1 #include <linux/bitops.h>
2 #include <linux/slab.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/module.h>
8 #include <linux/spinlock.h>
9 #include <linux/blkdev.h>
10 #include <linux/swap.h>
11 #include <linux/writeback.h>
12 #include <linux/pagevec.h>
13 #include <linux/prefetch.h>
14 #include <linux/cleancache.h>
15 #include "extent_io.h"
16 #include "extent_map.h"
19 #include "btrfs_inode.h"
21 #include "check-integrity.h"
23 static struct kmem_cache
*extent_state_cache
;
24 static struct kmem_cache
*extent_buffer_cache
;
26 static LIST_HEAD(buffers
);
27 static LIST_HEAD(states
);
31 static DEFINE_SPINLOCK(leak_lock
);
34 #define BUFFER_LRU_MAX 64
39 struct rb_node rb_node
;
42 struct extent_page_data
{
44 struct extent_io_tree
*tree
;
45 get_extent_t
*get_extent
;
47 /* tells writepage not to lock the state bits for this range
48 * it still does the unlocking
50 unsigned int extent_locked
:1;
52 /* tells the submit_bio code to use a WRITE_SYNC */
53 unsigned int sync_io
:1;
56 int __init
extent_io_init(void)
58 extent_state_cache
= kmem_cache_create("extent_state",
59 sizeof(struct extent_state
), 0,
60 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, NULL
);
61 if (!extent_state_cache
)
64 extent_buffer_cache
= kmem_cache_create("extent_buffers",
65 sizeof(struct extent_buffer
), 0,
66 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
, NULL
);
67 if (!extent_buffer_cache
)
68 goto free_state_cache
;
72 kmem_cache_destroy(extent_state_cache
);
76 void extent_io_exit(void)
78 struct extent_state
*state
;
79 struct extent_buffer
*eb
;
81 while (!list_empty(&states
)) {
82 state
= list_entry(states
.next
, struct extent_state
, leak_list
);
83 printk(KERN_ERR
"btrfs state leak: start %llu end %llu "
84 "state %lu in tree %p refs %d\n",
85 (unsigned long long)state
->start
,
86 (unsigned long long)state
->end
,
87 state
->state
, state
->tree
, atomic_read(&state
->refs
));
88 list_del(&state
->leak_list
);
89 kmem_cache_free(extent_state_cache
, state
);
93 while (!list_empty(&buffers
)) {
94 eb
= list_entry(buffers
.next
, struct extent_buffer
, leak_list
);
95 printk(KERN_ERR
"btrfs buffer leak start %llu len %lu "
96 "refs %d\n", (unsigned long long)eb
->start
,
97 eb
->len
, atomic_read(&eb
->refs
));
98 list_del(&eb
->leak_list
);
99 kmem_cache_free(extent_buffer_cache
, eb
);
101 if (extent_state_cache
)
102 kmem_cache_destroy(extent_state_cache
);
103 if (extent_buffer_cache
)
104 kmem_cache_destroy(extent_buffer_cache
);
107 void extent_io_tree_init(struct extent_io_tree
*tree
,
108 struct address_space
*mapping
)
110 tree
->state
= RB_ROOT
;
111 INIT_RADIX_TREE(&tree
->buffer
, GFP_ATOMIC
);
113 tree
->dirty_bytes
= 0;
114 spin_lock_init(&tree
->lock
);
115 spin_lock_init(&tree
->buffer_lock
);
116 tree
->mapping
= mapping
;
119 static struct extent_state
*alloc_extent_state(gfp_t mask
)
121 struct extent_state
*state
;
126 state
= kmem_cache_alloc(extent_state_cache
, mask
);
133 spin_lock_irqsave(&leak_lock
, flags
);
134 list_add(&state
->leak_list
, &states
);
135 spin_unlock_irqrestore(&leak_lock
, flags
);
137 atomic_set(&state
->refs
, 1);
138 init_waitqueue_head(&state
->wq
);
142 void free_extent_state(struct extent_state
*state
)
146 if (atomic_dec_and_test(&state
->refs
)) {
150 WARN_ON(state
->tree
);
152 spin_lock_irqsave(&leak_lock
, flags
);
153 list_del(&state
->leak_list
);
154 spin_unlock_irqrestore(&leak_lock
, flags
);
156 kmem_cache_free(extent_state_cache
, state
);
160 static struct rb_node
*tree_insert(struct rb_root
*root
, u64 offset
,
161 struct rb_node
*node
)
163 struct rb_node
**p
= &root
->rb_node
;
164 struct rb_node
*parent
= NULL
;
165 struct tree_entry
*entry
;
169 entry
= rb_entry(parent
, struct tree_entry
, rb_node
);
171 if (offset
< entry
->start
)
173 else if (offset
> entry
->end
)
179 entry
= rb_entry(node
, struct tree_entry
, rb_node
);
180 rb_link_node(node
, parent
, p
);
181 rb_insert_color(node
, root
);
185 static struct rb_node
*__etree_search(struct extent_io_tree
*tree
, u64 offset
,
186 struct rb_node
**prev_ret
,
187 struct rb_node
**next_ret
)
189 struct rb_root
*root
= &tree
->state
;
190 struct rb_node
*n
= root
->rb_node
;
191 struct rb_node
*prev
= NULL
;
192 struct rb_node
*orig_prev
= NULL
;
193 struct tree_entry
*entry
;
194 struct tree_entry
*prev_entry
= NULL
;
197 entry
= rb_entry(n
, struct tree_entry
, rb_node
);
201 if (offset
< entry
->start
)
203 else if (offset
> entry
->end
)
211 while (prev
&& offset
> prev_entry
->end
) {
212 prev
= rb_next(prev
);
213 prev_entry
= rb_entry(prev
, struct tree_entry
, rb_node
);
220 prev_entry
= rb_entry(prev
, struct tree_entry
, rb_node
);
221 while (prev
&& offset
< prev_entry
->start
) {
222 prev
= rb_prev(prev
);
223 prev_entry
= rb_entry(prev
, struct tree_entry
, rb_node
);
230 static inline struct rb_node
*tree_search(struct extent_io_tree
*tree
,
233 struct rb_node
*prev
= NULL
;
236 ret
= __etree_search(tree
, offset
, &prev
, NULL
);
242 static void merge_cb(struct extent_io_tree
*tree
, struct extent_state
*new,
243 struct extent_state
*other
)
245 if (tree
->ops
&& tree
->ops
->merge_extent_hook
)
246 tree
->ops
->merge_extent_hook(tree
->mapping
->host
, new,
251 * utility function to look for merge candidates inside a given range.
252 * Any extents with matching state are merged together into a single
253 * extent in the tree. Extents with EXTENT_IO in their state field
254 * are not merged because the end_io handlers need to be able to do
255 * operations on them without sleeping (or doing allocations/splits).
257 * This should be called with the tree lock held.
259 static void merge_state(struct extent_io_tree
*tree
,
260 struct extent_state
*state
)
262 struct extent_state
*other
;
263 struct rb_node
*other_node
;
265 if (state
->state
& (EXTENT_IOBITS
| EXTENT_BOUNDARY
))
268 other_node
= rb_prev(&state
->rb_node
);
270 other
= rb_entry(other_node
, struct extent_state
, rb_node
);
271 if (other
->end
== state
->start
- 1 &&
272 other
->state
== state
->state
) {
273 merge_cb(tree
, state
, other
);
274 state
->start
= other
->start
;
276 rb_erase(&other
->rb_node
, &tree
->state
);
277 free_extent_state(other
);
280 other_node
= rb_next(&state
->rb_node
);
282 other
= rb_entry(other_node
, struct extent_state
, rb_node
);
283 if (other
->start
== state
->end
+ 1 &&
284 other
->state
== state
->state
) {
285 merge_cb(tree
, state
, other
);
286 state
->end
= other
->end
;
288 rb_erase(&other
->rb_node
, &tree
->state
);
289 free_extent_state(other
);
294 static void set_state_cb(struct extent_io_tree
*tree
,
295 struct extent_state
*state
, int *bits
)
297 if (tree
->ops
&& tree
->ops
->set_bit_hook
)
298 tree
->ops
->set_bit_hook(tree
->mapping
->host
, state
, bits
);
301 static void clear_state_cb(struct extent_io_tree
*tree
,
302 struct extent_state
*state
, int *bits
)
304 if (tree
->ops
&& tree
->ops
->clear_bit_hook
)
305 tree
->ops
->clear_bit_hook(tree
->mapping
->host
, state
, bits
);
308 static void set_state_bits(struct extent_io_tree
*tree
,
309 struct extent_state
*state
, int *bits
);
312 * insert an extent_state struct into the tree. 'bits' are set on the
313 * struct before it is inserted.
315 * This may return -EEXIST if the extent is already there, in which case the
316 * state struct is freed.
318 * The tree lock is not taken internally. This is a utility function and
319 * probably isn't what you want to call (see set/clear_extent_bit).
321 static int insert_state(struct extent_io_tree
*tree
,
322 struct extent_state
*state
, u64 start
, u64 end
,
325 struct rb_node
*node
;
328 printk(KERN_ERR
"btrfs end < start %llu %llu\n",
329 (unsigned long long)end
,
330 (unsigned long long)start
);
333 state
->start
= start
;
336 set_state_bits(tree
, state
, bits
);
338 node
= tree_insert(&tree
->state
, end
, &state
->rb_node
);
340 struct extent_state
*found
;
341 found
= rb_entry(node
, struct extent_state
, rb_node
);
342 printk(KERN_ERR
"btrfs found node %llu %llu on insert of "
343 "%llu %llu\n", (unsigned long long)found
->start
,
344 (unsigned long long)found
->end
,
345 (unsigned long long)start
, (unsigned long long)end
);
349 merge_state(tree
, state
);
353 static void split_cb(struct extent_io_tree
*tree
, struct extent_state
*orig
,
356 if (tree
->ops
&& tree
->ops
->split_extent_hook
)
357 tree
->ops
->split_extent_hook(tree
->mapping
->host
, orig
, split
);
361 * split a given extent state struct in two, inserting the preallocated
362 * struct 'prealloc' as the newly created second half. 'split' indicates an
363 * offset inside 'orig' where it should be split.
366 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
367 * are two extent state structs in the tree:
368 * prealloc: [orig->start, split - 1]
369 * orig: [ split, orig->end ]
371 * The tree locks are not taken by this function. They need to be held
374 static int split_state(struct extent_io_tree
*tree
, struct extent_state
*orig
,
375 struct extent_state
*prealloc
, u64 split
)
377 struct rb_node
*node
;
379 split_cb(tree
, orig
, split
);
381 prealloc
->start
= orig
->start
;
382 prealloc
->end
= split
- 1;
383 prealloc
->state
= orig
->state
;
386 node
= tree_insert(&tree
->state
, prealloc
->end
, &prealloc
->rb_node
);
388 free_extent_state(prealloc
);
391 prealloc
->tree
= tree
;
396 * utility function to clear some bits in an extent state struct.
397 * it will optionally wake up any one waiting on this state (wake == 1), or
398 * forcibly remove the state from the tree (delete == 1).
400 * If no bits are set on the state struct after clearing things, the
401 * struct is freed and removed from the tree
403 static int clear_state_bit(struct extent_io_tree
*tree
,
404 struct extent_state
*state
,
407 int bits_to_clear
= *bits
& ~EXTENT_CTLBITS
;
408 int ret
= state
->state
& bits_to_clear
;
410 if ((bits_to_clear
& EXTENT_DIRTY
) && (state
->state
& EXTENT_DIRTY
)) {
411 u64 range
= state
->end
- state
->start
+ 1;
412 WARN_ON(range
> tree
->dirty_bytes
);
413 tree
->dirty_bytes
-= range
;
415 clear_state_cb(tree
, state
, bits
);
416 state
->state
&= ~bits_to_clear
;
419 if (state
->state
== 0) {
421 rb_erase(&state
->rb_node
, &tree
->state
);
423 free_extent_state(state
);
428 merge_state(tree
, state
);
433 static struct extent_state
*
434 alloc_extent_state_atomic(struct extent_state
*prealloc
)
437 prealloc
= alloc_extent_state(GFP_ATOMIC
);
443 * clear some bits on a range in the tree. This may require splitting
444 * or inserting elements in the tree, so the gfp mask is used to
445 * indicate which allocations or sleeping are allowed.
447 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
448 * the given range from the tree regardless of state (ie for truncate).
450 * the range [start, end] is inclusive.
452 * This takes the tree lock, and returns < 0 on error, > 0 if any of the
453 * bits were already set, or zero if none of the bits were already set.
455 int clear_extent_bit(struct extent_io_tree
*tree
, u64 start
, u64 end
,
456 int bits
, int wake
, int delete,
457 struct extent_state
**cached_state
,
460 struct extent_state
*state
;
461 struct extent_state
*cached
;
462 struct extent_state
*prealloc
= NULL
;
463 struct rb_node
*next_node
;
464 struct rb_node
*node
;
471 bits
|= ~EXTENT_CTLBITS
;
472 bits
|= EXTENT_FIRST_DELALLOC
;
474 if (bits
& (EXTENT_IOBITS
| EXTENT_BOUNDARY
))
477 if (!prealloc
&& (mask
& __GFP_WAIT
)) {
478 prealloc
= alloc_extent_state(mask
);
483 spin_lock(&tree
->lock
);
485 cached
= *cached_state
;
488 *cached_state
= NULL
;
492 if (cached
&& cached
->tree
&& cached
->start
<= start
&&
493 cached
->end
> start
) {
495 atomic_dec(&cached
->refs
);
500 free_extent_state(cached
);
503 * this search will find the extents that end after
506 node
= tree_search(tree
, start
);
509 state
= rb_entry(node
, struct extent_state
, rb_node
);
511 if (state
->start
> end
)
513 WARN_ON(state
->end
< start
);
514 last_end
= state
->end
;
517 * | ---- desired range ---- |
519 * | ------------- state -------------- |
521 * We need to split the extent we found, and may flip
522 * bits on second half.
524 * If the extent we found extends past our range, we
525 * just split and search again. It'll get split again
526 * the next time though.
528 * If the extent we found is inside our range, we clear
529 * the desired bit on it.
532 if (state
->start
< start
) {
533 prealloc
= alloc_extent_state_atomic(prealloc
);
535 err
= split_state(tree
, state
, prealloc
, start
);
536 BUG_ON(err
== -EEXIST
);
540 if (state
->end
<= end
) {
541 set
|= clear_state_bit(tree
, state
, &bits
, wake
);
542 if (last_end
== (u64
)-1)
544 start
= last_end
+ 1;
549 * | ---- desired range ---- |
551 * We need to split the extent, and clear the bit
554 if (state
->start
<= end
&& state
->end
> end
) {
555 prealloc
= alloc_extent_state_atomic(prealloc
);
557 err
= split_state(tree
, state
, prealloc
, end
+ 1);
558 BUG_ON(err
== -EEXIST
);
562 set
|= clear_state_bit(tree
, prealloc
, &bits
, wake
);
568 if (state
->end
< end
&& prealloc
&& !need_resched())
569 next_node
= rb_next(&state
->rb_node
);
573 set
|= clear_state_bit(tree
, state
, &bits
, wake
);
574 if (last_end
== (u64
)-1)
576 start
= last_end
+ 1;
577 if (start
<= end
&& next_node
) {
578 state
= rb_entry(next_node
, struct extent_state
,
580 if (state
->start
== start
)
586 spin_unlock(&tree
->lock
);
588 free_extent_state(prealloc
);
595 spin_unlock(&tree
->lock
);
596 if (mask
& __GFP_WAIT
)
601 static int wait_on_state(struct extent_io_tree
*tree
,
602 struct extent_state
*state
)
603 __releases(tree
->lock
)
604 __acquires(tree
->lock
)
607 prepare_to_wait(&state
->wq
, &wait
, TASK_UNINTERRUPTIBLE
);
608 spin_unlock(&tree
->lock
);
610 spin_lock(&tree
->lock
);
611 finish_wait(&state
->wq
, &wait
);
616 * waits for one or more bits to clear on a range in the state tree.
617 * The range [start, end] is inclusive.
618 * The tree lock is taken by this function
620 int wait_extent_bit(struct extent_io_tree
*tree
, u64 start
, u64 end
, int bits
)
622 struct extent_state
*state
;
623 struct rb_node
*node
;
625 spin_lock(&tree
->lock
);
629 * this search will find all the extents that end after
632 node
= tree_search(tree
, start
);
636 state
= rb_entry(node
, struct extent_state
, rb_node
);
638 if (state
->start
> end
)
641 if (state
->state
& bits
) {
642 start
= state
->start
;
643 atomic_inc(&state
->refs
);
644 wait_on_state(tree
, state
);
645 free_extent_state(state
);
648 start
= state
->end
+ 1;
653 cond_resched_lock(&tree
->lock
);
656 spin_unlock(&tree
->lock
);
660 static void set_state_bits(struct extent_io_tree
*tree
,
661 struct extent_state
*state
,
664 int bits_to_set
= *bits
& ~EXTENT_CTLBITS
;
666 set_state_cb(tree
, state
, bits
);
667 if ((bits_to_set
& EXTENT_DIRTY
) && !(state
->state
& EXTENT_DIRTY
)) {
668 u64 range
= state
->end
- state
->start
+ 1;
669 tree
->dirty_bytes
+= range
;
671 state
->state
|= bits_to_set
;
674 static void cache_state(struct extent_state
*state
,
675 struct extent_state
**cached_ptr
)
677 if (cached_ptr
&& !(*cached_ptr
)) {
678 if (state
->state
& (EXTENT_IOBITS
| EXTENT_BOUNDARY
)) {
680 atomic_inc(&state
->refs
);
685 static void uncache_state(struct extent_state
**cached_ptr
)
687 if (cached_ptr
&& (*cached_ptr
)) {
688 struct extent_state
*state
= *cached_ptr
;
690 free_extent_state(state
);
695 * set some bits on a range in the tree. This may require allocations or
696 * sleeping, so the gfp mask is used to indicate what is allowed.
698 * If any of the exclusive bits are set, this will fail with -EEXIST if some
699 * part of the range already has the desired bits set. The start of the
700 * existing range is returned in failed_start in this case.
702 * [start, end] is inclusive This takes the tree lock.
705 int set_extent_bit(struct extent_io_tree
*tree
, u64 start
, u64 end
,
706 int bits
, int exclusive_bits
, u64
*failed_start
,
707 struct extent_state
**cached_state
, gfp_t mask
)
709 struct extent_state
*state
;
710 struct extent_state
*prealloc
= NULL
;
711 struct rb_node
*node
;
716 bits
|= EXTENT_FIRST_DELALLOC
;
718 if (!prealloc
&& (mask
& __GFP_WAIT
)) {
719 prealloc
= alloc_extent_state(mask
);
723 spin_lock(&tree
->lock
);
724 if (cached_state
&& *cached_state
) {
725 state
= *cached_state
;
726 if (state
->start
<= start
&& state
->end
> start
&&
728 node
= &state
->rb_node
;
733 * this search will find all the extents that end after
736 node
= tree_search(tree
, start
);
738 prealloc
= alloc_extent_state_atomic(prealloc
);
740 err
= insert_state(tree
, prealloc
, start
, end
, &bits
);
742 BUG_ON(err
== -EEXIST
);
745 state
= rb_entry(node
, struct extent_state
, rb_node
);
747 last_start
= state
->start
;
748 last_end
= state
->end
;
751 * | ---- desired range ---- |
754 * Just lock what we found and keep going
756 if (state
->start
== start
&& state
->end
<= end
) {
757 struct rb_node
*next_node
;
758 if (state
->state
& exclusive_bits
) {
759 *failed_start
= state
->start
;
764 set_state_bits(tree
, state
, &bits
);
766 cache_state(state
, cached_state
);
767 merge_state(tree
, state
);
768 if (last_end
== (u64
)-1)
771 start
= last_end
+ 1;
772 next_node
= rb_next(&state
->rb_node
);
773 if (next_node
&& start
< end
&& prealloc
&& !need_resched()) {
774 state
= rb_entry(next_node
, struct extent_state
,
776 if (state
->start
== start
)
783 * | ---- desired range ---- |
786 * | ------------- state -------------- |
788 * We need to split the extent we found, and may flip bits on
791 * If the extent we found extends past our
792 * range, we just split and search again. It'll get split
793 * again the next time though.
795 * If the extent we found is inside our range, we set the
798 if (state
->start
< start
) {
799 if (state
->state
& exclusive_bits
) {
800 *failed_start
= start
;
805 prealloc
= alloc_extent_state_atomic(prealloc
);
807 err
= split_state(tree
, state
, prealloc
, start
);
808 BUG_ON(err
== -EEXIST
);
812 if (state
->end
<= end
) {
813 set_state_bits(tree
, state
, &bits
);
814 cache_state(state
, cached_state
);
815 merge_state(tree
, state
);
816 if (last_end
== (u64
)-1)
818 start
= last_end
+ 1;
823 * | ---- desired range ---- |
824 * | state | or | state |
826 * There's a hole, we need to insert something in it and
827 * ignore the extent we found.
829 if (state
->start
> start
) {
831 if (end
< last_start
)
834 this_end
= last_start
- 1;
836 prealloc
= alloc_extent_state_atomic(prealloc
);
840 * Avoid to free 'prealloc' if it can be merged with
843 err
= insert_state(tree
, prealloc
, start
, this_end
,
845 BUG_ON(err
== -EEXIST
);
847 free_extent_state(prealloc
);
851 cache_state(prealloc
, cached_state
);
853 start
= this_end
+ 1;
857 * | ---- desired range ---- |
859 * We need to split the extent, and set the bit
862 if (state
->start
<= end
&& state
->end
> end
) {
863 if (state
->state
& exclusive_bits
) {
864 *failed_start
= start
;
869 prealloc
= alloc_extent_state_atomic(prealloc
);
871 err
= split_state(tree
, state
, prealloc
, end
+ 1);
872 BUG_ON(err
== -EEXIST
);
874 set_state_bits(tree
, prealloc
, &bits
);
875 cache_state(prealloc
, cached_state
);
876 merge_state(tree
, prealloc
);
884 spin_unlock(&tree
->lock
);
886 free_extent_state(prealloc
);
893 spin_unlock(&tree
->lock
);
894 if (mask
& __GFP_WAIT
)
900 * convert_extent - convert all bits in a given range from one bit to another
901 * @tree: the io tree to search
902 * @start: the start offset in bytes
903 * @end: the end offset in bytes (inclusive)
904 * @bits: the bits to set in this range
905 * @clear_bits: the bits to clear in this range
906 * @mask: the allocation mask
908 * This will go through and set bits for the given range. If any states exist
909 * already in this range they are set with the given bit and cleared of the
910 * clear_bits. This is only meant to be used by things that are mergeable, ie
911 * converting from say DELALLOC to DIRTY. This is not meant to be used with
912 * boundary bits like LOCK.
914 int convert_extent_bit(struct extent_io_tree
*tree
, u64 start
, u64 end
,
915 int bits
, int clear_bits
, gfp_t mask
)
917 struct extent_state
*state
;
918 struct extent_state
*prealloc
= NULL
;
919 struct rb_node
*node
;
925 if (!prealloc
&& (mask
& __GFP_WAIT
)) {
926 prealloc
= alloc_extent_state(mask
);
931 spin_lock(&tree
->lock
);
933 * this search will find all the extents that end after
936 node
= tree_search(tree
, start
);
938 prealloc
= alloc_extent_state_atomic(prealloc
);
943 err
= insert_state(tree
, prealloc
, start
, end
, &bits
);
945 BUG_ON(err
== -EEXIST
);
948 state
= rb_entry(node
, struct extent_state
, rb_node
);
950 last_start
= state
->start
;
951 last_end
= state
->end
;
954 * | ---- desired range ---- |
957 * Just lock what we found and keep going
959 if (state
->start
== start
&& state
->end
<= end
) {
960 struct rb_node
*next_node
;
962 set_state_bits(tree
, state
, &bits
);
963 clear_state_bit(tree
, state
, &clear_bits
, 0);
965 merge_state(tree
, state
);
966 if (last_end
== (u64
)-1)
969 start
= last_end
+ 1;
970 next_node
= rb_next(&state
->rb_node
);
971 if (next_node
&& start
< end
&& prealloc
&& !need_resched()) {
972 state
= rb_entry(next_node
, struct extent_state
,
974 if (state
->start
== start
)
981 * | ---- desired range ---- |
984 * | ------------- state -------------- |
986 * We need to split the extent we found, and may flip bits on
989 * If the extent we found extends past our
990 * range, we just split and search again. It'll get split
991 * again the next time though.
993 * If the extent we found is inside our range, we set the
996 if (state
->start
< start
) {
997 prealloc
= alloc_extent_state_atomic(prealloc
);
1002 err
= split_state(tree
, state
, prealloc
, start
);
1003 BUG_ON(err
== -EEXIST
);
1007 if (state
->end
<= end
) {
1008 set_state_bits(tree
, state
, &bits
);
1009 clear_state_bit(tree
, state
, &clear_bits
, 0);
1010 merge_state(tree
, state
);
1011 if (last_end
== (u64
)-1)
1013 start
= last_end
+ 1;
1018 * | ---- desired range ---- |
1019 * | state | or | state |
1021 * There's a hole, we need to insert something in it and
1022 * ignore the extent we found.
1024 if (state
->start
> start
) {
1026 if (end
< last_start
)
1029 this_end
= last_start
- 1;
1031 prealloc
= alloc_extent_state_atomic(prealloc
);
1038 * Avoid to free 'prealloc' if it can be merged with
1041 err
= insert_state(tree
, prealloc
, start
, this_end
,
1043 BUG_ON(err
== -EEXIST
);
1045 free_extent_state(prealloc
);
1050 start
= this_end
+ 1;
1054 * | ---- desired range ---- |
1056 * We need to split the extent, and set the bit
1059 if (state
->start
<= end
&& state
->end
> end
) {
1060 prealloc
= alloc_extent_state_atomic(prealloc
);
1066 err
= split_state(tree
, state
, prealloc
, end
+ 1);
1067 BUG_ON(err
== -EEXIST
);
1069 set_state_bits(tree
, prealloc
, &bits
);
1070 clear_state_bit(tree
, prealloc
, &clear_bits
, 0);
1072 merge_state(tree
, prealloc
);
1080 spin_unlock(&tree
->lock
);
1082 free_extent_state(prealloc
);
1089 spin_unlock(&tree
->lock
);
1090 if (mask
& __GFP_WAIT
)
1095 /* wrappers around set/clear extent bit */
1096 int set_extent_dirty(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1099 return set_extent_bit(tree
, start
, end
, EXTENT_DIRTY
, 0, NULL
,
1103 int set_extent_bits(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1104 int bits
, gfp_t mask
)
1106 return set_extent_bit(tree
, start
, end
, bits
, 0, NULL
,
1110 int clear_extent_bits(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1111 int bits
, gfp_t mask
)
1113 return clear_extent_bit(tree
, start
, end
, bits
, 0, 0, NULL
, mask
);
1116 int set_extent_delalloc(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1117 struct extent_state
**cached_state
, gfp_t mask
)
1119 return set_extent_bit(tree
, start
, end
,
1120 EXTENT_DELALLOC
| EXTENT_UPTODATE
,
1121 0, NULL
, cached_state
, mask
);
1124 int clear_extent_dirty(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1127 return clear_extent_bit(tree
, start
, end
,
1128 EXTENT_DIRTY
| EXTENT_DELALLOC
|
1129 EXTENT_DO_ACCOUNTING
, 0, 0, NULL
, mask
);
1132 int set_extent_new(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1135 return set_extent_bit(tree
, start
, end
, EXTENT_NEW
, 0, NULL
,
1139 int set_extent_uptodate(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1140 struct extent_state
**cached_state
, gfp_t mask
)
1142 return set_extent_bit(tree
, start
, end
, EXTENT_UPTODATE
, 0,
1143 NULL
, cached_state
, mask
);
1146 static int clear_extent_uptodate(struct extent_io_tree
*tree
, u64 start
,
1147 u64 end
, struct extent_state
**cached_state
,
1150 return clear_extent_bit(tree
, start
, end
, EXTENT_UPTODATE
, 0, 0,
1151 cached_state
, mask
);
1155 * either insert or lock state struct between start and end use mask to tell
1156 * us if waiting is desired.
1158 int lock_extent_bits(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1159 int bits
, struct extent_state
**cached_state
, gfp_t mask
)
1164 err
= set_extent_bit(tree
, start
, end
, EXTENT_LOCKED
| bits
,
1165 EXTENT_LOCKED
, &failed_start
,
1166 cached_state
, mask
);
1167 if (err
== -EEXIST
&& (mask
& __GFP_WAIT
)) {
1168 wait_extent_bit(tree
, failed_start
, end
, EXTENT_LOCKED
);
1169 start
= failed_start
;
1173 WARN_ON(start
> end
);
1178 int lock_extent(struct extent_io_tree
*tree
, u64 start
, u64 end
, gfp_t mask
)
1180 return lock_extent_bits(tree
, start
, end
, 0, NULL
, mask
);
1183 int try_lock_extent(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1189 err
= set_extent_bit(tree
, start
, end
, EXTENT_LOCKED
, EXTENT_LOCKED
,
1190 &failed_start
, NULL
, mask
);
1191 if (err
== -EEXIST
) {
1192 if (failed_start
> start
)
1193 clear_extent_bit(tree
, start
, failed_start
- 1,
1194 EXTENT_LOCKED
, 1, 0, NULL
, mask
);
1200 int unlock_extent_cached(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1201 struct extent_state
**cached
, gfp_t mask
)
1203 return clear_extent_bit(tree
, start
, end
, EXTENT_LOCKED
, 1, 0, cached
,
1207 int unlock_extent(struct extent_io_tree
*tree
, u64 start
, u64 end
, gfp_t mask
)
1209 return clear_extent_bit(tree
, start
, end
, EXTENT_LOCKED
, 1, 0, NULL
,
1214 * helper function to set both pages and extents in the tree writeback
1216 static int set_range_writeback(struct extent_io_tree
*tree
, u64 start
, u64 end
)
1218 unsigned long index
= start
>> PAGE_CACHE_SHIFT
;
1219 unsigned long end_index
= end
>> PAGE_CACHE_SHIFT
;
1222 while (index
<= end_index
) {
1223 page
= find_get_page(tree
->mapping
, index
);
1225 set_page_writeback(page
);
1226 page_cache_release(page
);
1232 /* find the first state struct with 'bits' set after 'start', and
1233 * return it. tree->lock must be held. NULL will returned if
1234 * nothing was found after 'start'
1236 struct extent_state
*find_first_extent_bit_state(struct extent_io_tree
*tree
,
1237 u64 start
, int bits
)
1239 struct rb_node
*node
;
1240 struct extent_state
*state
;
1243 * this search will find all the extents that end after
1246 node
= tree_search(tree
, start
);
1251 state
= rb_entry(node
, struct extent_state
, rb_node
);
1252 if (state
->end
>= start
&& (state
->state
& bits
))
1255 node
= rb_next(node
);
1264 * find the first offset in the io tree with 'bits' set. zero is
1265 * returned if we find something, and *start_ret and *end_ret are
1266 * set to reflect the state struct that was found.
1268 * If nothing was found, 1 is returned, < 0 on error
1270 int find_first_extent_bit(struct extent_io_tree
*tree
, u64 start
,
1271 u64
*start_ret
, u64
*end_ret
, int bits
)
1273 struct extent_state
*state
;
1276 spin_lock(&tree
->lock
);
1277 state
= find_first_extent_bit_state(tree
, start
, bits
);
1279 *start_ret
= state
->start
;
1280 *end_ret
= state
->end
;
1283 spin_unlock(&tree
->lock
);
1288 * find a contiguous range of bytes in the file marked as delalloc, not
1289 * more than 'max_bytes'. start and end are used to return the range,
1291 * 1 is returned if we find something, 0 if nothing was in the tree
1293 static noinline u64
find_delalloc_range(struct extent_io_tree
*tree
,
1294 u64
*start
, u64
*end
, u64 max_bytes
,
1295 struct extent_state
**cached_state
)
1297 struct rb_node
*node
;
1298 struct extent_state
*state
;
1299 u64 cur_start
= *start
;
1301 u64 total_bytes
= 0;
1303 spin_lock(&tree
->lock
);
1306 * this search will find all the extents that end after
1309 node
= tree_search(tree
, cur_start
);
1317 state
= rb_entry(node
, struct extent_state
, rb_node
);
1318 if (found
&& (state
->start
!= cur_start
||
1319 (state
->state
& EXTENT_BOUNDARY
))) {
1322 if (!(state
->state
& EXTENT_DELALLOC
)) {
1328 *start
= state
->start
;
1329 *cached_state
= state
;
1330 atomic_inc(&state
->refs
);
1334 cur_start
= state
->end
+ 1;
1335 node
= rb_next(node
);
1338 total_bytes
+= state
->end
- state
->start
+ 1;
1339 if (total_bytes
>= max_bytes
)
1343 spin_unlock(&tree
->lock
);
1347 static noinline
int __unlock_for_delalloc(struct inode
*inode
,
1348 struct page
*locked_page
,
1352 struct page
*pages
[16];
1353 unsigned long index
= start
>> PAGE_CACHE_SHIFT
;
1354 unsigned long end_index
= end
>> PAGE_CACHE_SHIFT
;
1355 unsigned long nr_pages
= end_index
- index
+ 1;
1358 if (index
== locked_page
->index
&& end_index
== index
)
1361 while (nr_pages
> 0) {
1362 ret
= find_get_pages_contig(inode
->i_mapping
, index
,
1363 min_t(unsigned long, nr_pages
,
1364 ARRAY_SIZE(pages
)), pages
);
1365 for (i
= 0; i
< ret
; i
++) {
1366 if (pages
[i
] != locked_page
)
1367 unlock_page(pages
[i
]);
1368 page_cache_release(pages
[i
]);
1377 static noinline
int lock_delalloc_pages(struct inode
*inode
,
1378 struct page
*locked_page
,
1382 unsigned long index
= delalloc_start
>> PAGE_CACHE_SHIFT
;
1383 unsigned long start_index
= index
;
1384 unsigned long end_index
= delalloc_end
>> PAGE_CACHE_SHIFT
;
1385 unsigned long pages_locked
= 0;
1386 struct page
*pages
[16];
1387 unsigned long nrpages
;
1391 /* the caller is responsible for locking the start index */
1392 if (index
== locked_page
->index
&& index
== end_index
)
1395 /* skip the page at the start index */
1396 nrpages
= end_index
- index
+ 1;
1397 while (nrpages
> 0) {
1398 ret
= find_get_pages_contig(inode
->i_mapping
, index
,
1399 min_t(unsigned long,
1400 nrpages
, ARRAY_SIZE(pages
)), pages
);
1405 /* now we have an array of pages, lock them all */
1406 for (i
= 0; i
< ret
; i
++) {
1408 * the caller is taking responsibility for
1411 if (pages
[i
] != locked_page
) {
1412 lock_page(pages
[i
]);
1413 if (!PageDirty(pages
[i
]) ||
1414 pages
[i
]->mapping
!= inode
->i_mapping
) {
1416 unlock_page(pages
[i
]);
1417 page_cache_release(pages
[i
]);
1421 page_cache_release(pages
[i
]);
1430 if (ret
&& pages_locked
) {
1431 __unlock_for_delalloc(inode
, locked_page
,
1433 ((u64
)(start_index
+ pages_locked
- 1)) <<
1440 * find a contiguous range of bytes in the file marked as delalloc, not
1441 * more than 'max_bytes'. start and end are used to return the range,
1443 * 1 is returned if we find something, 0 if nothing was in the tree
1445 static noinline u64
find_lock_delalloc_range(struct inode
*inode
,
1446 struct extent_io_tree
*tree
,
1447 struct page
*locked_page
,
1448 u64
*start
, u64
*end
,
1454 struct extent_state
*cached_state
= NULL
;
1459 /* step one, find a bunch of delalloc bytes starting at start */
1460 delalloc_start
= *start
;
1462 found
= find_delalloc_range(tree
, &delalloc_start
, &delalloc_end
,
1463 max_bytes
, &cached_state
);
1464 if (!found
|| delalloc_end
<= *start
) {
1465 *start
= delalloc_start
;
1466 *end
= delalloc_end
;
1467 free_extent_state(cached_state
);
1472 * start comes from the offset of locked_page. We have to lock
1473 * pages in order, so we can't process delalloc bytes before
1476 if (delalloc_start
< *start
)
1477 delalloc_start
= *start
;
1480 * make sure to limit the number of pages we try to lock down
1483 if (delalloc_end
+ 1 - delalloc_start
> max_bytes
&& loops
)
1484 delalloc_end
= delalloc_start
+ PAGE_CACHE_SIZE
- 1;
1486 /* step two, lock all the pages after the page that has start */
1487 ret
= lock_delalloc_pages(inode
, locked_page
,
1488 delalloc_start
, delalloc_end
);
1489 if (ret
== -EAGAIN
) {
1490 /* some of the pages are gone, lets avoid looping by
1491 * shortening the size of the delalloc range we're searching
1493 free_extent_state(cached_state
);
1495 unsigned long offset
= (*start
) & (PAGE_CACHE_SIZE
- 1);
1496 max_bytes
= PAGE_CACHE_SIZE
- offset
;
1506 /* step three, lock the state bits for the whole range */
1507 lock_extent_bits(tree
, delalloc_start
, delalloc_end
,
1508 0, &cached_state
, GFP_NOFS
);
1510 /* then test to make sure it is all still delalloc */
1511 ret
= test_range_bit(tree
, delalloc_start
, delalloc_end
,
1512 EXTENT_DELALLOC
, 1, cached_state
);
1514 unlock_extent_cached(tree
, delalloc_start
, delalloc_end
,
1515 &cached_state
, GFP_NOFS
);
1516 __unlock_for_delalloc(inode
, locked_page
,
1517 delalloc_start
, delalloc_end
);
1521 free_extent_state(cached_state
);
1522 *start
= delalloc_start
;
1523 *end
= delalloc_end
;
1528 int extent_clear_unlock_delalloc(struct inode
*inode
,
1529 struct extent_io_tree
*tree
,
1530 u64 start
, u64 end
, struct page
*locked_page
,
1534 struct page
*pages
[16];
1535 unsigned long index
= start
>> PAGE_CACHE_SHIFT
;
1536 unsigned long end_index
= end
>> PAGE_CACHE_SHIFT
;
1537 unsigned long nr_pages
= end_index
- index
+ 1;
1541 if (op
& EXTENT_CLEAR_UNLOCK
)
1542 clear_bits
|= EXTENT_LOCKED
;
1543 if (op
& EXTENT_CLEAR_DIRTY
)
1544 clear_bits
|= EXTENT_DIRTY
;
1546 if (op
& EXTENT_CLEAR_DELALLOC
)
1547 clear_bits
|= EXTENT_DELALLOC
;
1549 clear_extent_bit(tree
, start
, end
, clear_bits
, 1, 0, NULL
, GFP_NOFS
);
1550 if (!(op
& (EXTENT_CLEAR_UNLOCK_PAGE
| EXTENT_CLEAR_DIRTY
|
1551 EXTENT_SET_WRITEBACK
| EXTENT_END_WRITEBACK
|
1552 EXTENT_SET_PRIVATE2
)))
1555 while (nr_pages
> 0) {
1556 ret
= find_get_pages_contig(inode
->i_mapping
, index
,
1557 min_t(unsigned long,
1558 nr_pages
, ARRAY_SIZE(pages
)), pages
);
1559 for (i
= 0; i
< ret
; i
++) {
1561 if (op
& EXTENT_SET_PRIVATE2
)
1562 SetPagePrivate2(pages
[i
]);
1564 if (pages
[i
] == locked_page
) {
1565 page_cache_release(pages
[i
]);
1568 if (op
& EXTENT_CLEAR_DIRTY
)
1569 clear_page_dirty_for_io(pages
[i
]);
1570 if (op
& EXTENT_SET_WRITEBACK
)
1571 set_page_writeback(pages
[i
]);
1572 if (op
& EXTENT_END_WRITEBACK
)
1573 end_page_writeback(pages
[i
]);
1574 if (op
& EXTENT_CLEAR_UNLOCK_PAGE
)
1575 unlock_page(pages
[i
]);
1576 page_cache_release(pages
[i
]);
1586 * count the number of bytes in the tree that have a given bit(s)
1587 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1588 * cached. The total number found is returned.
1590 u64
count_range_bits(struct extent_io_tree
*tree
,
1591 u64
*start
, u64 search_end
, u64 max_bytes
,
1592 unsigned long bits
, int contig
)
1594 struct rb_node
*node
;
1595 struct extent_state
*state
;
1596 u64 cur_start
= *start
;
1597 u64 total_bytes
= 0;
1601 if (search_end
<= cur_start
) {
1606 spin_lock(&tree
->lock
);
1607 if (cur_start
== 0 && bits
== EXTENT_DIRTY
) {
1608 total_bytes
= tree
->dirty_bytes
;
1612 * this search will find all the extents that end after
1615 node
= tree_search(tree
, cur_start
);
1620 state
= rb_entry(node
, struct extent_state
, rb_node
);
1621 if (state
->start
> search_end
)
1623 if (contig
&& found
&& state
->start
> last
+ 1)
1625 if (state
->end
>= cur_start
&& (state
->state
& bits
) == bits
) {
1626 total_bytes
+= min(search_end
, state
->end
) + 1 -
1627 max(cur_start
, state
->start
);
1628 if (total_bytes
>= max_bytes
)
1631 *start
= max(cur_start
, state
->start
);
1635 } else if (contig
&& found
) {
1638 node
= rb_next(node
);
1643 spin_unlock(&tree
->lock
);
1648 * set the private field for a given byte offset in the tree. If there isn't
1649 * an extent_state there already, this does nothing.
1651 int set_state_private(struct extent_io_tree
*tree
, u64 start
, u64
private)
1653 struct rb_node
*node
;
1654 struct extent_state
*state
;
1657 spin_lock(&tree
->lock
);
1659 * this search will find all the extents that end after
1662 node
= tree_search(tree
, start
);
1667 state
= rb_entry(node
, struct extent_state
, rb_node
);
1668 if (state
->start
!= start
) {
1672 state
->private = private;
1674 spin_unlock(&tree
->lock
);
1678 int get_state_private(struct extent_io_tree
*tree
, u64 start
, u64
*private)
1680 struct rb_node
*node
;
1681 struct extent_state
*state
;
1684 spin_lock(&tree
->lock
);
1686 * this search will find all the extents that end after
1689 node
= tree_search(tree
, start
);
1694 state
= rb_entry(node
, struct extent_state
, rb_node
);
1695 if (state
->start
!= start
) {
1699 *private = state
->private;
1701 spin_unlock(&tree
->lock
);
1706 * searches a range in the state tree for a given mask.
1707 * If 'filled' == 1, this returns 1 only if every extent in the tree
1708 * has the bits set. Otherwise, 1 is returned if any bit in the
1709 * range is found set.
1711 int test_range_bit(struct extent_io_tree
*tree
, u64 start
, u64 end
,
1712 int bits
, int filled
, struct extent_state
*cached
)
1714 struct extent_state
*state
= NULL
;
1715 struct rb_node
*node
;
1718 spin_lock(&tree
->lock
);
1719 if (cached
&& cached
->tree
&& cached
->start
<= start
&&
1720 cached
->end
> start
)
1721 node
= &cached
->rb_node
;
1723 node
= tree_search(tree
, start
);
1724 while (node
&& start
<= end
) {
1725 state
= rb_entry(node
, struct extent_state
, rb_node
);
1727 if (filled
&& state
->start
> start
) {
1732 if (state
->start
> end
)
1735 if (state
->state
& bits
) {
1739 } else if (filled
) {
1744 if (state
->end
== (u64
)-1)
1747 start
= state
->end
+ 1;
1750 node
= rb_next(node
);
1757 spin_unlock(&tree
->lock
);
1762 * helper function to set a given page up to date if all the
1763 * extents in the tree for that page are up to date
1765 static int check_page_uptodate(struct extent_io_tree
*tree
,
1768 u64 start
= (u64
)page
->index
<< PAGE_CACHE_SHIFT
;
1769 u64 end
= start
+ PAGE_CACHE_SIZE
- 1;
1770 if (test_range_bit(tree
, start
, end
, EXTENT_UPTODATE
, 1, NULL
))
1771 SetPageUptodate(page
);
1776 * helper function to unlock a page if all the extents in the tree
1777 * for that page are unlocked
1779 static int check_page_locked(struct extent_io_tree
*tree
,
1782 u64 start
= (u64
)page
->index
<< PAGE_CACHE_SHIFT
;
1783 u64 end
= start
+ PAGE_CACHE_SIZE
- 1;
1784 if (!test_range_bit(tree
, start
, end
, EXTENT_LOCKED
, 0, NULL
))
1790 * helper function to end page writeback if all the extents
1791 * in the tree for that page are done with writeback
1793 static int check_page_writeback(struct extent_io_tree
*tree
,
1796 end_page_writeback(page
);
1801 * When IO fails, either with EIO or csum verification fails, we
1802 * try other mirrors that might have a good copy of the data. This
1803 * io_failure_record is used to record state as we go through all the
1804 * mirrors. If another mirror has good data, the page is set up to date
1805 * and things continue. If a good mirror can't be found, the original
1806 * bio end_io callback is called to indicate things have failed.
1808 struct io_failure_record
{
1813 unsigned long bio_flags
;
1819 static int free_io_failure(struct inode
*inode
, struct io_failure_record
*rec
,
1824 struct extent_io_tree
*failure_tree
= &BTRFS_I(inode
)->io_failure_tree
;
1826 set_state_private(failure_tree
, rec
->start
, 0);
1827 ret
= clear_extent_bits(failure_tree
, rec
->start
,
1828 rec
->start
+ rec
->len
- 1,
1829 EXTENT_LOCKED
| EXTENT_DIRTY
, GFP_NOFS
);
1834 ret
= clear_extent_bits(&BTRFS_I(inode
)->io_tree
, rec
->start
,
1835 rec
->start
+ rec
->len
- 1,
1836 EXTENT_DAMAGED
, GFP_NOFS
);
1845 static void repair_io_failure_callback(struct bio
*bio
, int err
)
1847 complete(bio
->bi_private
);
1851 * this bypasses the standard btrfs submit functions deliberately, as
1852 * the standard behavior is to write all copies in a raid setup. here we only
1853 * want to write the one bad copy. so we do the mapping for ourselves and issue
1854 * submit_bio directly.
1855 * to avoid any synchonization issues, wait for the data after writing, which
1856 * actually prevents the read that triggered the error from finishing.
1857 * currently, there can be no more than two copies of every data bit. thus,
1858 * exactly one rewrite is required.
1860 int repair_io_failure(struct btrfs_mapping_tree
*map_tree
, u64 start
,
1861 u64 length
, u64 logical
, struct page
*page
,
1865 struct btrfs_device
*dev
;
1866 DECLARE_COMPLETION_ONSTACK(compl);
1869 struct btrfs_bio
*bbio
= NULL
;
1872 BUG_ON(!mirror_num
);
1874 bio
= bio_alloc(GFP_NOFS
, 1);
1877 bio
->bi_private
= &compl;
1878 bio
->bi_end_io
= repair_io_failure_callback
;
1880 map_length
= length
;
1882 ret
= btrfs_map_block(map_tree
, WRITE
, logical
,
1883 &map_length
, &bbio
, mirror_num
);
1888 BUG_ON(mirror_num
!= bbio
->mirror_num
);
1889 sector
= bbio
->stripes
[mirror_num
-1].physical
>> 9;
1890 bio
->bi_sector
= sector
;
1891 dev
= bbio
->stripes
[mirror_num
-1].dev
;
1893 if (!dev
|| !dev
->bdev
|| !dev
->writeable
) {
1897 bio
->bi_bdev
= dev
->bdev
;
1898 bio_add_page(bio
, page
, length
, start
-page_offset(page
));
1899 btrfsic_submit_bio(WRITE_SYNC
, bio
);
1900 wait_for_completion(&compl);
1902 if (!test_bit(BIO_UPTODATE
, &bio
->bi_flags
)) {
1903 /* try to remap that extent elsewhere? */
1908 printk(KERN_INFO
"btrfs read error corrected: ino %lu off %llu (dev %s "
1909 "sector %llu)\n", page
->mapping
->host
->i_ino
, start
,
1917 * each time an IO finishes, we do a fast check in the IO failure tree
1918 * to see if we need to process or clean up an io_failure_record
1920 static int clean_io_failure(u64 start
, struct page
*page
)
1923 u64 private_failure
;
1924 struct io_failure_record
*failrec
;
1925 struct btrfs_mapping_tree
*map_tree
;
1926 struct extent_state
*state
;
1930 struct inode
*inode
= page
->mapping
->host
;
1933 ret
= count_range_bits(&BTRFS_I(inode
)->io_failure_tree
, &private,
1934 (u64
)-1, 1, EXTENT_DIRTY
, 0);
1938 ret
= get_state_private(&BTRFS_I(inode
)->io_failure_tree
, start
,
1943 failrec
= (struct io_failure_record
*)(unsigned long) private_failure
;
1944 BUG_ON(!failrec
->this_mirror
);
1946 if (failrec
->in_validation
) {
1947 /* there was no real error, just free the record */
1948 pr_debug("clean_io_failure: freeing dummy error at %llu\n",
1954 spin_lock(&BTRFS_I(inode
)->io_tree
.lock
);
1955 state
= find_first_extent_bit_state(&BTRFS_I(inode
)->io_tree
,
1958 spin_unlock(&BTRFS_I(inode
)->io_tree
.lock
);
1960 if (state
&& state
->start
== failrec
->start
) {
1961 map_tree
= &BTRFS_I(inode
)->root
->fs_info
->mapping_tree
;
1962 num_copies
= btrfs_num_copies(map_tree
, failrec
->logical
,
1964 if (num_copies
> 1) {
1965 ret
= repair_io_failure(map_tree
, start
, failrec
->len
,
1966 failrec
->logical
, page
,
1967 failrec
->failed_mirror
);
1974 ret
= free_io_failure(inode
, failrec
, did_repair
);
1980 * this is a generic handler for readpage errors (default
1981 * readpage_io_failed_hook). if other copies exist, read those and write back
1982 * good data to the failed position. does not investigate in remapping the
1983 * failed extent elsewhere, hoping the device will be smart enough to do this as
1987 static int bio_readpage_error(struct bio
*failed_bio
, struct page
*page
,
1988 u64 start
, u64 end
, int failed_mirror
,
1989 struct extent_state
*state
)
1991 struct io_failure_record
*failrec
= NULL
;
1993 struct extent_map
*em
;
1994 struct inode
*inode
= page
->mapping
->host
;
1995 struct extent_io_tree
*failure_tree
= &BTRFS_I(inode
)->io_failure_tree
;
1996 struct extent_io_tree
*tree
= &BTRFS_I(inode
)->io_tree
;
1997 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
2004 BUG_ON(failed_bio
->bi_rw
& REQ_WRITE
);
2006 ret
= get_state_private(failure_tree
, start
, &private);
2008 failrec
= kzalloc(sizeof(*failrec
), GFP_NOFS
);
2011 failrec
->start
= start
;
2012 failrec
->len
= end
- start
+ 1;
2013 failrec
->this_mirror
= 0;
2014 failrec
->bio_flags
= 0;
2015 failrec
->in_validation
= 0;
2017 read_lock(&em_tree
->lock
);
2018 em
= lookup_extent_mapping(em_tree
, start
, failrec
->len
);
2020 read_unlock(&em_tree
->lock
);
2025 if (em
->start
> start
|| em
->start
+ em
->len
< start
) {
2026 free_extent_map(em
);
2029 read_unlock(&em_tree
->lock
);
2031 if (!em
|| IS_ERR(em
)) {
2035 logical
= start
- em
->start
;
2036 logical
= em
->block_start
+ logical
;
2037 if (test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
)) {
2038 logical
= em
->block_start
;
2039 failrec
->bio_flags
= EXTENT_BIO_COMPRESSED
;
2040 extent_set_compress_type(&failrec
->bio_flags
,
2043 pr_debug("bio_readpage_error: (new) logical=%llu, start=%llu, "
2044 "len=%llu\n", logical
, start
, failrec
->len
);
2045 failrec
->logical
= logical
;
2046 free_extent_map(em
);
2048 /* set the bits in the private failure tree */
2049 ret
= set_extent_bits(failure_tree
, start
, end
,
2050 EXTENT_LOCKED
| EXTENT_DIRTY
, GFP_NOFS
);
2052 ret
= set_state_private(failure_tree
, start
,
2053 (u64
)(unsigned long)failrec
);
2054 /* set the bits in the inode's tree */
2056 ret
= set_extent_bits(tree
, start
, end
, EXTENT_DAMAGED
,
2063 failrec
= (struct io_failure_record
*)(unsigned long)private;
2064 pr_debug("bio_readpage_error: (found) logical=%llu, "
2065 "start=%llu, len=%llu, validation=%d\n",
2066 failrec
->logical
, failrec
->start
, failrec
->len
,
2067 failrec
->in_validation
);
2069 * when data can be on disk more than twice, add to failrec here
2070 * (e.g. with a list for failed_mirror) to make
2071 * clean_io_failure() clean all those errors at once.
2074 num_copies
= btrfs_num_copies(
2075 &BTRFS_I(inode
)->root
->fs_info
->mapping_tree
,
2076 failrec
->logical
, failrec
->len
);
2077 if (num_copies
== 1) {
2079 * we only have a single copy of the data, so don't bother with
2080 * all the retry and error correction code that follows. no
2081 * matter what the error is, it is very likely to persist.
2083 pr_debug("bio_readpage_error: cannot repair, num_copies == 1. "
2084 "state=%p, num_copies=%d, next_mirror %d, "
2085 "failed_mirror %d\n", state
, num_copies
,
2086 failrec
->this_mirror
, failed_mirror
);
2087 free_io_failure(inode
, failrec
, 0);
2092 spin_lock(&tree
->lock
);
2093 state
= find_first_extent_bit_state(tree
, failrec
->start
,
2095 if (state
&& state
->start
!= failrec
->start
)
2097 spin_unlock(&tree
->lock
);
2101 * there are two premises:
2102 * a) deliver good data to the caller
2103 * b) correct the bad sectors on disk
2105 if (failed_bio
->bi_vcnt
> 1) {
2107 * to fulfill b), we need to know the exact failing sectors, as
2108 * we don't want to rewrite any more than the failed ones. thus,
2109 * we need separate read requests for the failed bio
2111 * if the following BUG_ON triggers, our validation request got
2112 * merged. we need separate requests for our algorithm to work.
2114 BUG_ON(failrec
->in_validation
);
2115 failrec
->in_validation
= 1;
2116 failrec
->this_mirror
= failed_mirror
;
2117 read_mode
= READ_SYNC
| REQ_FAILFAST_DEV
;
2120 * we're ready to fulfill a) and b) alongside. get a good copy
2121 * of the failed sector and if we succeed, we have setup
2122 * everything for repair_io_failure to do the rest for us.
2124 if (failrec
->in_validation
) {
2125 BUG_ON(failrec
->this_mirror
!= failed_mirror
);
2126 failrec
->in_validation
= 0;
2127 failrec
->this_mirror
= 0;
2129 failrec
->failed_mirror
= failed_mirror
;
2130 failrec
->this_mirror
++;
2131 if (failrec
->this_mirror
== failed_mirror
)
2132 failrec
->this_mirror
++;
2133 read_mode
= READ_SYNC
;
2136 if (!state
|| failrec
->this_mirror
> num_copies
) {
2137 pr_debug("bio_readpage_error: (fail) state=%p, num_copies=%d, "
2138 "next_mirror %d, failed_mirror %d\n", state
,
2139 num_copies
, failrec
->this_mirror
, failed_mirror
);
2140 free_io_failure(inode
, failrec
, 0);
2144 bio
= bio_alloc(GFP_NOFS
, 1);
2145 bio
->bi_private
= state
;
2146 bio
->bi_end_io
= failed_bio
->bi_end_io
;
2147 bio
->bi_sector
= failrec
->logical
>> 9;
2148 bio
->bi_bdev
= BTRFS_I(inode
)->root
->fs_info
->fs_devices
->latest_bdev
;
2151 bio_add_page(bio
, page
, failrec
->len
, start
- page_offset(page
));
2153 pr_debug("bio_readpage_error: submitting new read[%#x] to "
2154 "this_mirror=%d, num_copies=%d, in_validation=%d\n", read_mode
,
2155 failrec
->this_mirror
, num_copies
, failrec
->in_validation
);
2157 tree
->ops
->submit_bio_hook(inode
, read_mode
, bio
, failrec
->this_mirror
,
2158 failrec
->bio_flags
, 0);
2162 /* lots and lots of room for performance fixes in the end_bio funcs */
2165 * after a writepage IO is done, we need to:
2166 * clear the uptodate bits on error
2167 * clear the writeback bits in the extent tree for this IO
2168 * end_page_writeback if the page has no more pending IO
2170 * Scheduling is not allowed, so the extent state tree is expected
2171 * to have one and only one object corresponding to this IO.
2173 static void end_bio_extent_writepage(struct bio
*bio
, int err
)
2175 int uptodate
= err
== 0;
2176 struct bio_vec
*bvec
= bio
->bi_io_vec
+ bio
->bi_vcnt
- 1;
2177 struct extent_io_tree
*tree
;
2184 struct page
*page
= bvec
->bv_page
;
2185 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
2187 start
= ((u64
)page
->index
<< PAGE_CACHE_SHIFT
) +
2189 end
= start
+ bvec
->bv_len
- 1;
2191 if (bvec
->bv_offset
== 0 && bvec
->bv_len
== PAGE_CACHE_SIZE
)
2196 if (--bvec
>= bio
->bi_io_vec
)
2197 prefetchw(&bvec
->bv_page
->flags
);
2198 if (tree
->ops
&& tree
->ops
->writepage_end_io_hook
) {
2199 ret
= tree
->ops
->writepage_end_io_hook(page
, start
,
2200 end
, NULL
, uptodate
);
2205 if (!uptodate
&& tree
->ops
&&
2206 tree
->ops
->writepage_io_failed_hook
) {
2207 ret
= tree
->ops
->writepage_io_failed_hook(bio
, page
,
2210 uptodate
= (err
== 0);
2216 clear_extent_uptodate(tree
, start
, end
, NULL
, GFP_NOFS
);
2217 ClearPageUptodate(page
);
2222 end_page_writeback(page
);
2224 check_page_writeback(tree
, page
);
2225 } while (bvec
>= bio
->bi_io_vec
);
2231 * after a readpage IO is done, we need to:
2232 * clear the uptodate bits on error
2233 * set the uptodate bits if things worked
2234 * set the page up to date if all extents in the tree are uptodate
2235 * clear the lock bit in the extent tree
2236 * unlock the page if there are no other extents locked for it
2238 * Scheduling is not allowed, so the extent state tree is expected
2239 * to have one and only one object corresponding to this IO.
2241 static void end_bio_extent_readpage(struct bio
*bio
, int err
)
2243 int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
2244 struct bio_vec
*bvec_end
= bio
->bi_io_vec
+ bio
->bi_vcnt
- 1;
2245 struct bio_vec
*bvec
= bio
->bi_io_vec
;
2246 struct extent_io_tree
*tree
;
2256 struct page
*page
= bvec
->bv_page
;
2257 struct extent_state
*cached
= NULL
;
2258 struct extent_state
*state
;
2260 pr_debug("end_bio_extent_readpage: bi_vcnt=%d, idx=%d, err=%d, "
2261 "mirror=%ld\n", bio
->bi_vcnt
, bio
->bi_idx
, err
,
2262 (long int)bio
->bi_bdev
);
2263 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
2265 start
= ((u64
)page
->index
<< PAGE_CACHE_SHIFT
) +
2267 end
= start
+ bvec
->bv_len
- 1;
2269 if (bvec
->bv_offset
== 0 && bvec
->bv_len
== PAGE_CACHE_SIZE
)
2274 if (++bvec
<= bvec_end
)
2275 prefetchw(&bvec
->bv_page
->flags
);
2277 spin_lock(&tree
->lock
);
2278 state
= find_first_extent_bit_state(tree
, start
, EXTENT_LOCKED
);
2279 if (state
&& state
->start
== start
) {
2281 * take a reference on the state, unlock will drop
2284 cache_state(state
, &cached
);
2286 spin_unlock(&tree
->lock
);
2288 if (uptodate
&& tree
->ops
&& tree
->ops
->readpage_end_io_hook
) {
2289 ret
= tree
->ops
->readpage_end_io_hook(page
, start
, end
,
2294 clean_io_failure(start
, page
);
2298 failed_mirror
= (int)(unsigned long)bio
->bi_bdev
;
2300 * The generic bio_readpage_error handles errors the
2301 * following way: If possible, new read requests are
2302 * created and submitted and will end up in
2303 * end_bio_extent_readpage as well (if we're lucky, not
2304 * in the !uptodate case). In that case it returns 0 and
2305 * we just go on with the next page in our bio. If it
2306 * can't handle the error it will return -EIO and we
2307 * remain responsible for that page.
2309 ret
= bio_readpage_error(bio
, page
, start
, end
,
2310 failed_mirror
, NULL
);
2314 test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
2317 uncache_state(&cached
);
2320 if (tree
->ops
&& tree
->ops
->readpage_io_failed_hook
) {
2321 ret
= tree
->ops
->readpage_io_failed_hook(
2322 bio
, page
, start
, end
,
2323 failed_mirror
, state
);
2330 set_extent_uptodate(tree
, start
, end
, &cached
,
2333 unlock_extent_cached(tree
, start
, end
, &cached
, GFP_ATOMIC
);
2337 SetPageUptodate(page
);
2339 ClearPageUptodate(page
);
2345 check_page_uptodate(tree
, page
);
2347 ClearPageUptodate(page
);
2350 check_page_locked(tree
, page
);
2352 } while (bvec
<= bvec_end
);
2358 btrfs_bio_alloc(struct block_device
*bdev
, u64 first_sector
, int nr_vecs
,
2363 bio
= bio_alloc(gfp_flags
, nr_vecs
);
2365 if (bio
== NULL
&& (current
->flags
& PF_MEMALLOC
)) {
2366 while (!bio
&& (nr_vecs
/= 2))
2367 bio
= bio_alloc(gfp_flags
, nr_vecs
);
2372 bio
->bi_bdev
= bdev
;
2373 bio
->bi_sector
= first_sector
;
2378 static int submit_one_bio(int rw
, struct bio
*bio
, int mirror_num
,
2379 unsigned long bio_flags
)
2382 struct bio_vec
*bvec
= bio
->bi_io_vec
+ bio
->bi_vcnt
- 1;
2383 struct page
*page
= bvec
->bv_page
;
2384 struct extent_io_tree
*tree
= bio
->bi_private
;
2387 start
= ((u64
)page
->index
<< PAGE_CACHE_SHIFT
) + bvec
->bv_offset
;
2389 bio
->bi_private
= NULL
;
2393 if (tree
->ops
&& tree
->ops
->submit_bio_hook
)
2394 ret
= tree
->ops
->submit_bio_hook(page
->mapping
->host
, rw
, bio
,
2395 mirror_num
, bio_flags
, start
);
2397 btrfsic_submit_bio(rw
, bio
);
2399 if (bio_flagged(bio
, BIO_EOPNOTSUPP
))
2405 static int submit_extent_page(int rw
, struct extent_io_tree
*tree
,
2406 struct page
*page
, sector_t sector
,
2407 size_t size
, unsigned long offset
,
2408 struct block_device
*bdev
,
2409 struct bio
**bio_ret
,
2410 unsigned long max_pages
,
2411 bio_end_io_t end_io_func
,
2413 unsigned long prev_bio_flags
,
2414 unsigned long bio_flags
)
2420 int this_compressed
= bio_flags
& EXTENT_BIO_COMPRESSED
;
2421 int old_compressed
= prev_bio_flags
& EXTENT_BIO_COMPRESSED
;
2422 size_t page_size
= min_t(size_t, size
, PAGE_CACHE_SIZE
);
2424 if (bio_ret
&& *bio_ret
) {
2427 contig
= bio
->bi_sector
== sector
;
2429 contig
= bio
->bi_sector
+ (bio
->bi_size
>> 9) ==
2432 if (prev_bio_flags
!= bio_flags
|| !contig
||
2433 (tree
->ops
&& tree
->ops
->merge_bio_hook
&&
2434 tree
->ops
->merge_bio_hook(page
, offset
, page_size
, bio
,
2436 bio_add_page(bio
, page
, page_size
, offset
) < page_size
) {
2437 ret
= submit_one_bio(rw
, bio
, mirror_num
,
2444 if (this_compressed
)
2447 nr
= bio_get_nr_vecs(bdev
);
2449 bio
= btrfs_bio_alloc(bdev
, sector
, nr
, GFP_NOFS
| __GFP_HIGH
);
2453 bio_add_page(bio
, page
, page_size
, offset
);
2454 bio
->bi_end_io
= end_io_func
;
2455 bio
->bi_private
= tree
;
2460 ret
= submit_one_bio(rw
, bio
, mirror_num
, bio_flags
);
2465 void set_page_extent_mapped(struct page
*page
)
2467 if (!PagePrivate(page
)) {
2468 SetPagePrivate(page
);
2469 page_cache_get(page
);
2470 set_page_private(page
, EXTENT_PAGE_PRIVATE
);
2474 static void set_page_extent_head(struct page
*page
, unsigned long len
)
2476 WARN_ON(!PagePrivate(page
));
2477 set_page_private(page
, EXTENT_PAGE_PRIVATE_FIRST_PAGE
| len
<< 2);
2481 * basic readpage implementation. Locked extent state structs are inserted
2482 * into the tree that are removed when the IO is done (by the end_io
2485 static int __extent_read_full_page(struct extent_io_tree
*tree
,
2487 get_extent_t
*get_extent
,
2488 struct bio
**bio
, int mirror_num
,
2489 unsigned long *bio_flags
)
2491 struct inode
*inode
= page
->mapping
->host
;
2492 u64 start
= (u64
)page
->index
<< PAGE_CACHE_SHIFT
;
2493 u64 page_end
= start
+ PAGE_CACHE_SIZE
- 1;
2497 u64 last_byte
= i_size_read(inode
);
2501 struct extent_map
*em
;
2502 struct block_device
*bdev
;
2503 struct btrfs_ordered_extent
*ordered
;
2506 size_t pg_offset
= 0;
2508 size_t disk_io_size
;
2509 size_t blocksize
= inode
->i_sb
->s_blocksize
;
2510 unsigned long this_bio_flag
= 0;
2512 set_page_extent_mapped(page
);
2514 if (!PageUptodate(page
)) {
2515 if (cleancache_get_page(page
) == 0) {
2516 BUG_ON(blocksize
!= PAGE_SIZE
);
2523 lock_extent(tree
, start
, end
, GFP_NOFS
);
2524 ordered
= btrfs_lookup_ordered_extent(inode
, start
);
2527 unlock_extent(tree
, start
, end
, GFP_NOFS
);
2528 btrfs_start_ordered_extent(inode
, ordered
, 1);
2529 btrfs_put_ordered_extent(ordered
);
2532 if (page
->index
== last_byte
>> PAGE_CACHE_SHIFT
) {
2534 size_t zero_offset
= last_byte
& (PAGE_CACHE_SIZE
- 1);
2537 iosize
= PAGE_CACHE_SIZE
- zero_offset
;
2538 userpage
= kmap_atomic(page
, KM_USER0
);
2539 memset(userpage
+ zero_offset
, 0, iosize
);
2540 flush_dcache_page(page
);
2541 kunmap_atomic(userpage
, KM_USER0
);
2544 while (cur
<= end
) {
2545 if (cur
>= last_byte
) {
2547 struct extent_state
*cached
= NULL
;
2549 iosize
= PAGE_CACHE_SIZE
- pg_offset
;
2550 userpage
= kmap_atomic(page
, KM_USER0
);
2551 memset(userpage
+ pg_offset
, 0, iosize
);
2552 flush_dcache_page(page
);
2553 kunmap_atomic(userpage
, KM_USER0
);
2554 set_extent_uptodate(tree
, cur
, cur
+ iosize
- 1,
2556 unlock_extent_cached(tree
, cur
, cur
+ iosize
- 1,
2560 em
= get_extent(inode
, page
, pg_offset
, cur
,
2562 if (IS_ERR_OR_NULL(em
)) {
2564 unlock_extent(tree
, cur
, end
, GFP_NOFS
);
2567 extent_offset
= cur
- em
->start
;
2568 BUG_ON(extent_map_end(em
) <= cur
);
2571 if (test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
)) {
2572 this_bio_flag
= EXTENT_BIO_COMPRESSED
;
2573 extent_set_compress_type(&this_bio_flag
,
2577 iosize
= min(extent_map_end(em
) - cur
, end
- cur
+ 1);
2578 cur_end
= min(extent_map_end(em
) - 1, end
);
2579 iosize
= (iosize
+ blocksize
- 1) & ~((u64
)blocksize
- 1);
2580 if (this_bio_flag
& EXTENT_BIO_COMPRESSED
) {
2581 disk_io_size
= em
->block_len
;
2582 sector
= em
->block_start
>> 9;
2584 sector
= (em
->block_start
+ extent_offset
) >> 9;
2585 disk_io_size
= iosize
;
2588 block_start
= em
->block_start
;
2589 if (test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
2590 block_start
= EXTENT_MAP_HOLE
;
2591 free_extent_map(em
);
2594 /* we've found a hole, just zero and go on */
2595 if (block_start
== EXTENT_MAP_HOLE
) {
2597 struct extent_state
*cached
= NULL
;
2599 userpage
= kmap_atomic(page
, KM_USER0
);
2600 memset(userpage
+ pg_offset
, 0, iosize
);
2601 flush_dcache_page(page
);
2602 kunmap_atomic(userpage
, KM_USER0
);
2604 set_extent_uptodate(tree
, cur
, cur
+ iosize
- 1,
2606 unlock_extent_cached(tree
, cur
, cur
+ iosize
- 1,
2609 pg_offset
+= iosize
;
2612 /* the get_extent function already copied into the page */
2613 if (test_range_bit(tree
, cur
, cur_end
,
2614 EXTENT_UPTODATE
, 1, NULL
)) {
2615 check_page_uptodate(tree
, page
);
2616 unlock_extent(tree
, cur
, cur
+ iosize
- 1, GFP_NOFS
);
2618 pg_offset
+= iosize
;
2621 /* we have an inline extent but it didn't get marked up
2622 * to date. Error out
2624 if (block_start
== EXTENT_MAP_INLINE
) {
2626 unlock_extent(tree
, cur
, cur
+ iosize
- 1, GFP_NOFS
);
2628 pg_offset
+= iosize
;
2633 if (tree
->ops
&& tree
->ops
->readpage_io_hook
) {
2634 ret
= tree
->ops
->readpage_io_hook(page
, cur
,
2638 unsigned long pnr
= (last_byte
>> PAGE_CACHE_SHIFT
) + 1;
2640 ret
= submit_extent_page(READ
, tree
, page
,
2641 sector
, disk_io_size
, pg_offset
,
2643 end_bio_extent_readpage
, mirror_num
,
2647 *bio_flags
= this_bio_flag
;
2652 pg_offset
+= iosize
;
2656 if (!PageError(page
))
2657 SetPageUptodate(page
);
2663 int extent_read_full_page(struct extent_io_tree
*tree
, struct page
*page
,
2664 get_extent_t
*get_extent
, int mirror_num
)
2666 struct bio
*bio
= NULL
;
2667 unsigned long bio_flags
= 0;
2670 ret
= __extent_read_full_page(tree
, page
, get_extent
, &bio
, mirror_num
,
2673 ret
= submit_one_bio(READ
, bio
, mirror_num
, bio_flags
);
2677 static noinline
void update_nr_written(struct page
*page
,
2678 struct writeback_control
*wbc
,
2679 unsigned long nr_written
)
2681 wbc
->nr_to_write
-= nr_written
;
2682 if (wbc
->range_cyclic
|| (wbc
->nr_to_write
> 0 &&
2683 wbc
->range_start
== 0 && wbc
->range_end
== LLONG_MAX
))
2684 page
->mapping
->writeback_index
= page
->index
+ nr_written
;
2688 * the writepage semantics are similar to regular writepage. extent
2689 * records are inserted to lock ranges in the tree, and as dirty areas
2690 * are found, they are marked writeback. Then the lock bits are removed
2691 * and the end_io handler clears the writeback ranges
2693 static int __extent_writepage(struct page
*page
, struct writeback_control
*wbc
,
2696 struct inode
*inode
= page
->mapping
->host
;
2697 struct extent_page_data
*epd
= data
;
2698 struct extent_io_tree
*tree
= epd
->tree
;
2699 u64 start
= (u64
)page
->index
<< PAGE_CACHE_SHIFT
;
2701 u64 page_end
= start
+ PAGE_CACHE_SIZE
- 1;
2705 u64 last_byte
= i_size_read(inode
);
2709 struct extent_state
*cached_state
= NULL
;
2710 struct extent_map
*em
;
2711 struct block_device
*bdev
;
2714 size_t pg_offset
= 0;
2716 loff_t i_size
= i_size_read(inode
);
2717 unsigned long end_index
= i_size
>> PAGE_CACHE_SHIFT
;
2723 unsigned long nr_written
= 0;
2724 bool fill_delalloc
= true;
2726 if (wbc
->sync_mode
== WB_SYNC_ALL
)
2727 write_flags
= WRITE_SYNC
;
2729 write_flags
= WRITE
;
2731 trace___extent_writepage(page
, inode
, wbc
);
2733 WARN_ON(!PageLocked(page
));
2735 ClearPageError(page
);
2737 pg_offset
= i_size
& (PAGE_CACHE_SIZE
- 1);
2738 if (page
->index
> end_index
||
2739 (page
->index
== end_index
&& !pg_offset
)) {
2740 page
->mapping
->a_ops
->invalidatepage(page
, 0);
2745 if (page
->index
== end_index
) {
2748 userpage
= kmap_atomic(page
, KM_USER0
);
2749 memset(userpage
+ pg_offset
, 0,
2750 PAGE_CACHE_SIZE
- pg_offset
);
2751 kunmap_atomic(userpage
, KM_USER0
);
2752 flush_dcache_page(page
);
2756 set_page_extent_mapped(page
);
2758 if (!tree
->ops
|| !tree
->ops
->fill_delalloc
)
2759 fill_delalloc
= false;
2761 delalloc_start
= start
;
2764 if (!epd
->extent_locked
&& fill_delalloc
) {
2765 u64 delalloc_to_write
= 0;
2767 * make sure the wbc mapping index is at least updated
2770 update_nr_written(page
, wbc
, 0);
2772 while (delalloc_end
< page_end
) {
2773 nr_delalloc
= find_lock_delalloc_range(inode
, tree
,
2778 if (nr_delalloc
== 0) {
2779 delalloc_start
= delalloc_end
+ 1;
2782 tree
->ops
->fill_delalloc(inode
, page
, delalloc_start
,
2783 delalloc_end
, &page_started
,
2786 * delalloc_end is already one less than the total
2787 * length, so we don't subtract one from
2790 delalloc_to_write
+= (delalloc_end
- delalloc_start
+
2793 delalloc_start
= delalloc_end
+ 1;
2795 if (wbc
->nr_to_write
< delalloc_to_write
) {
2798 if (delalloc_to_write
< thresh
* 2)
2799 thresh
= delalloc_to_write
;
2800 wbc
->nr_to_write
= min_t(u64
, delalloc_to_write
,
2804 /* did the fill delalloc function already unlock and start
2810 * we've unlocked the page, so we can't update
2811 * the mapping's writeback index, just update
2814 wbc
->nr_to_write
-= nr_written
;
2818 if (tree
->ops
&& tree
->ops
->writepage_start_hook
) {
2819 ret
= tree
->ops
->writepage_start_hook(page
, start
,
2821 if (ret
== -EAGAIN
) {
2822 redirty_page_for_writepage(wbc
, page
);
2823 update_nr_written(page
, wbc
, nr_written
);
2831 * we don't want to touch the inode after unlocking the page,
2832 * so we update the mapping writeback index now
2834 update_nr_written(page
, wbc
, nr_written
+ 1);
2837 if (last_byte
<= start
) {
2838 if (tree
->ops
&& tree
->ops
->writepage_end_io_hook
)
2839 tree
->ops
->writepage_end_io_hook(page
, start
,
2844 blocksize
= inode
->i_sb
->s_blocksize
;
2846 while (cur
<= end
) {
2847 if (cur
>= last_byte
) {
2848 if (tree
->ops
&& tree
->ops
->writepage_end_io_hook
)
2849 tree
->ops
->writepage_end_io_hook(page
, cur
,
2853 em
= epd
->get_extent(inode
, page
, pg_offset
, cur
,
2855 if (IS_ERR_OR_NULL(em
)) {
2860 extent_offset
= cur
- em
->start
;
2861 BUG_ON(extent_map_end(em
) <= cur
);
2863 iosize
= min(extent_map_end(em
) - cur
, end
- cur
+ 1);
2864 iosize
= (iosize
+ blocksize
- 1) & ~((u64
)blocksize
- 1);
2865 sector
= (em
->block_start
+ extent_offset
) >> 9;
2867 block_start
= em
->block_start
;
2868 compressed
= test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
2869 free_extent_map(em
);
2873 * compressed and inline extents are written through other
2876 if (compressed
|| block_start
== EXTENT_MAP_HOLE
||
2877 block_start
== EXTENT_MAP_INLINE
) {
2879 * end_io notification does not happen here for
2880 * compressed extents
2882 if (!compressed
&& tree
->ops
&&
2883 tree
->ops
->writepage_end_io_hook
)
2884 tree
->ops
->writepage_end_io_hook(page
, cur
,
2887 else if (compressed
) {
2888 /* we don't want to end_page_writeback on
2889 * a compressed extent. this happens
2896 pg_offset
+= iosize
;
2899 /* leave this out until we have a page_mkwrite call */
2900 if (0 && !test_range_bit(tree
, cur
, cur
+ iosize
- 1,
2901 EXTENT_DIRTY
, 0, NULL
)) {
2903 pg_offset
+= iosize
;
2907 if (tree
->ops
&& tree
->ops
->writepage_io_hook
) {
2908 ret
= tree
->ops
->writepage_io_hook(page
, cur
,
2916 unsigned long max_nr
= end_index
+ 1;
2918 set_range_writeback(tree
, cur
, cur
+ iosize
- 1);
2919 if (!PageWriteback(page
)) {
2920 printk(KERN_ERR
"btrfs warning page %lu not "
2921 "writeback, cur %llu end %llu\n",
2922 page
->index
, (unsigned long long)cur
,
2923 (unsigned long long)end
);
2926 ret
= submit_extent_page(write_flags
, tree
, page
,
2927 sector
, iosize
, pg_offset
,
2928 bdev
, &epd
->bio
, max_nr
,
2929 end_bio_extent_writepage
,
2935 pg_offset
+= iosize
;
2940 /* make sure the mapping tag for page dirty gets cleared */
2941 set_page_writeback(page
);
2942 end_page_writeback(page
);
2948 /* drop our reference on any cached states */
2949 free_extent_state(cached_state
);
2954 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2955 * @mapping: address space structure to write
2956 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2957 * @writepage: function called for each page
2958 * @data: data passed to writepage function
2960 * If a page is already under I/O, write_cache_pages() skips it, even
2961 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
2962 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
2963 * and msync() need to guarantee that all the data which was dirty at the time
2964 * the call was made get new I/O started against them. If wbc->sync_mode is
2965 * WB_SYNC_ALL then we were called for data integrity and we must wait for
2966 * existing IO to complete.
2968 static int extent_write_cache_pages(struct extent_io_tree
*tree
,
2969 struct address_space
*mapping
,
2970 struct writeback_control
*wbc
,
2971 writepage_t writepage
, void *data
,
2972 void (*flush_fn
)(void *))
2976 int nr_to_write_done
= 0;
2977 struct pagevec pvec
;
2980 pgoff_t end
; /* Inclusive */
2984 pagevec_init(&pvec
, 0);
2985 if (wbc
->range_cyclic
) {
2986 index
= mapping
->writeback_index
; /* Start from prev offset */
2989 index
= wbc
->range_start
>> PAGE_CACHE_SHIFT
;
2990 end
= wbc
->range_end
>> PAGE_CACHE_SHIFT
;
2993 if (wbc
->sync_mode
== WB_SYNC_ALL
)
2994 tag
= PAGECACHE_TAG_TOWRITE
;
2996 tag
= PAGECACHE_TAG_DIRTY
;
2998 if (wbc
->sync_mode
== WB_SYNC_ALL
)
2999 tag_pages_for_writeback(mapping
, index
, end
);
3000 while (!done
&& !nr_to_write_done
&& (index
<= end
) &&
3001 (nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
, tag
,
3002 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
-1) + 1))) {
3006 for (i
= 0; i
< nr_pages
; i
++) {
3007 struct page
*page
= pvec
.pages
[i
];
3010 * At this point we hold neither mapping->tree_lock nor
3011 * lock on the page itself: the page may be truncated or
3012 * invalidated (changing page->mapping to NULL), or even
3013 * swizzled back from swapper_space to tmpfs file
3017 tree
->ops
->write_cache_pages_lock_hook
) {
3018 tree
->ops
->write_cache_pages_lock_hook(page
,
3021 if (!trylock_page(page
)) {
3027 if (unlikely(page
->mapping
!= mapping
)) {
3032 if (!wbc
->range_cyclic
&& page
->index
> end
) {
3038 if (wbc
->sync_mode
!= WB_SYNC_NONE
) {
3039 if (PageWriteback(page
))
3041 wait_on_page_writeback(page
);
3044 if (PageWriteback(page
) ||
3045 !clear_page_dirty_for_io(page
)) {
3050 ret
= (*writepage
)(page
, wbc
, data
);
3052 if (unlikely(ret
== AOP_WRITEPAGE_ACTIVATE
)) {
3060 * the filesystem may choose to bump up nr_to_write.
3061 * We have to make sure to honor the new nr_to_write
3064 nr_to_write_done
= wbc
->nr_to_write
<= 0;
3066 pagevec_release(&pvec
);
3069 if (!scanned
&& !done
) {
3071 * We hit the last page and there is more work to be done: wrap
3072 * back to the start of the file
3081 static void flush_epd_write_bio(struct extent_page_data
*epd
)
3085 submit_one_bio(WRITE_SYNC
, epd
->bio
, 0, 0);
3087 submit_one_bio(WRITE
, epd
->bio
, 0, 0);
3092 static noinline
void flush_write_bio(void *data
)
3094 struct extent_page_data
*epd
= data
;
3095 flush_epd_write_bio(epd
);
3098 int extent_write_full_page(struct extent_io_tree
*tree
, struct page
*page
,
3099 get_extent_t
*get_extent
,
3100 struct writeback_control
*wbc
)
3103 struct extent_page_data epd
= {
3106 .get_extent
= get_extent
,
3108 .sync_io
= wbc
->sync_mode
== WB_SYNC_ALL
,
3111 ret
= __extent_writepage(page
, wbc
, &epd
);
3113 flush_epd_write_bio(&epd
);
3117 int extent_write_locked_range(struct extent_io_tree
*tree
, struct inode
*inode
,
3118 u64 start
, u64 end
, get_extent_t
*get_extent
,
3122 struct address_space
*mapping
= inode
->i_mapping
;
3124 unsigned long nr_pages
= (end
- start
+ PAGE_CACHE_SIZE
) >>
3127 struct extent_page_data epd
= {
3130 .get_extent
= get_extent
,
3132 .sync_io
= mode
== WB_SYNC_ALL
,
3134 struct writeback_control wbc_writepages
= {
3136 .nr_to_write
= nr_pages
* 2,
3137 .range_start
= start
,
3138 .range_end
= end
+ 1,
3141 while (start
<= end
) {
3142 page
= find_get_page(mapping
, start
>> PAGE_CACHE_SHIFT
);
3143 if (clear_page_dirty_for_io(page
))
3144 ret
= __extent_writepage(page
, &wbc_writepages
, &epd
);
3146 if (tree
->ops
&& tree
->ops
->writepage_end_io_hook
)
3147 tree
->ops
->writepage_end_io_hook(page
, start
,
3148 start
+ PAGE_CACHE_SIZE
- 1,
3152 page_cache_release(page
);
3153 start
+= PAGE_CACHE_SIZE
;
3156 flush_epd_write_bio(&epd
);
3160 int extent_writepages(struct extent_io_tree
*tree
,
3161 struct address_space
*mapping
,
3162 get_extent_t
*get_extent
,
3163 struct writeback_control
*wbc
)
3166 struct extent_page_data epd
= {
3169 .get_extent
= get_extent
,
3171 .sync_io
= wbc
->sync_mode
== WB_SYNC_ALL
,
3174 ret
= extent_write_cache_pages(tree
, mapping
, wbc
,
3175 __extent_writepage
, &epd
,
3177 flush_epd_write_bio(&epd
);
3181 int extent_readpages(struct extent_io_tree
*tree
,
3182 struct address_space
*mapping
,
3183 struct list_head
*pages
, unsigned nr_pages
,
3184 get_extent_t get_extent
)
3186 struct bio
*bio
= NULL
;
3188 unsigned long bio_flags
= 0;
3190 for (page_idx
= 0; page_idx
< nr_pages
; page_idx
++) {
3191 struct page
*page
= list_entry(pages
->prev
, struct page
, lru
);
3193 prefetchw(&page
->flags
);
3194 list_del(&page
->lru
);
3195 if (!add_to_page_cache_lru(page
, mapping
,
3196 page
->index
, GFP_NOFS
)) {
3197 __extent_read_full_page(tree
, page
, get_extent
,
3198 &bio
, 0, &bio_flags
);
3200 page_cache_release(page
);
3202 BUG_ON(!list_empty(pages
));
3204 submit_one_bio(READ
, bio
, 0, bio_flags
);
3209 * basic invalidatepage code, this waits on any locked or writeback
3210 * ranges corresponding to the page, and then deletes any extent state
3211 * records from the tree
3213 int extent_invalidatepage(struct extent_io_tree
*tree
,
3214 struct page
*page
, unsigned long offset
)
3216 struct extent_state
*cached_state
= NULL
;
3217 u64 start
= ((u64
)page
->index
<< PAGE_CACHE_SHIFT
);
3218 u64 end
= start
+ PAGE_CACHE_SIZE
- 1;
3219 size_t blocksize
= page
->mapping
->host
->i_sb
->s_blocksize
;
3221 start
+= (offset
+ blocksize
- 1) & ~(blocksize
- 1);
3225 lock_extent_bits(tree
, start
, end
, 0, &cached_state
, GFP_NOFS
);
3226 wait_on_page_writeback(page
);
3227 clear_extent_bit(tree
, start
, end
,
3228 EXTENT_LOCKED
| EXTENT_DIRTY
| EXTENT_DELALLOC
|
3229 EXTENT_DO_ACCOUNTING
,
3230 1, 1, &cached_state
, GFP_NOFS
);
3235 * a helper for releasepage, this tests for areas of the page that
3236 * are locked or under IO and drops the related state bits if it is safe
3239 int try_release_extent_state(struct extent_map_tree
*map
,
3240 struct extent_io_tree
*tree
, struct page
*page
,
3243 u64 start
= (u64
)page
->index
<< PAGE_CACHE_SHIFT
;
3244 u64 end
= start
+ PAGE_CACHE_SIZE
- 1;
3247 if (test_range_bit(tree
, start
, end
,
3248 EXTENT_IOBITS
, 0, NULL
))
3251 if ((mask
& GFP_NOFS
) == GFP_NOFS
)
3254 * at this point we can safely clear everything except the
3255 * locked bit and the nodatasum bit
3257 ret
= clear_extent_bit(tree
, start
, end
,
3258 ~(EXTENT_LOCKED
| EXTENT_NODATASUM
),
3261 /* if clear_extent_bit failed for enomem reasons,
3262 * we can't allow the release to continue.
3273 * a helper for releasepage. As long as there are no locked extents
3274 * in the range corresponding to the page, both state records and extent
3275 * map records are removed
3277 int try_release_extent_mapping(struct extent_map_tree
*map
,
3278 struct extent_io_tree
*tree
, struct page
*page
,
3281 struct extent_map
*em
;
3282 u64 start
= (u64
)page
->index
<< PAGE_CACHE_SHIFT
;
3283 u64 end
= start
+ PAGE_CACHE_SIZE
- 1;
3285 if ((mask
& __GFP_WAIT
) &&
3286 page
->mapping
->host
->i_size
> 16 * 1024 * 1024) {
3288 while (start
<= end
) {
3289 len
= end
- start
+ 1;
3290 write_lock(&map
->lock
);
3291 em
= lookup_extent_mapping(map
, start
, len
);
3292 if (IS_ERR_OR_NULL(em
)) {
3293 write_unlock(&map
->lock
);
3296 if (test_bit(EXTENT_FLAG_PINNED
, &em
->flags
) ||
3297 em
->start
!= start
) {
3298 write_unlock(&map
->lock
);
3299 free_extent_map(em
);
3302 if (!test_range_bit(tree
, em
->start
,
3303 extent_map_end(em
) - 1,
3304 EXTENT_LOCKED
| EXTENT_WRITEBACK
,
3306 remove_extent_mapping(map
, em
);
3307 /* once for the rb tree */
3308 free_extent_map(em
);
3310 start
= extent_map_end(em
);
3311 write_unlock(&map
->lock
);
3314 free_extent_map(em
);
3317 return try_release_extent_state(map
, tree
, page
, mask
);
3321 * helper function for fiemap, which doesn't want to see any holes.
3322 * This maps until we find something past 'last'
3324 static struct extent_map
*get_extent_skip_holes(struct inode
*inode
,
3327 get_extent_t
*get_extent
)
3329 u64 sectorsize
= BTRFS_I(inode
)->root
->sectorsize
;
3330 struct extent_map
*em
;
3337 len
= last
- offset
;
3340 len
= (len
+ sectorsize
- 1) & ~(sectorsize
- 1);
3341 em
= get_extent(inode
, NULL
, 0, offset
, len
, 0);
3342 if (IS_ERR_OR_NULL(em
))
3345 /* if this isn't a hole return it */
3346 if (!test_bit(EXTENT_FLAG_VACANCY
, &em
->flags
) &&
3347 em
->block_start
!= EXTENT_MAP_HOLE
) {
3351 /* this is a hole, advance to the next extent */
3352 offset
= extent_map_end(em
);
3353 free_extent_map(em
);
3360 int extent_fiemap(struct inode
*inode
, struct fiemap_extent_info
*fieinfo
,
3361 __u64 start
, __u64 len
, get_extent_t
*get_extent
)
3365 u64 max
= start
+ len
;
3369 u64 last_for_get_extent
= 0;
3371 u64 isize
= i_size_read(inode
);
3372 struct btrfs_key found_key
;
3373 struct extent_map
*em
= NULL
;
3374 struct extent_state
*cached_state
= NULL
;
3375 struct btrfs_path
*path
;
3376 struct btrfs_file_extent_item
*item
;
3381 unsigned long emflags
;
3386 path
= btrfs_alloc_path();
3389 path
->leave_spinning
= 1;
3391 start
= ALIGN(start
, BTRFS_I(inode
)->root
->sectorsize
);
3392 len
= ALIGN(len
, BTRFS_I(inode
)->root
->sectorsize
);
3395 * lookup the last file extent. We're not using i_size here
3396 * because there might be preallocation past i_size
3398 ret
= btrfs_lookup_file_extent(NULL
, BTRFS_I(inode
)->root
,
3399 path
, btrfs_ino(inode
), -1, 0);
3401 btrfs_free_path(path
);
3406 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
3407 struct btrfs_file_extent_item
);
3408 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
, path
->slots
[0]);
3409 found_type
= btrfs_key_type(&found_key
);
3411 /* No extents, but there might be delalloc bits */
3412 if (found_key
.objectid
!= btrfs_ino(inode
) ||
3413 found_type
!= BTRFS_EXTENT_DATA_KEY
) {
3414 /* have to trust i_size as the end */
3416 last_for_get_extent
= isize
;
3419 * remember the start of the last extent. There are a
3420 * bunch of different factors that go into the length of the
3421 * extent, so its much less complex to remember where it started
3423 last
= found_key
.offset
;
3424 last_for_get_extent
= last
+ 1;
3426 btrfs_free_path(path
);
3429 * we might have some extents allocated but more delalloc past those
3430 * extents. so, we trust isize unless the start of the last extent is
3435 last_for_get_extent
= isize
;
3438 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, start
, start
+ len
, 0,
3439 &cached_state
, GFP_NOFS
);
3441 em
= get_extent_skip_holes(inode
, start
, last_for_get_extent
,
3451 u64 offset_in_extent
;
3453 /* break if the extent we found is outside the range */
3454 if (em
->start
>= max
|| extent_map_end(em
) < off
)
3458 * get_extent may return an extent that starts before our
3459 * requested range. We have to make sure the ranges
3460 * we return to fiemap always move forward and don't
3461 * overlap, so adjust the offsets here
3463 em_start
= max(em
->start
, off
);
3466 * record the offset from the start of the extent
3467 * for adjusting the disk offset below
3469 offset_in_extent
= em_start
- em
->start
;
3470 em_end
= extent_map_end(em
);
3471 em_len
= em_end
- em_start
;
3472 emflags
= em
->flags
;
3477 * bump off for our next call to get_extent
3479 off
= extent_map_end(em
);
3483 if (em
->block_start
== EXTENT_MAP_LAST_BYTE
) {
3485 flags
|= FIEMAP_EXTENT_LAST
;
3486 } else if (em
->block_start
== EXTENT_MAP_INLINE
) {
3487 flags
|= (FIEMAP_EXTENT_DATA_INLINE
|
3488 FIEMAP_EXTENT_NOT_ALIGNED
);
3489 } else if (em
->block_start
== EXTENT_MAP_DELALLOC
) {
3490 flags
|= (FIEMAP_EXTENT_DELALLOC
|
3491 FIEMAP_EXTENT_UNKNOWN
);
3493 disko
= em
->block_start
+ offset_in_extent
;
3495 if (test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
))
3496 flags
|= FIEMAP_EXTENT_ENCODED
;
3498 free_extent_map(em
);
3500 if ((em_start
>= last
) || em_len
== (u64
)-1 ||
3501 (last
== (u64
)-1 && isize
<= em_end
)) {
3502 flags
|= FIEMAP_EXTENT_LAST
;
3506 /* now scan forward to see if this is really the last extent. */
3507 em
= get_extent_skip_holes(inode
, off
, last_for_get_extent
,
3514 flags
|= FIEMAP_EXTENT_LAST
;
3517 ret
= fiemap_fill_next_extent(fieinfo
, em_start
, disko
,
3523 free_extent_map(em
);
3525 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, start
, start
+ len
,
3526 &cached_state
, GFP_NOFS
);
3530 inline struct page
*extent_buffer_page(struct extent_buffer
*eb
,
3534 struct address_space
*mapping
;
3537 return eb
->first_page
;
3538 i
+= eb
->start
>> PAGE_CACHE_SHIFT
;
3539 mapping
= eb
->first_page
->mapping
;
3544 * extent_buffer_page is only called after pinning the page
3545 * by increasing the reference count. So we know the page must
3546 * be in the radix tree.
3549 p
= radix_tree_lookup(&mapping
->page_tree
, i
);
3555 inline unsigned long num_extent_pages(u64 start
, u64 len
)
3557 return ((start
+ len
+ PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
) -
3558 (start
>> PAGE_CACHE_SHIFT
);
3561 static struct extent_buffer
*__alloc_extent_buffer(struct extent_io_tree
*tree
,
3566 struct extent_buffer
*eb
= NULL
;
3568 unsigned long flags
;
3571 eb
= kmem_cache_zalloc(extent_buffer_cache
, mask
);
3576 rwlock_init(&eb
->lock
);
3577 atomic_set(&eb
->write_locks
, 0);
3578 atomic_set(&eb
->read_locks
, 0);
3579 atomic_set(&eb
->blocking_readers
, 0);
3580 atomic_set(&eb
->blocking_writers
, 0);
3581 atomic_set(&eb
->spinning_readers
, 0);
3582 atomic_set(&eb
->spinning_writers
, 0);
3583 eb
->lock_nested
= 0;
3584 init_waitqueue_head(&eb
->write_lock_wq
);
3585 init_waitqueue_head(&eb
->read_lock_wq
);
3588 spin_lock_irqsave(&leak_lock
, flags
);
3589 list_add(&eb
->leak_list
, &buffers
);
3590 spin_unlock_irqrestore(&leak_lock
, flags
);
3592 atomic_set(&eb
->refs
, 1);
3597 static void __free_extent_buffer(struct extent_buffer
*eb
)
3600 unsigned long flags
;
3601 spin_lock_irqsave(&leak_lock
, flags
);
3602 list_del(&eb
->leak_list
);
3603 spin_unlock_irqrestore(&leak_lock
, flags
);
3605 kmem_cache_free(extent_buffer_cache
, eb
);
3609 * Helper for releasing extent buffer page.
3611 static void btrfs_release_extent_buffer_page(struct extent_buffer
*eb
,
3612 unsigned long start_idx
)
3614 unsigned long index
;
3617 if (!eb
->first_page
)
3620 index
= num_extent_pages(eb
->start
, eb
->len
);
3621 if (start_idx
>= index
)
3626 page
= extent_buffer_page(eb
, index
);
3628 page_cache_release(page
);
3629 } while (index
!= start_idx
);
3633 * Helper for releasing the extent buffer.
3635 static inline void btrfs_release_extent_buffer(struct extent_buffer
*eb
)
3637 btrfs_release_extent_buffer_page(eb
, 0);
3638 __free_extent_buffer(eb
);
3641 struct extent_buffer
*alloc_extent_buffer(struct extent_io_tree
*tree
,
3642 u64 start
, unsigned long len
,
3645 unsigned long num_pages
= num_extent_pages(start
, len
);
3647 unsigned long index
= start
>> PAGE_CACHE_SHIFT
;
3648 struct extent_buffer
*eb
;
3649 struct extent_buffer
*exists
= NULL
;
3651 struct address_space
*mapping
= tree
->mapping
;
3656 eb
= radix_tree_lookup(&tree
->buffer
, start
>> PAGE_CACHE_SHIFT
);
3657 if (eb
&& atomic_inc_not_zero(&eb
->refs
)) {
3659 mark_page_accessed(eb
->first_page
);
3664 eb
= __alloc_extent_buffer(tree
, start
, len
, GFP_NOFS
);
3669 eb
->first_page
= page0
;
3672 page_cache_get(page0
);
3673 mark_page_accessed(page0
);
3674 set_page_extent_mapped(page0
);
3675 set_page_extent_head(page0
, len
);
3676 uptodate
= PageUptodate(page0
);
3680 for (; i
< num_pages
; i
++, index
++) {
3681 p
= find_or_create_page(mapping
, index
, GFP_NOFS
);
3686 set_page_extent_mapped(p
);
3687 mark_page_accessed(p
);
3690 set_page_extent_head(p
, len
);
3692 set_page_private(p
, EXTENT_PAGE_PRIVATE
);
3694 if (!PageUptodate(p
))
3698 * see below about how we avoid a nasty race with release page
3699 * and why we unlock later
3705 set_bit(EXTENT_BUFFER_UPTODATE
, &eb
->bflags
);
3707 ret
= radix_tree_preload(GFP_NOFS
& ~__GFP_HIGHMEM
);
3711 spin_lock(&tree
->buffer_lock
);
3712 ret
= radix_tree_insert(&tree
->buffer
, start
>> PAGE_CACHE_SHIFT
, eb
);
3713 if (ret
== -EEXIST
) {
3714 exists
= radix_tree_lookup(&tree
->buffer
,
3715 start
>> PAGE_CACHE_SHIFT
);
3716 /* add one reference for the caller */
3717 atomic_inc(&exists
->refs
);
3718 spin_unlock(&tree
->buffer_lock
);
3719 radix_tree_preload_end();
3722 /* add one reference for the tree */
3723 atomic_inc(&eb
->refs
);
3724 spin_unlock(&tree
->buffer_lock
);
3725 radix_tree_preload_end();
3728 * there is a race where release page may have
3729 * tried to find this extent buffer in the radix
3730 * but failed. It will tell the VM it is safe to
3731 * reclaim the, and it will clear the page private bit.
3732 * We must make sure to set the page private bit properly
3733 * after the extent buffer is in the radix tree so
3734 * it doesn't get lost
3736 set_page_extent_mapped(eb
->first_page
);
3737 set_page_extent_head(eb
->first_page
, eb
->len
);
3739 unlock_page(eb
->first_page
);
3743 if (eb
->first_page
&& !page0
)
3744 unlock_page(eb
->first_page
);
3746 if (!atomic_dec_and_test(&eb
->refs
))
3748 btrfs_release_extent_buffer(eb
);
3752 struct extent_buffer
*find_extent_buffer(struct extent_io_tree
*tree
,
3753 u64 start
, unsigned long len
)
3755 struct extent_buffer
*eb
;
3758 eb
= radix_tree_lookup(&tree
->buffer
, start
>> PAGE_CACHE_SHIFT
);
3759 if (eb
&& atomic_inc_not_zero(&eb
->refs
)) {
3761 mark_page_accessed(eb
->first_page
);
3769 void free_extent_buffer(struct extent_buffer
*eb
)
3774 if (!atomic_dec_and_test(&eb
->refs
))
3780 int clear_extent_buffer_dirty(struct extent_io_tree
*tree
,
3781 struct extent_buffer
*eb
)
3784 unsigned long num_pages
;
3787 num_pages
= num_extent_pages(eb
->start
, eb
->len
);
3789 for (i
= 0; i
< num_pages
; i
++) {
3790 page
= extent_buffer_page(eb
, i
);
3791 if (!PageDirty(page
))
3795 WARN_ON(!PagePrivate(page
));
3797 set_page_extent_mapped(page
);
3799 set_page_extent_head(page
, eb
->len
);
3801 clear_page_dirty_for_io(page
);
3802 spin_lock_irq(&page
->mapping
->tree_lock
);
3803 if (!PageDirty(page
)) {
3804 radix_tree_tag_clear(&page
->mapping
->page_tree
,
3806 PAGECACHE_TAG_DIRTY
);
3808 spin_unlock_irq(&page
->mapping
->tree_lock
);
3809 ClearPageError(page
);
3815 int set_extent_buffer_dirty(struct extent_io_tree
*tree
,
3816 struct extent_buffer
*eb
)
3819 unsigned long num_pages
;
3822 was_dirty
= test_and_set_bit(EXTENT_BUFFER_DIRTY
, &eb
->bflags
);
3823 num_pages
= num_extent_pages(eb
->start
, eb
->len
);
3824 for (i
= 0; i
< num_pages
; i
++)
3825 __set_page_dirty_nobuffers(extent_buffer_page(eb
, i
));
3829 static int __eb_straddles_pages(u64 start
, u64 len
)
3831 if (len
< PAGE_CACHE_SIZE
)
3833 if (start
& (PAGE_CACHE_SIZE
- 1))
3835 if ((start
+ len
) & (PAGE_CACHE_SIZE
- 1))
3840 static int eb_straddles_pages(struct extent_buffer
*eb
)
3842 return __eb_straddles_pages(eb
->start
, eb
->len
);
3845 int clear_extent_buffer_uptodate(struct extent_io_tree
*tree
,
3846 struct extent_buffer
*eb
,
3847 struct extent_state
**cached_state
)
3851 unsigned long num_pages
;
3853 num_pages
= num_extent_pages(eb
->start
, eb
->len
);
3854 clear_bit(EXTENT_BUFFER_UPTODATE
, &eb
->bflags
);
3856 if (eb_straddles_pages(eb
)) {
3857 clear_extent_uptodate(tree
, eb
->start
, eb
->start
+ eb
->len
- 1,
3858 cached_state
, GFP_NOFS
);
3860 for (i
= 0; i
< num_pages
; i
++) {
3861 page
= extent_buffer_page(eb
, i
);
3863 ClearPageUptodate(page
);
3868 int set_extent_buffer_uptodate(struct extent_io_tree
*tree
,
3869 struct extent_buffer
*eb
)
3873 unsigned long num_pages
;
3875 num_pages
= num_extent_pages(eb
->start
, eb
->len
);
3877 if (eb_straddles_pages(eb
)) {
3878 set_extent_uptodate(tree
, eb
->start
, eb
->start
+ eb
->len
- 1,
3881 for (i
= 0; i
< num_pages
; i
++) {
3882 page
= extent_buffer_page(eb
, i
);
3883 if ((i
== 0 && (eb
->start
& (PAGE_CACHE_SIZE
- 1))) ||
3884 ((i
== num_pages
- 1) &&
3885 ((eb
->start
+ eb
->len
) & (PAGE_CACHE_SIZE
- 1)))) {
3886 check_page_uptodate(tree
, page
);
3889 SetPageUptodate(page
);
3894 int extent_range_uptodate(struct extent_io_tree
*tree
,
3899 int pg_uptodate
= 1;
3901 unsigned long index
;
3903 if (__eb_straddles_pages(start
, end
- start
+ 1)) {
3904 ret
= test_range_bit(tree
, start
, end
,
3905 EXTENT_UPTODATE
, 1, NULL
);
3909 while (start
<= end
) {
3910 index
= start
>> PAGE_CACHE_SHIFT
;
3911 page
= find_get_page(tree
->mapping
, index
);
3912 uptodate
= PageUptodate(page
);
3913 page_cache_release(page
);
3918 start
+= PAGE_CACHE_SIZE
;
3923 int extent_buffer_uptodate(struct extent_io_tree
*tree
,
3924 struct extent_buffer
*eb
,
3925 struct extent_state
*cached_state
)
3928 unsigned long num_pages
;
3931 int pg_uptodate
= 1;
3933 if (test_bit(EXTENT_BUFFER_UPTODATE
, &eb
->bflags
))
3936 if (eb_straddles_pages(eb
)) {
3937 ret
= test_range_bit(tree
, eb
->start
, eb
->start
+ eb
->len
- 1,
3938 EXTENT_UPTODATE
, 1, cached_state
);
3943 num_pages
= num_extent_pages(eb
->start
, eb
->len
);
3944 for (i
= 0; i
< num_pages
; i
++) {
3945 page
= extent_buffer_page(eb
, i
);
3946 if (!PageUptodate(page
)) {
3954 int read_extent_buffer_pages(struct extent_io_tree
*tree
,
3955 struct extent_buffer
*eb
, u64 start
, int wait
,
3956 get_extent_t
*get_extent
, int mirror_num
)
3959 unsigned long start_i
;
3963 int locked_pages
= 0;
3964 int all_uptodate
= 1;
3965 int inc_all_pages
= 0;
3966 unsigned long num_pages
;
3967 struct bio
*bio
= NULL
;
3968 unsigned long bio_flags
= 0;
3970 if (test_bit(EXTENT_BUFFER_UPTODATE
, &eb
->bflags
))
3973 if (eb_straddles_pages(eb
)) {
3974 if (test_range_bit(tree
, eb
->start
, eb
->start
+ eb
->len
- 1,
3975 EXTENT_UPTODATE
, 1, NULL
)) {
3981 WARN_ON(start
< eb
->start
);
3982 start_i
= (start
>> PAGE_CACHE_SHIFT
) -
3983 (eb
->start
>> PAGE_CACHE_SHIFT
);
3988 num_pages
= num_extent_pages(eb
->start
, eb
->len
);
3989 for (i
= start_i
; i
< num_pages
; i
++) {
3990 page
= extent_buffer_page(eb
, i
);
3991 if (wait
== WAIT_NONE
) {
3992 if (!trylock_page(page
))
3998 if (!PageUptodate(page
))
4003 set_bit(EXTENT_BUFFER_UPTODATE
, &eb
->bflags
);
4007 for (i
= start_i
; i
< num_pages
; i
++) {
4008 page
= extent_buffer_page(eb
, i
);
4010 WARN_ON(!PagePrivate(page
));
4012 set_page_extent_mapped(page
);
4014 set_page_extent_head(page
, eb
->len
);
4017 page_cache_get(page
);
4018 if (!PageUptodate(page
)) {
4021 ClearPageError(page
);
4022 err
= __extent_read_full_page(tree
, page
,
4024 mirror_num
, &bio_flags
);
4033 submit_one_bio(READ
, bio
, mirror_num
, bio_flags
);
4035 if (ret
|| wait
!= WAIT_COMPLETE
)
4038 for (i
= start_i
; i
< num_pages
; i
++) {
4039 page
= extent_buffer_page(eb
, i
);
4040 wait_on_page_locked(page
);
4041 if (!PageUptodate(page
))
4046 set_bit(EXTENT_BUFFER_UPTODATE
, &eb
->bflags
);
4051 while (locked_pages
> 0) {
4052 page
= extent_buffer_page(eb
, i
);
4060 void read_extent_buffer(struct extent_buffer
*eb
, void *dstv
,
4061 unsigned long start
,
4068 char *dst
= (char *)dstv
;
4069 size_t start_offset
= eb
->start
& ((u64
)PAGE_CACHE_SIZE
- 1);
4070 unsigned long i
= (start_offset
+ start
) >> PAGE_CACHE_SHIFT
;
4072 WARN_ON(start
> eb
->len
);
4073 WARN_ON(start
+ len
> eb
->start
+ eb
->len
);
4075 offset
= (start_offset
+ start
) & ((unsigned long)PAGE_CACHE_SIZE
- 1);
4078 page
= extent_buffer_page(eb
, i
);
4080 cur
= min(len
, (PAGE_CACHE_SIZE
- offset
));
4081 kaddr
= page_address(page
);
4082 memcpy(dst
, kaddr
+ offset
, cur
);
4091 int map_private_extent_buffer(struct extent_buffer
*eb
, unsigned long start
,
4092 unsigned long min_len
, char **map
,
4093 unsigned long *map_start
,
4094 unsigned long *map_len
)
4096 size_t offset
= start
& (PAGE_CACHE_SIZE
- 1);
4099 size_t start_offset
= eb
->start
& ((u64
)PAGE_CACHE_SIZE
- 1);
4100 unsigned long i
= (start_offset
+ start
) >> PAGE_CACHE_SHIFT
;
4101 unsigned long end_i
= (start_offset
+ start
+ min_len
- 1) >>
4108 offset
= start_offset
;
4112 *map_start
= ((u64
)i
<< PAGE_CACHE_SHIFT
) - start_offset
;
4115 if (start
+ min_len
> eb
->len
) {
4116 printk(KERN_ERR
"btrfs bad mapping eb start %llu len %lu, "
4117 "wanted %lu %lu\n", (unsigned long long)eb
->start
,
4118 eb
->len
, start
, min_len
);
4123 p
= extent_buffer_page(eb
, i
);
4124 kaddr
= page_address(p
);
4125 *map
= kaddr
+ offset
;
4126 *map_len
= PAGE_CACHE_SIZE
- offset
;
4130 int memcmp_extent_buffer(struct extent_buffer
*eb
, const void *ptrv
,
4131 unsigned long start
,
4138 char *ptr
= (char *)ptrv
;
4139 size_t start_offset
= eb
->start
& ((u64
)PAGE_CACHE_SIZE
- 1);
4140 unsigned long i
= (start_offset
+ start
) >> PAGE_CACHE_SHIFT
;
4143 WARN_ON(start
> eb
->len
);
4144 WARN_ON(start
+ len
> eb
->start
+ eb
->len
);
4146 offset
= (start_offset
+ start
) & ((unsigned long)PAGE_CACHE_SIZE
- 1);
4149 page
= extent_buffer_page(eb
, i
);
4151 cur
= min(len
, (PAGE_CACHE_SIZE
- offset
));
4153 kaddr
= page_address(page
);
4154 ret
= memcmp(ptr
, kaddr
+ offset
, cur
);
4166 void write_extent_buffer(struct extent_buffer
*eb
, const void *srcv
,
4167 unsigned long start
, unsigned long len
)
4173 char *src
= (char *)srcv
;
4174 size_t start_offset
= eb
->start
& ((u64
)PAGE_CACHE_SIZE
- 1);
4175 unsigned long i
= (start_offset
+ start
) >> PAGE_CACHE_SHIFT
;
4177 WARN_ON(start
> eb
->len
);
4178 WARN_ON(start
+ len
> eb
->start
+ eb
->len
);
4180 offset
= (start_offset
+ start
) & ((unsigned long)PAGE_CACHE_SIZE
- 1);
4183 page
= extent_buffer_page(eb
, i
);
4184 WARN_ON(!PageUptodate(page
));
4186 cur
= min(len
, PAGE_CACHE_SIZE
- offset
);
4187 kaddr
= page_address(page
);
4188 memcpy(kaddr
+ offset
, src
, cur
);
4197 void memset_extent_buffer(struct extent_buffer
*eb
, char c
,
4198 unsigned long start
, unsigned long len
)
4204 size_t start_offset
= eb
->start
& ((u64
)PAGE_CACHE_SIZE
- 1);
4205 unsigned long i
= (start_offset
+ start
) >> PAGE_CACHE_SHIFT
;
4207 WARN_ON(start
> eb
->len
);
4208 WARN_ON(start
+ len
> eb
->start
+ eb
->len
);
4210 offset
= (start_offset
+ start
) & ((unsigned long)PAGE_CACHE_SIZE
- 1);
4213 page
= extent_buffer_page(eb
, i
);
4214 WARN_ON(!PageUptodate(page
));
4216 cur
= min(len
, PAGE_CACHE_SIZE
- offset
);
4217 kaddr
= page_address(page
);
4218 memset(kaddr
+ offset
, c
, cur
);
4226 void copy_extent_buffer(struct extent_buffer
*dst
, struct extent_buffer
*src
,
4227 unsigned long dst_offset
, unsigned long src_offset
,
4230 u64 dst_len
= dst
->len
;
4235 size_t start_offset
= dst
->start
& ((u64
)PAGE_CACHE_SIZE
- 1);
4236 unsigned long i
= (start_offset
+ dst_offset
) >> PAGE_CACHE_SHIFT
;
4238 WARN_ON(src
->len
!= dst_len
);
4240 offset
= (start_offset
+ dst_offset
) &
4241 ((unsigned long)PAGE_CACHE_SIZE
- 1);
4244 page
= extent_buffer_page(dst
, i
);
4245 WARN_ON(!PageUptodate(page
));
4247 cur
= min(len
, (unsigned long)(PAGE_CACHE_SIZE
- offset
));
4249 kaddr
= page_address(page
);
4250 read_extent_buffer(src
, kaddr
+ offset
, src_offset
, cur
);
4259 static void move_pages(struct page
*dst_page
, struct page
*src_page
,
4260 unsigned long dst_off
, unsigned long src_off
,
4263 char *dst_kaddr
= page_address(dst_page
);
4264 if (dst_page
== src_page
) {
4265 memmove(dst_kaddr
+ dst_off
, dst_kaddr
+ src_off
, len
);
4267 char *src_kaddr
= page_address(src_page
);
4268 char *p
= dst_kaddr
+ dst_off
+ len
;
4269 char *s
= src_kaddr
+ src_off
+ len
;
4276 static inline bool areas_overlap(unsigned long src
, unsigned long dst
, unsigned long len
)
4278 unsigned long distance
= (src
> dst
) ? src
- dst
: dst
- src
;
4279 return distance
< len
;
4282 static void copy_pages(struct page
*dst_page
, struct page
*src_page
,
4283 unsigned long dst_off
, unsigned long src_off
,
4286 char *dst_kaddr
= page_address(dst_page
);
4289 if (dst_page
!= src_page
) {
4290 src_kaddr
= page_address(src_page
);
4292 src_kaddr
= dst_kaddr
;
4293 BUG_ON(areas_overlap(src_off
, dst_off
, len
));
4296 memcpy(dst_kaddr
+ dst_off
, src_kaddr
+ src_off
, len
);
4299 void memcpy_extent_buffer(struct extent_buffer
*dst
, unsigned long dst_offset
,
4300 unsigned long src_offset
, unsigned long len
)
4303 size_t dst_off_in_page
;
4304 size_t src_off_in_page
;
4305 size_t start_offset
= dst
->start
& ((u64
)PAGE_CACHE_SIZE
- 1);
4306 unsigned long dst_i
;
4307 unsigned long src_i
;
4309 if (src_offset
+ len
> dst
->len
) {
4310 printk(KERN_ERR
"btrfs memmove bogus src_offset %lu move "
4311 "len %lu dst len %lu\n", src_offset
, len
, dst
->len
);
4314 if (dst_offset
+ len
> dst
->len
) {
4315 printk(KERN_ERR
"btrfs memmove bogus dst_offset %lu move "
4316 "len %lu dst len %lu\n", dst_offset
, len
, dst
->len
);
4321 dst_off_in_page
= (start_offset
+ dst_offset
) &
4322 ((unsigned long)PAGE_CACHE_SIZE
- 1);
4323 src_off_in_page
= (start_offset
+ src_offset
) &
4324 ((unsigned long)PAGE_CACHE_SIZE
- 1);
4326 dst_i
= (start_offset
+ dst_offset
) >> PAGE_CACHE_SHIFT
;
4327 src_i
= (start_offset
+ src_offset
) >> PAGE_CACHE_SHIFT
;
4329 cur
= min(len
, (unsigned long)(PAGE_CACHE_SIZE
-
4331 cur
= min_t(unsigned long, cur
,
4332 (unsigned long)(PAGE_CACHE_SIZE
- dst_off_in_page
));
4334 copy_pages(extent_buffer_page(dst
, dst_i
),
4335 extent_buffer_page(dst
, src_i
),
4336 dst_off_in_page
, src_off_in_page
, cur
);
4344 void memmove_extent_buffer(struct extent_buffer
*dst
, unsigned long dst_offset
,
4345 unsigned long src_offset
, unsigned long len
)
4348 size_t dst_off_in_page
;
4349 size_t src_off_in_page
;
4350 unsigned long dst_end
= dst_offset
+ len
- 1;
4351 unsigned long src_end
= src_offset
+ len
- 1;
4352 size_t start_offset
= dst
->start
& ((u64
)PAGE_CACHE_SIZE
- 1);
4353 unsigned long dst_i
;
4354 unsigned long src_i
;
4356 if (src_offset
+ len
> dst
->len
) {
4357 printk(KERN_ERR
"btrfs memmove bogus src_offset %lu move "
4358 "len %lu len %lu\n", src_offset
, len
, dst
->len
);
4361 if (dst_offset
+ len
> dst
->len
) {
4362 printk(KERN_ERR
"btrfs memmove bogus dst_offset %lu move "
4363 "len %lu len %lu\n", dst_offset
, len
, dst
->len
);
4366 if (!areas_overlap(src_offset
, dst_offset
, len
)) {
4367 memcpy_extent_buffer(dst
, dst_offset
, src_offset
, len
);
4371 dst_i
= (start_offset
+ dst_end
) >> PAGE_CACHE_SHIFT
;
4372 src_i
= (start_offset
+ src_end
) >> PAGE_CACHE_SHIFT
;
4374 dst_off_in_page
= (start_offset
+ dst_end
) &
4375 ((unsigned long)PAGE_CACHE_SIZE
- 1);
4376 src_off_in_page
= (start_offset
+ src_end
) &
4377 ((unsigned long)PAGE_CACHE_SIZE
- 1);
4379 cur
= min_t(unsigned long, len
, src_off_in_page
+ 1);
4380 cur
= min(cur
, dst_off_in_page
+ 1);
4381 move_pages(extent_buffer_page(dst
, dst_i
),
4382 extent_buffer_page(dst
, src_i
),
4383 dst_off_in_page
- cur
+ 1,
4384 src_off_in_page
- cur
+ 1, cur
);
4392 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head
*head
)
4394 struct extent_buffer
*eb
=
4395 container_of(head
, struct extent_buffer
, rcu_head
);
4397 btrfs_release_extent_buffer(eb
);
4400 int try_release_extent_buffer(struct extent_io_tree
*tree
, struct page
*page
)
4402 u64 start
= page_offset(page
);
4403 struct extent_buffer
*eb
;
4406 spin_lock(&tree
->buffer_lock
);
4407 eb
= radix_tree_lookup(&tree
->buffer
, start
>> PAGE_CACHE_SHIFT
);
4409 spin_unlock(&tree
->buffer_lock
);
4413 if (test_bit(EXTENT_BUFFER_DIRTY
, &eb
->bflags
)) {
4419 * set @eb->refs to 0 if it is already 1, and then release the @eb.
4422 if (atomic_cmpxchg(&eb
->refs
, 1, 0) != 1) {
4427 radix_tree_delete(&tree
->buffer
, start
>> PAGE_CACHE_SHIFT
);
4429 spin_unlock(&tree
->buffer_lock
);
4431 /* at this point we can safely release the extent buffer */
4432 if (atomic_read(&eb
->refs
) == 0)
4433 call_rcu(&eb
->rcu_head
, btrfs_release_extent_buffer_rcu
);