2 * Copyright (C) 2008 Red Hat. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/pagemap.h>
20 #include <linux/sched.h>
21 #include <linux/slab.h>
22 #include <linux/math64.h>
23 #include <linux/ratelimit.h>
25 #include "free-space-cache.h"
26 #include "transaction.h"
28 #include "extent_io.h"
29 #include "inode-map.h"
31 #define BITS_PER_BITMAP (PAGE_CACHE_SIZE * 8)
32 #define MAX_CACHE_BYTES_PER_GIG (32 * 1024)
34 static int link_free_space(struct btrfs_free_space_ctl
*ctl
,
35 struct btrfs_free_space
*info
);
37 static struct inode
*__lookup_free_space_inode(struct btrfs_root
*root
,
38 struct btrfs_path
*path
,
42 struct btrfs_key location
;
43 struct btrfs_disk_key disk_key
;
44 struct btrfs_free_space_header
*header
;
45 struct extent_buffer
*leaf
;
46 struct inode
*inode
= NULL
;
49 key
.objectid
= BTRFS_FREE_SPACE_OBJECTID
;
53 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
57 btrfs_release_path(path
);
58 return ERR_PTR(-ENOENT
);
61 leaf
= path
->nodes
[0];
62 header
= btrfs_item_ptr(leaf
, path
->slots
[0],
63 struct btrfs_free_space_header
);
64 btrfs_free_space_key(leaf
, header
, &disk_key
);
65 btrfs_disk_key_to_cpu(&location
, &disk_key
);
66 btrfs_release_path(path
);
68 inode
= btrfs_iget(root
->fs_info
->sb
, &location
, root
, NULL
);
70 return ERR_PTR(-ENOENT
);
73 if (is_bad_inode(inode
)) {
75 return ERR_PTR(-ENOENT
);
78 inode
->i_mapping
->flags
&= ~__GFP_FS
;
83 struct inode
*lookup_free_space_inode(struct btrfs_root
*root
,
84 struct btrfs_block_group_cache
85 *block_group
, struct btrfs_path
*path
)
87 struct inode
*inode
= NULL
;
88 u32 flags
= BTRFS_INODE_NODATASUM
| BTRFS_INODE_NODATACOW
;
90 spin_lock(&block_group
->lock
);
91 if (block_group
->inode
)
92 inode
= igrab(block_group
->inode
);
93 spin_unlock(&block_group
->lock
);
97 inode
= __lookup_free_space_inode(root
, path
,
98 block_group
->key
.objectid
);
102 spin_lock(&block_group
->lock
);
103 if (!((BTRFS_I(inode
)->flags
& flags
) == flags
)) {
104 printk(KERN_INFO
"Old style space inode found, converting.\n");
105 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATASUM
|
106 BTRFS_INODE_NODATACOW
;
107 block_group
->disk_cache_state
= BTRFS_DC_CLEAR
;
110 if (!block_group
->iref
) {
111 block_group
->inode
= igrab(inode
);
112 block_group
->iref
= 1;
114 spin_unlock(&block_group
->lock
);
119 int __create_free_space_inode(struct btrfs_root
*root
,
120 struct btrfs_trans_handle
*trans
,
121 struct btrfs_path
*path
, u64 ino
, u64 offset
)
123 struct btrfs_key key
;
124 struct btrfs_disk_key disk_key
;
125 struct btrfs_free_space_header
*header
;
126 struct btrfs_inode_item
*inode_item
;
127 struct extent_buffer
*leaf
;
128 u64 flags
= BTRFS_INODE_NOCOMPRESS
| BTRFS_INODE_PREALLOC
;
131 ret
= btrfs_insert_empty_inode(trans
, root
, path
, ino
);
135 /* We inline crc's for the free disk space cache */
136 if (ino
!= BTRFS_FREE_INO_OBJECTID
)
137 flags
|= BTRFS_INODE_NODATASUM
| BTRFS_INODE_NODATACOW
;
139 leaf
= path
->nodes
[0];
140 inode_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
141 struct btrfs_inode_item
);
142 btrfs_item_key(leaf
, &disk_key
, path
->slots
[0]);
143 memset_extent_buffer(leaf
, 0, (unsigned long)inode_item
,
144 sizeof(*inode_item
));
145 btrfs_set_inode_generation(leaf
, inode_item
, trans
->transid
);
146 btrfs_set_inode_size(leaf
, inode_item
, 0);
147 btrfs_set_inode_nbytes(leaf
, inode_item
, 0);
148 btrfs_set_inode_uid(leaf
, inode_item
, 0);
149 btrfs_set_inode_gid(leaf
, inode_item
, 0);
150 btrfs_set_inode_mode(leaf
, inode_item
, S_IFREG
| 0600);
151 btrfs_set_inode_flags(leaf
, inode_item
, flags
);
152 btrfs_set_inode_nlink(leaf
, inode_item
, 1);
153 btrfs_set_inode_transid(leaf
, inode_item
, trans
->transid
);
154 btrfs_set_inode_block_group(leaf
, inode_item
, offset
);
155 btrfs_mark_buffer_dirty(leaf
);
156 btrfs_release_path(path
);
158 key
.objectid
= BTRFS_FREE_SPACE_OBJECTID
;
162 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
163 sizeof(struct btrfs_free_space_header
));
165 btrfs_release_path(path
);
168 leaf
= path
->nodes
[0];
169 header
= btrfs_item_ptr(leaf
, path
->slots
[0],
170 struct btrfs_free_space_header
);
171 memset_extent_buffer(leaf
, 0, (unsigned long)header
, sizeof(*header
));
172 btrfs_set_free_space_key(leaf
, header
, &disk_key
);
173 btrfs_mark_buffer_dirty(leaf
);
174 btrfs_release_path(path
);
179 int create_free_space_inode(struct btrfs_root
*root
,
180 struct btrfs_trans_handle
*trans
,
181 struct btrfs_block_group_cache
*block_group
,
182 struct btrfs_path
*path
)
187 ret
= btrfs_find_free_objectid(root
, &ino
);
191 return __create_free_space_inode(root
, trans
, path
, ino
,
192 block_group
->key
.objectid
);
195 int btrfs_truncate_free_space_cache(struct btrfs_root
*root
,
196 struct btrfs_trans_handle
*trans
,
197 struct btrfs_path
*path
,
200 struct btrfs_block_rsv
*rsv
;
205 rsv
= trans
->block_rsv
;
206 trans
->block_rsv
= &root
->fs_info
->global_block_rsv
;
208 /* 1 for slack space, 1 for updating the inode */
209 needed_bytes
= btrfs_calc_trunc_metadata_size(root
, 1) +
210 btrfs_calc_trans_metadata_size(root
, 1);
212 spin_lock(&trans
->block_rsv
->lock
);
213 if (trans
->block_rsv
->reserved
< needed_bytes
) {
214 spin_unlock(&trans
->block_rsv
->lock
);
215 trans
->block_rsv
= rsv
;
218 spin_unlock(&trans
->block_rsv
->lock
);
220 oldsize
= i_size_read(inode
);
221 btrfs_i_size_write(inode
, 0);
222 truncate_pagecache(inode
, oldsize
, 0);
225 * We don't need an orphan item because truncating the free space cache
226 * will never be split across transactions.
228 ret
= btrfs_truncate_inode_items(trans
, root
, inode
,
229 0, BTRFS_EXTENT_DATA_KEY
);
232 trans
->block_rsv
= rsv
;
237 ret
= btrfs_update_inode(trans
, root
, inode
);
238 trans
->block_rsv
= rsv
;
243 static int readahead_cache(struct inode
*inode
)
245 struct file_ra_state
*ra
;
246 unsigned long last_index
;
248 ra
= kzalloc(sizeof(*ra
), GFP_NOFS
);
252 file_ra_state_init(ra
, inode
->i_mapping
);
253 last_index
= (i_size_read(inode
) - 1) >> PAGE_CACHE_SHIFT
;
255 page_cache_sync_readahead(inode
->i_mapping
, ra
, NULL
, 0, last_index
);
266 struct btrfs_root
*root
;
270 unsigned check_crcs
:1;
273 static int io_ctl_init(struct io_ctl
*io_ctl
, struct inode
*inode
,
274 struct btrfs_root
*root
)
276 memset(io_ctl
, 0, sizeof(struct io_ctl
));
277 io_ctl
->num_pages
= (i_size_read(inode
) + PAGE_CACHE_SIZE
- 1) >>
279 io_ctl
->pages
= kzalloc(sizeof(struct page
*) * io_ctl
->num_pages
,
284 if (btrfs_ino(inode
) != BTRFS_FREE_INO_OBJECTID
)
285 io_ctl
->check_crcs
= 1;
289 static void io_ctl_free(struct io_ctl
*io_ctl
)
291 kfree(io_ctl
->pages
);
294 static void io_ctl_unmap_page(struct io_ctl
*io_ctl
)
297 kunmap(io_ctl
->page
);
303 static void io_ctl_map_page(struct io_ctl
*io_ctl
, int clear
)
305 WARN_ON(io_ctl
->cur
);
306 BUG_ON(io_ctl
->index
>= io_ctl
->num_pages
);
307 io_ctl
->page
= io_ctl
->pages
[io_ctl
->index
++];
308 io_ctl
->cur
= kmap(io_ctl
->page
);
309 io_ctl
->orig
= io_ctl
->cur
;
310 io_ctl
->size
= PAGE_CACHE_SIZE
;
312 memset(io_ctl
->cur
, 0, PAGE_CACHE_SIZE
);
315 static void io_ctl_drop_pages(struct io_ctl
*io_ctl
)
319 io_ctl_unmap_page(io_ctl
);
321 for (i
= 0; i
< io_ctl
->num_pages
; i
++) {
322 if (io_ctl
->pages
[i
]) {
323 ClearPageChecked(io_ctl
->pages
[i
]);
324 unlock_page(io_ctl
->pages
[i
]);
325 page_cache_release(io_ctl
->pages
[i
]);
330 static int io_ctl_prepare_pages(struct io_ctl
*io_ctl
, struct inode
*inode
,
334 gfp_t mask
= btrfs_alloc_write_mask(inode
->i_mapping
);
337 for (i
= 0; i
< io_ctl
->num_pages
; i
++) {
338 page
= find_or_create_page(inode
->i_mapping
, i
, mask
);
340 io_ctl_drop_pages(io_ctl
);
343 io_ctl
->pages
[i
] = page
;
344 if (uptodate
&& !PageUptodate(page
)) {
345 btrfs_readpage(NULL
, page
);
347 if (!PageUptodate(page
)) {
348 printk(KERN_ERR
"btrfs: error reading free "
350 io_ctl_drop_pages(io_ctl
);
356 for (i
= 0; i
< io_ctl
->num_pages
; i
++) {
357 clear_page_dirty_for_io(io_ctl
->pages
[i
]);
358 set_page_extent_mapped(io_ctl
->pages
[i
]);
364 static void io_ctl_set_generation(struct io_ctl
*io_ctl
, u64 generation
)
368 io_ctl_map_page(io_ctl
, 1);
371 * Skip the csum areas. If we don't check crcs then we just have a
372 * 64bit chunk at the front of the first page.
374 if (io_ctl
->check_crcs
) {
375 io_ctl
->cur
+= (sizeof(u32
) * io_ctl
->num_pages
);
376 io_ctl
->size
-= sizeof(u64
) + (sizeof(u32
) * io_ctl
->num_pages
);
378 io_ctl
->cur
+= sizeof(u64
);
379 io_ctl
->size
-= sizeof(u64
) * 2;
383 *val
= cpu_to_le64(generation
);
384 io_ctl
->cur
+= sizeof(u64
);
387 static int io_ctl_check_generation(struct io_ctl
*io_ctl
, u64 generation
)
392 * Skip the crc area. If we don't check crcs then we just have a 64bit
393 * chunk at the front of the first page.
395 if (io_ctl
->check_crcs
) {
396 io_ctl
->cur
+= sizeof(u32
) * io_ctl
->num_pages
;
397 io_ctl
->size
-= sizeof(u64
) +
398 (sizeof(u32
) * io_ctl
->num_pages
);
400 io_ctl
->cur
+= sizeof(u64
);
401 io_ctl
->size
-= sizeof(u64
) * 2;
405 if (le64_to_cpu(*gen
) != generation
) {
406 printk_ratelimited(KERN_ERR
"btrfs: space cache generation "
407 "(%Lu) does not match inode (%Lu)\n", *gen
,
409 io_ctl_unmap_page(io_ctl
);
412 io_ctl
->cur
+= sizeof(u64
);
416 static void io_ctl_set_crc(struct io_ctl
*io_ctl
, int index
)
422 if (!io_ctl
->check_crcs
) {
423 io_ctl_unmap_page(io_ctl
);
428 offset
= sizeof(u32
) * io_ctl
->num_pages
;
430 crc
= btrfs_csum_data(io_ctl
->root
, io_ctl
->orig
+ offset
, crc
,
431 PAGE_CACHE_SIZE
- offset
);
432 btrfs_csum_final(crc
, (char *)&crc
);
433 io_ctl_unmap_page(io_ctl
);
434 tmp
= kmap(io_ctl
->pages
[0]);
437 kunmap(io_ctl
->pages
[0]);
440 static int io_ctl_check_crc(struct io_ctl
*io_ctl
, int index
)
446 if (!io_ctl
->check_crcs
) {
447 io_ctl_map_page(io_ctl
, 0);
452 offset
= sizeof(u32
) * io_ctl
->num_pages
;
454 tmp
= kmap(io_ctl
->pages
[0]);
457 kunmap(io_ctl
->pages
[0]);
459 io_ctl_map_page(io_ctl
, 0);
460 crc
= btrfs_csum_data(io_ctl
->root
, io_ctl
->orig
+ offset
, crc
,
461 PAGE_CACHE_SIZE
- offset
);
462 btrfs_csum_final(crc
, (char *)&crc
);
464 printk_ratelimited(KERN_ERR
"btrfs: csum mismatch on free "
466 io_ctl_unmap_page(io_ctl
);
473 static int io_ctl_add_entry(struct io_ctl
*io_ctl
, u64 offset
, u64 bytes
,
476 struct btrfs_free_space_entry
*entry
;
482 entry
->offset
= cpu_to_le64(offset
);
483 entry
->bytes
= cpu_to_le64(bytes
);
484 entry
->type
= (bitmap
) ? BTRFS_FREE_SPACE_BITMAP
:
485 BTRFS_FREE_SPACE_EXTENT
;
486 io_ctl
->cur
+= sizeof(struct btrfs_free_space_entry
);
487 io_ctl
->size
-= sizeof(struct btrfs_free_space_entry
);
489 if (io_ctl
->size
>= sizeof(struct btrfs_free_space_entry
))
492 io_ctl_set_crc(io_ctl
, io_ctl
->index
- 1);
494 /* No more pages to map */
495 if (io_ctl
->index
>= io_ctl
->num_pages
)
498 /* map the next page */
499 io_ctl_map_page(io_ctl
, 1);
503 static int io_ctl_add_bitmap(struct io_ctl
*io_ctl
, void *bitmap
)
509 * If we aren't at the start of the current page, unmap this one and
510 * map the next one if there is any left.
512 if (io_ctl
->cur
!= io_ctl
->orig
) {
513 io_ctl_set_crc(io_ctl
, io_ctl
->index
- 1);
514 if (io_ctl
->index
>= io_ctl
->num_pages
)
516 io_ctl_map_page(io_ctl
, 0);
519 memcpy(io_ctl
->cur
, bitmap
, PAGE_CACHE_SIZE
);
520 io_ctl_set_crc(io_ctl
, io_ctl
->index
- 1);
521 if (io_ctl
->index
< io_ctl
->num_pages
)
522 io_ctl_map_page(io_ctl
, 0);
526 static void io_ctl_zero_remaining_pages(struct io_ctl
*io_ctl
)
529 * If we're not on the boundary we know we've modified the page and we
530 * need to crc the page.
532 if (io_ctl
->cur
!= io_ctl
->orig
)
533 io_ctl_set_crc(io_ctl
, io_ctl
->index
- 1);
535 io_ctl_unmap_page(io_ctl
);
537 while (io_ctl
->index
< io_ctl
->num_pages
) {
538 io_ctl_map_page(io_ctl
, 1);
539 io_ctl_set_crc(io_ctl
, io_ctl
->index
- 1);
543 static int io_ctl_read_entry(struct io_ctl
*io_ctl
,
544 struct btrfs_free_space
*entry
, u8
*type
)
546 struct btrfs_free_space_entry
*e
;
550 ret
= io_ctl_check_crc(io_ctl
, io_ctl
->index
);
556 entry
->offset
= le64_to_cpu(e
->offset
);
557 entry
->bytes
= le64_to_cpu(e
->bytes
);
559 io_ctl
->cur
+= sizeof(struct btrfs_free_space_entry
);
560 io_ctl
->size
-= sizeof(struct btrfs_free_space_entry
);
562 if (io_ctl
->size
>= sizeof(struct btrfs_free_space_entry
))
565 io_ctl_unmap_page(io_ctl
);
570 static int io_ctl_read_bitmap(struct io_ctl
*io_ctl
,
571 struct btrfs_free_space
*entry
)
575 ret
= io_ctl_check_crc(io_ctl
, io_ctl
->index
);
579 memcpy(entry
->bitmap
, io_ctl
->cur
, PAGE_CACHE_SIZE
);
580 io_ctl_unmap_page(io_ctl
);
585 int __load_free_space_cache(struct btrfs_root
*root
, struct inode
*inode
,
586 struct btrfs_free_space_ctl
*ctl
,
587 struct btrfs_path
*path
, u64 offset
)
589 struct btrfs_free_space_header
*header
;
590 struct extent_buffer
*leaf
;
591 struct io_ctl io_ctl
;
592 struct btrfs_key key
;
593 struct btrfs_free_space
*e
, *n
;
594 struct list_head bitmaps
;
601 INIT_LIST_HEAD(&bitmaps
);
603 /* Nothing in the space cache, goodbye */
604 if (!i_size_read(inode
))
607 key
.objectid
= BTRFS_FREE_SPACE_OBJECTID
;
611 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
615 btrfs_release_path(path
);
621 leaf
= path
->nodes
[0];
622 header
= btrfs_item_ptr(leaf
, path
->slots
[0],
623 struct btrfs_free_space_header
);
624 num_entries
= btrfs_free_space_entries(leaf
, header
);
625 num_bitmaps
= btrfs_free_space_bitmaps(leaf
, header
);
626 generation
= btrfs_free_space_generation(leaf
, header
);
627 btrfs_release_path(path
);
629 if (BTRFS_I(inode
)->generation
!= generation
) {
630 printk(KERN_ERR
"btrfs: free space inode generation (%llu) did"
631 " not match free space cache generation (%llu)\n",
632 (unsigned long long)BTRFS_I(inode
)->generation
,
633 (unsigned long long)generation
);
640 ret
= io_ctl_init(&io_ctl
, inode
, root
);
644 ret
= readahead_cache(inode
);
648 ret
= io_ctl_prepare_pages(&io_ctl
, inode
, 1);
652 ret
= io_ctl_check_crc(&io_ctl
, 0);
656 ret
= io_ctl_check_generation(&io_ctl
, generation
);
660 while (num_entries
) {
661 e
= kmem_cache_zalloc(btrfs_free_space_cachep
,
666 ret
= io_ctl_read_entry(&io_ctl
, e
, &type
);
668 kmem_cache_free(btrfs_free_space_cachep
, e
);
673 kmem_cache_free(btrfs_free_space_cachep
, e
);
677 if (type
== BTRFS_FREE_SPACE_EXTENT
) {
678 spin_lock(&ctl
->tree_lock
);
679 ret
= link_free_space(ctl
, e
);
680 spin_unlock(&ctl
->tree_lock
);
682 printk(KERN_ERR
"Duplicate entries in "
683 "free space cache, dumping\n");
684 kmem_cache_free(btrfs_free_space_cachep
, e
);
688 BUG_ON(!num_bitmaps
);
690 e
->bitmap
= kzalloc(PAGE_CACHE_SIZE
, GFP_NOFS
);
693 btrfs_free_space_cachep
, e
);
696 spin_lock(&ctl
->tree_lock
);
697 ret
= link_free_space(ctl
, e
);
698 ctl
->total_bitmaps
++;
699 ctl
->op
->recalc_thresholds(ctl
);
700 spin_unlock(&ctl
->tree_lock
);
702 printk(KERN_ERR
"Duplicate entries in "
703 "free space cache, dumping\n");
704 kmem_cache_free(btrfs_free_space_cachep
, e
);
707 list_add_tail(&e
->list
, &bitmaps
);
713 io_ctl_unmap_page(&io_ctl
);
716 * We add the bitmaps at the end of the entries in order that
717 * the bitmap entries are added to the cache.
719 list_for_each_entry_safe(e
, n
, &bitmaps
, list
) {
720 list_del_init(&e
->list
);
721 ret
= io_ctl_read_bitmap(&io_ctl
, e
);
726 io_ctl_drop_pages(&io_ctl
);
729 io_ctl_free(&io_ctl
);
732 io_ctl_drop_pages(&io_ctl
);
733 __btrfs_remove_free_space_cache(ctl
);
737 int load_free_space_cache(struct btrfs_fs_info
*fs_info
,
738 struct btrfs_block_group_cache
*block_group
)
740 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
741 struct btrfs_root
*root
= fs_info
->tree_root
;
743 struct btrfs_path
*path
;
746 u64 used
= btrfs_block_group_used(&block_group
->item
);
749 * If we're unmounting then just return, since this does a search on the
750 * normal root and not the commit root and we could deadlock.
752 if (btrfs_fs_closing(fs_info
))
756 * If this block group has been marked to be cleared for one reason or
757 * another then we can't trust the on disk cache, so just return.
759 spin_lock(&block_group
->lock
);
760 if (block_group
->disk_cache_state
!= BTRFS_DC_WRITTEN
) {
761 spin_unlock(&block_group
->lock
);
764 spin_unlock(&block_group
->lock
);
766 path
= btrfs_alloc_path();
770 inode
= lookup_free_space_inode(root
, block_group
, path
);
772 btrfs_free_path(path
);
776 /* We may have converted the inode and made the cache invalid. */
777 spin_lock(&block_group
->lock
);
778 if (block_group
->disk_cache_state
!= BTRFS_DC_WRITTEN
) {
779 spin_unlock(&block_group
->lock
);
782 spin_unlock(&block_group
->lock
);
784 ret
= __load_free_space_cache(fs_info
->tree_root
, inode
, ctl
,
785 path
, block_group
->key
.objectid
);
786 btrfs_free_path(path
);
790 spin_lock(&ctl
->tree_lock
);
791 matched
= (ctl
->free_space
== (block_group
->key
.offset
- used
-
792 block_group
->bytes_super
));
793 spin_unlock(&ctl
->tree_lock
);
796 __btrfs_remove_free_space_cache(ctl
);
797 printk(KERN_ERR
"block group %llu has an wrong amount of free "
798 "space\n", block_group
->key
.objectid
);
803 /* This cache is bogus, make sure it gets cleared */
804 spin_lock(&block_group
->lock
);
805 block_group
->disk_cache_state
= BTRFS_DC_CLEAR
;
806 spin_unlock(&block_group
->lock
);
809 printk(KERN_ERR
"btrfs: failed to load free space cache "
810 "for block group %llu\n", block_group
->key
.objectid
);
818 * __btrfs_write_out_cache - write out cached info to an inode
819 * @root - the root the inode belongs to
820 * @ctl - the free space cache we are going to write out
821 * @block_group - the block_group for this cache if it belongs to a block_group
822 * @trans - the trans handle
823 * @path - the path to use
824 * @offset - the offset for the key we'll insert
826 * This function writes out a free space cache struct to disk for quick recovery
827 * on mount. This will return 0 if it was successfull in writing the cache out,
828 * and -1 if it was not.
830 int __btrfs_write_out_cache(struct btrfs_root
*root
, struct inode
*inode
,
831 struct btrfs_free_space_ctl
*ctl
,
832 struct btrfs_block_group_cache
*block_group
,
833 struct btrfs_trans_handle
*trans
,
834 struct btrfs_path
*path
, u64 offset
)
836 struct btrfs_free_space_header
*header
;
837 struct extent_buffer
*leaf
;
838 struct rb_node
*node
;
839 struct list_head
*pos
, *n
;
840 struct extent_state
*cached_state
= NULL
;
841 struct btrfs_free_cluster
*cluster
= NULL
;
842 struct extent_io_tree
*unpin
= NULL
;
843 struct io_ctl io_ctl
;
844 struct list_head bitmap_list
;
845 struct btrfs_key key
;
846 u64 start
, extent_start
, extent_end
, len
;
852 INIT_LIST_HEAD(&bitmap_list
);
854 if (!i_size_read(inode
))
857 ret
= io_ctl_init(&io_ctl
, inode
, root
);
861 /* Get the cluster for this block_group if it exists */
862 if (block_group
&& !list_empty(&block_group
->cluster_list
))
863 cluster
= list_entry(block_group
->cluster_list
.next
,
864 struct btrfs_free_cluster
,
867 /* Lock all pages first so we can lock the extent safely. */
868 io_ctl_prepare_pages(&io_ctl
, inode
, 0);
870 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, 0, i_size_read(inode
) - 1,
871 0, &cached_state
, GFP_NOFS
);
873 node
= rb_first(&ctl
->free_space_offset
);
874 if (!node
&& cluster
) {
875 node
= rb_first(&cluster
->root
);
879 /* Make sure we can fit our crcs into the first page */
880 if (io_ctl
.check_crcs
&&
881 (io_ctl
.num_pages
* sizeof(u32
)) >= PAGE_CACHE_SIZE
) {
886 io_ctl_set_generation(&io_ctl
, trans
->transid
);
888 /* Write out the extent entries */
890 struct btrfs_free_space
*e
;
892 e
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
895 ret
= io_ctl_add_entry(&io_ctl
, e
->offset
, e
->bytes
,
901 list_add_tail(&e
->list
, &bitmap_list
);
904 node
= rb_next(node
);
905 if (!node
&& cluster
) {
906 node
= rb_first(&cluster
->root
);
912 * We want to add any pinned extents to our free space cache
913 * so we don't leak the space
917 * We shouldn't have switched the pinned extents yet so this is the
920 unpin
= root
->fs_info
->pinned_extents
;
923 start
= block_group
->key
.objectid
;
925 while (block_group
&& (start
< block_group
->key
.objectid
+
926 block_group
->key
.offset
)) {
927 ret
= find_first_extent_bit(unpin
, start
,
928 &extent_start
, &extent_end
,
935 /* This pinned extent is out of our range */
936 if (extent_start
>= block_group
->key
.objectid
+
937 block_group
->key
.offset
)
940 extent_start
= max(extent_start
, start
);
941 extent_end
= min(block_group
->key
.objectid
+
942 block_group
->key
.offset
, extent_end
+ 1);
943 len
= extent_end
- extent_start
;
946 ret
= io_ctl_add_entry(&io_ctl
, extent_start
, len
, NULL
);
953 /* Write out the bitmaps */
954 list_for_each_safe(pos
, n
, &bitmap_list
) {
955 struct btrfs_free_space
*entry
=
956 list_entry(pos
, struct btrfs_free_space
, list
);
958 ret
= io_ctl_add_bitmap(&io_ctl
, entry
->bitmap
);
961 list_del_init(&entry
->list
);
964 /* Zero out the rest of the pages just to make sure */
965 io_ctl_zero_remaining_pages(&io_ctl
);
967 ret
= btrfs_dirty_pages(root
, inode
, io_ctl
.pages
, io_ctl
.num_pages
,
968 0, i_size_read(inode
), &cached_state
);
969 io_ctl_drop_pages(&io_ctl
);
970 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, 0,
971 i_size_read(inode
) - 1, &cached_state
, GFP_NOFS
);
977 ret
= filemap_write_and_wait(inode
->i_mapping
);
981 key
.objectid
= BTRFS_FREE_SPACE_OBJECTID
;
985 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 1);
987 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, 0, inode
->i_size
- 1,
988 EXTENT_DIRTY
| EXTENT_DELALLOC
, 0, 0, NULL
,
992 leaf
= path
->nodes
[0];
994 struct btrfs_key found_key
;
995 BUG_ON(!path
->slots
[0]);
997 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
998 if (found_key
.objectid
!= BTRFS_FREE_SPACE_OBJECTID
||
999 found_key
.offset
!= offset
) {
1000 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, 0,
1002 EXTENT_DIRTY
| EXTENT_DELALLOC
, 0, 0,
1004 btrfs_release_path(path
);
1009 BTRFS_I(inode
)->generation
= trans
->transid
;
1010 header
= btrfs_item_ptr(leaf
, path
->slots
[0],
1011 struct btrfs_free_space_header
);
1012 btrfs_set_free_space_entries(leaf
, header
, entries
);
1013 btrfs_set_free_space_bitmaps(leaf
, header
, bitmaps
);
1014 btrfs_set_free_space_generation(leaf
, header
, trans
->transid
);
1015 btrfs_mark_buffer_dirty(leaf
);
1016 btrfs_release_path(path
);
1020 io_ctl_free(&io_ctl
);
1022 invalidate_inode_pages2(inode
->i_mapping
);
1023 BTRFS_I(inode
)->generation
= 0;
1025 btrfs_update_inode(trans
, root
, inode
);
1029 list_for_each_safe(pos
, n
, &bitmap_list
) {
1030 struct btrfs_free_space
*entry
=
1031 list_entry(pos
, struct btrfs_free_space
, list
);
1032 list_del_init(&entry
->list
);
1034 io_ctl_drop_pages(&io_ctl
);
1035 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, 0,
1036 i_size_read(inode
) - 1, &cached_state
, GFP_NOFS
);
1040 int btrfs_write_out_cache(struct btrfs_root
*root
,
1041 struct btrfs_trans_handle
*trans
,
1042 struct btrfs_block_group_cache
*block_group
,
1043 struct btrfs_path
*path
)
1045 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
1046 struct inode
*inode
;
1049 root
= root
->fs_info
->tree_root
;
1051 spin_lock(&block_group
->lock
);
1052 if (block_group
->disk_cache_state
< BTRFS_DC_SETUP
) {
1053 spin_unlock(&block_group
->lock
);
1056 spin_unlock(&block_group
->lock
);
1058 inode
= lookup_free_space_inode(root
, block_group
, path
);
1062 ret
= __btrfs_write_out_cache(root
, inode
, ctl
, block_group
, trans
,
1063 path
, block_group
->key
.objectid
);
1065 spin_lock(&block_group
->lock
);
1066 block_group
->disk_cache_state
= BTRFS_DC_ERROR
;
1067 spin_unlock(&block_group
->lock
);
1070 printk(KERN_ERR
"btrfs: failed to write free space cace "
1071 "for block group %llu\n", block_group
->key
.objectid
);
1079 static inline unsigned long offset_to_bit(u64 bitmap_start
, u32 unit
,
1082 BUG_ON(offset
< bitmap_start
);
1083 offset
-= bitmap_start
;
1084 return (unsigned long)(div_u64(offset
, unit
));
1087 static inline unsigned long bytes_to_bits(u64 bytes
, u32 unit
)
1089 return (unsigned long)(div_u64(bytes
, unit
));
1092 static inline u64
offset_to_bitmap(struct btrfs_free_space_ctl
*ctl
,
1096 u64 bytes_per_bitmap
;
1098 bytes_per_bitmap
= BITS_PER_BITMAP
* ctl
->unit
;
1099 bitmap_start
= offset
- ctl
->start
;
1100 bitmap_start
= div64_u64(bitmap_start
, bytes_per_bitmap
);
1101 bitmap_start
*= bytes_per_bitmap
;
1102 bitmap_start
+= ctl
->start
;
1104 return bitmap_start
;
1107 static int tree_insert_offset(struct rb_root
*root
, u64 offset
,
1108 struct rb_node
*node
, int bitmap
)
1110 struct rb_node
**p
= &root
->rb_node
;
1111 struct rb_node
*parent
= NULL
;
1112 struct btrfs_free_space
*info
;
1116 info
= rb_entry(parent
, struct btrfs_free_space
, offset_index
);
1118 if (offset
< info
->offset
) {
1120 } else if (offset
> info
->offset
) {
1121 p
= &(*p
)->rb_right
;
1124 * we could have a bitmap entry and an extent entry
1125 * share the same offset. If this is the case, we want
1126 * the extent entry to always be found first if we do a
1127 * linear search through the tree, since we want to have
1128 * the quickest allocation time, and allocating from an
1129 * extent is faster than allocating from a bitmap. So
1130 * if we're inserting a bitmap and we find an entry at
1131 * this offset, we want to go right, or after this entry
1132 * logically. If we are inserting an extent and we've
1133 * found a bitmap, we want to go left, or before
1141 p
= &(*p
)->rb_right
;
1143 if (!info
->bitmap
) {
1152 rb_link_node(node
, parent
, p
);
1153 rb_insert_color(node
, root
);
1159 * searches the tree for the given offset.
1161 * fuzzy - If this is set, then we are trying to make an allocation, and we just
1162 * want a section that has at least bytes size and comes at or after the given
1165 static struct btrfs_free_space
*
1166 tree_search_offset(struct btrfs_free_space_ctl
*ctl
,
1167 u64 offset
, int bitmap_only
, int fuzzy
)
1169 struct rb_node
*n
= ctl
->free_space_offset
.rb_node
;
1170 struct btrfs_free_space
*entry
, *prev
= NULL
;
1172 /* find entry that is closest to the 'offset' */
1179 entry
= rb_entry(n
, struct btrfs_free_space
, offset_index
);
1182 if (offset
< entry
->offset
)
1184 else if (offset
> entry
->offset
)
1197 * bitmap entry and extent entry may share same offset,
1198 * in that case, bitmap entry comes after extent entry.
1203 entry
= rb_entry(n
, struct btrfs_free_space
, offset_index
);
1204 if (entry
->offset
!= offset
)
1207 WARN_ON(!entry
->bitmap
);
1210 if (entry
->bitmap
) {
1212 * if previous extent entry covers the offset,
1213 * we should return it instead of the bitmap entry
1215 n
= &entry
->offset_index
;
1220 prev
= rb_entry(n
, struct btrfs_free_space
,
1222 if (!prev
->bitmap
) {
1223 if (prev
->offset
+ prev
->bytes
> offset
)
1235 /* find last entry before the 'offset' */
1237 if (entry
->offset
> offset
) {
1238 n
= rb_prev(&entry
->offset_index
);
1240 entry
= rb_entry(n
, struct btrfs_free_space
,
1242 BUG_ON(entry
->offset
> offset
);
1251 if (entry
->bitmap
) {
1252 n
= &entry
->offset_index
;
1257 prev
= rb_entry(n
, struct btrfs_free_space
,
1259 if (!prev
->bitmap
) {
1260 if (prev
->offset
+ prev
->bytes
> offset
)
1265 if (entry
->offset
+ BITS_PER_BITMAP
* ctl
->unit
> offset
)
1267 } else if (entry
->offset
+ entry
->bytes
> offset
)
1274 if (entry
->bitmap
) {
1275 if (entry
->offset
+ BITS_PER_BITMAP
*
1279 if (entry
->offset
+ entry
->bytes
> offset
)
1283 n
= rb_next(&entry
->offset_index
);
1286 entry
= rb_entry(n
, struct btrfs_free_space
, offset_index
);
1292 __unlink_free_space(struct btrfs_free_space_ctl
*ctl
,
1293 struct btrfs_free_space
*info
)
1295 rb_erase(&info
->offset_index
, &ctl
->free_space_offset
);
1296 ctl
->free_extents
--;
1299 static void unlink_free_space(struct btrfs_free_space_ctl
*ctl
,
1300 struct btrfs_free_space
*info
)
1302 __unlink_free_space(ctl
, info
);
1303 ctl
->free_space
-= info
->bytes
;
1306 static int link_free_space(struct btrfs_free_space_ctl
*ctl
,
1307 struct btrfs_free_space
*info
)
1311 BUG_ON(!info
->bitmap
&& !info
->bytes
);
1312 ret
= tree_insert_offset(&ctl
->free_space_offset
, info
->offset
,
1313 &info
->offset_index
, (info
->bitmap
!= NULL
));
1317 ctl
->free_space
+= info
->bytes
;
1318 ctl
->free_extents
++;
1322 static void recalculate_thresholds(struct btrfs_free_space_ctl
*ctl
)
1324 struct btrfs_block_group_cache
*block_group
= ctl
->private;
1328 u64 size
= block_group
->key
.offset
;
1329 u64 bytes_per_bg
= BITS_PER_BITMAP
* block_group
->sectorsize
;
1330 int max_bitmaps
= div64_u64(size
+ bytes_per_bg
- 1, bytes_per_bg
);
1332 BUG_ON(ctl
->total_bitmaps
> max_bitmaps
);
1335 * The goal is to keep the total amount of memory used per 1gb of space
1336 * at or below 32k, so we need to adjust how much memory we allow to be
1337 * used by extent based free space tracking
1339 if (size
< 1024 * 1024 * 1024)
1340 max_bytes
= MAX_CACHE_BYTES_PER_GIG
;
1342 max_bytes
= MAX_CACHE_BYTES_PER_GIG
*
1343 div64_u64(size
, 1024 * 1024 * 1024);
1346 * we want to account for 1 more bitmap than what we have so we can make
1347 * sure we don't go over our overall goal of MAX_CACHE_BYTES_PER_GIG as
1348 * we add more bitmaps.
1350 bitmap_bytes
= (ctl
->total_bitmaps
+ 1) * PAGE_CACHE_SIZE
;
1352 if (bitmap_bytes
>= max_bytes
) {
1353 ctl
->extents_thresh
= 0;
1358 * we want the extent entry threshold to always be at most 1/2 the maxw
1359 * bytes we can have, or whatever is less than that.
1361 extent_bytes
= max_bytes
- bitmap_bytes
;
1362 extent_bytes
= min_t(u64
, extent_bytes
, div64_u64(max_bytes
, 2));
1364 ctl
->extents_thresh
=
1365 div64_u64(extent_bytes
, (sizeof(struct btrfs_free_space
)));
1368 static inline void __bitmap_clear_bits(struct btrfs_free_space_ctl
*ctl
,
1369 struct btrfs_free_space
*info
,
1370 u64 offset
, u64 bytes
)
1372 unsigned long start
, count
;
1374 start
= offset_to_bit(info
->offset
, ctl
->unit
, offset
);
1375 count
= bytes_to_bits(bytes
, ctl
->unit
);
1376 BUG_ON(start
+ count
> BITS_PER_BITMAP
);
1378 bitmap_clear(info
->bitmap
, start
, count
);
1380 info
->bytes
-= bytes
;
1383 static void bitmap_clear_bits(struct btrfs_free_space_ctl
*ctl
,
1384 struct btrfs_free_space
*info
, u64 offset
,
1387 __bitmap_clear_bits(ctl
, info
, offset
, bytes
);
1388 ctl
->free_space
-= bytes
;
1391 static void bitmap_set_bits(struct btrfs_free_space_ctl
*ctl
,
1392 struct btrfs_free_space
*info
, u64 offset
,
1395 unsigned long start
, count
;
1397 start
= offset_to_bit(info
->offset
, ctl
->unit
, offset
);
1398 count
= bytes_to_bits(bytes
, ctl
->unit
);
1399 BUG_ON(start
+ count
> BITS_PER_BITMAP
);
1401 bitmap_set(info
->bitmap
, start
, count
);
1403 info
->bytes
+= bytes
;
1404 ctl
->free_space
+= bytes
;
1407 static int search_bitmap(struct btrfs_free_space_ctl
*ctl
,
1408 struct btrfs_free_space
*bitmap_info
, u64
*offset
,
1411 unsigned long found_bits
= 0;
1412 unsigned long bits
, i
;
1413 unsigned long next_zero
;
1415 i
= offset_to_bit(bitmap_info
->offset
, ctl
->unit
,
1416 max_t(u64
, *offset
, bitmap_info
->offset
));
1417 bits
= bytes_to_bits(*bytes
, ctl
->unit
);
1419 for (i
= find_next_bit(bitmap_info
->bitmap
, BITS_PER_BITMAP
, i
);
1420 i
< BITS_PER_BITMAP
;
1421 i
= find_next_bit(bitmap_info
->bitmap
, BITS_PER_BITMAP
, i
+ 1)) {
1422 next_zero
= find_next_zero_bit(bitmap_info
->bitmap
,
1423 BITS_PER_BITMAP
, i
);
1424 if ((next_zero
- i
) >= bits
) {
1425 found_bits
= next_zero
- i
;
1432 *offset
= (u64
)(i
* ctl
->unit
) + bitmap_info
->offset
;
1433 *bytes
= (u64
)(found_bits
) * ctl
->unit
;
1440 static struct btrfs_free_space
*
1441 find_free_space(struct btrfs_free_space_ctl
*ctl
, u64
*offset
, u64
*bytes
)
1443 struct btrfs_free_space
*entry
;
1444 struct rb_node
*node
;
1447 if (!ctl
->free_space_offset
.rb_node
)
1450 entry
= tree_search_offset(ctl
, offset_to_bitmap(ctl
, *offset
), 0, 1);
1454 for (node
= &entry
->offset_index
; node
; node
= rb_next(node
)) {
1455 entry
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
1456 if (entry
->bytes
< *bytes
)
1459 if (entry
->bitmap
) {
1460 ret
= search_bitmap(ctl
, entry
, offset
, bytes
);
1466 *offset
= entry
->offset
;
1467 *bytes
= entry
->bytes
;
1474 static void add_new_bitmap(struct btrfs_free_space_ctl
*ctl
,
1475 struct btrfs_free_space
*info
, u64 offset
)
1477 info
->offset
= offset_to_bitmap(ctl
, offset
);
1479 INIT_LIST_HEAD(&info
->list
);
1480 link_free_space(ctl
, info
);
1481 ctl
->total_bitmaps
++;
1483 ctl
->op
->recalc_thresholds(ctl
);
1486 static void free_bitmap(struct btrfs_free_space_ctl
*ctl
,
1487 struct btrfs_free_space
*bitmap_info
)
1489 unlink_free_space(ctl
, bitmap_info
);
1490 kfree(bitmap_info
->bitmap
);
1491 kmem_cache_free(btrfs_free_space_cachep
, bitmap_info
);
1492 ctl
->total_bitmaps
--;
1493 ctl
->op
->recalc_thresholds(ctl
);
1496 static noinline
int remove_from_bitmap(struct btrfs_free_space_ctl
*ctl
,
1497 struct btrfs_free_space
*bitmap_info
,
1498 u64
*offset
, u64
*bytes
)
1501 u64 search_start
, search_bytes
;
1505 end
= bitmap_info
->offset
+ (u64
)(BITS_PER_BITMAP
* ctl
->unit
) - 1;
1508 * XXX - this can go away after a few releases.
1510 * since the only user of btrfs_remove_free_space is the tree logging
1511 * stuff, and the only way to test that is under crash conditions, we
1512 * want to have this debug stuff here just in case somethings not
1513 * working. Search the bitmap for the space we are trying to use to
1514 * make sure its actually there. If its not there then we need to stop
1515 * because something has gone wrong.
1517 search_start
= *offset
;
1518 search_bytes
= *bytes
;
1519 search_bytes
= min(search_bytes
, end
- search_start
+ 1);
1520 ret
= search_bitmap(ctl
, bitmap_info
, &search_start
, &search_bytes
);
1521 BUG_ON(ret
< 0 || search_start
!= *offset
);
1523 if (*offset
> bitmap_info
->offset
&& *offset
+ *bytes
> end
) {
1524 bitmap_clear_bits(ctl
, bitmap_info
, *offset
, end
- *offset
+ 1);
1525 *bytes
-= end
- *offset
+ 1;
1527 } else if (*offset
>= bitmap_info
->offset
&& *offset
+ *bytes
<= end
) {
1528 bitmap_clear_bits(ctl
, bitmap_info
, *offset
, *bytes
);
1533 struct rb_node
*next
= rb_next(&bitmap_info
->offset_index
);
1534 if (!bitmap_info
->bytes
)
1535 free_bitmap(ctl
, bitmap_info
);
1538 * no entry after this bitmap, but we still have bytes to
1539 * remove, so something has gone wrong.
1544 bitmap_info
= rb_entry(next
, struct btrfs_free_space
,
1548 * if the next entry isn't a bitmap we need to return to let the
1549 * extent stuff do its work.
1551 if (!bitmap_info
->bitmap
)
1555 * Ok the next item is a bitmap, but it may not actually hold
1556 * the information for the rest of this free space stuff, so
1557 * look for it, and if we don't find it return so we can try
1558 * everything over again.
1560 search_start
= *offset
;
1561 search_bytes
= *bytes
;
1562 ret
= search_bitmap(ctl
, bitmap_info
, &search_start
,
1564 if (ret
< 0 || search_start
!= *offset
)
1568 } else if (!bitmap_info
->bytes
)
1569 free_bitmap(ctl
, bitmap_info
);
1574 static u64
add_bytes_to_bitmap(struct btrfs_free_space_ctl
*ctl
,
1575 struct btrfs_free_space
*info
, u64 offset
,
1578 u64 bytes_to_set
= 0;
1581 end
= info
->offset
+ (u64
)(BITS_PER_BITMAP
* ctl
->unit
);
1583 bytes_to_set
= min(end
- offset
, bytes
);
1585 bitmap_set_bits(ctl
, info
, offset
, bytes_to_set
);
1587 return bytes_to_set
;
1591 static bool use_bitmap(struct btrfs_free_space_ctl
*ctl
,
1592 struct btrfs_free_space
*info
)
1594 struct btrfs_block_group_cache
*block_group
= ctl
->private;
1597 * If we are below the extents threshold then we can add this as an
1598 * extent, and don't have to deal with the bitmap
1600 if (ctl
->free_extents
< ctl
->extents_thresh
) {
1602 * If this block group has some small extents we don't want to
1603 * use up all of our free slots in the cache with them, we want
1604 * to reserve them to larger extents, however if we have plent
1605 * of cache left then go ahead an dadd them, no sense in adding
1606 * the overhead of a bitmap if we don't have to.
1608 if (info
->bytes
<= block_group
->sectorsize
* 4) {
1609 if (ctl
->free_extents
* 2 <= ctl
->extents_thresh
)
1617 * some block groups are so tiny they can't be enveloped by a bitmap, so
1618 * don't even bother to create a bitmap for this
1620 if (BITS_PER_BITMAP
* block_group
->sectorsize
>
1621 block_group
->key
.offset
)
1627 static struct btrfs_free_space_op free_space_op
= {
1628 .recalc_thresholds
= recalculate_thresholds
,
1629 .use_bitmap
= use_bitmap
,
1632 static int insert_into_bitmap(struct btrfs_free_space_ctl
*ctl
,
1633 struct btrfs_free_space
*info
)
1635 struct btrfs_free_space
*bitmap_info
;
1636 struct btrfs_block_group_cache
*block_group
= NULL
;
1638 u64 bytes
, offset
, bytes_added
;
1641 bytes
= info
->bytes
;
1642 offset
= info
->offset
;
1644 if (!ctl
->op
->use_bitmap(ctl
, info
))
1647 if (ctl
->op
== &free_space_op
)
1648 block_group
= ctl
->private;
1651 * Since we link bitmaps right into the cluster we need to see if we
1652 * have a cluster here, and if so and it has our bitmap we need to add
1653 * the free space to that bitmap.
1655 if (block_group
&& !list_empty(&block_group
->cluster_list
)) {
1656 struct btrfs_free_cluster
*cluster
;
1657 struct rb_node
*node
;
1658 struct btrfs_free_space
*entry
;
1660 cluster
= list_entry(block_group
->cluster_list
.next
,
1661 struct btrfs_free_cluster
,
1663 spin_lock(&cluster
->lock
);
1664 node
= rb_first(&cluster
->root
);
1666 spin_unlock(&cluster
->lock
);
1667 goto no_cluster_bitmap
;
1670 entry
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
1671 if (!entry
->bitmap
) {
1672 spin_unlock(&cluster
->lock
);
1673 goto no_cluster_bitmap
;
1676 if (entry
->offset
== offset_to_bitmap(ctl
, offset
)) {
1677 bytes_added
= add_bytes_to_bitmap(ctl
, entry
,
1679 bytes
-= bytes_added
;
1680 offset
+= bytes_added
;
1682 spin_unlock(&cluster
->lock
);
1690 bitmap_info
= tree_search_offset(ctl
, offset_to_bitmap(ctl
, offset
),
1697 bytes_added
= add_bytes_to_bitmap(ctl
, bitmap_info
, offset
, bytes
);
1698 bytes
-= bytes_added
;
1699 offset
+= bytes_added
;
1709 if (info
&& info
->bitmap
) {
1710 add_new_bitmap(ctl
, info
, offset
);
1715 spin_unlock(&ctl
->tree_lock
);
1717 /* no pre-allocated info, allocate a new one */
1719 info
= kmem_cache_zalloc(btrfs_free_space_cachep
,
1722 spin_lock(&ctl
->tree_lock
);
1728 /* allocate the bitmap */
1729 info
->bitmap
= kzalloc(PAGE_CACHE_SIZE
, GFP_NOFS
);
1730 spin_lock(&ctl
->tree_lock
);
1731 if (!info
->bitmap
) {
1741 kfree(info
->bitmap
);
1742 kmem_cache_free(btrfs_free_space_cachep
, info
);
1748 static bool try_merge_free_space(struct btrfs_free_space_ctl
*ctl
,
1749 struct btrfs_free_space
*info
, bool update_stat
)
1751 struct btrfs_free_space
*left_info
;
1752 struct btrfs_free_space
*right_info
;
1753 bool merged
= false;
1754 u64 offset
= info
->offset
;
1755 u64 bytes
= info
->bytes
;
1758 * first we want to see if there is free space adjacent to the range we
1759 * are adding, if there is remove that struct and add a new one to
1760 * cover the entire range
1762 right_info
= tree_search_offset(ctl
, offset
+ bytes
, 0, 0);
1763 if (right_info
&& rb_prev(&right_info
->offset_index
))
1764 left_info
= rb_entry(rb_prev(&right_info
->offset_index
),
1765 struct btrfs_free_space
, offset_index
);
1767 left_info
= tree_search_offset(ctl
, offset
- 1, 0, 0);
1769 if (right_info
&& !right_info
->bitmap
) {
1771 unlink_free_space(ctl
, right_info
);
1773 __unlink_free_space(ctl
, right_info
);
1774 info
->bytes
+= right_info
->bytes
;
1775 kmem_cache_free(btrfs_free_space_cachep
, right_info
);
1779 if (left_info
&& !left_info
->bitmap
&&
1780 left_info
->offset
+ left_info
->bytes
== offset
) {
1782 unlink_free_space(ctl
, left_info
);
1784 __unlink_free_space(ctl
, left_info
);
1785 info
->offset
= left_info
->offset
;
1786 info
->bytes
+= left_info
->bytes
;
1787 kmem_cache_free(btrfs_free_space_cachep
, left_info
);
1794 int __btrfs_add_free_space(struct btrfs_free_space_ctl
*ctl
,
1795 u64 offset
, u64 bytes
)
1797 struct btrfs_free_space
*info
;
1800 info
= kmem_cache_zalloc(btrfs_free_space_cachep
, GFP_NOFS
);
1804 info
->offset
= offset
;
1805 info
->bytes
= bytes
;
1807 spin_lock(&ctl
->tree_lock
);
1809 if (try_merge_free_space(ctl
, info
, true))
1813 * There was no extent directly to the left or right of this new
1814 * extent then we know we're going to have to allocate a new extent, so
1815 * before we do that see if we need to drop this into a bitmap
1817 ret
= insert_into_bitmap(ctl
, info
);
1825 ret
= link_free_space(ctl
, info
);
1827 kmem_cache_free(btrfs_free_space_cachep
, info
);
1829 spin_unlock(&ctl
->tree_lock
);
1832 printk(KERN_CRIT
"btrfs: unable to add free space :%d\n", ret
);
1833 BUG_ON(ret
== -EEXIST
);
1839 int btrfs_remove_free_space(struct btrfs_block_group_cache
*block_group
,
1840 u64 offset
, u64 bytes
)
1842 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
1843 struct btrfs_free_space
*info
;
1844 struct btrfs_free_space
*next_info
= NULL
;
1847 spin_lock(&ctl
->tree_lock
);
1850 info
= tree_search_offset(ctl
, offset
, 0, 0);
1853 * oops didn't find an extent that matched the space we wanted
1854 * to remove, look for a bitmap instead
1856 info
= tree_search_offset(ctl
, offset_to_bitmap(ctl
, offset
),
1859 /* the tree logging code might be calling us before we
1860 * have fully loaded the free space rbtree for this
1861 * block group. So it is possible the entry won't
1862 * be in the rbtree yet at all. The caching code
1863 * will make sure not to put it in the rbtree if
1864 * the logging code has pinned it.
1870 if (info
->bytes
< bytes
&& rb_next(&info
->offset_index
)) {
1872 next_info
= rb_entry(rb_next(&info
->offset_index
),
1873 struct btrfs_free_space
,
1876 if (next_info
->bitmap
)
1877 end
= next_info
->offset
+
1878 BITS_PER_BITMAP
* ctl
->unit
- 1;
1880 end
= next_info
->offset
+ next_info
->bytes
;
1882 if (next_info
->bytes
< bytes
||
1883 next_info
->offset
> offset
|| offset
> end
) {
1884 printk(KERN_CRIT
"Found free space at %llu, size %llu,"
1885 " trying to use %llu\n",
1886 (unsigned long long)info
->offset
,
1887 (unsigned long long)info
->bytes
,
1888 (unsigned long long)bytes
);
1897 if (info
->bytes
== bytes
) {
1898 unlink_free_space(ctl
, info
);
1900 kfree(info
->bitmap
);
1901 ctl
->total_bitmaps
--;
1903 kmem_cache_free(btrfs_free_space_cachep
, info
);
1908 if (!info
->bitmap
&& info
->offset
== offset
) {
1909 unlink_free_space(ctl
, info
);
1910 info
->offset
+= bytes
;
1911 info
->bytes
-= bytes
;
1912 ret
= link_free_space(ctl
, info
);
1917 if (!info
->bitmap
&& info
->offset
<= offset
&&
1918 info
->offset
+ info
->bytes
>= offset
+ bytes
) {
1919 u64 old_start
= info
->offset
;
1921 * we're freeing space in the middle of the info,
1922 * this can happen during tree log replay
1924 * first unlink the old info and then
1925 * insert it again after the hole we're creating
1927 unlink_free_space(ctl
, info
);
1928 if (offset
+ bytes
< info
->offset
+ info
->bytes
) {
1929 u64 old_end
= info
->offset
+ info
->bytes
;
1931 info
->offset
= offset
+ bytes
;
1932 info
->bytes
= old_end
- info
->offset
;
1933 ret
= link_free_space(ctl
, info
);
1938 /* the hole we're creating ends at the end
1939 * of the info struct, just free the info
1941 kmem_cache_free(btrfs_free_space_cachep
, info
);
1943 spin_unlock(&ctl
->tree_lock
);
1945 /* step two, insert a new info struct to cover
1946 * anything before the hole
1948 ret
= btrfs_add_free_space(block_group
, old_start
,
1949 offset
- old_start
);
1954 ret
= remove_from_bitmap(ctl
, info
, &offset
, &bytes
);
1959 spin_unlock(&ctl
->tree_lock
);
1964 void btrfs_dump_free_space(struct btrfs_block_group_cache
*block_group
,
1967 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
1968 struct btrfs_free_space
*info
;
1972 for (n
= rb_first(&ctl
->free_space_offset
); n
; n
= rb_next(n
)) {
1973 info
= rb_entry(n
, struct btrfs_free_space
, offset_index
);
1974 if (info
->bytes
>= bytes
)
1976 printk(KERN_CRIT
"entry offset %llu, bytes %llu, bitmap %s\n",
1977 (unsigned long long)info
->offset
,
1978 (unsigned long long)info
->bytes
,
1979 (info
->bitmap
) ? "yes" : "no");
1981 printk(KERN_INFO
"block group has cluster?: %s\n",
1982 list_empty(&block_group
->cluster_list
) ? "no" : "yes");
1983 printk(KERN_INFO
"%d blocks of free space at or bigger than bytes is"
1987 void btrfs_init_free_space_ctl(struct btrfs_block_group_cache
*block_group
)
1989 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
1991 spin_lock_init(&ctl
->tree_lock
);
1992 ctl
->unit
= block_group
->sectorsize
;
1993 ctl
->start
= block_group
->key
.objectid
;
1994 ctl
->private = block_group
;
1995 ctl
->op
= &free_space_op
;
1998 * we only want to have 32k of ram per block group for keeping
1999 * track of free space, and if we pass 1/2 of that we want to
2000 * start converting things over to using bitmaps
2002 ctl
->extents_thresh
= ((1024 * 32) / 2) /
2003 sizeof(struct btrfs_free_space
);
2007 * for a given cluster, put all of its extents back into the free
2008 * space cache. If the block group passed doesn't match the block group
2009 * pointed to by the cluster, someone else raced in and freed the
2010 * cluster already. In that case, we just return without changing anything
2013 __btrfs_return_cluster_to_free_space(
2014 struct btrfs_block_group_cache
*block_group
,
2015 struct btrfs_free_cluster
*cluster
)
2017 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
2018 struct btrfs_free_space
*entry
;
2019 struct rb_node
*node
;
2021 spin_lock(&cluster
->lock
);
2022 if (cluster
->block_group
!= block_group
)
2025 cluster
->block_group
= NULL
;
2026 cluster
->window_start
= 0;
2027 list_del_init(&cluster
->block_group_list
);
2029 node
= rb_first(&cluster
->root
);
2033 entry
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
2034 node
= rb_next(&entry
->offset_index
);
2035 rb_erase(&entry
->offset_index
, &cluster
->root
);
2037 bitmap
= (entry
->bitmap
!= NULL
);
2039 try_merge_free_space(ctl
, entry
, false);
2040 tree_insert_offset(&ctl
->free_space_offset
,
2041 entry
->offset
, &entry
->offset_index
, bitmap
);
2043 cluster
->root
= RB_ROOT
;
2046 spin_unlock(&cluster
->lock
);
2047 btrfs_put_block_group(block_group
);
2051 void __btrfs_remove_free_space_cache_locked(struct btrfs_free_space_ctl
*ctl
)
2053 struct btrfs_free_space
*info
;
2054 struct rb_node
*node
;
2056 while ((node
= rb_last(&ctl
->free_space_offset
)) != NULL
) {
2057 info
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
2058 if (!info
->bitmap
) {
2059 unlink_free_space(ctl
, info
);
2060 kmem_cache_free(btrfs_free_space_cachep
, info
);
2062 free_bitmap(ctl
, info
);
2064 if (need_resched()) {
2065 spin_unlock(&ctl
->tree_lock
);
2067 spin_lock(&ctl
->tree_lock
);
2072 void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl
*ctl
)
2074 spin_lock(&ctl
->tree_lock
);
2075 __btrfs_remove_free_space_cache_locked(ctl
);
2076 spin_unlock(&ctl
->tree_lock
);
2079 void btrfs_remove_free_space_cache(struct btrfs_block_group_cache
*block_group
)
2081 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
2082 struct btrfs_free_cluster
*cluster
;
2083 struct list_head
*head
;
2085 spin_lock(&ctl
->tree_lock
);
2086 while ((head
= block_group
->cluster_list
.next
) !=
2087 &block_group
->cluster_list
) {
2088 cluster
= list_entry(head
, struct btrfs_free_cluster
,
2091 WARN_ON(cluster
->block_group
!= block_group
);
2092 __btrfs_return_cluster_to_free_space(block_group
, cluster
);
2093 if (need_resched()) {
2094 spin_unlock(&ctl
->tree_lock
);
2096 spin_lock(&ctl
->tree_lock
);
2099 __btrfs_remove_free_space_cache_locked(ctl
);
2100 spin_unlock(&ctl
->tree_lock
);
2104 u64
btrfs_find_space_for_alloc(struct btrfs_block_group_cache
*block_group
,
2105 u64 offset
, u64 bytes
, u64 empty_size
)
2107 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
2108 struct btrfs_free_space
*entry
= NULL
;
2109 u64 bytes_search
= bytes
+ empty_size
;
2112 spin_lock(&ctl
->tree_lock
);
2113 entry
= find_free_space(ctl
, &offset
, &bytes_search
);
2118 if (entry
->bitmap
) {
2119 bitmap_clear_bits(ctl
, entry
, offset
, bytes
);
2121 free_bitmap(ctl
, entry
);
2123 unlink_free_space(ctl
, entry
);
2124 entry
->offset
+= bytes
;
2125 entry
->bytes
-= bytes
;
2127 kmem_cache_free(btrfs_free_space_cachep
, entry
);
2129 link_free_space(ctl
, entry
);
2133 spin_unlock(&ctl
->tree_lock
);
2139 * given a cluster, put all of its extents back into the free space
2140 * cache. If a block group is passed, this function will only free
2141 * a cluster that belongs to the passed block group.
2143 * Otherwise, it'll get a reference on the block group pointed to by the
2144 * cluster and remove the cluster from it.
2146 int btrfs_return_cluster_to_free_space(
2147 struct btrfs_block_group_cache
*block_group
,
2148 struct btrfs_free_cluster
*cluster
)
2150 struct btrfs_free_space_ctl
*ctl
;
2153 /* first, get a safe pointer to the block group */
2154 spin_lock(&cluster
->lock
);
2156 block_group
= cluster
->block_group
;
2158 spin_unlock(&cluster
->lock
);
2161 } else if (cluster
->block_group
!= block_group
) {
2162 /* someone else has already freed it don't redo their work */
2163 spin_unlock(&cluster
->lock
);
2166 atomic_inc(&block_group
->count
);
2167 spin_unlock(&cluster
->lock
);
2169 ctl
= block_group
->free_space_ctl
;
2171 /* now return any extents the cluster had on it */
2172 spin_lock(&ctl
->tree_lock
);
2173 ret
= __btrfs_return_cluster_to_free_space(block_group
, cluster
);
2174 spin_unlock(&ctl
->tree_lock
);
2176 /* finally drop our ref */
2177 btrfs_put_block_group(block_group
);
2181 static u64
btrfs_alloc_from_bitmap(struct btrfs_block_group_cache
*block_group
,
2182 struct btrfs_free_cluster
*cluster
,
2183 struct btrfs_free_space
*entry
,
2184 u64 bytes
, u64 min_start
)
2186 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
2188 u64 search_start
= cluster
->window_start
;
2189 u64 search_bytes
= bytes
;
2192 search_start
= min_start
;
2193 search_bytes
= bytes
;
2195 err
= search_bitmap(ctl
, entry
, &search_start
, &search_bytes
);
2200 __bitmap_clear_bits(ctl
, entry
, ret
, bytes
);
2206 * given a cluster, try to allocate 'bytes' from it, returns 0
2207 * if it couldn't find anything suitably large, or a logical disk offset
2208 * if things worked out
2210 u64
btrfs_alloc_from_cluster(struct btrfs_block_group_cache
*block_group
,
2211 struct btrfs_free_cluster
*cluster
, u64 bytes
,
2214 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
2215 struct btrfs_free_space
*entry
= NULL
;
2216 struct rb_node
*node
;
2219 spin_lock(&cluster
->lock
);
2220 if (bytes
> cluster
->max_size
)
2223 if (cluster
->block_group
!= block_group
)
2226 node
= rb_first(&cluster
->root
);
2230 entry
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
2232 if (entry
->bytes
< bytes
||
2233 (!entry
->bitmap
&& entry
->offset
< min_start
)) {
2234 node
= rb_next(&entry
->offset_index
);
2237 entry
= rb_entry(node
, struct btrfs_free_space
,
2242 if (entry
->bitmap
) {
2243 ret
= btrfs_alloc_from_bitmap(block_group
,
2244 cluster
, entry
, bytes
,
2247 node
= rb_next(&entry
->offset_index
);
2250 entry
= rb_entry(node
, struct btrfs_free_space
,
2255 ret
= entry
->offset
;
2257 entry
->offset
+= bytes
;
2258 entry
->bytes
-= bytes
;
2261 if (entry
->bytes
== 0)
2262 rb_erase(&entry
->offset_index
, &cluster
->root
);
2266 spin_unlock(&cluster
->lock
);
2271 spin_lock(&ctl
->tree_lock
);
2273 ctl
->free_space
-= bytes
;
2274 if (entry
->bytes
== 0) {
2275 ctl
->free_extents
--;
2276 if (entry
->bitmap
) {
2277 kfree(entry
->bitmap
);
2278 ctl
->total_bitmaps
--;
2279 ctl
->op
->recalc_thresholds(ctl
);
2281 kmem_cache_free(btrfs_free_space_cachep
, entry
);
2284 spin_unlock(&ctl
->tree_lock
);
2289 static int btrfs_bitmap_cluster(struct btrfs_block_group_cache
*block_group
,
2290 struct btrfs_free_space
*entry
,
2291 struct btrfs_free_cluster
*cluster
,
2292 u64 offset
, u64 bytes
,
2293 u64 cont1_bytes
, u64 min_bytes
)
2295 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
2296 unsigned long next_zero
;
2298 unsigned long want_bits
;
2299 unsigned long min_bits
;
2300 unsigned long found_bits
;
2301 unsigned long start
= 0;
2302 unsigned long total_found
= 0;
2305 i
= offset_to_bit(entry
->offset
, block_group
->sectorsize
,
2306 max_t(u64
, offset
, entry
->offset
));
2307 want_bits
= bytes_to_bits(bytes
, block_group
->sectorsize
);
2308 min_bits
= bytes_to_bits(min_bytes
, block_group
->sectorsize
);
2312 for (i
= find_next_bit(entry
->bitmap
, BITS_PER_BITMAP
, i
);
2313 i
< BITS_PER_BITMAP
;
2314 i
= find_next_bit(entry
->bitmap
, BITS_PER_BITMAP
, i
+ 1)) {
2315 next_zero
= find_next_zero_bit(entry
->bitmap
,
2316 BITS_PER_BITMAP
, i
);
2317 if (next_zero
- i
>= min_bits
) {
2318 found_bits
= next_zero
- i
;
2329 cluster
->max_size
= 0;
2332 total_found
+= found_bits
;
2334 if (cluster
->max_size
< found_bits
* block_group
->sectorsize
)
2335 cluster
->max_size
= found_bits
* block_group
->sectorsize
;
2337 if (total_found
< want_bits
|| cluster
->max_size
< cont1_bytes
) {
2342 cluster
->window_start
= start
* block_group
->sectorsize
+
2344 rb_erase(&entry
->offset_index
, &ctl
->free_space_offset
);
2345 ret
= tree_insert_offset(&cluster
->root
, entry
->offset
,
2346 &entry
->offset_index
, 1);
2349 trace_btrfs_setup_cluster(block_group
, cluster
,
2350 total_found
* block_group
->sectorsize
, 1);
2355 * This searches the block group for just extents to fill the cluster with.
2356 * Try to find a cluster with at least bytes total bytes, at least one
2357 * extent of cont1_bytes, and other clusters of at least min_bytes.
2360 setup_cluster_no_bitmap(struct btrfs_block_group_cache
*block_group
,
2361 struct btrfs_free_cluster
*cluster
,
2362 struct list_head
*bitmaps
, u64 offset
, u64 bytes
,
2363 u64 cont1_bytes
, u64 min_bytes
)
2365 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
2366 struct btrfs_free_space
*first
= NULL
;
2367 struct btrfs_free_space
*entry
= NULL
;
2368 struct btrfs_free_space
*last
;
2369 struct rb_node
*node
;
2375 entry
= tree_search_offset(ctl
, offset
, 0, 1);
2380 * We don't want bitmaps, so just move along until we find a normal
2383 while (entry
->bitmap
|| entry
->bytes
< min_bytes
) {
2384 if (entry
->bitmap
&& list_empty(&entry
->list
))
2385 list_add_tail(&entry
->list
, bitmaps
);
2386 node
= rb_next(&entry
->offset_index
);
2389 entry
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
2392 window_start
= entry
->offset
;
2393 window_free
= entry
->bytes
;
2394 max_extent
= entry
->bytes
;
2398 for (node
= rb_next(&entry
->offset_index
); node
;
2399 node
= rb_next(&entry
->offset_index
)) {
2400 entry
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
2402 if (entry
->bitmap
) {
2403 if (list_empty(&entry
->list
))
2404 list_add_tail(&entry
->list
, bitmaps
);
2408 if (entry
->bytes
< min_bytes
)
2412 window_free
+= entry
->bytes
;
2413 if (entry
->bytes
> max_extent
)
2414 max_extent
= entry
->bytes
;
2417 if (window_free
< bytes
|| max_extent
< cont1_bytes
)
2420 cluster
->window_start
= first
->offset
;
2422 node
= &first
->offset_index
;
2425 * now we've found our entries, pull them out of the free space
2426 * cache and put them into the cluster rbtree
2431 entry
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
2432 node
= rb_next(&entry
->offset_index
);
2433 if (entry
->bitmap
|| entry
->bytes
< min_bytes
)
2436 rb_erase(&entry
->offset_index
, &ctl
->free_space_offset
);
2437 ret
= tree_insert_offset(&cluster
->root
, entry
->offset
,
2438 &entry
->offset_index
, 0);
2439 total_size
+= entry
->bytes
;
2441 } while (node
&& entry
!= last
);
2443 cluster
->max_size
= max_extent
;
2444 trace_btrfs_setup_cluster(block_group
, cluster
, total_size
, 0);
2449 * This specifically looks for bitmaps that may work in the cluster, we assume
2450 * that we have already failed to find extents that will work.
2453 setup_cluster_bitmap(struct btrfs_block_group_cache
*block_group
,
2454 struct btrfs_free_cluster
*cluster
,
2455 struct list_head
*bitmaps
, u64 offset
, u64 bytes
,
2456 u64 cont1_bytes
, u64 min_bytes
)
2458 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
2459 struct btrfs_free_space
*entry
;
2461 u64 bitmap_offset
= offset_to_bitmap(ctl
, offset
);
2463 if (ctl
->total_bitmaps
== 0)
2467 * The bitmap that covers offset won't be in the list unless offset
2468 * is just its start offset.
2470 entry
= list_first_entry(bitmaps
, struct btrfs_free_space
, list
);
2471 if (entry
->offset
!= bitmap_offset
) {
2472 entry
= tree_search_offset(ctl
, bitmap_offset
, 1, 0);
2473 if (entry
&& list_empty(&entry
->list
))
2474 list_add(&entry
->list
, bitmaps
);
2477 list_for_each_entry(entry
, bitmaps
, list
) {
2478 if (entry
->bytes
< min_bytes
)
2480 ret
= btrfs_bitmap_cluster(block_group
, entry
, cluster
, offset
,
2481 bytes
, cont1_bytes
, min_bytes
);
2487 * The bitmaps list has all the bitmaps that record free space
2488 * starting after offset, so no more search is required.
2494 * here we try to find a cluster of blocks in a block group. The goal
2495 * is to find at least bytes+empty_size.
2496 * We might not find them all in one contiguous area.
2498 * returns zero and sets up cluster if things worked out, otherwise
2499 * it returns -enospc
2501 int btrfs_find_space_cluster(struct btrfs_trans_handle
*trans
,
2502 struct btrfs_root
*root
,
2503 struct btrfs_block_group_cache
*block_group
,
2504 struct btrfs_free_cluster
*cluster
,
2505 u64 offset
, u64 bytes
, u64 empty_size
)
2507 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
2508 struct btrfs_free_space
*entry
, *tmp
;
2515 * Choose the minimum extent size we'll require for this
2516 * cluster. For SSD_SPREAD, don't allow any fragmentation.
2517 * For metadata, allow allocates with smaller extents. For
2518 * data, keep it dense.
2520 if (btrfs_test_opt(root
, SSD_SPREAD
)) {
2521 cont1_bytes
= min_bytes
= bytes
+ empty_size
;
2522 } else if (block_group
->flags
& BTRFS_BLOCK_GROUP_METADATA
) {
2523 cont1_bytes
= bytes
;
2524 min_bytes
= block_group
->sectorsize
;
2526 cont1_bytes
= max(bytes
, (bytes
+ empty_size
) >> 2);
2527 min_bytes
= block_group
->sectorsize
;
2530 spin_lock(&ctl
->tree_lock
);
2533 * If we know we don't have enough space to make a cluster don't even
2534 * bother doing all the work to try and find one.
2536 if (ctl
->free_space
< bytes
) {
2537 spin_unlock(&ctl
->tree_lock
);
2541 spin_lock(&cluster
->lock
);
2543 /* someone already found a cluster, hooray */
2544 if (cluster
->block_group
) {
2549 trace_btrfs_find_cluster(block_group
, offset
, bytes
, empty_size
,
2552 INIT_LIST_HEAD(&bitmaps
);
2553 ret
= setup_cluster_no_bitmap(block_group
, cluster
, &bitmaps
, offset
,
2555 cont1_bytes
, min_bytes
);
2557 ret
= setup_cluster_bitmap(block_group
, cluster
, &bitmaps
,
2558 offset
, bytes
+ empty_size
,
2559 cont1_bytes
, min_bytes
);
2561 /* Clear our temporary list */
2562 list_for_each_entry_safe(entry
, tmp
, &bitmaps
, list
)
2563 list_del_init(&entry
->list
);
2566 atomic_inc(&block_group
->count
);
2567 list_add_tail(&cluster
->block_group_list
,
2568 &block_group
->cluster_list
);
2569 cluster
->block_group
= block_group
;
2571 trace_btrfs_failed_cluster_setup(block_group
);
2574 spin_unlock(&cluster
->lock
);
2575 spin_unlock(&ctl
->tree_lock
);
2581 * simple code to zero out a cluster
2583 void btrfs_init_free_cluster(struct btrfs_free_cluster
*cluster
)
2585 spin_lock_init(&cluster
->lock
);
2586 spin_lock_init(&cluster
->refill_lock
);
2587 cluster
->root
= RB_ROOT
;
2588 cluster
->max_size
= 0;
2589 INIT_LIST_HEAD(&cluster
->block_group_list
);
2590 cluster
->block_group
= NULL
;
2593 static int do_trimming(struct btrfs_block_group_cache
*block_group
,
2594 u64
*total_trimmed
, u64 start
, u64 bytes
,
2595 u64 reserved_start
, u64 reserved_bytes
)
2597 struct btrfs_space_info
*space_info
= block_group
->space_info
;
2598 struct btrfs_fs_info
*fs_info
= block_group
->fs_info
;
2603 spin_lock(&space_info
->lock
);
2604 spin_lock(&block_group
->lock
);
2605 if (!block_group
->ro
) {
2606 block_group
->reserved
+= reserved_bytes
;
2607 space_info
->bytes_reserved
+= reserved_bytes
;
2610 spin_unlock(&block_group
->lock
);
2611 spin_unlock(&space_info
->lock
);
2613 ret
= btrfs_error_discard_extent(fs_info
->extent_root
,
2614 start
, bytes
, &trimmed
);
2616 *total_trimmed
+= trimmed
;
2618 btrfs_add_free_space(block_group
, reserved_start
, reserved_bytes
);
2621 spin_lock(&space_info
->lock
);
2622 spin_lock(&block_group
->lock
);
2623 if (block_group
->ro
)
2624 space_info
->bytes_readonly
+= reserved_bytes
;
2625 block_group
->reserved
-= reserved_bytes
;
2626 space_info
->bytes_reserved
-= reserved_bytes
;
2627 spin_unlock(&space_info
->lock
);
2628 spin_unlock(&block_group
->lock
);
2634 static int trim_no_bitmap(struct btrfs_block_group_cache
*block_group
,
2635 u64
*total_trimmed
, u64 start
, u64 end
, u64 minlen
)
2637 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
2638 struct btrfs_free_space
*entry
;
2639 struct rb_node
*node
;
2645 while (start
< end
) {
2646 spin_lock(&ctl
->tree_lock
);
2648 if (ctl
->free_space
< minlen
) {
2649 spin_unlock(&ctl
->tree_lock
);
2653 entry
= tree_search_offset(ctl
, start
, 0, 1);
2655 spin_unlock(&ctl
->tree_lock
);
2660 while (entry
->bitmap
) {
2661 node
= rb_next(&entry
->offset_index
);
2663 spin_unlock(&ctl
->tree_lock
);
2666 entry
= rb_entry(node
, struct btrfs_free_space
,
2670 if (entry
->offset
>= end
) {
2671 spin_unlock(&ctl
->tree_lock
);
2675 extent_start
= entry
->offset
;
2676 extent_bytes
= entry
->bytes
;
2677 start
= max(start
, extent_start
);
2678 bytes
= min(extent_start
+ extent_bytes
, end
) - start
;
2679 if (bytes
< minlen
) {
2680 spin_unlock(&ctl
->tree_lock
);
2684 unlink_free_space(ctl
, entry
);
2685 kmem_cache_free(btrfs_free_space_cachep
, entry
);
2687 spin_unlock(&ctl
->tree_lock
);
2689 ret
= do_trimming(block_group
, total_trimmed
, start
, bytes
,
2690 extent_start
, extent_bytes
);
2696 if (fatal_signal_pending(current
)) {
2707 static int trim_bitmaps(struct btrfs_block_group_cache
*block_group
,
2708 u64
*total_trimmed
, u64 start
, u64 end
, u64 minlen
)
2710 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
2711 struct btrfs_free_space
*entry
;
2715 u64 offset
= offset_to_bitmap(ctl
, start
);
2717 while (offset
< end
) {
2718 bool next_bitmap
= false;
2720 spin_lock(&ctl
->tree_lock
);
2722 if (ctl
->free_space
< minlen
) {
2723 spin_unlock(&ctl
->tree_lock
);
2727 entry
= tree_search_offset(ctl
, offset
, 1, 0);
2729 spin_unlock(&ctl
->tree_lock
);
2735 ret2
= search_bitmap(ctl
, entry
, &start
, &bytes
);
2736 if (ret2
|| start
>= end
) {
2737 spin_unlock(&ctl
->tree_lock
);
2742 bytes
= min(bytes
, end
- start
);
2743 if (bytes
< minlen
) {
2744 spin_unlock(&ctl
->tree_lock
);
2748 bitmap_clear_bits(ctl
, entry
, start
, bytes
);
2749 if (entry
->bytes
== 0)
2750 free_bitmap(ctl
, entry
);
2752 spin_unlock(&ctl
->tree_lock
);
2754 ret
= do_trimming(block_group
, total_trimmed
, start
, bytes
,
2760 offset
+= BITS_PER_BITMAP
* ctl
->unit
;
2763 if (start
>= offset
+ BITS_PER_BITMAP
* ctl
->unit
)
2764 offset
+= BITS_PER_BITMAP
* ctl
->unit
;
2767 if (fatal_signal_pending(current
)) {
2778 int btrfs_trim_block_group(struct btrfs_block_group_cache
*block_group
,
2779 u64
*trimmed
, u64 start
, u64 end
, u64 minlen
)
2785 ret
= trim_no_bitmap(block_group
, trimmed
, start
, end
, minlen
);
2789 ret
= trim_bitmaps(block_group
, trimmed
, start
, end
, minlen
);
2795 * Find the left-most item in the cache tree, and then return the
2796 * smallest inode number in the item.
2798 * Note: the returned inode number may not be the smallest one in
2799 * the tree, if the left-most item is a bitmap.
2801 u64
btrfs_find_ino_for_alloc(struct btrfs_root
*fs_root
)
2803 struct btrfs_free_space_ctl
*ctl
= fs_root
->free_ino_ctl
;
2804 struct btrfs_free_space
*entry
= NULL
;
2807 spin_lock(&ctl
->tree_lock
);
2809 if (RB_EMPTY_ROOT(&ctl
->free_space_offset
))
2812 entry
= rb_entry(rb_first(&ctl
->free_space_offset
),
2813 struct btrfs_free_space
, offset_index
);
2815 if (!entry
->bitmap
) {
2816 ino
= entry
->offset
;
2818 unlink_free_space(ctl
, entry
);
2822 kmem_cache_free(btrfs_free_space_cachep
, entry
);
2824 link_free_space(ctl
, entry
);
2830 ret
= search_bitmap(ctl
, entry
, &offset
, &count
);
2834 bitmap_clear_bits(ctl
, entry
, offset
, 1);
2835 if (entry
->bytes
== 0)
2836 free_bitmap(ctl
, entry
);
2839 spin_unlock(&ctl
->tree_lock
);
2844 struct inode
*lookup_free_ino_inode(struct btrfs_root
*root
,
2845 struct btrfs_path
*path
)
2847 struct inode
*inode
= NULL
;
2849 spin_lock(&root
->cache_lock
);
2850 if (root
->cache_inode
)
2851 inode
= igrab(root
->cache_inode
);
2852 spin_unlock(&root
->cache_lock
);
2856 inode
= __lookup_free_space_inode(root
, path
, 0);
2860 spin_lock(&root
->cache_lock
);
2861 if (!btrfs_fs_closing(root
->fs_info
))
2862 root
->cache_inode
= igrab(inode
);
2863 spin_unlock(&root
->cache_lock
);
2868 int create_free_ino_inode(struct btrfs_root
*root
,
2869 struct btrfs_trans_handle
*trans
,
2870 struct btrfs_path
*path
)
2872 return __create_free_space_inode(root
, trans
, path
,
2873 BTRFS_FREE_INO_OBJECTID
, 0);
2876 int load_free_ino_cache(struct btrfs_fs_info
*fs_info
, struct btrfs_root
*root
)
2878 struct btrfs_free_space_ctl
*ctl
= root
->free_ino_ctl
;
2879 struct btrfs_path
*path
;
2880 struct inode
*inode
;
2882 u64 root_gen
= btrfs_root_generation(&root
->root_item
);
2884 if (!btrfs_test_opt(root
, INODE_MAP_CACHE
))
2888 * If we're unmounting then just return, since this does a search on the
2889 * normal root and not the commit root and we could deadlock.
2891 if (btrfs_fs_closing(fs_info
))
2894 path
= btrfs_alloc_path();
2898 inode
= lookup_free_ino_inode(root
, path
);
2902 if (root_gen
!= BTRFS_I(inode
)->generation
)
2905 ret
= __load_free_space_cache(root
, inode
, ctl
, path
, 0);
2908 printk(KERN_ERR
"btrfs: failed to load free ino cache for "
2909 "root %llu\n", root
->root_key
.objectid
);
2913 btrfs_free_path(path
);
2917 int btrfs_write_out_ino_cache(struct btrfs_root
*root
,
2918 struct btrfs_trans_handle
*trans
,
2919 struct btrfs_path
*path
)
2921 struct btrfs_free_space_ctl
*ctl
= root
->free_ino_ctl
;
2922 struct inode
*inode
;
2925 if (!btrfs_test_opt(root
, INODE_MAP_CACHE
))
2928 inode
= lookup_free_ino_inode(root
, path
);
2932 ret
= __btrfs_write_out_cache(root
, inode
, ctl
, NULL
, trans
, path
, 0);
2934 btrfs_delalloc_release_metadata(inode
, inode
->i_size
);
2936 printk(KERN_ERR
"btrfs: failed to write free ino cache "
2937 "for root %llu\n", root
->root_key
.objectid
);