);
1344 return found;
1347 static noinline int __unlock_for_delalloc(struct inode *inode,
1348 struct page *locked_page,
1349 u64 start, u64 end)
1351 int ret;
1352 struct page *pages[16];
1353 unsigned long index = start >> PAGE_CACHE_SHIFT;
1354 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1355 unsigned long nr_pages = end_index - index + 1;
1356 int i;
1358 if (index == locked_page->index && end_index == index)
1359 return 0;
1361 while (nr_pages > 0) {
1362 ret = find_get_pages_contig(inode->i_mapping, index,
1363 min_t(unsigned long, nr_pages,
1364 ARRAY_SIZE(pages)), pages);
1365 for (i = 0; i < ret; i++) {
1366 if (pages[i] != locked_page)
1367 unlock_page(pages[i]);
1368 page_cache_release(pages[i]);
1370 nr_pages -= ret;
1371 index += ret;
1372 cond_resched();
1374 return 0;
1377 static noinline int lock_delalloc_pages(struct inode *inode,
1378 struct page *locked_page,
1379 u64 delalloc_start,
1380 u64 delalloc_end)
1382 unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1383 unsigned long start_index = index;
1384 unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1385 unsigned long pages_locked = 0;
1386 struct page *pages[16];
1387 unsigned long nrpages;
1388 int ret;
1389 int i;
1391 /* the caller is responsible for locking the start index */
1392 if (index == locked_page->index && index == end_index)
1393 return 0;
1395 /* skip the page at the start index */
1396 nrpages = end_index - index + 1;
1397 while (nrpages > 0) {
1398 ret = find_get_pages_contig(inode->i_mapping, index,
1399 min_t(unsigned long,
1400 nrpages, ARRAY_SIZE(pages)), pages);
1401 if (ret == 0) {
1402 ret = -EAGAIN;
1403 goto done;
1405 /* now we have an array of pages, lock them all */
1406 for (i = 0; i < ret; i++) {
1408 * the caller is taking responsibility for
1409 * locked_page
1411 if (pages[i] != locked_page) {
1412 lock_page(pages[i]);
1413 if (!PageDirty(pages[i]) ||
1414 pages[i]->mapping != inode->i_mapping) {
1415 ret = -EAGAIN;
1416 unlock_page(pages[i]);
1417 page_cache_release(pages[i]);
1418 goto done;
1421 page_cache_release(pages[i]);
1422 pages_locked++;
1424 nrpages -= ret;
1425 index += ret;
1426 cond_resched();
1428 ret = 0;
1429 done:
1430 if (ret && pages_locked) {
1431 __unlock_for_delalloc(inode, locked_page,
1432 delalloc_start,
1433 ((u64)(start_index + pages_locked - 1)) <<
1434 PAGE_CACHE_SHIFT);
1436 return ret;
1440 * find a contiguous range of bytes in the file marked as delalloc, not
1441 * more than 'max_bytes'. start and end are used to return the range,
1443 * 1 is returned if we find something, 0 if nothing was in the tree
1445 static noinline u64 find_lock_delalloc_range(struct inode *inode,
1446 struct extent_io_tree *tree,
1447 struct page *locked_page,
1448 u64 *start, u64 *end,
1449 u64 max_bytes)
1451 u64 delalloc_start;
1452 u64 delalloc_end;
1453 u64 found;
1454 struct extent_state *cached_state = NULL;
1455 int ret;
1456 int loops = 0;
1458 again:
1459 /* step one, find a bunch of delalloc bytes starting at start */
1460 delalloc_start = *start;
1461 delalloc_end = 0;
1462 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1463 max_bytes, &cached_state);
1464 if (!found || delalloc_end <= *start) {
1465 *start = delalloc_start;
1466 *end = delalloc_end;
1467 free_extent_state(cached_state);
1468 return found;
1472 * start comes from the offset of locked_page. We have to lock
1473 * pages in order, so we can't process delalloc bytes before
1474 * locked_page
1476 if (delalloc_start < *start)
1477 delalloc_start = *start;
1480 * make sure to limit the number of pages we try to lock down
1481 * if we're looping.
1483 if (delalloc_end + 1 - delalloc_start > max_bytes && loops)
1484 delalloc_end = delalloc_start + PAGE_CACHE_SIZE - 1;
1486 /* step two, lock all the pages after the page that has start */
1487 ret = lock_delalloc_pages(inode, locked_page,
1488 delalloc_start, delalloc_end);
1489 if (ret == -EAGAIN) {
1490 /* some of the pages are gone, lets avoid looping by
1491 * shortening the size of the delalloc range we're searching
1493 free_extent_state(cached_state);
1494 if (!loops) {
1495 unsigned long offset = (*start) & (PAGE_CACHE_SIZE - 1);
1496 max_bytes = PAGE_CACHE_SIZE - offset;
1497 loops = 1;
1498 goto again;
1499 } else {
1500 found = 0;
1501 goto out_failed;
1504 BUG_ON(ret);
1506 /* step three, lock the state bits for the whole range */
1507 lock_extent_bits(tree, delalloc_start, delalloc_end,
1508 0, &cached_state, GFP_NOFS);
1510 /* then test to make sure it is all still delalloc */
1511 ret = test_range_bit(tree, delalloc_start, delalloc_end,
1512 EXTENT_DELALLOC, 1, cached_state);
1513 if (!ret) {
1514 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1515 &cached_state, GFP_NOFS);
1516 __unlock_for_delalloc(inode, locked_page,
1517 delalloc_start, delalloc_end);
1518 cond_resched();
1519 goto again;
1521 free_extent_state(cached_state);
1522 *start = delalloc_start;
1523 *end = delalloc_end;
1524 out_failed:
1525 return found;
1528 int extent_clear_unlock_delalloc(struct inode *inode,
1529 struct extent_io_tree *tree,
1530 u64 start, u64 end, struct page *locked_page,
1531 unsigned long op)
1533 int ret;
1534 struct page *pages[16];
1535 unsigned long index = start >> PAGE_CACHE_SHIFT;
1536 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1537 unsigned long nr_pages = end_index - index + 1;
1538 int i;
1539 int clear_bits = 0;
1541 if (op & EXTENT_CLEAR_UNLOCK)
1542 clear_bits |= EXTENT_LOCKED;
1543 if (op & EXTENT_CLEAR_DIRTY)
1544 clear_bits |= EXTENT_DIRTY;
1546 if (op & EXTENT_CLEAR_DELALLOC)
1547 clear_bits |= EXTENT_DELALLOC;
1549 clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1550 if (!(op & (EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
1551 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK |
1552 EXTENT_SET_PRIVATE2)))
1553 return 0;
1555 while (nr_pages > 0) {
1556 ret = find_get_pages_contig(inode->i_mapping, index,
1557 min_t(unsigned long,
1558 nr_pages, ARRAY_SIZE(pages)), pages);
1559 for (i = 0; i < ret; i++) {
1561 if (op & EXTENT_SET_PRIVATE2)
1562 SetPagePrivate2(pages[i]);
1564 if (pages[i] == locked_page) {
1565 page_cache_release(pages[i]);
1566 continue;
1568 if (op & EXTENT_CLEAR_DIRTY)
1569 clear_page_dirty_for_io(pages[i]);
1570 if (op & EXTENT_SET_WRITEBACK)
1571 set_page_writeback(pages[i]);
1572 if (op & EXTENT_END_WRITEBACK)
1573 end_page_writeback(pages[i]);
1574 if (op & EXTENT_CLEAR_UNLOCK_PAGE)
1575 unlock_page(pages[i]);
1576 page_cache_release(pages[i]);
1578 nr_pages -= ret;
1579 index += ret;
1580 cond_resched();
1582 return 0;
1586 * count the number of bytes in the tree that have a given bit(s)
1587 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1588 * cached. The total number found is returned.
1590 u64 count_range_bits(struct extent_io_tree *tree,
1591 u64 *start, u64 search_end, u64 max_bytes,
1592 unsigned long bits, int contig)
1594 struct rb_node *node;
1595 struct extent_state *state;
1596 u64 cur_start = *start;
1597 u64 total_bytes = 0;
1598 u64 last = 0;
1599 int found = 0;
1601 if (search_end <= cur_start) {
1602 WARN_ON(1);
1603 return 0;
1606 spin_lock(&tree->lock);
1607 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1608 total_bytes = tree->dirty_bytes;
1609 goto out;
1612 * this search will find all the extents that end after
1613 * our range starts.
1615 node = tree_search(tree, cur_start);
1616 if (!node)
1617 goto out;
1619 while (1) {
1620 state = rb_entry(node, struct extent_state, rb_node);
1621 if (state->start > search_end)
1622 break;
1623 if (contig && found && state->start > last + 1)
1624 break;
1625 if (state->end >= cur_start && (state->state & bits) == bits) {
1626 total_bytes += min(search_end, state->end) + 1 -
1627 max(cur_start, state->start);
1628 if (total_bytes >= max_bytes)
1629 break;
1630 if (!found) {
1631 *start = max(cur_start, state->start);
1632 found = 1;
1634 last = state->end;
1635 } else if (contig && found) {
1636 break;
1638 node = rb_next(node);
1639 if (!node)
1640 break;
1642 out:
1643 spin_unlock(&tree->lock);
1644 return total_bytes;
1648 * set the private field for a given byte offset in the tree. If there isn't
1649 * an extent_state there already, this does nothing.
1651 int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1653 struct rb_node *node;
1654 struct extent_state *state;
1655 int ret = 0;
1657 spin_lock(&tree->lock);
1659 * this search will find all the extents that end after
1660 * our range starts.
1662 node = tree_search(tree, start);
1663 if (!node) {
1664 ret = -ENOENT;
1665 goto out;
1667 state = rb_entry(node, struct extent_state, rb_node);
1668 if (state->start != start) {
1669 ret = -ENOENT;
1670 goto out;
1672 state->private = private;
1673 out:
1674 spin_unlock(&tree->lock);
1675 return ret;
1678 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1680 struct rb_node *node;
1681 struct extent_state *state;
1682 int ret = 0;
1684 spin_lock(&tree->lock);
1686 * this search will find all the extents that end after
1687 * our range starts.
1689 node = tree_search(tree, start);
1690 if (!node) {
1691 ret = -ENOENT;
1692 goto out;
1694 state = rb_entry(node, struct extent_state, rb_node);
1695 if (state->start != start) {
1696 ret = -ENOENT;
1697 goto out;
1699 *private = state->private;
1700 out:
1701 spin_unlock(&tree->lock);
1702 return ret;
1706 * searches a range in the state tree for a given mask.
1707 * If 'filled' == 1, this returns 1 only if every extent in the tree
1708 * has the bits set. Otherwise, 1 is returned if any bit in the
1709 * range is found set.
1711 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1712 int bits, int filled, struct extent_state *cached)
1714 struct extent_state *state = NULL;
1715 struct rb_node *node;
1716 int bitset = 0;
1718 spin_lock(&tree->lock);
1719 if (cached && cached->tree && cached->start <= start &&
1720 cached->end > start)
1721 node = &cached->rb_node;
1722 else
1723 node = tree_search(tree, start);
1724 while (node && start <= end) {
1725 state = rb_entry(node, struct extent_state, rb_node);
1727 if (filled && state->start > start) {
1728 bitset = 0;
1729 break;
1732 if (state->start > end)
1733 break;
1735 if (state->state & bits) {
1736 bitset = 1;
1737 if (!filled)
1738 break;
1739 } else if (filled) {
1740 bitset = 0;
1741 break;
1744 if (state->end == (u64)-1)
1745 break;
1747 start = state->end + 1;
1748 if (start > end)
1749 break;
1750 node = rb_next(node);
1751 if (!node) {
1752 if (filled)
1753 bitset = 0;
1754 break;
1757 spin_unlock(&tree->lock);
1758 return bitset;
1762 * helper function to set a given page up to date if all the
1763 * extents in the tree for that page are up to date
1765 static int check_page_uptodate(struct extent_io_tree *tree,
1766 struct page *page)
1768 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1769 u64 end = start + PAGE_CACHE_SIZE - 1;
1770 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1771 SetPageUptodate(page);
1772 return 0;
1776 * helper function to unlock a page if all the extents in the tree
1777 * for that page are unlocked
1779 static int check_page_locked(struct extent_io_tree *tree,
1780 struct page *page)
1782 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1783 u64 end = start + PAGE_CACHE_SIZE - 1;
1784 if (!test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL))
1785 unlock_page(page);
1786 return 0;
1790 * helper function to end page writeback if all the extents
1791 * in the tree for that page are done with writeback
1793 static int check_page_writeback(struct extent_io_tree *tree,
1794 struct page *page)
1796 end_page_writeback(page);
1797 return 0;
1801 * When IO fails, either with EIO or csum verification fails, we
1802 * try other mirrors that might have a good copy of the data. This
1803 * io_failure_record is used to record state as we go through all the
1804 * mirrors. If another mirror has good data, the page is set up to date
1805 * and things continue. If a good mirror can't be found, the original
1806 * bio end_io callback is called to indicate things have failed.
1808 struct io_failure_record {
1809 struct page *page;
1810 u64 start;
1811 u64 len;
1812 u64 logical;
1813 unsigned long bio_flags;
1814 int this_mirror;
1815 int failed_mirror;
1816 int in_validation;
1819 static int free_io_failure(struct inode *inode, struct io_failure_record *rec,
1820 int did_repair)
1822 int ret;
1823 int err = 0;
1824 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1826 set_state_private(failure_tree, rec->start, 0);
1827 ret = clear_extent_bits(failure_tree, rec->start,
1828 rec->start + rec->len - 1,
1829 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1830 if (ret)
1831 err = ret;
1833 if (did_repair) {
1834 ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
1835 rec->start + rec->len - 1,
1836 EXTENT_DAMAGED, GFP_NOFS);
1837 if (ret && !err)
1838 err = ret;
1841 kfree(rec);
1842 return err;
1845 static void repair_io_failure_callback(struct bio *bio, int err)
1847 complete(bio->bi_private);
1851 * this bypasses the standard btrfs submit functions deliberately, as
1852 * the standard behavior is to write all copies in a raid setup. here we only
1853 * want to write the one bad copy. so we do the mapping for ourselves and issue
1854 * submit_bio directly.
1855 * to avoid any synchonization issues, wait for the data after writing, which
1856 * actually prevents the read that triggered the error from finishing.
1857 * currently, there can be no more than two copies of every data bit. thus,
1858 * exactly one rewrite is required.
1860 int repair_io_failure(struct btrfs_mapping_tree *map_tree, u64 start,
1861 u64 length, u64 logical, struct page *page,
1862 int mirror_num)
1864 struct bio *bio;
1865 struct btrfs_device *dev;
1866 DECLARE_COMPLETION_ONSTACK(compl);
1867 u64 map_length = 0;
1868 u64 sector;
1869 struct btrfs_bio *bbio = NULL;
1870 int ret;
1872 BUG_ON(!mirror_num);
1874 bio = bio_alloc(GFP_NOFS, 1);
1875 if (!bio)
1876 return -EIO;
1877 bio->bi_private = &compl;
1878 bio->bi_end_io = repair_io_failure_callback;
1879 bio->bi_size = 0;
1880 map_length = length;
1882 ret = btrfs_map_block(map_tree, WRITE, logical,
1883 &map_length, &bbio, mirror_num);
1884 if (ret) {
1885 bio_put(bio);
1886 return -EIO;
1888 BUG_ON(mirror_num != bbio->mirror_num);
1889 sector = bbio->stripes[mirror_num-1].physical >> 9;
1890 bio->bi_sector = sector;
1891 dev = bbio->stripes[mirror_num-1].dev;
1892 kfree(bbio);
1893 if (!dev || !dev->bdev || !dev->writeable) {
1894 bio_put(bio);
1895 return -EIO;
1897 bio->bi_bdev = dev->bdev;
1898 bio_add_page(bio, page, length, start-page_offset(page));
1899 btrfsic_submit_bio(WRITE_SYNC, bio);
1900 wait_for_completion(&compl);
1902 if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) {
1903 /* try to remap that extent elsewhere? */
1904 bio_put(bio);
1905 return -EIO;
1908 printk(KERN_INFO "btrfs read error corrected: ino %lu off %llu (dev %s "
1909 "sector %llu)\n", page->mapping->host->i_ino, start,
1910 dev->name, sector);
1912 bio_put(bio);
1913 return 0;
1917 * each time an IO finishes, we do a fast check in the IO failure tree
1918 * to see if we need to process or clean up an io_failure_record
1920 static int clean_io_failure(u64 start, struct page *page)
1922 u64 private;
1923 u64 private_failure;
1924 struct io_failure_record *failrec;
1925 struct btrfs_mapping_tree *map_tree;
1926 struct extent_state *state;
1927 int num_copies;
1928 int did_repair = 0;
1929 int ret;
1930 struct inode *inode = page->mapping->host;
1932 private = 0;
1933 ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1934 (u64)-1, 1, EXTENT_DIRTY, 0);
1935 if (!ret)
1936 return 0;
1938 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start,
1939 &private_failure);
1940 if (ret)
1941 return 0;
1943 failrec = (struct io_failure_record *)(unsigned long) private_failure;
1944 BUG_ON(!failrec->this_mirror);
1946 if (failrec->in_validation) {
1947 /* there was no real error, just free the record */
1948 pr_debug("clean_io_failure: freeing dummy error at %llu\n",
1949 failrec->start);
1950 did_repair = 1;
1951 goto out;
1954 spin_lock(&BTRFS_I(inode)->io_tree.lock);
1955 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1956 failrec->start,
1957 EXTENT_LOCKED);
1958 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
1960 if (state && state->start == failrec->start) {
1961 map_tree = &BTRFS_I(inode)->root->fs_info->mapping_tree;
1962 num_copies = btrfs_num_copies(map_tree, failrec->logical,
1963 failrec->len);
1964 if (num_copies > 1) {
1965 ret = repair_io_failure(map_tree, start, failrec->len,
1966 failrec->logical, page,
1967 failrec->failed_mirror);
1968 did_repair = !ret;
1972 out:
1973 if (!ret)
1974 ret = free_io_failure(inode, failrec, did_repair);
1976 return ret;
1980 * this is a generic handler for readpage errors (default
1981 * readpage_io_failed_hook). if other copies exist, read those and write back
1982 * good data to the failed position. does not investigate in remapping the
1983 * failed extent elsewhere, hoping the device will be smart enough to do this as
1984 * needed
1987 static int bio_readpage_error(struct bio *failed_bio, struct page *page,
1988 u64 start, u64 end, int failed_mirror,
1989 struct extent_state *state)
1991 struct io_failure_record *failrec = NULL;
1992 u64 private;
1993 struct extent_map *em;
1994 struct inode *inode = page->mapping->host;
1995 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1996 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1997 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1998 struct bio *bio;
1999 int num_copies;
2000 int ret;
2001 int read_mode;
2002 u64 logical;
2004 BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2006 ret = get_state_private(failure_tree, start, &private);
2007 if (ret) {
2008 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2009 if (!failrec)
2010 return -ENOMEM;
2011 failrec->start = start;
2012 failrec->len = end - start + 1;
2013 failrec->this_mirror = 0;
2014 failrec->bio_flags = 0;
2015 failrec->in_validation = 0;
2017 read_lock(&em_tree->lock);
2018 em = lookup_extent_mapping(em_tree, start, failrec->len);
2019 if (!em) {
2020 read_unlock(&em_tree->lock);
2021 kfree(failrec);
2022 return -EIO;
2025 if (em->start > start || em->start + em->len < start) {
2026 free_extent_map(em);
2027 em = NULL;
2029 read_unlock(&em_tree->lock);
2031 if (!em || IS_ERR(em)) {
2032 kfree(failrec);
2033 return -EIO;
2035 logical = start - em->start;
2036 logical = em->block_start + logical;
2037 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2038 logical = em->block_start;
2039 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2040 extent_set_compress_type(&failrec->bio_flags,
2041 em->compress_type);
2043 pr_debug("bio_readpage_error: (new) logical=%llu, start=%llu, "
2044 "len=%llu\n", logical, start, failrec->len);
2045 failrec->logical = logical;
2046 free_extent_map(em);
2048 /* set the bits in the private failure tree */
2049 ret = set_extent_bits(failure_tree, start, end,
2050 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2051 if (ret >= 0)
2052 ret = set_state_private(failure_tree, start,
2053 (u64)(unsigned long)failrec);
2054 /* set the bits in the inode's tree */
2055 if (ret >= 0)
2056 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2057 GFP_NOFS);
2058 if (ret < 0) {
2059 kfree(failrec);
2060 return ret;
2062 } else {
2063 failrec = (struct io_failure_record *)(unsigned long)private;
2064 pr_debug("bio_readpage_error: (found) logical=%llu, "
2065 "start=%llu, len=%llu, validation=%d\n",
2066 failrec->logical, failrec->start, failrec->len,
2067 failrec->in_validation);
2069 * when data can be on disk more than twice, add to failrec here
2070 * (e.g. with a list for failed_mirror) to make
2071 * clean_io_failure() clean all those errors at once.
2074 num_copies = btrfs_num_copies(
2075 &BTRFS_I(inode)->root->fs_info->mapping_tree,
2076 failrec->logical, failrec->len);
2077 if (num_copies == 1) {
2079 * we only have a single copy of the data, so don't bother with
2080 * all the retry and error correction code that follows. no
2081 * matter what the error is, it is very likely to persist.
2083 pr_debug("bio_readpage_error: cannot repair, num_copies == 1. "
2084 "state=%p, num_copies=%d, next_mirror %d, "
2085 "failed_mirror %d\n", state, num_copies,
2086 failrec->this_mirror, failed_mirror);
2087 free_io_failure(inode, failrec, 0);
2088 return -EIO;
2091 if (!state) {
2092 spin_lock(&tree->lock);
2093 state = find_first_extent_bit_state(tree, failrec->start,
2094 EXTENT_LOCKED);
2095 if (state && state->start != failrec->start)
2096 state = NULL;
2097 spin_unlock(&tree->lock);
2101 * there are two premises:
2102 * a) deliver good data to the caller
2103 * b) correct the bad sectors on disk
2105 if (failed_bio->bi_vcnt > 1) {
2107 * to fulfill b), we need to know the exact failing sectors, as
2108 * we don't want to rewrite any more than the failed ones. thus,
2109 * we need separate read requests for the failed bio
2111 * if the following BUG_ON triggers, our validation request got
2112 * merged. we need separate requests for our algorithm to work.
2114 BUG_ON(failrec->in_validation);
2115 failrec->in_validation = 1;
2116 failrec->this_mirror = failed_mirror;
2117 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2118 } else {
2120 * we're ready to fulfill a) and b) alongside. get a good copy
2121 * of the failed sector and if we succeed, we have setup
2122 * everything for repair_io_failure to do the rest for us.
2124 if (failrec->in_validation) {
2125 BUG_ON(failrec->this_mirror != failed_mirror);
2126 failrec->in_validation = 0;
2127 failrec->this_mirror = 0;
2129 failrec->failed_mirror = failed_mirror;
2130 failrec->this_mirror++;
2131 if (failrec->this_mirror == failed_mirror)
2132 failrec->this_mirror++;
2133 read_mode = READ_SYNC;
2136 if (!state || failrec->this_mirror > num_copies) {
2137 pr_debug("bio_readpage_error: (fail) state=%p, num_copies=%d, "
2138 "next_mirror %d, failed_mirror %d\n", state,
2139 num_copies, failrec->this_mirror, failed_mirror);
2140 free_io_failure(inode, failrec, 0);
2141 return -EIO;
2144 bio = bio_alloc(GFP_NOFS, 1);
2145 bio->bi_private = state;
2146 bio->bi_end_io = failed_bio->bi_end_io;
2147 bio->bi_sector = failrec->logical >> 9;
2148 bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
2149 bio->bi_size = 0;
2151 bio_add_page(bio, page, failrec->len, start - page_offset(page));
2153 pr_debug("bio_readpage_error: submitting new read[%#x] to "
2154 "this_mirror=%d, num_copies=%d, in_validation=%d\n", read_mode,
2155 failrec->this_mirror, num_copies, failrec->in_validation);
2157 tree->ops->submit_bio_hook(inode, read_mode, bio, failrec->this_mirror,
2158 failrec->bio_flags, 0);
2159 return 0;
2162 /* lots and lots of room for performance fixes in the end_bio funcs */
2165 * after a writepage IO is done, we need to:
2166 * clear the uptodate bits on error
2167 * clear the writeback bits in the extent tree for this IO
2168 * end_page_writeback if the page has no more pending IO
2170 * Scheduling is not allowed, so the extent state tree is expected
2171 * to have one and only one object corresponding to this IO.
2173 static void end_bio_extent_writepage(struct bio *bio, int err)
2175 int uptodate = err == 0;
2176 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2177 struct extent_io_tree *tree;
2178 u64 start;
2179 u64 end;
2180 int whole_page;
2181 int ret;
2183 do {
2184 struct page *page = bvec->bv_page;
2185 tree = &BTRFS_I(page->mapping->host)->io_tree;
2187 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
2188 bvec->bv_offset;
2189 end = start + bvec->bv_len - 1;
2191 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
2192 whole_page = 1;
2193 else
2194 whole_page = 0;
2196 if (--bvec >= bio->bi_io_vec)
2197 prefetchw(&bvec->bv_page->flags);
2198 if (tree->ops && tree->ops->writepage_end_io_hook) {
2199 ret = tree->ops->writepage_end_io_hook(page, start,
2200 end, NULL, uptodate);
2201 if (ret)
2202 uptodate = 0;
2205 if (!uptodate && tree->ops &&
2206 tree->ops->writepage_io_failed_hook) {
2207 ret = tree->ops->writepage_io_failed_hook(bio, page,
2208 start, end, NULL);
2209 if (ret == 0) {
2210 uptodate = (err == 0);
2211 continue;
2215 if (!uptodate) {
2216 clear_extent_uptodate(tree, start, end, NULL, GFP_NOFS);
2217 ClearPageUptodate(page);
2218 SetPageError(page);
2221 if (whole_page)
2222 end_page_writeback(page);
2223 else
2224 check_page_writeback(tree, page);
2225 } while (bvec >= bio->bi_io_vec);
2227 bio_put(bio);
2231 * after a readpage IO is done, we need to:
2232 * clear the uptodate bits on error
2233 * set the uptodate bits if things worked
2234 * set the page up to date if all extents in the tree are uptodate
2235 * clear the lock bit in the extent tree
2236 * unlock the page if there are no other extents locked for it
2238 * Scheduling is not allowed, so the extent state tree is expected
2239 * to have one and only one object corresponding to this IO.
2241 static void end_bio_extent_readpage(struct bio *bio, int err)
2243 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
2244 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
2245 struct bio_vec *bvec = bio->bi_io_vec;
2246 struct extent_io_tree *tree;
2247 u64 start;
2248 u64 end;
2249 int whole_page;
2250 int ret;
2252 if (err)
2253 uptodate = 0;
2255 do {
2256 struct page *page = bvec->bv_page;
2257 struct extent_state *cached = NULL;
2258 struct extent_state *state;
2260 pr_debug("end_bio_extent_readpage: bi_vcnt=%d, idx=%d, err=%d, "
2261 "mirror=%ld\n", bio->bi_vcnt, bio->bi_idx, err,
2262 (long int)bio->bi_bdev);
2263 tree = &BTRFS_I(page->mapping->host)->io_tree;
2265 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
2266 bvec->bv_offset;
2267 end = start + bvec->bv_len - 1;
2269 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
2270 whole_page = 1;
2271 else
2272 whole_page = 0;
2274 if (++bvec <= bvec_end)
2275 prefetchw(&bvec->bv_page->flags);
2277 spin_lock(&tree->lock);
2278 state = find_first_extent_bit_state(tree, start, EXTENT_LOCKED);
2279 if (state && state->start == start) {
2281 * take a reference on the state, unlock will drop
2282 * the ref
2284 cache_state(state, &cached);
2286 spin_unlock(&tree->lock);
2288 if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) {
2289 ret = tree->ops->readpage_end_io_hook(page, start, end,
2290 state);
2291 if (ret)
2292 uptodate = 0;
2293 else
2294 clean_io_failure(start, page);
2296 if (!uptodate) {
2297 int failed_mirror;
2298 failed_mirror = (int)(unsigned long)bio->bi_bdev;
2300 * The generic bio_readpage_error handles errors the
2301 * following way: If possible, new read requests are
2302 * created and submitted and will end up in
2303 * end_bio_extent_readpage as well (if we're lucky, not
2304 * in the !uptodate case). In that case it returns 0 and
2305 * we just go on with the next page in our bio. If it
2306 * can't handle the error it will return -EIO and we
2307 * remain responsible for that page.
2309 ret = bio_readpage_error(bio, page, start, end,
2310 failed_mirror, NULL);
2311 if (ret == 0) {
2312 error_handled:
2313 uptodate =
2314 test_bit(BIO_UPTODATE, &bio->bi_flags);
2315 if (err)
2316 uptodate = 0;
2317 uncache_state(&cached);
2318 continue;
2320 if (tree->ops && tree->ops->readpage_io_failed_hook) {
2321 ret = tree->ops->readpage_io_failed_hook(
2322 bio, page, start, end,
2323 failed_mirror, state);
2324 if (ret == 0)
2325 goto error_handled;
2329 if (uptodate) {
2330 set_extent_uptodate(tree, start, end, &cached,
2331 GFP_ATOMIC);
2333 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2335 if (whole_page) {
2336 if (uptodate) {
2337 SetPageUptodate(page);
2338 } else {
2339 ClearPageUptodate(page);
2340 SetPageError(page);
2342 unlock_page(page);
2343 } else {
2344 if (uptodate) {
2345 check_page_uptodate(tree, page);
2346 } else {
2347 ClearPageUptodate(page);
2348 SetPageError(page);
2350 check_page_locked(tree, page);
2352 } while (bvec <= bvec_end);
2354 bio_put(bio);
2357 struct bio *
2358 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2359 gfp_t gfp_flags)
2361 struct bio *bio;
2363 bio = bio_alloc(gfp_flags, nr_vecs);
2365 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2366 while (!bio && (nr_vecs /= 2))
2367 bio = bio_alloc(gfp_flags, nr_vecs);
2370 if (bio) {
2371 bio->bi_size = 0;
2372 bio->bi_bdev = bdev;
2373 bio->bi_sector = first_sector;
2375 return bio;
2378 static int submit_one_bio(int rw, struct bio *bio, int mirror_num,
2379 unsigned long bio_flags)
2381 int ret = 0;
2382 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2383 struct page *page = bvec->bv_page;
2384 struct extent_io_tree *tree = bio->bi_private;
2385 u64 start;
2387 start = ((u64)page->index << PAGE_CACHE_SHIFT) + bvec->bv_offset;
2389 bio->bi_private = NULL;
2391 bio_get(bio);
2393 if (tree->ops && tree->ops->submit_bio_hook)
2394 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
2395 mirror_num, bio_flags, start);
2396 else
2397 btrfsic_submit_bio(rw, bio);
2399 if (bio_flagged(bio, BIO_EOPNOTSUPP))
2400 ret = -EOPNOTSUPP;
2401 bio_put(bio);
2402 return ret;
2405 static int submit_extent_page(int rw, struct extent_io_tree *tree,
2406 struct page *page, sector_t sector,
2407 size_t size, unsigned long offset,
2408 struct block_device *bdev,
2409 struct bio **bio_ret,
2410 unsigned long max_pages,
2411 bio_end_io_t end_io_func,
2412 int mirror_num,
2413 unsigned long prev_bio_flags,
2414 unsigned long bio_flags)
2416 int ret = 0;
2417 struct bio *bio;
2418 int nr;
2419 int contig = 0;
2420 int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
2421 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2422 size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
2424 if (bio_ret && *bio_ret) {
2425 bio = *bio_ret;
2426 if (old_compressed)
2427 contig = bio->bi_sector == sector;
2428 else
2429 contig = bio->bi_sector + (bio->bi_size >> 9) ==
2430 sector;
2432 if (prev_bio_flags != bio_flags || !contig ||
2433 (tree->ops && tree->ops->merge_bio_hook &&
2434 tree->ops->merge_bio_hook(page, offset, page_size, bio,
2435 bio_flags)) ||
2436 bio_add_page(bio, page, page_size, offset) < page_size) {
2437 ret = submit_one_bio(rw, bio, mirror_num,
2438 prev_bio_flags);
2439 bio = NULL;
2440 } else {
2441 return 0;
2444 if (this_compressed)
2445 nr = BIO_MAX_PAGES;
2446 else
2447 nr = bio_get_nr_vecs(bdev);
2449 bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
2450 if (!bio)
2451 return -ENOMEM;
2453 bio_add_page(bio, page, page_size, offset);
2454 bio->bi_end_io = end_io_func;
2455 bio->bi_private = tree;
2457 if (bio_ret)
2458 *bio_ret = bio;
2459 else
2460 ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
2462 return ret;
2465 void set_page_extent_mapped(struct page *page)
2467 if (!PagePrivate(page)) {
2468 SetPagePrivate(page);
2469 page_cache_get(page);
2470 set_page_private(page, EXTENT_PAGE_PRIVATE);
2474 static void set_page_extent_head(struct page *page, unsigned long len)
2476 WARN_ON(!PagePrivate(page));
2477 set_page_private(page, EXTENT_PAGE_PRIVATE_FIRST_PAGE | len << 2);
2481 * basic readpage implementation. Locked extent state structs are inserted
2482 * into the tree that are removed when the IO is done (by the end_io
2483 * handlers)
2485 static int __extent_read_full_page(struct extent_io_tree *tree,
2486 struct page *page,
2487 get_extent_t *get_extent,
2488 struct bio **bio, int mirror_num,
2489 unsigned long *bio_flags)
2491 struct inode *inode = page->mapping->host;
2492 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2493 u64 page_end = start + PAGE_CACHE_SIZE - 1;
2494 u64 end;
2495 u64 cur = start;
2496 u64 extent_offset;
2497 u64 last_byte = i_size_read(inode);
2498 u64 block_start;
2499 u64 cur_end;
2500 sector_t sector;
2501 struct extent_map *em;
2502 struct block_device *bdev;
2503 struct btrfs_ordered_extent *ordered;
2504 int ret;
2505 int nr = 0;
2506 size_t pg_offset = 0;
2507 size_t iosize;
2508 size_t disk_io_size;
2509 size_t blocksize = inode->i_sb->s_blocksize;
2510 unsigned long this_bio_flag = 0;
2512 set_page_extent_mapped(page);
2514 if (!PageUptodate(page)) {
2515 if (cleancache_get_page(page) == 0) {
2516 BUG_ON(blocksize != PAGE_SIZE);
2517 goto out;
2521 end = page_end;
2522 while (1) {
2523 lock_extent(tree, start, end, GFP_NOFS);
2524 ordered = btrfs_lookup_ordered_extent(inode, start);
2525 if (!ordered)
2526 break;
2527 unlock_extent(tree, start, end, GFP_NOFS);
2528 btrfs_start_ordered_extent(inode, ordered, 1);
2529 btrfs_put_ordered_extent(ordered);
2532 if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
2533 char *userpage;
2534 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2536 if (zero_offset) {
2537 iosize = PAGE_CACHE_SIZE - zero_offset;
2538 userpage = kmap_atomic(page, KM_USER0);
2539 memset(userpage + zero_offset, 0, iosize);
2540 flush_dcache_page(page);
2541 kunmap_atomic(userpage, KM_USER0);
2544 while (cur <= end) {
2545 if (cur >= last_byte) {
2546 char *userpage;
2547 struct extent_state *cached = NULL;
2549 iosize = PAGE_CACHE_SIZE - pg_offset;
2550 userpage = kmap_atomic(page, KM_USER0);
2551 memset(userpage + pg_offset, 0, iosize);
2552 flush_dcache_page(page);
2553 kunmap_atomic(userpage, KM_USER0);
2554 set_extent_uptodate(tree, cur, cur + iosize - 1,
2555 &cached, GFP_NOFS);
2556 unlock_extent_cached(tree, cur, cur + iosize - 1,
2557 &cached, GFP_NOFS);
2558 break;
2560 em = get_extent(inode, page, pg_offset, cur,
2561 end - cur + 1, 0);
2562 if (IS_ERR_OR_NULL(em)) {
2563 SetPageError(page);
2564 unlock_extent(tree, cur, end, GFP_NOFS);
2565 break;
2567 extent_offset = cur - em->start;
2568 BUG_ON(extent_map_end(em) <= cur);
2569 BUG_ON(end < cur);
2571 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2572 this_bio_flag = EXTENT_BIO_COMPRESSED;
2573 extent_set_compress_type(&this_bio_flag,
2574 em->compress_type);
2577 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2578 cur_end = min(extent_map_end(em) - 1, end);
2579 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
2580 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2581 disk_io_size = em->block_len;
2582 sector = em->block_start >> 9;
2583 } else {
2584 sector = (em->block_start + extent_offset) >> 9;
2585 disk_io_size = iosize;
2587 bdev = em->bdev;
2588 block_start = em->block_start;
2589 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2590 block_start = EXTENT_MAP_HOLE;
2591 free_extent_map(em);
2592 em = NULL;
2594 /* we've found a hole, just zero and go on */
2595 if (block_start == EXTENT_MAP_HOLE) {
2596 char *userpage;
2597 struct extent_state *cached = NULL;
2599 userpage = kmap_atomic(page, KM_USER0);
2600 memset(userpage + pg_offset, 0, iosize);
2601 flush_dcache_page(page);
2602 kunmap_atomic(userpage, KM_USER0);
2604 set_extent_uptodate(tree, cur, cur + iosize - 1,
2605 &cached, GFP_NOFS);
2606 unlock_extent_cached(tree, cur, cur + iosize - 1,
2607 &cached, GFP_NOFS);
2608 cur = cur + iosize;
2609 pg_offset += iosize;
2610 continue;
2612 /* the get_extent function already copied into the page */
2613 if (test_range_bit(tree, cur, cur_end,
2614 EXTENT_UPTODATE, 1, NULL)) {
2615 check_page_uptodate(tree, page);
2616 unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
2617 cur = cur + iosize;
2618 pg_offset += iosize;
2619 continue;
2621 /* we have an inline extent but it didn't get marked up
2622 * to date. Error out
2624 if (block_start == EXTENT_MAP_INLINE) {
2625 SetPageError(page);
2626 unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
2627 cur = cur + iosize;
2628 pg_offset += iosize;
2629 continue;
2632 ret = 0;
2633 if (tree->ops && tree->ops->readpage_io_hook) {
2634 ret = tree->ops->readpage_io_hook(page, cur,
2635 cur + iosize - 1);
2637 if (!ret) {
2638 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2639 pnr -= page->index;
2640 ret = submit_extent_page(READ, tree, page,
2641 sector, disk_io_size, pg_offset,
2642 bdev, bio, pnr,
2643 end_bio_extent_readpage, mirror_num,
2644 *bio_flags,
2645 this_bio_flag);
2646 nr++;
2647 *bio_flags = this_bio_flag;
2649 if (ret)
2650 SetPageError(page);
2651 cur = cur + iosize;
2652 pg_offset += iosize;
2654 out:
2655 if (!nr) {
2656 if (!PageError(page))
2657 SetPageUptodate(page);
2658 unlock_page(page);
2660 return 0;
2663 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
2664 get_extent_t *get_extent, int mirror_num)
2666 struct bio *bio = NULL;
2667 unsigned long bio_flags = 0;
2668 int ret;
2670 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
2671 &bio_flags);
2672 if (bio)
2673 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
2674 return ret;
2677 static noinline void update_nr_written(struct page *page,
2678 struct writeback_control *wbc,
2679 unsigned long nr_written)
2681 wbc->nr_to_write -= nr_written;
2682 if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
2683 wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
2684 page->mapping->writeback_index = page->index + nr_written;
2688 * the writepage semantics are similar to regular writepage. extent
2689 * records are inserted to lock ranges in the tree, and as dirty areas
2690 * are found, they are marked writeback. Then the lock bits are removed
2691 * and the end_io handler clears the writeback ranges
2693 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
2694 void *data)
2696 struct inode *inode = page->mapping->host;
2697 struct extent_page_data *epd = data;
2698 struct extent_io_tree *tree = epd->tree;
2699 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2700 u64 delalloc_start;
2701 u64 page_end = start + PAGE_CACHE_SIZE - 1;
2702 u64 end;
2703 u64 cur = start;
2704 u64 extent_offset;
2705 u64 last_byte = i_size_read(inode);
2706 u64 block_start;
2707 u64 iosize;
2708 sector_t sector;
2709 struct extent_state *cached_state = NULL;
2710 struct extent_map *em;
2711 struct block_device *bdev;
2712 int ret;
2713 int nr = 0;
2714 size_t pg_offset = 0;
2715 size_t blocksize;
2716 loff_t i_size = i_size_read(inode);
2717 unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
2718 u64 nr_delalloc;
2719 u64 delalloc_end;
2720 int page_started;
2721 int compressed;
2722 int write_flags;
2723 unsigned long nr_written = 0;
2724 bool fill_delalloc = true;
2726 if (wbc->sync_mode == WB_SYNC_ALL)
2727 write_flags = WRITE_SYNC;
2728 else
2729 write_flags = WRITE;
2731 trace___extent_writepage(page, inode, wbc);
2733 WARN_ON(!PageLocked(page));
2735 ClearPageError(page);
2737 pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
2738 if (page->index > end_index ||
2739 (page->index == end_index && !pg_offset)) {
2740 page->mapping->a_ops->invalidatepage(page, 0);
2741 unlock_page(page);
2742 return 0;
2745 if (page->index == end_index) {
2746 char *userpage;
2748 userpage = kmap_atomic(page, KM_USER0);
2749 memset(userpage + pg_offset, 0,
2750 PAGE_CACHE_SIZE - pg_offset);
2751 kunmap_atomic(userpage, KM_USER0);
2752 flush_dcache_page(page);
2754 pg_offset = 0;
2756 set_page_extent_mapped(page);
2758 if (!tree->ops || !tree->ops->fill_delalloc)
2759 fill_delalloc = false;
2761 delalloc_start = start;
2762 delalloc_end = 0;
2763 page_started = 0;
2764 if (!epd->extent_locked && fill_delalloc) {
2765 u64 delalloc_to_write = 0;
2767 * make sure the wbc mapping index is at least updated
2768 * to this page.
2770 update_nr_written(page, wbc, 0);
2772 while (delalloc_end < page_end) {
2773 nr_delalloc = find_lock_delalloc_range(inode, tree,
2774 page,
2775 &delalloc_start,
2776 &delalloc_end,
2777 128 * 1024 * 1024);
2778 if (nr_delalloc == 0) {
2779 delalloc_start = delalloc_end + 1;
2780 continue;
2782 tree->ops->fill_delalloc(inode, page, delalloc_start,
2783 delalloc_end, &page_started,
2784 &nr_written);
2786 * delalloc_end is already one less than the total
2787 * length, so we don't subtract one from
2788 * PAGE_CACHE_SIZE
2790 delalloc_to_write += (delalloc_end - delalloc_start +
2791 PAGE_CACHE_SIZE) >>
2792 PAGE_CACHE_SHIFT;
2793 delalloc_start = delalloc_end + 1;
2795 if (wbc->nr_to_write < delalloc_to_write) {
2796 int thresh = 8192;
2798 if (delalloc_to_write < thresh * 2)
2799 thresh = delalloc_to_write;
2800 wbc->nr_to_write = min_t(u64, delalloc_to_write,
2801 thresh);
2804 /* did the fill delalloc function already unlock and start
2805 * the IO?
2807 if (page_started) {
2808 ret = 0;
2810 * we've unlocked the page, so we can't update
2811 * the mapping's writeback index, just update
2812 * nr_to_write.
2814 wbc->nr_to_write -= nr_written;
2815 goto done_unlocked;
2818 if (tree->ops && tree->ops->writepage_start_hook) {
2819 ret = tree->ops->writepage_start_hook(page, start,
2820 page_end);
2821 if (ret == -EAGAIN) {
2822 redirty_page_for_writepage(wbc, page);
2823 update_nr_written(page, wbc, nr_written);
2824 unlock_page(page);
2825 ret = 0;
2826 goto done_unlocked;
2831 * we don't want to touch the inode after unlocking the page,
2832 * so we update the mapping writeback index now
2834 update_nr_written(page, wbc, nr_written + 1);
2836 end = page_end;
2837 if (last_byte <= start) {
2838 if (tree->ops && tree->ops->writepage_end_io_hook)
2839 tree->ops->writepage_end_io_hook(page, start,
2840 page_end, NULL, 1);
2841 goto done;
2844 blocksize = inode->i_sb->s_blocksize;
2846 while (cur <= end) {
2847 if (cur >= last_byte) {
2848 if (tree->ops && tree->ops->writepage_end_io_hook)
2849 tree->ops->writepage_end_io_hook(page, cur,
2850 page_end, NULL, 1);
2851 break;
2853 em = epd->get_extent(inode, page, pg_offset, cur,
2854 end - cur + 1, 1);
2855 if (IS_ERR_OR_NULL(em)) {
2856 SetPageError(page);
2857 break;
2860 extent_offset = cur - em->start;
2861 BUG_ON(extent_map_end(em) <= cur);
2862 BUG_ON(end < cur);
2863 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2864 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
2865 sector = (em->block_start + extent_offset) >> 9;
2866 bdev = em->bdev;
2867 block_start = em->block_start;
2868 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
2869 free_extent_map(em);
2870 em = NULL;
2873 * compressed and inline extents are written through other
2874 * paths in the FS
2876 if (compressed || block_start == EXTENT_MAP_HOLE ||
2877 block_start == EXTENT_MAP_INLINE) {
2879 * end_io notification does not happen here for
2880 * compressed extents
2882 if (!compressed && tree->ops &&
2883 tree->ops->writepage_end_io_hook)
2884 tree->ops->writepage_end_io_hook(page, cur,
2885 cur + iosize - 1,
2886 NULL, 1);
2887 else if (compressed) {
2888 /* we don't want to end_page_writeback on
2889 * a compressed extent. this happens
2890 * elsewhere
2892 nr++;
2895 cur += iosize;
2896 pg_offset += iosize;
2897 continue;
2899 /* leave this out until we have a page_mkwrite call */
2900 if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
2901 EXTENT_DIRTY, 0, NULL)) {
2902 cur = cur + iosize;
2903 pg_offset += iosize;
2904 continue;
2907 if (tree->ops && tree->ops->writepage_io_hook) {
2908 ret = tree->ops->writepage_io_hook(page, cur,
2909 cur + iosize - 1);
2910 } else {
2911 ret = 0;
2913 if (ret) {
2914 SetPageError(page);
2915 } else {
2916 unsigned long max_nr = end_index + 1;
2918 set_range_writeback(tree, cur, cur + iosize - 1);
2919 if (!PageWriteback(page)) {
2920 printk(KERN_ERR "btrfs warning page %lu not "
2921 "writeback, cur %llu end %llu\n",
2922 page->index, (unsigned long long)cur,
2923 (unsigned long long)end);
2926 ret = submit_extent_page(write_flags, tree, page,
2927 sector, iosize, pg_offset,
2928 bdev, &epd->bio, max_nr,
2929 end_bio_extent_writepage,
2930 0, 0, 0);
2931 if (ret)
2932 SetPageError(page);
2934 cur = cur + iosize;
2935 pg_offset += iosize;
2936 nr++;
2938 done:
2939 if (nr == 0) {
2940 /* make sure the mapping tag for page dirty gets cleared */
2941 set_page_writeback(page);
2942 end_page_writeback(page);
2944 unlock_page(page);
2946 done_unlocked:
2948 /* drop our reference on any cached states */
2949 free_extent_state(cached_state);
2950 return 0;
2954 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2955 * @mapping: address space structure to write
2956 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2957 * @writepage: function called for each page
2958 * @data: data passed to writepage function
2960 * If a page is already under I/O, write_cache_pages() skips it, even
2961 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
2962 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
2963 * and msync() need to guarantee that all the data which was dirty at the time
2964 * the call was made get new I/O started against them. If wbc->sync_mode is
2965 * WB_SYNC_ALL then we were called for data integrity and we must wait for
2966 * existing IO to complete.
2968 static int extent_write_cache_pages(struct extent_io_tree *tree,
2969 struct address_space *mapping,
2970 struct writeback_control *wbc,
2971 writepage_t writepage, void *data,
2972 void (*flush_fn)(void *))
2974 int ret = 0;
2975 int done = 0;
2976 int nr_to_write_done = 0;
2977 struct pagevec pvec;
2978 int nr_pages;
2979 pgoff_t index;
2980 pgoff_t end; /* Inclusive */
2981 int scanned = 0;
2982 int tag;
2984 pagevec_init(&pvec, 0);
2985 if (wbc->range_cyclic) {
2986 index = mapping->writeback_index; /* Start from prev offset */
2987 end = -1;
2988 } else {
2989 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2990 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2991 scanned = 1;
2993 if (wbc->sync_mode == WB_SYNC_ALL)
2994 tag = PAGECACHE_TAG_TOWRITE;
2995 else
2996 tag = PAGECACHE_TAG_DIRTY;
2997 retry:
2998 if (wbc->sync_mode == WB_SYNC_ALL)
2999 tag_pages_for_writeback(mapping, index, end);
3000 while (!done && !nr_to_write_done && (index <= end) &&
3001 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3002 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3003 unsigned i;
3005 scanned = 1;
3006 for (i = 0; i < nr_pages; i++) {
3007 struct page *page = pvec.pages[i];
3010 * At this point we hold neither mapping->tree_lock nor
3011 * lock on the page itself: the page may be truncated or
3012 * invalidated (changing page->mapping to NULL), or even
3013 * swizzled back from swapper_space to tmpfs file
3014 * mapping
3016 if (tree->ops &&
3017 tree->ops->write_cache_pages_lock_hook) {
3018 tree->ops->write_cache_pages_lock_hook(page,
3019 data, flush_fn);
3020 } else {
3021 if (!trylock_page(page)) {
3022 flush_fn(data);
3023 lock_page(page);
3027 if (unlikely(page->mapping != mapping)) {
3028 unlock_page(page);
3029 continue;
3032 if (!wbc->range_cyclic && page->index > end) {
3033 done = 1;
3034 unlock_page(page);
3035 continue;
3038 if (wbc->sync_mode != WB_SYNC_NONE) {
3039 if (PageWriteback(page))
3040 flush_fn(data);
3041 wait_on_page_writeback(page);
3044 if (PageWriteback(page) ||
3045 !clear_page_dirty_for_io(page)) {
3046 unlock_page(page);
3047 continue;
3050 ret = (*writepage)(page, wbc, data);
3052 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
3053 unlock_page(page);
3054 ret = 0;
3056 if (ret)
3057 done = 1;
3060 * the filesystem may choose to bump up nr_to_write.
3061 * We have to make sure to honor the new nr_to_write
3062 * at any time
3064 nr_to_write_done = wbc->nr_to_write <= 0;
3066 pagevec_release(&pvec);
3067 cond_resched();
3069 if (!scanned && !done) {
3071 * We hit the last page and there is more work to be done: wrap
3072 * back to the start of the file
3074 scanned = 1;
3075 index = 0;
3076 goto retry;
3078 return ret;
3081 static void flush_epd_write_bio(struct extent_page_data *epd)
3083 if (epd->bio) {
3084 if (epd->sync_io)
3085 submit_one_bio(WRITE_SYNC, epd->bio, 0, 0);
3086 else
3087 submit_one_bio(WRITE, epd->bio, 0, 0);
3088 epd->bio = NULL;
3092 static noinline void flush_write_bio(void *data)
3094 struct extent_page_data *epd = data;
3095 flush_epd_write_bio(epd);
3098 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
3099 get_extent_t *get_extent,
3100 struct writeback_control *wbc)
3102 int ret;
3103 struct extent_page_data epd = {
3104 .bio = NULL,
3105 .tree = tree,
3106 .get_extent = get_extent,
3107 .extent_locked = 0,
3108 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3111 ret = __extent_writepage(page, wbc, &epd);
3113 flush_epd_write_bio(&epd);
3114 return ret;
3117 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
3118 u64 start, u64 end, get_extent_t *get_extent,
3119 int mode)
3121 int ret = 0;
3122 struct address_space *mapping = inode->i_mapping;
3123 struct page *page;
3124 unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
3125 PAGE_CACHE_SHIFT;
3127 struct extent_page_data epd = {
3128 .bio = NULL,
3129 .tree = tree,
3130 .get_extent = get_extent,
3131 .extent_locked = 1,
3132 .sync_io = mode == WB_SYNC_ALL,
3134 struct writeback_control wbc_writepages = {
3135 .sync_mode = mode,
3136 .nr_to_write = nr_pages * 2,
3137 .range_start = start,
3138 .range_end = end + 1,
3141 while (start <= end) {
3142 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
3143 if (clear_page_dirty_for_io(page))
3144 ret = __extent_writepage(page, &wbc_writepages, &epd);
3145 else {
3146 if (tree->ops && tree->ops->writepage_end_io_hook)
3147 tree->ops->writepage_end_io_hook(page, start,
3148 start + PAGE_CACHE_SIZE - 1,
3149 NULL, 1);
3150 unlock_page(page);
3152 page_cache_release(page);
3153 start += PAGE_CACHE_SIZE;
3156 flush_epd_write_bio(&epd);
3157 return ret;
3160 int extent_writepages(struct extent_io_tree *tree,
3161 struct address_space *mapping,
3162 get_extent_t *get_extent,
3163 struct writeback_control *wbc)
3165 int ret = 0;
3166 struct extent_page_data epd = {
3167 .bio = NULL,
3168 .tree = tree,
3169 .get_extent = get_extent,
3170 .extent_locked = 0,
3171 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3174 ret = extent_write_cache_pages(tree, mapping, wbc,
3175 __extent_writepage, &epd,
3176 flush_write_bio);
3177 flush_epd_write_bio(&epd);
3178 return ret;
3181 int extent_readpages(struct extent_io_tree *tree,
3182 struct address_space *mapping,
3183 struct list_head *pages, unsigned nr_pages,
3184 get_extent_t get_extent)
3186 struct bio *bio = NULL;
3187 unsigned page_idx;
3188 unsigned long bio_flags = 0;
3190 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
3191 struct page *page = list_entry(pages->prev, struct page, lru);
3193 prefetchw(&page->flags);
3194 list_del(&page->lru);
3195 if (!add_to_page_cache_lru(page, mapping,
3196 page->index, GFP_NOFS)) {
3197 __extent_read_full_page(tree, page, get_extent,
3198 &bio, 0, &bio_flags);
3200 page_cache_release(page);
3202 BUG_ON(!list_empty(pages));
3203 if (bio)
3204 submit_one_bio(READ, bio, 0, bio_flags);
3205 return 0;
3209 * basic invalidatepage code, this waits on any locked or writeback
3210 * ranges corresponding to the page, and then deletes any extent state
3211 * records from the tree
3213 int extent_invalidatepage(struct extent_io_tree *tree,
3214 struct page *page, unsigned long offset)
3216 struct extent_state *cached_state = NULL;
3217 u64 start = ((u64)page->index << PAGE_CACHE_SHIFT);
3218 u64 end = start + PAGE_CACHE_SIZE - 1;
3219 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
3221 start += (offset + blocksize - 1) & ~(blocksize - 1);
3222 if (start > end)
3223 return 0;
3225 lock_extent_bits(tree, start, end, 0, &cached_state, GFP_NOFS);
3226 wait_on_page_writeback(page);
3227 clear_extent_bit(tree, start, end,
3228 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
3229 EXTENT_DO_ACCOUNTING,
3230 1, 1, &cached_state, GFP_NOFS);
3231 return 0;
3235 * a helper for releasepage, this tests for areas of the page that
3236 * are locked or under IO and drops the related state bits if it is safe
3237 * to drop the page.
3239 int try_release_extent_state(struct extent_map_tree *map,
3240 struct extent_io_tree *tree, struct page *page,
3241 gfp_t mask)
3243 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
3244 u64 end = start + PAGE_CACHE_SIZE - 1;
3245 int ret = 1;
3247 if (test_range_bit(tree, start, end,
3248 EXTENT_IOBITS, 0, NULL))
3249 ret = 0;
3250 else {
3251 if ((mask & GFP_NOFS) == GFP_NOFS)
3252 mask = GFP_NOFS;
3254 * at this point we can safely clear everything except the
3255 * locked bit and the nodatasum bit
3257 ret = clear_extent_bit(tree, start, end,
3258 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
3259 0, 0, NULL, mask);
3261 /* if clear_extent_bit failed for enomem reasons,
3262 * we can't allow the release to continue.
3264 if (ret < 0)
3265 ret = 0;
3266 else
3267 ret = 1;
3269 return ret;
3273 * a helper for releasepage. As long as there are no locked extents
3274 * in the range corresponding to the page, both state records and extent
3275 * map records are removed
3277 int try_release_extent_mapping(struct extent_map_tree *map,
3278 struct extent_io_tree *tree, struct page *page,
3279 gfp_t mask)
3281 struct extent_map *em;
3282 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
3283 u64 end = start + PAGE_CACHE_SIZE - 1;
3285 if ((mask & __GFP_WAIT) &&
3286 page->mapping->host->i_size > 16 * 1024 * 1024) {
3287 u64 len;
3288 while (start <= end) {
3289 len = end - start + 1;
3290 write_lock(&map->lock);
3291 em = lookup_extent_mapping(map, start, len);
3292 if (IS_ERR_OR_NULL(em)) {
3293 write_unlock(&map->lock);
3294 break;
3296 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
3297 em->start != start) {
3298 write_unlock(&map->lock);
3299 free_extent_map(em);
3300 break;
3302 if (!test_range_bit(tree, em->start,
3303 extent_map_end(em) - 1,
3304 EXTENT_LOCKED | EXTENT_WRITEBACK,
3305 0, NULL)) {
3306 remove_extent_mapping(map, em);
3307 /* once for the rb tree */
3308 free_extent_map(em);
3310 start = extent_map_end(em);
3311 write_unlock(&map->lock);
3313 /* once for us */
3314 free_extent_map(em);
3317 return try_release_extent_state(map, tree, page, mask);
3321 * helper function for fiemap, which doesn't want to see any holes.
3322 * This maps until we find something past 'last'
3324 static struct extent_map *get_extent_skip_holes(struct inode *inode,
3325 u64 offset,
3326 u64 last,
3327 get_extent_t *get_extent)
3329 u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
3330 struct extent_map *em;
3331 u64 len;
3333 if (offset >= last)
3334 return NULL;
3336 while(1) {
3337 len = last - offset;
3338 if (len == 0)
3339 break;
3340 len = (len + sectorsize - 1) & ~(sectorsize - 1);
3341 em = get_extent(inode, NULL, 0, offset, len, 0);
3342 if (IS_ERR_OR_NULL(em))
3343 return em;
3345 /* if this isn't a hole return it */
3346 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
3347 em->block_start != EXTENT_MAP_HOLE) {
3348 return em;
3351 /* this is a hole, advance to the next extent */
3352 offset = extent_map_end(em);
3353 free_extent_map(em);
3354 if (offset >= last)
3355 break;
3357 return NULL;
3360 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3361 __u64 start, __u64 len, get_extent_t *get_extent)
3363 int ret = 0;
3364 u64 off = start;
3365 u64 max = start + len;
3366 u32 flags = 0;
3367 u32 found_type;
3368 u64 last;
3369 u64 last_for_get_extent = 0;
3370 u64 disko = 0;
3371 u64 isize = i_size_read(inode);
3372 struct btrfs_key found_key;
3373 struct extent_map *em = NULL;
3374 struct extent_state *cached_state = NULL;
3375 struct btrfs_path *path;
3376 struct btrfs_file_extent_item *item;
3377 int end = 0;
3378 u64 em_start = 0;
3379 u64 em_len = 0;
3380 u64 em_end = 0;
3381 unsigned long emflags;
3383 if (len == 0)
3384 return -EINVAL;
3386 path = btrfs_alloc_path();
3387 if (!path)
3388 return -ENOMEM;
3389 path->leave_spinning = 1;
3391 start = ALIGN(start, BTRFS_I(inode)->root->sectorsize);
3392 len = ALIGN(len, BTRFS_I(inode)->root->sectorsize);
3395 * lookup the last file extent. We're not using i_size here
3396 * because there might be preallocation past i_size
3398 ret = btrfs_lookup_file_extent(NULL, BTRFS_I(inode)->root,
3399 path, btrfs_ino(inode), -1, 0);
3400 if (ret < 0) {
3401 btrfs_free_path(path);
3402 return ret;
3404 WARN_ON(!ret);
3405 path->slots[0]--;
3406 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3407 struct btrfs_file_extent_item);
3408 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
3409 found_type = btrfs_key_type(&found_key);
3411 /* No extents, but there might be delalloc bits */
3412 if (found_key.objectid != btrfs_ino(inode) ||
3413 found_type != BTRFS_EXTENT_DATA_KEY) {
3414 /* have to trust i_size as the end */
3415 last = (u64)-1;
3416 last_for_get_extent = isize;
3417 } else {
3419 * remember the start of the last extent. There are a
3420 * bunch of different factors that go into the length of the
3421 * extent, so its much less complex to remember where it started
3423 last = found_key.offset;
3424 last_for_get_extent = last + 1;
3426 btrfs_free_path(path);
3429 * we might have some extents allocated but more delalloc past those
3430 * extents. so, we trust isize unless the start of the last extent is
3431 * beyond isize
3433 if (last < isize) {
3434 last = (u64)-1;
3435 last_for_get_extent = isize;
3438 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len, 0,
3439 &cached_state, GFP_NOFS);
3441 em = get_extent_skip_holes(inode, start, last_for_get_extent,
3442 get_extent);
3443 if (!em)
3444 goto out;
3445 if (IS_ERR(em)) {
3446 ret = PTR_ERR(em);
3447 goto out;
3450 while (!end) {
3451 u64 offset_in_extent;
3453 /* break if the extent we found is outside the range */
3454 if (em->start >= max || extent_map_end(em) < off)
3455 break;
3458 * get_extent may return an extent that starts before our
3459 * requested range. We have to make sure the ranges
3460 * we return to fiemap always move forward and don't
3461 * overlap, so adjust the offsets here
3463 em_start = max(em->start, off);
3466 * record the offset from the start of the extent
3467 * for adjusting the disk offset below
3469 offset_in_extent = em_start - em->start;
3470 em_end = extent_map_end(em);
3471 em_len = em_end - em_start;
3472 emflags = em->flags;
3473 disko = 0;
3474 flags = 0;
3477 * bump off for our next call to get_extent
3479 off = extent_map_end(em);
3480 if (off >= max)
3481 end = 1;
3483 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
3484 end = 1;
3485 flags |= FIEMAP_EXTENT_LAST;
3486 } else if (em->block_start == EXTENT_MAP_INLINE) {
3487 flags |= (FIEMAP_EXTENT_DATA_INLINE |
3488 FIEMAP_EXTENT_NOT_ALIGNED);
3489 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
3490 flags |= (FIEMAP_EXTENT_DELALLOC |
3491 FIEMAP_EXTENT_UNKNOWN);
3492 } else {
3493 disko = em->block_start + offset_in_extent;
3495 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
3496 flags |= FIEMAP_EXTENT_ENCODED;
3498 free_extent_map(em);
3499 em = NULL;
3500 if ((em_start >= last) || em_len == (u64)-1 ||
3501 (last == (u64)-1 && isize <= em_end)) {
3502 flags |= FIEMAP_EXTENT_LAST;
3503 end = 1;
3506 /* now scan forward to see if this is really the last extent. */
3507 em = get_extent_skip_holes(inode, off, last_for_get_extent,
3508 get_extent);
3509 if (IS_ERR(em)) {
3510 ret = PTR_ERR(em);
3511 goto out;
3513 if (!em) {
3514 flags |= FIEMAP_EXTENT_LAST;
3515 end = 1;
3517 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
3518 em_len, flags);
3519 if (ret)
3520 goto out_free;
3522 out_free:
3523 free_extent_map(em);
3524 out:
3525 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len,
3526 &cached_state, GFP_NOFS);
3527 return ret;
3530 inline struct page *extent_buffer_page(struct extent_buffer *eb,
3531 unsigned long i)
3533 struct page *p;
3534 struct address_space *mapping;
3536 if (i == 0)
3537 return eb->first_page;
3538 i += eb->start >> PAGE_CACHE_SHIFT;
3539 mapping = eb->first_page->mapping;
3540 if (!mapping)
3541 return NULL;
3544 * extent_buffer_page is only called after pinning the page
3545 * by increasing the reference count. So we know the page must
3546 * be in the radix tree.
3548 rcu_read_lock();
3549 p = radix_tree_lookup(&mapping->page_tree, i);
3550 rcu_read_unlock();
3552 return p;
3555 inline unsigned long num_extent_pages(u64 start, u64 len)
3557 return ((start + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT) -
3558 (start >> PAGE_CACHE_SHIFT);
3561 static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree,
3562 u64 start,
3563 unsigned long len,
3564 gfp_t mask)
3566 struct extent_buffer *eb = NULL;
3567 #if LEAK_DEBUG
3568 unsigned long flags;
3569 #endif
3571 eb = kmem_cache_zalloc(extent_buffer_cache, mask);
3572 if (eb == NULL)
3573 return NULL;
3574 eb->start = start;
3575 eb->len = len;
3576 rwlock_init(&eb->lock);
3577 atomic_set(&eb->write_locks, 0);
3578 atomic_set(&eb->read_locks, 0);
3579 atomic_set(&eb->blocking_readers, 0);
3580 atomic_set(&eb->blocking_writers, 0);
3581 atomic_set(&eb->spinning_readers, 0);
3582 atomic_set(&eb->spinning_writers, 0);
3583 eb->lock_nested = 0;
3584 init_waitqueue_head(&eb->write_lock_wq);
3585 init_waitqueue_head(&eb->read_lock_wq);
3587 #if LEAK_DEBUG
3588 spin_lock_irqsave(&leak_lock, flags);
3589 list_add(&eb->leak_list, &buffers);
3590 spin_unlock_irqrestore(&leak_lock, flags);
3591 #endif
3592 atomic_set(&eb->refs, 1);
3594 return eb;
3597 static void __free_extent_buffer(struct extent_buffer *eb)
3599 #if LEAK_DEBUG
3600 unsigned long flags;
3601 spin_lock_irqsave(&leak_lock, flags);
3602 list_del(&eb->leak_list);
3603 spin_unlock_irqrestore(&leak_lock, flags);
3604 #endif
3605 kmem_cache_free(extent_buffer_cache, eb);
3609 * Helper for releasing extent buffer page.
3611 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb,
3612 unsigned long start_idx)
3614 unsigned long index;
3615 struct page *page;
3617 if (!eb->first_page)
3618 return;
3620 index = num_extent_pages(eb->start, eb->len);
3621 if (start_idx >= index)
3622 return;
3624 do {
3625 index--;
3626 page = extent_buffer_page(eb, index);
3627 if (page)
3628 page_cache_release(page);
3629 } while (index != start_idx);
3633 * Helper for releasing the extent buffer.
3635 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
3637 btrfs_release_extent_buffer_page(eb, 0);
3638 __free_extent_buffer(eb);
3641 struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree,
3642 u64 start, unsigned long len,
3643 struct page *page0)
3645 unsigned long num_pages = num_extent_pages(start, len);
3646 unsigned long i;
3647 unsigned long index = start >> PAGE_CACHE_SHIFT;
3648 struct extent_buffer *eb;
3649 struct extent_buffer *exists = NULL;
3650 struct page *p;
3651 struct address_space *mapping = tree->mapping;
3652 int uptodate = 1;
3653 int ret;
3655 rcu_read_lock();
3656 eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
3657 if (eb && atomic_inc_not_zero(&eb->refs)) {
3658 rcu_read_unlock();
3659 mark_page_accessed(eb->first_page);
3660 return eb;
3662 rcu_read_unlock();
3664 eb = __alloc_extent_buffer(tree, start, len, GFP_NOFS);
3665 if (!eb)
3666 return NULL;
3668 if (page0) {
3669 eb->first_page = page0;
3670 i = 1;
3671 index++;
3672 page_cache_get(page0);
3673 mark_page_accessed(page0);
3674 set_page_extent_mapped(page0);
3675 set_page_extent_head(page0, len);
3676 uptodate = PageUptodate(page0);
3677 } else {
3678 i = 0;
3680 for (; i < num_pages; i++, index++) {
3681 p = find_or_create_page(mapping, index, GFP_NOFS);
3682 if (!p) {
3683 WARN_ON(1);
3684 goto free_eb;
3686 set_page_extent_mapped(p);
3687 mark_page_accessed(p);
3688 if (i == 0) {
3689 eb->first_page = p;
3690 set_page_extent_head(p, len);
3691 } else {
3692 set_page_private(p, EXTENT_PAGE_PRIVATE);
3694 if (!PageUptodate(p))
3695 uptodate = 0;
3698 * see below about how we avoid a nasty race with release page
3699 * and why we unlock later
3701 if (i != 0)
3702 unlock_page(p);
3704 if (uptodate)
3705 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3707 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
3708 if (ret)
3709 goto free_eb;
3711 spin_lock(&tree->buffer_lock);
3712 ret = radix_tree_insert(&tree->buffer, start >> PAGE_CACHE_SHIFT, eb);
3713 if (ret == -EEXIST) {
3714 exists = radix_tree_lookup(&tree->buffer,
3715 start >> PAGE_CACHE_SHIFT);
3716 /* add one reference for the caller */
3717 atomic_inc(&exists->refs);
3718 spin_unlock(&tree->buffer_lock);
3719 radix_tree_preload_end();
3720 goto free_eb;
3722 /* add one reference for the tree */
3723 atomic_inc(&eb->refs);
3724 spin_unlock(&tree->buffer_lock);
3725 radix_tree_preload_end();
3728 * there is a race where release page may have
3729 * tried to find this extent buffer in the radix
3730 * but failed. It will tell the VM it is safe to
3731 * reclaim the, and it will clear the page private bit.
3732 * We must make sure to set the page private bit properly
3733 * after the extent buffer is in the radix tree so
3734 * it doesn't get lost
3736 set_page_extent_mapped(eb->first_page);
3737 set_page_extent_head(eb->first_page, eb->len);
3738 if (!page0)
3739 unlock_page(eb->first_page);
3740 return eb;
3742 free_eb:
3743 if (eb->first_page && !page0)
3744 unlock_page(eb->first_page);
3746 if (!atomic_dec_and_test(&eb->refs))
3747 return exists;
3748 btrfs_release_extent_buffer(eb);
3749 return exists;
3752 struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree,
3753 u64 start, unsigned long len)
3755 struct extent_buffer *eb;
3757 rcu_read_lock();
3758 eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
3759 if (eb && atomic_inc_not_zero(&eb->refs)) {
3760 rcu_read_unlock();
3761 mark_page_accessed(eb->first_page);
3762 return eb;
3764 rcu_read_unlock();
3766 return NULL;
3769 void free_extent_buffer(struct extent_buffer *eb)
3771 if (!eb)
3772 return;
3774 if (!atomic_dec_and_test(&eb->refs))
3775 return;
3777 WARN_ON(1);
3780 int clear_extent_buffer_dirty(struct extent_io_tree *tree,
3781 struct extent_buffer *eb)
3783 unsigned long i;
3784 unsigned long num_pages;
3785 struct page *page;
3787 num_pages = num_extent_pages(eb->start, eb->len);
3789 for (i = 0; i < num_pages; i++) {
3790 page = extent_buffer_page(eb, i);
3791 if (!PageDirty(page))
3792 continue;
3794 lock_page(page);
3795 WARN_ON(!PagePrivate(page));
3797 set_page_extent_mapped(page);
3798 if (i == 0)
3799 set_page_extent_head(page, eb->len);
3801 clear_page_dirty_for_io(page);
3802 spin_lock_irq(&page->mapping->tree_lock);
3803 if (!PageDirty(page)) {
3804 radix_tree_tag_clear(&page->mapping->page_tree,
3805 page_index(page),
3806 PAGECACHE_TAG_DIRTY);
3808 spin_unlock_irq(&page->mapping->tree_lock);
3809 ClearPageError(page);
3810 unlock_page(page);
3812 return 0;
3815 int set_extent_buffer_dirty(struct extent_io_tree *tree,
3816 struct extent_buffer *eb)
3818 unsigned long i;
3819 unsigned long num_pages;
3820 int was_dirty = 0;
3822 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
3823 num_pages = num_extent_pages(eb->start, eb->len);
3824 for (i = 0; i < num_pages; i++)
3825 __set_page_dirty_nobuffers(extent_buffer_page(eb, i));
3826 return was_dirty;
3829 static int __eb_straddles_pages(u64 start, u64 len)
3831 if (len < PAGE_CACHE_SIZE)
3832 return 1;
3833 if (start & (PAGE_CACHE_SIZE - 1))
3834 return 1;
3835 if ((start + len) & (PAGE_CACHE_SIZE - 1))
3836 return 1;
3837 return 0;
3840 static int eb_straddles_pages(struct extent_buffer *eb)
3842 return __eb_straddles_pages(eb->start, eb->len);
3845 int clear_extent_buffer_uptodate(struct extent_io_tree *tree,
3846 struct extent_buffer *eb,
3847 struct extent_state **cached_state)
3849 unsigned long i;
3850 struct page *page;
3851 unsigned long num_pages;
3853 num_pages = num_extent_pages(eb->start, eb->len);
3854 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3856 if (eb_straddles_pages(eb)) {
3857 clear_extent_uptodate(tree, eb->start, eb->start + eb->len - 1,
3858 cached_state, GFP_NOFS);
3860 for (i = 0; i < num_pages; i++) {
3861 page = extent_buffer_page(eb, i);
3862 if (page)
3863 ClearPageUptodate(page);
3865 return 0;
3868 int set_extent_buffer_uptodate(struct extent_io_tree *tree,
3869 struct extent_buffer *eb)
3871 unsigned long i;
3872 struct page *page;
3873 unsigned long num_pages;
3875 num_pages = num_extent_pages(eb->start, eb->len);
3877 if (eb_straddles_pages(eb)) {
3878 set_extent_uptodate(tree, eb->start, eb->start + eb->len - 1,
3879 NULL, GFP_NOFS);
3881 for (i = 0; i < num_pages; i++) {
3882 page = extent_buffer_page(eb, i);
3883 if ((i == 0 && (eb->start & (PAGE_CACHE_SIZE - 1))) ||
3884 ((i == num_pages - 1) &&
3885 ((eb->start + eb->len) & (PAGE_CACHE_SIZE - 1)))) {
3886 check_page_uptodate(tree, page);
3887 continue;
3889 SetPageUptodate(page);
3891 return 0;
3894 int extent_range_uptodate(struct extent_io_tree *tree,
3895 u64 start, u64 end)
3897 struct page *page;
3898 int ret;
3899 int pg_uptodate = 1;
3900 int uptodate;
3901 unsigned long index;
3903 if (__eb_straddles_pages(start, end - start + 1)) {
3904 ret = test_range_bit(tree, start, end,
3905 EXTENT_UPTODATE, 1, NULL);
3906 if (ret)
3907 return 1;
3909 while (start <= end) {
3910 index = start >> PAGE_CACHE_SHIFT;
3911 page = find_get_page(tree->mapping, index);
3912 uptodate = PageUptodate(page);
3913 page_cache_release(page);
3914 if (!uptodate) {
3915 pg_uptodate = 0;
3916 break;
3918 start += PAGE_CACHE_SIZE;
3920 return pg_uptodate;
3923 int extent_buffer_uptodate(struct extent_io_tree *tree,
3924 struct extent_buffer *eb,
3925 struct extent_state *cached_state)
3927 int ret = 0;
3928 unsigned long num_pages;
3929 unsigned long i;
3930 struct page *page;
3931 int pg_uptodate = 1;
3933 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
3934 return 1;
3936 if (eb_straddles_pages(eb)) {
3937 ret = test_range_bit(tree, eb->start, eb->start + eb->len - 1,
3938 EXTENT_UPTODATE, 1, cached_state);
3939 if (ret)
3940 return ret;
3943 num_pages = num_extent_pages(eb->start, eb->len);
3944 for (i = 0; i < num_pages; i++) {
3945 page = extent_buffer_page(eb, i);
3946 if (!PageUptodate(page)) {
3947 pg_uptodate = 0;
3948 break;
3951 return pg_uptodate;
3954 int read_extent_buffer_pages(struct extent_io_tree *tree,
3955 struct extent_buffer *eb, u64 start, int wait,
3956 get_extent_t *get_extent, int mirror_num)
3958 unsigned long i;
3959 unsigned long start_i;
3960 struct page *page;
3961 int err;
3962 int ret = 0;
3963 int locked_pages = 0;
3964 int all_uptodate = 1;
3965 int inc_all_pages = 0;
3966 unsigned long num_pages;
3967 struct bio *bio = NULL;
3968 unsigned long bio_flags = 0;
3970 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
3971 return 0;
3973 if (eb_straddles_pages(eb)) {
3974 if (test_range_bit(tree, eb->start, eb->start + eb->len - 1,
3975 EXTENT_UPTODATE, 1, NULL)) {
3976 return 0;
3980 if (start) {
3981 WARN_ON(start < eb->start);
3982 start_i = (start >> PAGE_CACHE_SHIFT) -
3983 (eb->start >> PAGE_CACHE_SHIFT);
3984 } else {
3985 start_i = 0;
3988 num_pages = num_extent_pages(eb->start, eb->len);
3989 for (i = start_i; i < num_pages; i++) {
3990 page = extent_buffer_page(eb, i);
3991 if (wait == WAIT_NONE) {
3992 if (!trylock_page(page))
3993 goto unlock_exit;
3994 } else {
3995 lock_page(page);
3997 locked_pages++;
3998 if (!PageUptodate(page))
3999 all_uptodate = 0;
4001 if (all_uptodate) {
4002 if (start_i == 0)
4003 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4004 goto unlock_exit;
4007 for (i = start_i; i < num_pages; i++) {
4008 page = extent_buffer_page(eb, i);
4010 WARN_ON(!PagePrivate(page));
4012 set_page_extent_mapped(page);
4013 if (i == 0)
4014 set_page_extent_head(page, eb->len);
4016 if (inc_all_pages)
4017 page_cache_get(page);
4018 if (!PageUptodate(page)) {
4019 if (start_i == 0)
4020 inc_all_pages = 1;
4021 ClearPageError(page);
4022 err = __extent_read_full_page(tree, page,
4023 get_extent, &bio,
4024 mirror_num, &bio_flags);
4025 if (err)
4026 ret = err;
4027 } else {
4028 unlock_page(page);
4032 if (bio)
4033 submit_one_bio(READ, bio, mirror_num, bio_flags);
4035 if (ret || wait != WAIT_COMPLETE)
4036 return ret;
4038 for (i = start_i; i < num_pages; i++) {
4039 page = extent_buffer_page(eb, i);
4040 wait_on_page_locked(page);
4041 if (!PageUptodate(page))
4042 ret = -EIO;
4045 if (!ret)
4046 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4047 return ret;
4049 unlock_exit:
4050 i = start_i;
4051 while (locked_pages > 0) {
4052 page = extent_buffer_page(eb, i);
4053 i++;
4054 unlock_page(page);
4055 locked_pages--;
4057 return ret;
4060 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
4061 unsigned long start,
4062 unsigned long len)
4064 size_t cur;
4065 size_t offset;
4066 struct page *page;
4067 char *kaddr;
4068 char *dst = (char *)dstv;
4069 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4070 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4072 WARN_ON(start > eb->len);
4073 WARN_ON(start + len > eb->start + eb->len);
4075 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4077 while (len > 0) {
4078 page = extent_buffer_page(eb, i);
4080 cur = min(len, (PAGE_CACHE_SIZE - offset));
4081 kaddr = page_address(page);
4082 memcpy(dst, kaddr + offset, cur);
4084 dst += cur;
4085 len -= cur;
4086 offset = 0;
4087 i++;
4091 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
4092 unsigned long min_len, char **map,
4093 unsigned long *map_start,
4094 unsigned long *map_len)
4096 size_t offset = start & (PAGE_CACHE_SIZE - 1);
4097 char *kaddr;
4098 struct page *p;
4099 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4100 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4101 unsigned long end_i = (start_offset + start + min_len - 1) >>
4102 PAGE_CACHE_SHIFT;
4104 if (i != end_i)
4105 return -EINVAL;
4107 if (i == 0) {
4108 offset = start_offset;
4109 *map_start = 0;
4110 } else {
4111 offset = 0;
4112 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
4115 if (start + min_len > eb->len) {
4116 printk(KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
4117 "wanted %lu %lu\n", (unsigned long long)eb->start,
4118 eb->len, start, min_len);
4119 WARN_ON(1);
4120 return -EINVAL;
4123 p = extent_buffer_page(eb, i);
4124 kaddr = page_address(p);
4125 *map = kaddr + offset;
4126 *map_len = PAGE_CACHE_SIZE - offset;
4127 return 0;
4130 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
4131 unsigned long start,
4132 unsigned long len)
4134 size_t cur;
4135 size_t offset;
4136 struct page *page;
4137 char *kaddr;
4138 char *ptr = (char *)ptrv;
4139 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4140 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4141 int ret = 0;
4143 WARN_ON(start > eb->len);
4144 WARN_ON(start + len > eb->start + eb->len);
4146 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4148 while (len > 0) {
4149 page = extent_buffer_page(eb, i);
4151 cur = min(len, (PAGE_CACHE_SIZE - offset));
4153 kaddr = page_address(page);
4154 ret = memcmp(ptr, kaddr + offset, cur);
4155 if (ret)
4156 break;
4158 ptr += cur;
4159 len -= cur;
4160 offset = 0;
4161 i++;
4163 return ret;
4166 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
4167 unsigned long start, unsigned long len)
4169 size_t cur;
4170 size_t offset;
4171 struct page *page;
4172 char *kaddr;
4173 char *src = (char *)srcv;
4174 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4175 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4177 WARN_ON(start > eb->len);
4178 WARN_ON(start + len > eb->start + eb->len);
4180 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4182 while (len > 0) {
4183 page = extent_buffer_page(eb, i);
4184 WARN_ON(!PageUptodate(page));
4186 cur = min(len, PAGE_CACHE_SIZE - offset);
4187 kaddr = page_address(page);
4188 memcpy(kaddr + offset, src, cur);
4190 src += cur;
4191 len -= cur;
4192 offset = 0;
4193 i++;
4197 void memset_extent_buffer(struct extent_buffer *eb, char c,
4198 unsigned long start, unsigned long len)
4200 size_t cur;
4201 size_t offset;
4202 struct page *page;
4203 char *kaddr;
4204 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4205 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4207 WARN_ON(start > eb->len);
4208 WARN_ON(start + len > eb->start + eb->len);
4210 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4212 while (len > 0) {
4213 page = extent_buffer_page(eb, i);
4214 WARN_ON(!PageUptodate(page));
4216 cur = min(len, PAGE_CACHE_SIZE - offset);
4217 kaddr = page_address(page);
4218 memset(kaddr + offset, c, cur);
4220 len -= cur;
4221 offset = 0;
4222 i++;
4226 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
4227 unsigned long dst_offset, unsigned long src_offset,
4228 unsigned long len)
4230 u64 dst_len = dst->len;
4231 size_t cur;
4232 size_t offset;
4233 struct page *page;
4234 char *kaddr;
4235 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4236 unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
4238 WARN_ON(src->len != dst_len);
4240 offset = (start_offset + dst_offset) &
4241 ((unsigned long)PAGE_CACHE_SIZE - 1);
4243 while (len > 0) {
4244 page = extent_buffer_page(dst, i);
4245 WARN_ON(!PageUptodate(page));
4247 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
4249 kaddr = page_address(page);
4250 read_extent_buffer(src, kaddr + offset, src_offset, cur);
4252 src_offset += cur;
4253 len -= cur;
4254 offset = 0;
4255 i++;
4259 static void move_pages(struct page *dst_page, struct page *src_page,
4260 unsigned long dst_off, unsigned long src_off,
4261 unsigned long len)
4263 char *dst_kaddr = page_address(dst_page);
4264 if (dst_page == src_page) {
4265 memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len);
4266 } else {
4267 char *src_kaddr = page_address(src_page);
4268 char *p = dst_kaddr + dst_off + len;
4269 char *s = src_kaddr + src_off + len;
4271 while (len--)
4272 *--p = *--s;
4276 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
4278 unsigned long distance = (src > dst) ? src - dst : dst - src;
4279 return distance < len;
4282 static void copy_pages(struct page *dst_page, struct page *src_page,
4283 unsigned long dst_off, unsigned long src_off,
4284 unsigned long len)
4286 char *dst_kaddr = page_address(dst_page);
4287 char *src_kaddr;
4289 if (dst_page != src_page) {
4290 src_kaddr = page_address(src_page);
4291 } else {
4292 src_kaddr = dst_kaddr;
4293 BUG_ON(areas_overlap(src_off, dst_off, len));
4296 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
4299 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
4300 unsigned long src_offset, unsigned long len)
4302 size_t cur;
4303 size_t dst_off_in_page;
4304 size_t src_off_in_page;
4305 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4306 unsigned long dst_i;
4307 unsigned long src_i;
4309 if (src_offset + len > dst->len) {
4310 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
4311 "len %lu dst len %lu\n", src_offset, len, dst->len);
4312 BUG_ON(1);
4314 if (dst_offset + len > dst->len) {
4315 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
4316 "len %lu dst len %lu\n", dst_offset, len, dst->len);
4317 BUG_ON(1);
4320 while (len > 0) {
4321 dst_off_in_page = (start_offset + dst_offset) &
4322 ((unsigned long)PAGE_CACHE_SIZE - 1);
4323 src_off_in_page = (start_offset + src_offset) &
4324 ((unsigned long)PAGE_CACHE_SIZE - 1);
4326 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
4327 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
4329 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
4330 src_off_in_page));
4331 cur = min_t(unsigned long, cur,
4332 (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
4334 copy_pages(extent_buffer_page(dst, dst_i),
4335 extent_buffer_page(dst, src_i),
4336 dst_off_in_page, src_off_in_page, cur);
4338 src_offset += cur;
4339 dst_offset += cur;
4340 len -= cur;
4344 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
4345 unsigned long src_offset, unsigned long len)
4347 size_t cur;
4348 size_t dst_off_in_page;
4349 size_t src_off_in_page;
4350 unsigned long dst_end = dst_offset + len - 1;
4351 unsigned long src_end = src_offset + len - 1;
4352 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4353 unsigned long dst_i;
4354 unsigned long src_i;
4356 if (src_offset + len > dst->len) {
4357 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
4358 "len %lu len %lu\n", src_offset, len, dst->len);
4359 BUG_ON(1);
4361 if (dst_offset + len > dst->len) {
4362 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
4363 "len %lu len %lu\n", dst_offset, len, dst->len);
4364 BUG_ON(1);
4366 if (!areas_overlap(src_offset, dst_offset, len)) {
4367 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
4368 return;
4370 while (len > 0) {
4371 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
4372 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
4374 dst_off_in_page = (start_offset + dst_end) &
4375 ((unsigned long)PAGE_CACHE_SIZE - 1);
4376 src_off_in_page = (start_offset + src_end) &
4377 ((unsigned long)PAGE_CACHE_SIZE - 1);
4379 cur = min_t(unsigned long, len, src_off_in_page + 1);
4380 cur = min(cur, dst_off_in_page + 1);
4381 move_pages(extent_buffer_page(dst, dst_i),
4382 extent_buffer_page(dst, src_i),
4383 dst_off_in_page - cur + 1,
4384 src_off_in_page - cur + 1, cur);
4386 dst_end -= cur;
4387 src_end -= cur;
4388 len -= cur;
4392 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4394 struct extent_buffer *eb =
4395 container_of(head, struct extent_buffer, rcu_head);
4397 btrfs_release_extent_buffer(eb);
4400 int try_release_extent_buffer(struct extent_io_tree *tree, struct page *page)
4402 u64 start = page_offset(page);
4403 struct extent_buffer *eb;
4404 int ret = 1;
4406 spin_lock(&tree->buffer_lock);
4407 eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4408 if (!eb) {
4409 spin_unlock(&tree->buffer_lock);
4410 return ret;
4413 if (test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
4414 ret = 0;
4415 goto out;
4419 * set @eb->refs to 0 if it is already 1, and then release the @eb.
4420 * Or go back.
4422 if (atomic_cmpxchg(&eb->refs, 1, 0) != 1) {
4423 ret = 0;
4424 goto out;
4427 radix_tree_delete(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4428 out:
4429 spin_unlock(&tree->buffer_lock);
4431 /* at this point we can safely release the extent buffer */
4432 if (atomic_read(&eb->refs) == 0)
4433 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
4434 return ret;