2 * Linux-DVB Driver for DiBcom's DiB0090 base-band RF Tuner.
4 * Copyright (C) 2005-9 DiBcom (http://www.dibcom.fr/)
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation; either version 2 of the
9 * License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful, but
12 * WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
22 * This code is more or less generated from another driver, please
23 * excuse some codingstyle oddities.
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/i2c.h>
31 #include "dvb_frontend.h"
34 #include "dibx000_common.h"
37 module_param(debug
, int, 0644);
38 MODULE_PARM_DESC(debug
, "turn on debugging (default: 0)");
40 #define dprintk(args...) do { \
42 printk(KERN_DEBUG "DiB0090: "); \
48 #define CONFIG_SYS_DVBT
49 #define CONFIG_SYS_ISDBT
50 #define CONFIG_BAND_CBAND
51 #define CONFIG_BAND_VHF
52 #define CONFIG_BAND_UHF
53 #define CONFIG_DIB0090_USE_PWM_AGC
55 #define EN_LNA0 0x8000
56 #define EN_LNA1 0x4000
57 #define EN_LNA2 0x2000
58 #define EN_LNA3 0x1000
59 #define EN_MIX0 0x0800
60 #define EN_MIX1 0x0400
61 #define EN_MIX2 0x0200
62 #define EN_MIX3 0x0100
63 #define EN_IQADC 0x0040
68 #define EN_BIAS 0x0001
70 #define EN_IQANA 0x0002
71 #define EN_DIGCLK 0x0080 /* not in the 0x24 reg, only in 0x1b */
72 #define EN_CRYSTAL 0x0002
80 /* Calibration defines */
84 #define CAPTRIM_CAL 0x8
86 #define KROSUS_PLL_LOCKED 0x800
89 /* Use those defines to identify SOC version */
91 #define SOC_7090_P1G_11R1 0x82
92 #define SOC_7090_P1G_21R1 0x8a
93 #define SOC_8090_P1G_11R1 0x86
94 #define SOC_8090_P1G_21R1 0x8e
96 /* else use thos ones to check */
103 #define MP001 0x1 /* Single 9090/8096 */
104 #define MP005 0x4 /* Single Sband */
105 #define MP008 0x6 /* Dual diversity VHF-UHF-LBAND */
106 #define MP009 0x7 /* Dual diversity 29098 CBAND-UHF-LBAND-SBAND */
108 #define pgm_read_word(w) (*w)
110 struct dc_calibration
;
112 struct dib0090_tuning
{
113 u32 max_freq
; /* for every frequency less than or equal to that field: this information is correct */
124 u32 max_freq
; /* for every frequency less than or equal to that field: this information is correct */
131 struct dib0090_identity
{
138 struct dib0090_state
{
139 struct i2c_adapter
*i2c
;
140 struct dvb_frontend
*fe
;
141 const struct dib0090_config
*config
;
144 enum frontend_tune_state tune_state
;
148 s16 wbd_target
; /* in dB */
150 s16 rf_gain_limit
; /* take-over-point: where to split between bb and rf gain */
151 s16 current_gain
; /* keeps the currently programmed gain */
152 u8 agc_step
; /* new binary search */
154 u16 gain
[2]; /* for channel monitoring */
159 /* for the software AGC ramps */
164 /* for the captrim/dc-offset search */
172 const struct dc_calibration
*dc
;
175 const struct dib0090_tuning
*current_tune_table_index
;
176 const struct dib0090_pll
*current_pll_table_index
;
181 struct dib0090_identity identity
;
191 u8 wbd_calibration_gain
;
192 const struct dib0090_wbd_slope
*current_wbd_table
;
195 /* for the I2C transfer */
196 struct i2c_msg msg
[2];
197 u8 i2c_write_buffer
[3];
198 u8 i2c_read_buffer
[2];
201 struct dib0090_fw_state
{
202 struct i2c_adapter
*i2c
;
203 struct dvb_frontend
*fe
;
204 struct dib0090_identity identity
;
205 const struct dib0090_config
*config
;
207 /* for the I2C transfer */
209 u8 i2c_write_buffer
[2];
210 u8 i2c_read_buffer
[2];
213 static u16
dib0090_read_reg(struct dib0090_state
*state
, u8 reg
)
215 state
->i2c_write_buffer
[0] = reg
;
217 memset(state
->msg
, 0, 2 * sizeof(struct i2c_msg
));
218 state
->msg
[0].addr
= state
->config
->i2c_address
;
219 state
->msg
[0].flags
= 0;
220 state
->msg
[0].buf
= state
->i2c_write_buffer
;
221 state
->msg
[0].len
= 1;
222 state
->msg
[1].addr
= state
->config
->i2c_address
;
223 state
->msg
[1].flags
= I2C_M_RD
;
224 state
->msg
[1].buf
= state
->i2c_read_buffer
;
225 state
->msg
[1].len
= 2;
227 if (i2c_transfer(state
->i2c
, state
->msg
, 2) != 2) {
228 printk(KERN_WARNING
"DiB0090 I2C read failed\n");
232 return (state
->i2c_read_buffer
[0] << 8) | state
->i2c_read_buffer
[1];
235 static int dib0090_write_reg(struct dib0090_state
*state
, u32 reg
, u16 val
)
237 state
->i2c_write_buffer
[0] = reg
& 0xff;
238 state
->i2c_write_buffer
[1] = val
>> 8;
239 state
->i2c_write_buffer
[2] = val
& 0xff;
241 memset(state
->msg
, 0, sizeof(struct i2c_msg
));
242 state
->msg
[0].addr
= state
->config
->i2c_address
;
243 state
->msg
[0].flags
= 0;
244 state
->msg
[0].buf
= state
->i2c_write_buffer
;
245 state
->msg
[0].len
= 3;
247 if (i2c_transfer(state
->i2c
, state
->msg
, 1) != 1) {
248 printk(KERN_WARNING
"DiB0090 I2C write failed\n");
254 static u16
dib0090_fw_read_reg(struct dib0090_fw_state
*state
, u8 reg
)
256 state
->i2c_write_buffer
[0] = reg
;
258 memset(&state
->msg
, 0, sizeof(struct i2c_msg
));
259 state
->msg
.addr
= reg
;
260 state
->msg
.flags
= I2C_M_RD
;
261 state
->msg
.buf
= state
->i2c_read_buffer
;
263 if (i2c_transfer(state
->i2c
, &state
->msg
, 1) != 1) {
264 printk(KERN_WARNING
"DiB0090 I2C read failed\n");
267 return (state
->i2c_read_buffer
[0] << 8) | state
->i2c_read_buffer
[1];
270 static int dib0090_fw_write_reg(struct dib0090_fw_state
*state
, u8 reg
, u16 val
)
272 state
->i2c_write_buffer
[0] = val
>> 8;
273 state
->i2c_write_buffer
[1] = val
& 0xff;
275 memset(&state
->msg
, 0, sizeof(struct i2c_msg
));
276 state
->msg
.addr
= reg
;
277 state
->msg
.flags
= 0;
278 state
->msg
.buf
= state
->i2c_write_buffer
;
280 if (i2c_transfer(state
->i2c
, &state
->msg
, 1) != 1) {
281 printk(KERN_WARNING
"DiB0090 I2C write failed\n");
287 #define HARD_RESET(state) do { if (cfg->reset) { if (cfg->sleep) cfg->sleep(fe, 0); msleep(10); cfg->reset(fe, 1); msleep(10); cfg->reset(fe, 0); msleep(10); } } while (0)
288 #define ADC_TARGET -220
292 static void dib0090_write_regs(struct dib0090_state
*state
, u8 r
, const u16
* b
, u8 c
)
295 dib0090_write_reg(state
, r
++, *b
++);
299 static int dib0090_identify(struct dvb_frontend
*fe
)
301 struct dib0090_state
*state
= fe
->tuner_priv
;
303 struct dib0090_identity
*identity
= &state
->identity
;
305 v
= dib0090_read_reg(state
, 0x1a);
308 identity
->in_soc
= 0;
310 dprintk("Tuner identification (Version = 0x%04x)", v
);
312 /* without PLL lock info */
313 v
&= ~KROSUS_PLL_LOCKED
;
315 identity
->version
= v
& 0xff;
316 identity
->product
= (v
>> 8) & 0xf;
318 if (identity
->product
!= KROSUS
)
319 goto identification_error
;
321 if ((identity
->version
& 0x3) == SOC
) {
322 identity
->in_soc
= 1;
323 switch (identity
->version
) {
324 case SOC_8090_P1G_11R1
:
325 dprintk("SOC 8090 P1-G11R1 Has been detected");
328 case SOC_8090_P1G_21R1
:
329 dprintk("SOC 8090 P1-G21R1 Has been detected");
332 case SOC_7090_P1G_11R1
:
333 dprintk("SOC 7090 P1-G11R1 Has been detected");
336 case SOC_7090_P1G_21R1
:
337 dprintk("SOC 7090 P1-G21R1 Has been detected");
341 goto identification_error
;
344 switch ((identity
->version
>> 5) & 0x7) {
346 dprintk("MP001 : 9090/8096");
349 dprintk("MP005 : Single Sband");
352 dprintk("MP008 : diversity VHF-UHF-LBAND");
355 dprintk("MP009 : diversity 29098 CBAND-UHF-LBAND-SBAND");
358 goto identification_error
;
361 switch (identity
->version
& 0x1f) {
363 dprintk("P1G_21R2 detected");
367 dprintk("P1G detected");
371 dprintk("P1D/E/F detected");
374 dprintk("P1C detected");
377 dprintk("P1-A/B detected: driver is deactivated - not available");
378 goto identification_error
;
381 goto identification_error
;
387 identification_error
:
391 static int dib0090_fw_identify(struct dvb_frontend
*fe
)
393 struct dib0090_fw_state
*state
= fe
->tuner_priv
;
394 struct dib0090_identity
*identity
= &state
->identity
;
396 u16 v
= dib0090_fw_read_reg(state
, 0x1a);
398 identity
->in_soc
= 0;
400 dprintk("FE: Tuner identification (Version = 0x%04x)", v
);
402 /* without PLL lock info */
403 v
&= ~KROSUS_PLL_LOCKED
;
405 identity
->version
= v
& 0xff;
406 identity
->product
= (v
>> 8) & 0xf;
408 if (identity
->product
!= KROSUS
)
409 goto identification_error
;
411 if ((identity
->version
& 0x3) == SOC
) {
412 identity
->in_soc
= 1;
413 switch (identity
->version
) {
414 case SOC_8090_P1G_11R1
:
415 dprintk("SOC 8090 P1-G11R1 Has been detected");
418 case SOC_8090_P1G_21R1
:
419 dprintk("SOC 8090 P1-G21R1 Has been detected");
422 case SOC_7090_P1G_11R1
:
423 dprintk("SOC 7090 P1-G11R1 Has been detected");
426 case SOC_7090_P1G_21R1
:
427 dprintk("SOC 7090 P1-G21R1 Has been detected");
431 goto identification_error
;
434 switch ((identity
->version
>> 5) & 0x7) {
436 dprintk("MP001 : 9090/8096");
439 dprintk("MP005 : Single Sband");
442 dprintk("MP008 : diversity VHF-UHF-LBAND");
445 dprintk("MP009 : diversity 29098 CBAND-UHF-LBAND-SBAND");
448 goto identification_error
;
451 switch (identity
->version
& 0x1f) {
453 dprintk("P1G_21R2 detected");
457 dprintk("P1G detected");
461 dprintk("P1D/E/F detected");
464 dprintk("P1C detected");
467 dprintk("P1-A/B detected: driver is deactivated - not available");
468 goto identification_error
;
471 goto identification_error
;
477 identification_error
:
481 static void dib0090_reset_digital(struct dvb_frontend
*fe
, const struct dib0090_config
*cfg
)
483 struct dib0090_state
*state
= fe
->tuner_priv
;
488 dib0090_write_reg(state
, 0x24, EN_PLL
| EN_CRYSTAL
);
489 dib0090_write_reg(state
, 0x1b, EN_DIGCLK
| EN_PLL
| EN_CRYSTAL
); /* PLL, DIG_CLK and CRYSTAL remain */
492 /* adcClkOutRatio=8->7, release reset */
493 dib0090_write_reg(state
, 0x20, ((cfg
->io
.adc_clock_ratio
- 1) << 11) | (0 << 10) | (1 << 9) | (1 << 8) | (0 << 4) | 0);
494 if (cfg
->clkoutdrive
!= 0)
495 dib0090_write_reg(state
, 0x23, (0 << 15) | ((!cfg
->analog_output
) << 14) | (2 << 10) | (1 << 9) | (0 << 8)
496 | (cfg
->clkoutdrive
<< 5) | (cfg
->clkouttobamse
<< 4) | (0 << 2) | (0));
498 dib0090_write_reg(state
, 0x23, (0 << 15) | ((!cfg
->analog_output
) << 14) | (2 << 10) | (1 << 9) | (0 << 8)
499 | (7 << 5) | (cfg
->clkouttobamse
<< 4) | (0 << 2) | (0));
502 /* Read Pll current config * */
503 PllCfg
= dib0090_read_reg(state
, 0x21);
505 /** Reconfigure PLL if current setting is different from default setting **/
506 if ((PllCfg
& 0x1FFF) != ((cfg
->io
.pll_range
<< 12) | (cfg
->io
.pll_loopdiv
<< 6) | (cfg
->io
.pll_prediv
)) && (!cfg
->in_soc
)
507 && !cfg
->io
.pll_bypass
) {
509 /* Set Bypass mode */
511 dib0090_write_reg(state
, 0x21, PllCfg
);
514 PllCfg
&= ~(1 << 13);
515 dib0090_write_reg(state
, 0x21, PllCfg
);
517 /*** Set new Pll configuration in bypass and reset state ***/
518 PllCfg
= (1 << 15) | (0 << 13) | (cfg
->io
.pll_range
<< 12) | (cfg
->io
.pll_loopdiv
<< 6) | (cfg
->io
.pll_prediv
);
519 dib0090_write_reg(state
, 0x21, PllCfg
);
521 /* Remove Reset Pll */
523 dib0090_write_reg(state
, 0x21, PllCfg
);
525 /*** Wait for PLL lock ***/
528 v
= !!(dib0090_read_reg(state
, 0x1a) & 0x800);
534 dprintk("Pll: Unable to lock Pll");
538 /* Finally Remove Bypass mode */
539 PllCfg
&= ~(1 << 15);
540 dib0090_write_reg(state
, 0x21, PllCfg
);
543 if (cfg
->io
.pll_bypass
) {
544 PllCfg
|= (cfg
->io
.pll_bypass
<< 15);
545 dib0090_write_reg(state
, 0x21, PllCfg
);
549 static int dib0090_fw_reset_digital(struct dvb_frontend
*fe
, const struct dib0090_config
*cfg
)
551 struct dib0090_fw_state
*state
= fe
->tuner_priv
;
556 dprintk("fw reset digital");
559 dib0090_fw_write_reg(state
, 0x24, EN_PLL
| EN_CRYSTAL
);
560 dib0090_fw_write_reg(state
, 0x1b, EN_DIGCLK
| EN_PLL
| EN_CRYSTAL
); /* PLL, DIG_CLK and CRYSTAL remain */
562 dib0090_fw_write_reg(state
, 0x20,
563 ((cfg
->io
.adc_clock_ratio
- 1) << 11) | (0 << 10) | (1 << 9) | (1 << 8) | (cfg
->data_tx_drv
<< 4) | cfg
->ls_cfg_pad_drv
);
565 v
= (0 << 15) | ((!cfg
->analog_output
) << 14) | (1 << 9) | (0 << 8) | (cfg
->clkouttobamse
<< 4) | (0 << 2) | (0);
566 if (cfg
->clkoutdrive
!= 0)
567 v
|= cfg
->clkoutdrive
<< 5;
572 dib0090_fw_write_reg(state
, 0x23, v
);
574 /* Read Pll current config * */
575 PllCfg
= dib0090_fw_read_reg(state
, 0x21);
577 /** Reconfigure PLL if current setting is different from default setting **/
578 if ((PllCfg
& 0x1FFF) != ((cfg
->io
.pll_range
<< 12) | (cfg
->io
.pll_loopdiv
<< 6) | (cfg
->io
.pll_prediv
)) && !cfg
->io
.pll_bypass
) {
580 /* Set Bypass mode */
582 dib0090_fw_write_reg(state
, 0x21, PllCfg
);
585 PllCfg
&= ~(1 << 13);
586 dib0090_fw_write_reg(state
, 0x21, PllCfg
);
588 /*** Set new Pll configuration in bypass and reset state ***/
589 PllCfg
= (1 << 15) | (0 << 13) | (cfg
->io
.pll_range
<< 12) | (cfg
->io
.pll_loopdiv
<< 6) | (cfg
->io
.pll_prediv
);
590 dib0090_fw_write_reg(state
, 0x21, PllCfg
);
592 /* Remove Reset Pll */
594 dib0090_fw_write_reg(state
, 0x21, PllCfg
);
596 /*** Wait for PLL lock ***/
599 v
= !!(dib0090_fw_read_reg(state
, 0x1a) & 0x800);
605 dprintk("Pll: Unable to lock Pll");
609 /* Finally Remove Bypass mode */
610 PllCfg
&= ~(1 << 15);
611 dib0090_fw_write_reg(state
, 0x21, PllCfg
);
614 if (cfg
->io
.pll_bypass
) {
615 PllCfg
|= (cfg
->io
.pll_bypass
<< 15);
616 dib0090_fw_write_reg(state
, 0x21, PllCfg
);
619 return dib0090_fw_identify(fe
);
622 static int dib0090_wakeup(struct dvb_frontend
*fe
)
624 struct dib0090_state
*state
= fe
->tuner_priv
;
625 if (state
->config
->sleep
)
626 state
->config
->sleep(fe
, 0);
628 /* enable dataTX in case we have been restarted in the wrong moment */
629 dib0090_write_reg(state
, 0x23, dib0090_read_reg(state
, 0x23) | (1 << 14));
633 static int dib0090_sleep(struct dvb_frontend
*fe
)
635 struct dib0090_state
*state
= fe
->tuner_priv
;
636 if (state
->config
->sleep
)
637 state
->config
->sleep(fe
, 1);
641 void dib0090_dcc_freq(struct dvb_frontend
*fe
, u8 fast
)
643 struct dib0090_state
*state
= fe
->tuner_priv
;
645 dib0090_write_reg(state
, 0x04, 0);
647 dib0090_write_reg(state
, 0x04, 1);
650 EXPORT_SYMBOL(dib0090_dcc_freq
);
652 static const u16 bb_ramp_pwm_normal_socs
[] = {
653 550, /* max BB gain in 10th of dB */
654 (1 << 9) | 8, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> BB_RAMP2 */
656 (4 << 9) | 0, /* BB_RAMP3 = 26dB */
657 (0 << 9) | 208, /* BB_RAMP4 */
658 (4 << 9) | 208, /* BB_RAMP5 = 29dB */
659 (0 << 9) | 440, /* BB_RAMP6 */
662 static const u16 rf_ramp_pwm_cband_7090
[] = {
663 280, /* max RF gain in 10th of dB */
664 18, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> RF_RAMP2 */
665 504, /* ramp_max = maximum X used on the ramp */
666 (29 << 10) | 364, /* RF_RAMP5, LNA 1 = 8dB */
667 (0 << 10) | 504, /* RF_RAMP6, LNA 1 */
668 (60 << 10) | 228, /* RF_RAMP7, LNA 2 = 7.7dB */
669 (0 << 10) | 364, /* RF_RAMP8, LNA 2 */
670 (34 << 10) | 109, /* GAIN_4_1, LNA 3 = 6.8dB */
671 (0 << 10) | 228, /* GAIN_4_2, LNA 3 */
672 (37 << 10) | 0, /* RF_RAMP3, LNA 4 = 6.2dB */
673 (0 << 10) | 109, /* RF_RAMP4, LNA 4 */
676 static const u16 rf_ramp_pwm_cband_8090
[] = {
677 345, /* max RF gain in 10th of dB */
678 29, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> RF_RAMP2 */
679 1000, /* ramp_max = maximum X used on the ramp */
680 (35 << 10) | 772, /* RF_RAMP3, LNA 1 = 8dB */
681 (0 << 10) | 1000, /* RF_RAMP4, LNA 1 */
682 (58 << 10) | 496, /* RF_RAMP5, LNA 2 = 9.5dB */
683 (0 << 10) | 772, /* RF_RAMP6, LNA 2 */
684 (27 << 10) | 200, /* RF_RAMP7, LNA 3 = 10.5dB */
685 (0 << 10) | 496, /* RF_RAMP8, LNA 3 */
686 (40 << 10) | 0, /* GAIN_4_1, LNA 4 = 7dB */
687 (0 << 10) | 200, /* GAIN_4_2, LNA 4 */
690 static const u16 rf_ramp_pwm_uhf_7090
[] = {
691 407, /* max RF gain in 10th of dB */
692 13, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> RF_RAMP2 */
693 529, /* ramp_max = maximum X used on the ramp */
694 (23 << 10) | 0, /* RF_RAMP3, LNA 1 = 14.7dB */
695 (0 << 10) | 176, /* RF_RAMP4, LNA 1 */
696 (63 << 10) | 400, /* RF_RAMP5, LNA 2 = 8dB */
697 (0 << 10) | 529, /* RF_RAMP6, LNA 2 */
698 (48 << 10) | 316, /* RF_RAMP7, LNA 3 = 6.8dB */
699 (0 << 10) | 400, /* RF_RAMP8, LNA 3 */
700 (29 << 10) | 176, /* GAIN_4_1, LNA 4 = 11.5dB */
701 (0 << 10) | 316, /* GAIN_4_2, LNA 4 */
704 static const u16 rf_ramp_pwm_uhf_8090
[] = {
705 388, /* max RF gain in 10th of dB */
706 26, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> RF_RAMP2 */
707 1008, /* ramp_max = maximum X used on the ramp */
708 (11 << 10) | 0, /* RF_RAMP3, LNA 1 = 14.7dB */
709 (0 << 10) | 369, /* RF_RAMP4, LNA 1 */
710 (41 << 10) | 809, /* RF_RAMP5, LNA 2 = 8dB */
711 (0 << 10) | 1008, /* RF_RAMP6, LNA 2 */
712 (27 << 10) | 659, /* RF_RAMP7, LNA 3 = 6dB */
713 (0 << 10) | 809, /* RF_RAMP8, LNA 3 */
714 (14 << 10) | 369, /* GAIN_4_1, LNA 4 = 11.5dB */
715 (0 << 10) | 659, /* GAIN_4_2, LNA 4 */
718 static const u16 rf_ramp_pwm_cband
[] = {
719 0, /* max RF gain in 10th of dB */
720 0, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> 0x2b */
721 0, /* ramp_max = maximum X used on the ramp */
722 (0 << 10) | 0, /* 0x2c, LNA 1 = 0dB */
723 (0 << 10) | 0, /* 0x2d, LNA 1 */
724 (0 << 10) | 0, /* 0x2e, LNA 2 = 0dB */
725 (0 << 10) | 0, /* 0x2f, LNA 2 */
726 (0 << 10) | 0, /* 0x30, LNA 3 = 0dB */
727 (0 << 10) | 0, /* 0x31, LNA 3 */
728 (0 << 10) | 0, /* GAIN_4_1, LNA 4 = 0dB */
729 (0 << 10) | 0, /* GAIN_4_2, LNA 4 */
732 static const u16 rf_ramp_vhf
[] = {
733 412, /* max RF gain in 10th of dB */
734 132, 307, 127, /* LNA1, 13.2dB */
735 105, 412, 255, /* LNA2, 10.5dB */
736 50, 50, 127, /* LNA3, 5dB */
737 125, 175, 127, /* LNA4, 12.5dB */
738 0, 0, 127, /* CBAND, 0dB */
741 static const u16 rf_ramp_uhf
[] = {
742 412, /* max RF gain in 10th of dB */
743 132, 307, 127, /* LNA1 : total gain = 13.2dB, point on the ramp where this amp is full gain, value to write to get full gain */
744 105, 412, 255, /* LNA2 : 10.5 dB */
745 50, 50, 127, /* LNA3 : 5.0 dB */
746 125, 175, 127, /* LNA4 : 12.5 dB */
747 0, 0, 127, /* CBAND : 0.0 dB */
750 static const u16 rf_ramp_cband_broadmatching
[] = /* for p1G only */
752 314, /* Calibrated at 200MHz order has been changed g4-g3-g2-g1 */
753 84, 314, 127, /* LNA1 */
754 80, 230, 255, /* LNA2 */
755 80, 150, 127, /* LNA3 It was measured 12dB, do not lock if 120 */
756 70, 70, 127, /* LNA4 */
757 0, 0, 127, /* CBAND */
760 static const u16 rf_ramp_cband
[] = {
761 332, /* max RF gain in 10th of dB */
762 132, 252, 127, /* LNA1, dB */
763 80, 332, 255, /* LNA2, dB */
764 0, 0, 127, /* LNA3, dB */
765 0, 0, 127, /* LNA4, dB */
766 120, 120, 127, /* LT1 CBAND */
769 static const u16 rf_ramp_pwm_vhf
[] = {
770 404, /* max RF gain in 10th of dB */
771 25, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> 0x2b */
772 1011, /* ramp_max = maximum X used on the ramp */
773 (6 << 10) | 417, /* 0x2c, LNA 1 = 13.2dB */
774 (0 << 10) | 756, /* 0x2d, LNA 1 */
775 (16 << 10) | 756, /* 0x2e, LNA 2 = 10.5dB */
776 (0 << 10) | 1011, /* 0x2f, LNA 2 */
777 (16 << 10) | 290, /* 0x30, LNA 3 = 5dB */
778 (0 << 10) | 417, /* 0x31, LNA 3 */
779 (7 << 10) | 0, /* GAIN_4_1, LNA 4 = 12.5dB */
780 (0 << 10) | 290, /* GAIN_4_2, LNA 4 */
783 static const u16 rf_ramp_pwm_uhf
[] = {
784 404, /* max RF gain in 10th of dB */
785 25, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> 0x2b */
786 1011, /* ramp_max = maximum X used on the ramp */
787 (6 << 10) | 417, /* 0x2c, LNA 1 = 13.2dB */
788 (0 << 10) | 756, /* 0x2d, LNA 1 */
789 (16 << 10) | 756, /* 0x2e, LNA 2 = 10.5dB */
790 (0 << 10) | 1011, /* 0x2f, LNA 2 */
791 (16 << 10) | 0, /* 0x30, LNA 3 = 5dB */
792 (0 << 10) | 127, /* 0x31, LNA 3 */
793 (7 << 10) | 127, /* GAIN_4_1, LNA 4 = 12.5dB */
794 (0 << 10) | 417, /* GAIN_4_2, LNA 4 */
797 static const u16 bb_ramp_boost
[] = {
798 550, /* max BB gain in 10th of dB */
799 260, 260, 26, /* BB1, 26dB */
800 290, 550, 29, /* BB2, 29dB */
803 static const u16 bb_ramp_pwm_normal
[] = {
804 500, /* max RF gain in 10th of dB */
805 8, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> 0x34 */
807 (2 << 9) | 0, /* 0x35 = 21dB */
808 (0 << 9) | 168, /* 0x36 */
809 (2 << 9) | 168, /* 0x37 = 29dB */
810 (0 << 9) | 400, /* 0x38 */
817 static u16
slopes_to_scale(const struct slope
*slopes
, u8 num
, s16 val
)
822 for (i
= 0; i
< num
; i
++) {
823 if (val
> slopes
[i
].range
)
824 rest
= slopes
[i
].range
;
827 ret
+= (rest
* slopes
[i
].slope
) / slopes
[i
].range
;
833 static const struct slope dib0090_wbd_slopes
[3] = {
834 {66, 120}, /* -64,-52: offset - 65 */
835 {600, 170}, /* -52,-35: 65 - 665 */
836 {170, 250}, /* -45,-10: 665 - 835 */
839 static s16
dib0090_wbd_to_db(struct dib0090_state
*state
, u16 wbd
)
842 if (wbd
< state
->wbd_offset
)
845 wbd
-= state
->wbd_offset
;
846 /* -64dB is the floor */
847 return -640 + (s16
) slopes_to_scale(dib0090_wbd_slopes
, ARRAY_SIZE(dib0090_wbd_slopes
), wbd
);
850 static void dib0090_wbd_target(struct dib0090_state
*state
, u32 rf
)
854 /* TODO : DAB digital N+/-1 interferer perfs : offset = 10 */
856 if (state
->current_band
== BAND_VHF
)
858 #ifndef FIRMWARE_FIREFLY
859 if (state
->current_band
== BAND_VHF
)
860 offset
= state
->config
->wbd_vhf_offset
;
861 if (state
->current_band
== BAND_CBAND
)
862 offset
= state
->config
->wbd_cband_offset
;
865 state
->wbd_target
= dib0090_wbd_to_db(state
, state
->wbd_offset
+ offset
);
866 dprintk("wbd-target: %d dB", (u32
) state
->wbd_target
);
869 static const int gain_reg_addr
[4] = {
870 0x08, 0x0a, 0x0f, 0x01
873 static void dib0090_gain_apply(struct dib0090_state
*state
, s16 gain_delta
, s16 top_delta
, u8 force
)
876 u16 i
, v
, gain_reg
[4] = { 0 }, gain
;
879 if (top_delta
< -511)
885 top_delta
*= (1 << WBD_ALPHA
);
886 gain_delta
*= (1 << GAIN_ALPHA
);
889 if (top_delta
>= ((s16
) (state
->rf_ramp
[0] << WBD_ALPHA
) - state
->rf_gain_limit
)) /* overflow */
890 state
->rf_gain_limit
= state
->rf_ramp
[0] << WBD_ALPHA
;
892 state
->rf_gain_limit
+= top_delta
;
894 if (state
->rf_gain_limit
< 0) /*underflow */
895 state
->rf_gain_limit
= 0;
897 /* use gain as a temporary variable and correct current_gain */
898 gain
= ((state
->rf_gain_limit
>> WBD_ALPHA
) + state
->bb_ramp
[0]) << GAIN_ALPHA
;
899 if (gain_delta
>= ((s16
) gain
- state
->current_gain
)) /* overflow */
900 state
->current_gain
= gain
;
902 state
->current_gain
+= gain_delta
;
903 /* cannot be less than 0 (only if gain_delta is less than 0 we can have current_gain < 0) */
904 if (state
->current_gain
< 0)
905 state
->current_gain
= 0;
907 /* now split total gain to rf and bb gain */
908 gain
= state
->current_gain
>> GAIN_ALPHA
;
910 /* requested gain is bigger than rf gain limit - ACI/WBD adjustment */
911 if (gain
> (state
->rf_gain_limit
>> WBD_ALPHA
)) {
912 rf
= state
->rf_gain_limit
>> WBD_ALPHA
;
914 if (bb
> state
->bb_ramp
[0])
915 bb
= state
->bb_ramp
[0];
916 } else { /* high signal level -> all gains put on RF */
925 /* Start with RF gains */
926 g
= state
->rf_ramp
+ 1; /* point on RF LNA1 max gain */
928 for (i
= 0; i
< 7; i
++) { /* Go over all amplifiers => 5RF amps + 2 BB amps = 7 amps */
929 if (g
[0] == 0 || ref
< (g
[1] - g
[0])) /* if total gain of the current amp is null or this amp is not concerned because it starts to work from an higher gain value */
930 v
= 0; /* force the gain to write for the current amp to be null */
931 else if (ref
>= g
[1]) /* Gain to set is higher than the high working point of this amp */
932 v
= g
[2]; /* force this amp to be full gain */
933 else /* compute the value to set to this amp because we are somewhere in his range */
934 v
= ((ref
- (g
[1] - g
[0])) * g
[2]) / g
[0];
936 if (i
== 0) /* LNA 1 reg mapping */
938 else if (i
== 1) /* LNA 2 reg mapping */
939 gain_reg
[0] |= v
<< 7;
940 else if (i
== 2) /* LNA 3 reg mapping */
942 else if (i
== 3) /* LNA 4 reg mapping */
943 gain_reg
[1] |= v
<< 7;
944 else if (i
== 4) /* CBAND LNA reg mapping */
945 gain_reg
[2] = v
| state
->rf_lt_def
;
946 else if (i
== 5) /* BB gain 1 reg mapping */
947 gain_reg
[3] = v
<< 3;
948 else if (i
== 6) /* BB gain 2 reg mapping */
949 gain_reg
[3] |= v
<< 8;
951 g
+= 3; /* go to next gain bloc */
953 /* When RF is finished, start with BB */
955 g
= state
->bb_ramp
+ 1; /* point on BB gain 1 max gain */
959 gain_reg
[3] |= state
->bb_1_def
;
960 gain_reg
[3] |= ((bb
% 10) * 100) / 125;
963 dprintk("GA CALC: DB: %3d(rf) + %3d(bb) = %3d gain_reg[0]=%04x gain_reg[1]=%04x gain_reg[2]=%04x gain_reg[0]=%04x", rf
, bb
, rf
+ bb
,
964 gain_reg
[0], gain_reg
[1], gain_reg
[2], gain_reg
[3]);
967 /* Write the amplifier regs */
968 for (i
= 0; i
< 4; i
++) {
970 if (force
|| state
->gain_reg
[i
] != v
) {
971 state
->gain_reg
[i
] = v
;
972 dib0090_write_reg(state
, gain_reg_addr
[i
], v
);
977 static void dib0090_set_boost(struct dib0090_state
*state
, int onoff
)
979 state
->bb_1_def
&= 0xdfff;
980 state
->bb_1_def
|= onoff
<< 13;
983 static void dib0090_set_rframp(struct dib0090_state
*state
, const u16
* cfg
)
985 state
->rf_ramp
= cfg
;
988 static void dib0090_set_rframp_pwm(struct dib0090_state
*state
, const u16
* cfg
)
990 state
->rf_ramp
= cfg
;
992 dib0090_write_reg(state
, 0x2a, 0xffff);
994 dprintk("total RF gain: %ddB, step: %d", (u32
) cfg
[0], dib0090_read_reg(state
, 0x2a));
996 dib0090_write_regs(state
, 0x2c, cfg
+ 3, 6);
997 dib0090_write_regs(state
, 0x3e, cfg
+ 9, 2);
1000 static void dib0090_set_bbramp(struct dib0090_state
*state
, const u16
* cfg
)
1002 state
->bb_ramp
= cfg
;
1003 dib0090_set_boost(state
, cfg
[0] > 500); /* we want the boost if the gain is higher that 50dB */
1006 static void dib0090_set_bbramp_pwm(struct dib0090_state
*state
, const u16
* cfg
)
1008 state
->bb_ramp
= cfg
;
1010 dib0090_set_boost(state
, cfg
[0] > 500); /* we want the boost if the gain is higher that 50dB */
1012 dib0090_write_reg(state
, 0x33, 0xffff);
1013 dprintk("total BB gain: %ddB, step: %d", (u32
) cfg
[0], dib0090_read_reg(state
, 0x33));
1014 dib0090_write_regs(state
, 0x35, cfg
+ 3, 4);
1017 void dib0090_pwm_gain_reset(struct dvb_frontend
*fe
)
1019 struct dib0090_state
*state
= fe
->tuner_priv
;
1022 if (state
->config
->use_pwm_agc
) {
1023 #ifdef CONFIG_BAND_SBAND
1024 if (state
->current_band
== BAND_SBAND
) {
1025 dib0090_set_rframp_pwm(state
, rf_ramp_pwm_sband
);
1026 dib0090_set_bbramp_pwm(state
, bb_ramp_pwm_boost
);
1029 #ifdef CONFIG_BAND_CBAND
1030 if (state
->current_band
== BAND_CBAND
) {
1031 if (state
->identity
.in_soc
) {
1032 dib0090_set_bbramp_pwm(state
, bb_ramp_pwm_normal_socs
);
1033 if (state
->identity
.version
== SOC_8090_P1G_11R1
|| state
->identity
.version
== SOC_8090_P1G_21R1
)
1034 dib0090_set_rframp_pwm(state
, rf_ramp_pwm_cband_8090
);
1035 else if (state
->identity
.version
== SOC_7090_P1G_11R1
|| state
->identity
.version
== SOC_7090_P1G_21R1
)
1036 dib0090_set_rframp_pwm(state
, rf_ramp_pwm_cband_7090
);
1038 dib0090_set_rframp_pwm(state
, rf_ramp_pwm_cband
);
1039 dib0090_set_bbramp_pwm(state
, bb_ramp_pwm_normal
);
1043 #ifdef CONFIG_BAND_VHF
1044 if (state
->current_band
== BAND_VHF
) {
1045 if (state
->identity
.in_soc
) {
1046 dib0090_set_bbramp_pwm(state
, bb_ramp_pwm_normal_socs
);
1048 dib0090_set_rframp_pwm(state
, rf_ramp_pwm_vhf
);
1049 dib0090_set_bbramp_pwm(state
, bb_ramp_pwm_normal
);
1054 if (state
->identity
.in_soc
) {
1055 if (state
->identity
.version
== SOC_8090_P1G_11R1
|| state
->identity
.version
== SOC_8090_P1G_21R1
)
1056 dib0090_set_rframp_pwm(state
, rf_ramp_pwm_uhf_8090
);
1057 else if (state
->identity
.version
== SOC_7090_P1G_11R1
|| state
->identity
.version
== SOC_7090_P1G_21R1
)
1058 dib0090_set_rframp_pwm(state
, rf_ramp_pwm_uhf_7090
);
1059 dib0090_set_bbramp_pwm(state
, bb_ramp_pwm_normal_socs
);
1061 dib0090_set_rframp_pwm(state
, rf_ramp_pwm_uhf
);
1062 dib0090_set_bbramp_pwm(state
, bb_ramp_pwm_normal
);
1066 if (state
->rf_ramp
[0] != 0)
1067 dib0090_write_reg(state
, 0x32, (3 << 11));
1069 dib0090_write_reg(state
, 0x32, (0 << 11));
1071 dib0090_write_reg(state
, 0x04, 0x01);
1072 dib0090_write_reg(state
, 0x39, (1 << 10));
1076 EXPORT_SYMBOL(dib0090_pwm_gain_reset
);
1078 static u32
dib0090_get_slow_adc_val(struct dib0090_state
*state
)
1080 u16 adc_val
= dib0090_read_reg(state
, 0x1d);
1081 if (state
->identity
.in_soc
)
1086 int dib0090_gain_control(struct dvb_frontend
*fe
)
1088 struct dib0090_state
*state
= fe
->tuner_priv
;
1089 enum frontend_tune_state
*tune_state
= &state
->tune_state
;
1093 u8 apply_gain_immediatly
= 1;
1094 s16 wbd_error
= 0, adc_error
= 0;
1096 if (*tune_state
== CT_AGC_START
) {
1097 state
->agc_freeze
= 0;
1098 dib0090_write_reg(state
, 0x04, 0x0);
1100 #ifdef CONFIG_BAND_SBAND
1101 if (state
->current_band
== BAND_SBAND
) {
1102 dib0090_set_rframp(state
, rf_ramp_sband
);
1103 dib0090_set_bbramp(state
, bb_ramp_boost
);
1106 #ifdef CONFIG_BAND_VHF
1107 if (state
->current_band
== BAND_VHF
&& !state
->identity
.p1g
) {
1108 dib0090_set_rframp(state
, rf_ramp_vhf
);
1109 dib0090_set_bbramp(state
, bb_ramp_boost
);
1112 #ifdef CONFIG_BAND_CBAND
1113 if (state
->current_band
== BAND_CBAND
&& !state
->identity
.p1g
) {
1114 dib0090_set_rframp(state
, rf_ramp_cband
);
1115 dib0090_set_bbramp(state
, bb_ramp_boost
);
1118 if ((state
->current_band
== BAND_CBAND
|| state
->current_band
== BAND_VHF
) && state
->identity
.p1g
) {
1119 dib0090_set_rframp(state
, rf_ramp_cband_broadmatching
);
1120 dib0090_set_bbramp(state
, bb_ramp_boost
);
1122 dib0090_set_rframp(state
, rf_ramp_uhf
);
1123 dib0090_set_bbramp(state
, bb_ramp_boost
);
1126 dib0090_write_reg(state
, 0x32, 0);
1127 dib0090_write_reg(state
, 0x39, 0);
1129 dib0090_wbd_target(state
, state
->current_rf
);
1131 state
->rf_gain_limit
= state
->rf_ramp
[0] << WBD_ALPHA
;
1132 state
->current_gain
= ((state
->rf_ramp
[0] + state
->bb_ramp
[0]) / 2) << GAIN_ALPHA
;
1134 *tune_state
= CT_AGC_STEP_0
;
1135 } else if (!state
->agc_freeze
) {
1136 s16 wbd
= 0, i
, cnt
;
1139 wbd_val
= dib0090_get_slow_adc_val(state
);
1141 if (*tune_state
== CT_AGC_STEP_0
)
1146 for (i
= 0; i
< cnt
; i
++) {
1147 wbd_val
= dib0090_get_slow_adc_val(state
);
1148 wbd
+= dib0090_wbd_to_db(state
, wbd_val
);
1151 wbd_error
= state
->wbd_target
- wbd
;
1153 if (*tune_state
== CT_AGC_STEP_0
) {
1154 if (wbd_error
< 0 && state
->rf_gain_limit
> 0 && !state
->identity
.p1g
) {
1155 #ifdef CONFIG_BAND_CBAND
1156 /* in case of CBAND tune reduce first the lt_gain2 before adjusting the RF gain */
1157 u8 ltg2
= (state
->rf_lt_def
>> 10) & 0x7;
1158 if (state
->current_band
== BAND_CBAND
&& ltg2
) {
1160 state
->rf_lt_def
&= ltg2
<< 10; /* reduce in 3 steps from 7 to 0 */
1164 state
->agc_step
= 0;
1165 *tune_state
= CT_AGC_STEP_1
;
1168 /* calc the adc power */
1169 adc
= state
->config
->get_adc_power(fe
);
1170 adc
= (adc
* ((s32
) 355774) + (((s32
) 1) << 20)) >> 21; /* included in [0:-700] */
1172 adc_error
= (s16
) (((s32
) ADC_TARGET
) - adc
);
1173 #ifdef CONFIG_STANDARD_DAB
1174 if (state
->fe
->dtv_property_cache
.delivery_system
== STANDARD_DAB
)
1177 #ifdef CONFIG_STANDARD_DVBT
1178 if (state
->fe
->dtv_property_cache
.delivery_system
== STANDARD_DVBT
&&
1179 (state
->fe
->dtv_property_cache
.modulation
== QAM_64
|| state
->fe
->dtv_property_cache
.modulation
== QAM_16
))
1182 #ifdef CONFIG_SYS_ISDBT
1183 if ((state
->fe
->dtv_property_cache
.delivery_system
== SYS_ISDBT
) && (((state
->fe
->dtv_property_cache
.layer
[0].segment_count
>
1186 ((state
->fe
->dtv_property_cache
.layer
[0].modulation
==
1188 || (state
->fe
->dtv_property_cache
.
1189 layer
[0].modulation
== QAM_16
)))
1191 ((state
->fe
->dtv_property_cache
.layer
[1].segment_count
>
1194 ((state
->fe
->dtv_property_cache
.layer
[1].modulation
==
1196 || (state
->fe
->dtv_property_cache
.
1197 layer
[1].modulation
== QAM_16
)))
1199 ((state
->fe
->dtv_property_cache
.layer
[2].segment_count
>
1202 ((state
->fe
->dtv_property_cache
.layer
[2].modulation
==
1204 || (state
->fe
->dtv_property_cache
.
1205 layer
[2].modulation
== QAM_16
)))
1211 if (*tune_state
== CT_AGC_STEP_1
) { /* quickly go to the correct range of the ADC power */
1212 if (ABS(adc_error
) < 50 || state
->agc_step
++ > 5) {
1214 #ifdef CONFIG_STANDARD_DAB
1215 if (state
->fe
->dtv_property_cache
.delivery_system
== STANDARD_DAB
) {
1216 dib0090_write_reg(state
, 0x02, (1 << 15) | (15 << 11) | (31 << 6) | (63)); /* cap value = 63 : narrow BB filter : Fc = 1.8MHz */
1217 dib0090_write_reg(state
, 0x04, 0x0);
1221 dib0090_write_reg(state
, 0x02, (1 << 15) | (3 << 11) | (6 << 6) | (32));
1222 dib0090_write_reg(state
, 0x04, 0x01); /*0 = 1KHz ; 1 = 150Hz ; 2 = 50Hz ; 3 = 50KHz ; 4 = servo fast */
1225 *tune_state
= CT_AGC_STOP
;
1228 /* everything higher than or equal to CT_AGC_STOP means tracking */
1229 ret
= 100; /* 10ms interval */
1230 apply_gain_immediatly
= 0;
1235 ("tune state %d, ADC = %3ddB (ADC err %3d) WBD %3ddB (WBD err %3d, WBD val SADC: %4d), RFGainLimit (TOP): %3d, signal: %3ddBm",
1236 (u32
) *tune_state
, (u32
) adc
, (u32
) adc_error
, (u32
) wbd
, (u32
) wbd_error
, (u32
) wbd_val
,
1237 (u32
) state
->rf_gain_limit
>> WBD_ALPHA
, (s32
) 200 + adc
- (state
->current_gain
>> GAIN_ALPHA
));
1242 if (!state
->agc_freeze
)
1243 dib0090_gain_apply(state
, adc_error
, wbd_error
, apply_gain_immediatly
);
1247 EXPORT_SYMBOL(dib0090_gain_control
);
1249 void dib0090_get_current_gain(struct dvb_frontend
*fe
, u16
* rf
, u16
* bb
, u16
* rf_gain_limit
, u16
* rflt
)
1251 struct dib0090_state
*state
= fe
->tuner_priv
;
1253 *rf
= state
->gain
[0];
1255 *bb
= state
->gain
[1];
1257 *rf_gain_limit
= state
->rf_gain_limit
;
1259 *rflt
= (state
->rf_lt_def
>> 10) & 0x7;
1262 EXPORT_SYMBOL(dib0090_get_current_gain
);
1264 u16
dib0090_get_wbd_offset(struct dvb_frontend
*fe
)
1266 struct dib0090_state
*state
= fe
->tuner_priv
;
1267 u32 f_MHz
= state
->fe
->dtv_property_cache
.frequency
/ 1000000;
1268 s32 current_temp
= state
->temperature
;
1269 s32 wbd_thot
, wbd_tcold
;
1270 const struct dib0090_wbd_slope
*wbd
= state
->current_wbd_table
;
1272 while (f_MHz
> wbd
->max_freq
)
1275 dprintk("using wbd-table-entry with max freq %d", wbd
->max_freq
);
1277 if (current_temp
< 0)
1279 if (current_temp
> 128)
1282 state
->wbdmux
&= ~(7 << 13);
1283 if (wbd
->wbd_gain
!= 0)
1284 state
->wbdmux
|= (wbd
->wbd_gain
<< 13);
1286 state
->wbdmux
|= (4 << 13);
1288 dib0090_write_reg(state
, 0x10, state
->wbdmux
);
1290 wbd_thot
= wbd
->offset_hot
- (((u32
) wbd
->slope_hot
* f_MHz
) >> 6);
1291 wbd_tcold
= wbd
->offset_cold
- (((u32
) wbd
->slope_cold
* f_MHz
) >> 6);
1293 wbd_tcold
+= ((wbd_thot
- wbd_tcold
) * current_temp
) >> 7;
1295 state
->wbd_target
= dib0090_wbd_to_db(state
, state
->wbd_offset
+ wbd_tcold
);
1296 dprintk("wbd-target: %d dB", (u32
) state
->wbd_target
);
1297 dprintk("wbd offset applied is %d", wbd_tcold
);
1299 return state
->wbd_offset
+ wbd_tcold
;
1302 EXPORT_SYMBOL(dib0090_get_wbd_offset
);
1304 static const u16 dib0090_defaults
[] = {
1344 EN_UHF
| EN_CRYSTAL
,
1352 static const u16 dib0090_p1g_additionnal_defaults
[] = {
1367 static void dib0090_set_default_config(struct dib0090_state
*state
, const u16
* n
)
1371 l
= pgm_read_word(n
++);
1373 r
= pgm_read_word(n
++);
1375 dib0090_write_reg(state
, r
, pgm_read_word(n
++));
1378 l
= pgm_read_word(n
++);
1382 #define CAP_VALUE_MIN (u8) 9
1383 #define CAP_VALUE_MAX (u8) 40
1384 #define HR_MIN (u8) 25
1385 #define HR_MAX (u8) 40
1386 #define POLY_MIN (u8) 0
1387 #define POLY_MAX (u8) 8
1389 void dib0090_set_EFUSE(struct dib0090_state
*state
)
1395 e2
= dib0090_read_reg(state
, 0x26);
1396 e4
= dib0090_read_reg(state
, 0x28);
1398 if ((state
->identity
.version
== P1D_E_F
) ||
1399 (state
->identity
.version
== P1G
) || (e2
== 0xffff)) {
1401 dib0090_write_reg(state
, 0x22, 0x10);
1402 cal
= (dib0090_read_reg(state
, 0x22) >> 6) & 0x3ff;
1404 if ((cal
< 670) || (cal
== 1023))
1406 n
= 165 - ((cal
* 10)>>6) ;
1407 e2
= e4
= (3<<12) | (34<<6) | (n
);
1411 e2
&= e4
; /* Remove the redundancy */
1415 n
= (e2
>> 12) & 0xf;
1416 h
= (e2
>> 6) & 0x3f;
1418 if ((c
>= CAP_VALUE_MAX
) || (c
<= CAP_VALUE_MIN
))
1420 if ((h
>= HR_MAX
) || (h
<= HR_MIN
))
1422 if ((n
>= POLY_MAX
) || (n
<= POLY_MIN
))
1425 dib0090_write_reg(state
, 0x13, (h
<< 10)) ;
1426 e2
= (n
<<11) | ((h
>>2)<<6) | (c
);
1427 dib0090_write_reg(state
, 0x2, e2
) ; /* Load the BB_2 */
1431 static int dib0090_reset(struct dvb_frontend
*fe
)
1433 struct dib0090_state
*state
= fe
->tuner_priv
;
1435 dib0090_reset_digital(fe
, state
->config
);
1436 if (dib0090_identify(fe
) < 0)
1439 #ifdef CONFIG_TUNER_DIB0090_P1B_SUPPORT
1440 if (!(state
->identity
.version
& 0x1)) /* it is P1B - reset is already done */
1444 if (!state
->identity
.in_soc
) {
1445 if ((dib0090_read_reg(state
, 0x1a) >> 5) & 0x2)
1446 dib0090_write_reg(state
, 0x1b, (EN_IQADC
| EN_BB
| EN_BIAS
| EN_DIGCLK
| EN_PLL
| EN_CRYSTAL
));
1448 dib0090_write_reg(state
, 0x1b, (EN_DIGCLK
| EN_PLL
| EN_CRYSTAL
));
1451 dib0090_set_default_config(state
, dib0090_defaults
);
1453 if (state
->identity
.in_soc
)
1454 dib0090_write_reg(state
, 0x18, 0x2910); /* charge pump current = 0 */
1456 if (state
->identity
.p1g
)
1457 dib0090_set_default_config(state
, dib0090_p1g_additionnal_defaults
);
1459 /* Update the efuse : Only available for KROSUS > P1C and SOC as well*/
1460 if (((state
->identity
.version
& 0x1f) >= P1D_E_F
) || (state
->identity
.in_soc
))
1461 dib0090_set_EFUSE(state
);
1463 /* Congigure in function of the crystal */
1464 if (state
->config
->io
.clock_khz
>= 24000)
1465 dib0090_write_reg(state
, 0x14, 1);
1467 dib0090_write_reg(state
, 0x14, 2);
1468 dprintk("Pll lock : %d", (dib0090_read_reg(state
, 0x1a) >> 11) & 0x1);
1470 state
->calibrate
= DC_CAL
| WBD_CAL
| TEMP_CAL
; /* enable iq-offset-calibration and wbd-calibration when tuning next time */
1475 #define steps(u) (((u) > 15) ? ((u)-16) : (u))
1476 #define INTERN_WAIT 10
1477 static int dib0090_get_offset(struct dib0090_state
*state
, enum frontend_tune_state
*tune_state
)
1479 int ret
= INTERN_WAIT
* 10;
1481 switch (*tune_state
) {
1482 case CT_TUNER_STEP_2
:
1483 /* Turns to positive */
1484 dib0090_write_reg(state
, 0x1f, 0x7);
1485 *tune_state
= CT_TUNER_STEP_3
;
1488 case CT_TUNER_STEP_3
:
1489 state
->adc_diff
= dib0090_read_reg(state
, 0x1d);
1491 /* Turns to negative */
1492 dib0090_write_reg(state
, 0x1f, 0x4);
1493 *tune_state
= CT_TUNER_STEP_4
;
1496 case CT_TUNER_STEP_4
:
1497 state
->adc_diff
-= dib0090_read_reg(state
, 0x1d);
1498 *tune_state
= CT_TUNER_STEP_5
;
1509 struct dc_calibration
{
1517 static const struct dc_calibration dc_table
[] = {
1518 /* Step1 BB gain1= 26 with boost 1, gain 2 = 0 */
1519 {0x06, 5, 1, (1 << 13) | (0 << 8) | (26 << 3), 1},
1520 {0x07, 11, 1, (1 << 13) | (0 << 8) | (26 << 3), 0},
1521 /* Step 2 BB gain 1 = 26 with boost = 1 & gain 2 = 29 */
1522 {0x06, 0, 0, (1 << 13) | (29 << 8) | (26 << 3), 1},
1523 {0x06, 10, 0, (1 << 13) | (29 << 8) | (26 << 3), 0},
1527 static const struct dc_calibration dc_p1g_table
[] = {
1528 /* Step1 BB gain1= 26 with boost 1, gain 2 = 0 */
1529 /* addr ; trim reg offset ; pga ; CTRL_BB1 value ; i or q */
1530 {0x06, 5, 1, (1 << 13) | (0 << 8) | (15 << 3), 1},
1531 {0x07, 11, 1, (1 << 13) | (0 << 8) | (15 << 3), 0},
1532 /* Step 2 BB gain 1 = 26 with boost = 1 & gain 2 = 29 */
1533 {0x06, 0, 0, (1 << 13) | (29 << 8) | (15 << 3), 1},
1534 {0x06, 10, 0, (1 << 13) | (29 << 8) | (15 << 3), 0},
1538 static void dib0090_set_trim(struct dib0090_state
*state
)
1542 if (state
->dc
->addr
== 0x07)
1547 *val
&= ~(0x1f << state
->dc
->offset
);
1548 *val
|= state
->step
<< state
->dc
->offset
;
1550 dib0090_write_reg(state
, state
->dc
->addr
, *val
);
1553 static int dib0090_dc_offset_calibration(struct dib0090_state
*state
, enum frontend_tune_state
*tune_state
)
1558 switch (*tune_state
) {
1559 case CT_TUNER_START
:
1560 dprintk("Start DC offset calibration");
1562 /* force vcm2 = 0.8V */
1564 state
->bb7
= 0x040d;
1566 /* the LNA AND LO are off */
1567 reg
= dib0090_read_reg(state
, 0x24) & 0x0ffb; /* shutdown lna and lo */
1568 dib0090_write_reg(state
, 0x24, reg
);
1570 state
->wbdmux
= dib0090_read_reg(state
, 0x10);
1571 dib0090_write_reg(state
, 0x10, (state
->wbdmux
& ~(0xff << 3)) | (0x7 << 3) | 0x3);
1572 dib0090_write_reg(state
, 0x23, dib0090_read_reg(state
, 0x23) & ~(1 << 14));
1574 state
->dc
= dc_table
;
1576 if (state
->identity
.p1g
)
1577 state
->dc
= dc_p1g_table
;
1578 *tune_state
= CT_TUNER_STEP_0
;
1582 case CT_TUNER_STEP_0
:
1583 dprintk("Sart/continue DC calibration for %s path", (state
->dc
->i
== 1) ? "I" : "Q");
1584 dib0090_write_reg(state
, 0x01, state
->dc
->bb1
);
1585 dib0090_write_reg(state
, 0x07, state
->bb7
| (state
->dc
->i
<< 7));
1588 state
->min_adc_diff
= 1023;
1589 *tune_state
= CT_TUNER_STEP_1
;
1593 case CT_TUNER_STEP_1
:
1594 dib0090_set_trim(state
);
1595 *tune_state
= CT_TUNER_STEP_2
;
1598 case CT_TUNER_STEP_2
:
1599 case CT_TUNER_STEP_3
:
1600 case CT_TUNER_STEP_4
:
1601 ret
= dib0090_get_offset(state
, tune_state
);
1604 case CT_TUNER_STEP_5
: /* found an offset */
1605 dprintk("adc_diff = %d, current step= %d", (u32
) state
->adc_diff
, state
->step
);
1606 if (state
->step
== 0 && state
->adc_diff
< 0) {
1607 state
->min_adc_diff
= -1023;
1608 dprintk("Change of sign of the minimum adc diff");
1611 dprintk("adc_diff = %d, min_adc_diff = %d current_step = %d", state
->adc_diff
, state
->min_adc_diff
, state
->step
);
1613 /* first turn for this frequency */
1614 if (state
->step
== 0) {
1615 if (state
->dc
->pga
&& state
->adc_diff
< 0)
1617 if (state
->dc
->pga
== 0 && state
->adc_diff
> 0)
1621 /* Look for a change of Sign in the Adc_diff.min_adc_diff is used to STORE the setp N-1 */
1622 if ((state
->adc_diff
& 0x8000) == (state
->min_adc_diff
& 0x8000) && steps(state
->step
) < 15) {
1623 /* stop search when the delta the sign is changing and Steps =15 and Step=0 is force for continuance */
1625 state
->min_adc_diff
= state
->adc_diff
;
1626 *tune_state
= CT_TUNER_STEP_1
;
1628 /* the minimum was what we have seen in the step before */
1629 if (ABS(state
->adc_diff
) > ABS(state
->min_adc_diff
)) {
1630 dprintk("Since adc_diff N = %d > adc_diff step N-1 = %d, Come back one step", state
->adc_diff
, state
->min_adc_diff
);
1634 dib0090_set_trim(state
);
1635 dprintk("BB Offset Cal, BBreg=%hd,Offset=%hd,Value Set=%hd", state
->dc
->addr
, state
->adc_diff
, state
->step
);
1638 if (state
->dc
->addr
== 0) /* done */
1639 *tune_state
= CT_TUNER_STEP_6
;
1641 *tune_state
= CT_TUNER_STEP_0
;
1646 case CT_TUNER_STEP_6
:
1647 dib0090_write_reg(state
, 0x07, state
->bb7
& ~0x0008);
1648 dib0090_write_reg(state
, 0x1f, 0x7);
1649 *tune_state
= CT_TUNER_START
; /* reset done -> real tuning can now begin */
1650 state
->calibrate
&= ~DC_CAL
;
1657 static int dib0090_wbd_calibration(struct dib0090_state
*state
, enum frontend_tune_state
*tune_state
)
1660 const struct dib0090_wbd_slope
*wbd
= state
->current_wbd_table
;
1662 switch (*tune_state
) {
1663 case CT_TUNER_START
:
1664 while (state
->current_rf
/ 1000 > wbd
->max_freq
)
1666 if (wbd
->wbd_gain
!= 0)
1667 wbd_gain
= wbd
->wbd_gain
;
1670 #if defined(CONFIG_BAND_LBAND) || defined(CONFIG_BAND_SBAND)
1671 if ((state
->current_band
== BAND_LBAND
) || (state
->current_band
== BAND_SBAND
))
1676 if (wbd_gain
== state
->wbd_calibration_gain
) { /* the WBD calibration has already been done */
1677 *tune_state
= CT_TUNER_START
;
1678 state
->calibrate
&= ~WBD_CAL
;
1682 dib0090_write_reg(state
, 0x10, 0x1b81 | (1 << 10) | (wbd_gain
<< 13) | (1 << 3));
1684 dib0090_write_reg(state
, 0x24, ((EN_UHF
& 0x0fff) | (1 << 1)));
1685 *tune_state
= CT_TUNER_STEP_0
;
1686 state
->wbd_calibration_gain
= wbd_gain
;
1687 return 90; /* wait for the WBDMUX to switch and for the ADC to sample */
1689 case CT_TUNER_STEP_0
:
1690 state
->wbd_offset
= dib0090_get_slow_adc_val(state
);
1691 dprintk("WBD calibration offset = %d", state
->wbd_offset
);
1692 *tune_state
= CT_TUNER_START
; /* reset done -> real tuning can now begin */
1693 state
->calibrate
&= ~WBD_CAL
;
1702 static void dib0090_set_bandwidth(struct dib0090_state
*state
)
1706 if (state
->fe
->dtv_property_cache
.bandwidth_hz
/ 1000 <= 5000)
1708 else if (state
->fe
->dtv_property_cache
.bandwidth_hz
/ 1000 <= 6000)
1710 else if (state
->fe
->dtv_property_cache
.bandwidth_hz
/ 1000 <= 7000)
1715 state
->bb_1_def
&= 0x3fff;
1716 state
->bb_1_def
|= tmp
;
1718 dib0090_write_reg(state
, 0x01, state
->bb_1_def
); /* be sure that we have the right bb-filter */
1720 dib0090_write_reg(state
, 0x03, 0x6008); /* = 0x6008 : vcm3_trim = 1 ; filter2_gm1_trim = 8 ; filter2_cutoff_freq = 0 */
1721 dib0090_write_reg(state
, 0x04, 0x1); /* 0 = 1KHz ; 1 = 50Hz ; 2 = 150Hz ; 3 = 50KHz ; 4 = servo fast */
1722 if (state
->identity
.in_soc
) {
1723 dib0090_write_reg(state
, 0x05, 0x9bcf); /* attenuator_ibias_tri = 2 ; input_stage_ibias_tr = 1 ; nc = 11 ; ext_gm_trim = 1 ; obuf_ibias_trim = 4 ; filter13_gm2_ibias_t = 15 */
1725 dib0090_write_reg(state
, 0x02, (5 << 11) | (8 << 6) | (22 & 0x3f)); /* 22 = cap_value */
1726 dib0090_write_reg(state
, 0x05, 0xabcd); /* = 0xabcd : attenuator_ibias_tri = 2 ; input_stage_ibias_tr = 2 ; nc = 11 ; ext_gm_trim = 1 ; obuf_ibias_trim = 4 ; filter13_gm2_ibias_t = 13 */
1730 static const struct dib0090_pll dib0090_pll_table
[] = {
1731 #ifdef CONFIG_BAND_CBAND
1732 {56000, 0, 9, 48, 6},
1733 {70000, 1, 9, 48, 6},
1734 {87000, 0, 8, 32, 4},
1735 {105000, 1, 8, 32, 4},
1736 {115000, 0, 7, 24, 6},
1737 {140000, 1, 7, 24, 6},
1738 {170000, 0, 6, 16, 4},
1740 #ifdef CONFIG_BAND_VHF
1741 {200000, 1, 6, 16, 4},
1742 {230000, 0, 5, 12, 6},
1743 {280000, 1, 5, 12, 6},
1744 {340000, 0, 4, 8, 4},
1745 {380000, 1, 4, 8, 4},
1746 {450000, 0, 3, 6, 6},
1748 #ifdef CONFIG_BAND_UHF
1749 {580000, 1, 3, 6, 6},
1750 {700000, 0, 2, 4, 4},
1751 {860000, 1, 2, 4, 4},
1753 #ifdef CONFIG_BAND_LBAND
1754 {1800000, 1, 0, 2, 4},
1756 #ifdef CONFIG_BAND_SBAND
1757 {2900000, 0, 14, 1, 4},
1761 static const struct dib0090_tuning dib0090_tuning_table_fm_vhf_on_cband
[] = {
1763 #ifdef CONFIG_BAND_CBAND
1764 {184000, 4, 1, 15, 0x280, 0x2912, 0xb94e, EN_CAB
},
1765 {227000, 4, 3, 15, 0x280, 0x2912, 0xb94e, EN_CAB
},
1766 {380000, 4, 7, 15, 0x280, 0x2912, 0xb94e, EN_CAB
},
1768 #ifdef CONFIG_BAND_UHF
1769 {520000, 2, 0, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
},
1770 {550000, 2, 2, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
},
1771 {650000, 2, 3, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
},
1772 {750000, 2, 5, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
},
1773 {850000, 2, 6, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
},
1774 {900000, 2, 7, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
},
1776 #ifdef CONFIG_BAND_LBAND
1777 {1500000, 4, 0, 20, 0x300, 0x1912, 0x82c9, EN_LBD
},
1778 {1600000, 4, 1, 20, 0x300, 0x1912, 0x82c9, EN_LBD
},
1779 {1800000, 4, 3, 20, 0x300, 0x1912, 0x82c9, EN_LBD
},
1781 #ifdef CONFIG_BAND_SBAND
1782 {2300000, 1, 4, 20, 0x300, 0x2d2A, 0x82c7, EN_SBD
},
1783 {2900000, 1, 7, 20, 0x280, 0x2deb, 0x8347, EN_SBD
},
1787 static const struct dib0090_tuning dib0090_tuning_table
[] = {
1789 #ifdef CONFIG_BAND_CBAND
1790 {170000, 4, 1, 15, 0x280, 0x2912, 0xb94e, EN_CAB
},
1792 #ifdef CONFIG_BAND_VHF
1793 {184000, 1, 1, 15, 0x300, 0x4d12, 0xb94e, EN_VHF
},
1794 {227000, 1, 3, 15, 0x300, 0x4d12, 0xb94e, EN_VHF
},
1795 {380000, 1, 7, 15, 0x300, 0x4d12, 0xb94e, EN_VHF
},
1797 #ifdef CONFIG_BAND_UHF
1798 {520000, 2, 0, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
},
1799 {550000, 2, 2, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
},
1800 {650000, 2, 3, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
},
1801 {750000, 2, 5, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
},
1802 {850000, 2, 6, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
},
1803 {900000, 2, 7, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
},
1805 #ifdef CONFIG_BAND_LBAND
1806 {1500000, 4, 0, 20, 0x300, 0x1912, 0x82c9, EN_LBD
},
1807 {1600000, 4, 1, 20, 0x300, 0x1912, 0x82c9, EN_LBD
},
1808 {1800000, 4, 3, 20, 0x300, 0x1912, 0x82c9, EN_LBD
},
1810 #ifdef CONFIG_BAND_SBAND
1811 {2300000, 1, 4, 20, 0x300, 0x2d2A, 0x82c7, EN_SBD
},
1812 {2900000, 1, 7, 20, 0x280, 0x2deb, 0x8347, EN_SBD
},
1816 static const struct dib0090_tuning dib0090_p1g_tuning_table
[] = {
1817 #ifdef CONFIG_BAND_CBAND
1818 {170000, 4, 1, 0x820f, 0x300, 0x2d22, 0x82cb, EN_CAB
},
1820 #ifdef CONFIG_BAND_VHF
1821 {184000, 1, 1, 15, 0x300, 0x4d12, 0xb94e, EN_VHF
},
1822 {227000, 1, 3, 15, 0x300, 0x4d12, 0xb94e, EN_VHF
},
1823 {380000, 1, 7, 15, 0x300, 0x4d12, 0xb94e, EN_VHF
},
1825 #ifdef CONFIG_BAND_UHF
1826 {510000, 2, 0, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
},
1827 {540000, 2, 1, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
},
1828 {600000, 2, 3, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
},
1829 {630000, 2, 4, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
},
1830 {680000, 2, 5, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
},
1831 {720000, 2, 6, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
},
1832 {900000, 2, 7, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
},
1834 #ifdef CONFIG_BAND_LBAND
1835 {1500000, 4, 0, 20, 0x300, 0x1912, 0x82c9, EN_LBD
},
1836 {1600000, 4, 1, 20, 0x300, 0x1912, 0x82c9, EN_LBD
},
1837 {1800000, 4, 3, 20, 0x300, 0x1912, 0x82c9, EN_LBD
},
1839 #ifdef CONFIG_BAND_SBAND
1840 {2300000, 1, 4, 20, 0x300, 0x2d2A, 0x82c7, EN_SBD
},
1841 {2900000, 1, 7, 20, 0x280, 0x2deb, 0x8347, EN_SBD
},
1845 static const struct dib0090_pll dib0090_p1g_pll_table
[] = {
1846 #ifdef CONFIG_BAND_CBAND
1847 {57000, 0, 11, 48, 6},
1848 {70000, 1, 11, 48, 6},
1849 {86000, 0, 10, 32, 4},
1850 {105000, 1, 10, 32, 4},
1851 {115000, 0, 9, 24, 6},
1852 {140000, 1, 9, 24, 6},
1853 {170000, 0, 8, 16, 4},
1855 #ifdef CONFIG_BAND_VHF
1856 {200000, 1, 8, 16, 4},
1857 {230000, 0, 7, 12, 6},
1858 {280000, 1, 7, 12, 6},
1859 {340000, 0, 6, 8, 4},
1860 {380000, 1, 6, 8, 4},
1861 {455000, 0, 5, 6, 6},
1863 #ifdef CONFIG_BAND_UHF
1864 {580000, 1, 5, 6, 6},
1865 {680000, 0, 4, 4, 4},
1866 {860000, 1, 4, 4, 4},
1868 #ifdef CONFIG_BAND_LBAND
1869 {1800000, 1, 2, 2, 4},
1871 #ifdef CONFIG_BAND_SBAND
1872 {2900000, 0, 1, 1, 6},
1876 static const struct dib0090_tuning dib0090_p1g_tuning_table_fm_vhf_on_cband
[] = {
1877 #ifdef CONFIG_BAND_CBAND
1878 {184000, 4, 3, 0x4187, 0x2c0, 0x2d22, 0x81cb, EN_CAB
},
1879 {227000, 4, 3, 0x4187, 0x2c0, 0x2d22, 0x81cb, EN_CAB
},
1880 {380000, 4, 3, 0x4187, 0x2c0, 0x2d22, 0x81cb, EN_CAB
},
1882 #ifdef CONFIG_BAND_UHF
1883 {520000, 2, 0, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
},
1884 {550000, 2, 2, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
},
1885 {650000, 2, 3, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
},
1886 {750000, 2, 5, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
},
1887 {850000, 2, 6, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
},
1888 {900000, 2, 7, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
},
1890 #ifdef CONFIG_BAND_LBAND
1891 {1500000, 4, 0, 20, 0x300, 0x1912, 0x82c9, EN_LBD
},
1892 {1600000, 4, 1, 20, 0x300, 0x1912, 0x82c9, EN_LBD
},
1893 {1800000, 4, 3, 20, 0x300, 0x1912, 0x82c9, EN_LBD
},
1895 #ifdef CONFIG_BAND_SBAND
1896 {2300000, 1, 4, 20, 0x300, 0x2d2A, 0x82c7, EN_SBD
},
1897 {2900000, 1, 7, 20, 0x280, 0x2deb, 0x8347, EN_SBD
},
1901 static const struct dib0090_tuning dib0090_tuning_table_cband_7090
[] = {
1902 #ifdef CONFIG_BAND_CBAND
1903 {300000, 4, 3, 0x018F, 0x2c0, 0x2d22, 0xb9ce, EN_CAB
},
1904 {380000, 4, 10, 0x018F, 0x2c0, 0x2d22, 0xb9ce, EN_CAB
},
1905 {570000, 4, 10, 0x8190, 0x2c0, 0x2d22, 0xb9ce, EN_CAB
},
1906 {858000, 4, 5, 0x8190, 0x2c0, 0x2d22, 0xb9ce, EN_CAB
},
1910 static int dib0090_captrim_search(struct dib0090_state
*state
, enum frontend_tune_state
*tune_state
)
1918 u8 force_soft_search
= 0;
1920 if (state
->identity
.version
== SOC_8090_P1G_11R1
|| state
->identity
.version
== SOC_8090_P1G_21R1
)
1921 force_soft_search
= 1;
1923 if (*tune_state
== CT_TUNER_START
) {
1924 dprintk("Start Captrim search : %s", (force_soft_search
== 1) ? "FORCE SOFT SEARCH" : "AUTO");
1925 dib0090_write_reg(state
, 0x10, 0x2B1);
1926 dib0090_write_reg(state
, 0x1e, 0x0032);
1928 if (!state
->tuner_is_tuned
) {
1929 /* prepare a complete captrim */
1930 if (!state
->identity
.p1g
|| force_soft_search
)
1931 state
->step
= state
->captrim
= state
->fcaptrim
= 64;
1933 state
->current_rf
= state
->rf_request
;
1934 } else { /* we are already tuned to this frequency - the configuration is correct */
1935 if (!state
->identity
.p1g
|| force_soft_search
) {
1936 /* do a minimal captrim even if the frequency has not changed */
1938 state
->captrim
= state
->fcaptrim
= dib0090_read_reg(state
, 0x18) & 0x7f;
1941 state
->adc_diff
= 3000;
1942 *tune_state
= CT_TUNER_STEP_0
;
1944 } else if (*tune_state
== CT_TUNER_STEP_0
) {
1945 if (state
->identity
.p1g
&& !force_soft_search
) {
1948 dib0090_write_reg(state
, 0x40, (3 << 7) | (ratio
<< 2) | (1 << 1) | 1);
1949 dib0090_read_reg(state
, 0x40);
1953 dib0090_write_reg(state
, 0x18, lo4
| state
->captrim
);
1955 if (state
->identity
.in_soc
)
1958 *tune_state
= CT_TUNER_STEP_1
;
1960 } else if (*tune_state
== CT_TUNER_STEP_1
) {
1961 if (state
->identity
.p1g
&& !force_soft_search
) {
1962 dib0090_write_reg(state
, 0x40, 0x18c | (0 << 1) | 0);
1963 dib0090_read_reg(state
, 0x40);
1965 state
->fcaptrim
= dib0090_read_reg(state
, 0x18) & 0x7F;
1966 dprintk("***Final Captrim= 0x%x", state
->fcaptrim
);
1967 *tune_state
= CT_TUNER_STEP_3
;
1970 /* MERGE for all krosus before P1G */
1971 adc
= dib0090_get_slow_adc_val(state
);
1972 dprintk("CAPTRIM=%d; ADC = %d (ADC) & %dmV", (u32
) state
->captrim
, (u32
) adc
, (u32
) (adc
) * (u32
) 1800 / (u32
) 1024);
1974 if (state
->rest
== 0 || state
->identity
.in_soc
) { /* Just for 8090P SOCS where auto captrim HW bug : TO CHECK IN ACI for SOCS !!! if 400 for 8090p SOC => tune issue !!! */
1979 if (adc
>= adc_target
) {
1983 adc
= adc_target
- adc
;
1987 if (adc
< state
->adc_diff
) {
1988 dprintk("CAPTRIM=%d is closer to target (%d/%d)", (u32
) state
->captrim
, (u32
) adc
, (u32
) state
->adc_diff
);
1989 state
->adc_diff
= adc
;
1990 state
->fcaptrim
= state
->captrim
;
1993 state
->captrim
+= step_sign
* state
->step
;
1994 if (state
->step
>= 1)
1995 *tune_state
= CT_TUNER_STEP_0
;
1997 *tune_state
= CT_TUNER_STEP_2
;
2001 } else if (*tune_state
== CT_TUNER_STEP_2
) { /* this step is only used by krosus < P1G */
2002 /*write the final cptrim config */
2003 dib0090_write_reg(state
, 0x18, lo4
| state
->fcaptrim
);
2005 *tune_state
= CT_TUNER_STEP_3
;
2007 } else if (*tune_state
== CT_TUNER_STEP_3
) {
2008 state
->calibrate
&= ~CAPTRIM_CAL
;
2009 *tune_state
= CT_TUNER_STEP_0
;
2015 static int dib0090_get_temperature(struct dib0090_state
*state
, enum frontend_tune_state
*tune_state
)
2020 switch (*tune_state
) {
2021 case CT_TUNER_START
:
2022 state
->wbdmux
= dib0090_read_reg(state
, 0x10);
2023 dib0090_write_reg(state
, 0x10, (state
->wbdmux
& ~(0xff << 3)) | (0x8 << 3));
2025 state
->bias
= dib0090_read_reg(state
, 0x13);
2026 dib0090_write_reg(state
, 0x13, state
->bias
| (0x3 << 8));
2028 *tune_state
= CT_TUNER_STEP_0
;
2029 /* wait for the WBDMUX to switch and for the ADC to sample */
2032 case CT_TUNER_STEP_0
:
2033 state
->adc_diff
= dib0090_get_slow_adc_val(state
);
2034 dib0090_write_reg(state
, 0x13, (state
->bias
& ~(0x3 << 8)) | (0x2 << 8));
2035 *tune_state
= CT_TUNER_STEP_1
;
2038 case CT_TUNER_STEP_1
:
2039 val
= dib0090_get_slow_adc_val(state
);
2040 state
->temperature
= ((s16
) ((val
- state
->adc_diff
) * 180) >> 8) + 55;
2042 dprintk("temperature: %d C", state
->temperature
- 30);
2044 *tune_state
= CT_TUNER_STEP_2
;
2047 case CT_TUNER_STEP_2
:
2048 dib0090_write_reg(state
, 0x13, state
->bias
);
2049 dib0090_write_reg(state
, 0x10, state
->wbdmux
); /* write back original WBDMUX */
2051 *tune_state
= CT_TUNER_START
;
2052 state
->calibrate
&= ~TEMP_CAL
;
2053 if (state
->config
->analog_output
== 0)
2054 dib0090_write_reg(state
, 0x23, dib0090_read_reg(state
, 0x23) | (1 << 14));
2065 #define WBD 0x781 /* 1 1 1 1 0000 0 0 1 */
2066 static int dib0090_tune(struct dvb_frontend
*fe
)
2068 struct dib0090_state
*state
= fe
->tuner_priv
;
2069 const struct dib0090_tuning
*tune
= state
->current_tune_table_index
;
2070 const struct dib0090_pll
*pll
= state
->current_pll_table_index
;
2071 enum frontend_tune_state
*tune_state
= &state
->tune_state
;
2073 u16 lo5
, lo6
, Den
, tmp
;
2074 u32 FBDiv
, Rest
, FREF
, VCOF_kHz
= 0;
2075 int ret
= 10; /* 1ms is the default delay most of the time */
2078 /************************* VCO ***************************/
2079 /* Default values for FG */
2080 /* from these are needed : */
2081 /* Cp,HFdiv,VCOband,SD,Num,Den,FB and REFDiv */
2083 /* in any case we first need to do a calibration if needed */
2084 if (*tune_state
== CT_TUNER_START
) {
2085 /* deactivate DataTX before some calibrations */
2086 if (state
->calibrate
& (DC_CAL
| TEMP_CAL
| WBD_CAL
))
2087 dib0090_write_reg(state
, 0x23, dib0090_read_reg(state
, 0x23) & ~(1 << 14));
2089 /* Activate DataTX in case a calibration has been done before */
2090 if (state
->config
->analog_output
== 0)
2091 dib0090_write_reg(state
, 0x23, dib0090_read_reg(state
, 0x23) | (1 << 14));
2094 if (state
->calibrate
& DC_CAL
)
2095 return dib0090_dc_offset_calibration(state
, tune_state
);
2096 else if (state
->calibrate
& WBD_CAL
) {
2097 if (state
->current_rf
== 0)
2098 state
->current_rf
= state
->fe
->dtv_property_cache
.frequency
/ 1000;
2099 return dib0090_wbd_calibration(state
, tune_state
);
2100 } else if (state
->calibrate
& TEMP_CAL
)
2101 return dib0090_get_temperature(state
, tune_state
);
2102 else if (state
->calibrate
& CAPTRIM_CAL
)
2103 return dib0090_captrim_search(state
, tune_state
);
2105 if (*tune_state
== CT_TUNER_START
) {
2106 /* if soc and AGC pwm control, disengage mux to be able to R/W access to 0x01 register to set the right filter (cutoff_freq_select) during the tune sequence, otherwise, SOC SERPAR error when accessing to 0x01 */
2107 if (state
->config
->use_pwm_agc
&& state
->identity
.in_soc
) {
2108 tmp
= dib0090_read_reg(state
, 0x39);
2109 if ((tmp
>> 10) & 0x1)
2110 dib0090_write_reg(state
, 0x39, tmp
& ~(1 << 10));
2113 state
->current_band
= (u8
) BAND_OF_FREQUENCY(state
->fe
->dtv_property_cache
.frequency
/ 1000);
2115 state
->fe
->dtv_property_cache
.frequency
/ 1000 + (state
->current_band
==
2116 BAND_UHF
? state
->config
->freq_offset_khz_uhf
: state
->config
->
2117 freq_offset_khz_vhf
);
2119 /* in ISDB-T 1seg we shift tuning frequency */
2120 if ((state
->fe
->dtv_property_cache
.delivery_system
== SYS_ISDBT
&& state
->fe
->dtv_property_cache
.isdbt_sb_mode
== 1
2121 && state
->fe
->dtv_property_cache
.isdbt_partial_reception
== 0)) {
2122 const struct dib0090_low_if_offset_table
*LUT_offset
= state
->config
->low_if
;
2123 u8 found_offset
= 0;
2124 u32 margin_khz
= 100;
2126 if (LUT_offset
!= NULL
) {
2127 while (LUT_offset
->RF_freq
!= 0xffff) {
2128 if (((state
->rf_request
> (LUT_offset
->RF_freq
- margin_khz
))
2129 && (state
->rf_request
< (LUT_offset
->RF_freq
+ margin_khz
)))
2130 && LUT_offset
->std
== state
->fe
->dtv_property_cache
.delivery_system
) {
2131 state
->rf_request
+= LUT_offset
->offset_khz
;
2139 if (found_offset
== 0)
2140 state
->rf_request
+= 400;
2142 if (state
->current_rf
!= state
->rf_request
|| (state
->current_standard
!= state
->fe
->dtv_property_cache
.delivery_system
)) {
2143 state
->tuner_is_tuned
= 0;
2144 state
->current_rf
= 0;
2145 state
->current_standard
= 0;
2147 tune
= dib0090_tuning_table
;
2148 if (state
->identity
.p1g
)
2149 tune
= dib0090_p1g_tuning_table
;
2151 tmp
= (state
->identity
.version
>> 5) & 0x7;
2153 if (state
->identity
.in_soc
) {
2154 if (state
->config
->force_cband_input
) { /* Use the CBAND input for all band */
2155 if (state
->current_band
& BAND_CBAND
|| state
->current_band
& BAND_FM
|| state
->current_band
& BAND_VHF
2156 || state
->current_band
& BAND_UHF
) {
2157 state
->current_band
= BAND_CBAND
;
2158 tune
= dib0090_tuning_table_cband_7090
;
2160 } else { /* Use the CBAND input for all band under UHF */
2161 if (state
->current_band
& BAND_CBAND
|| state
->current_band
& BAND_FM
|| state
->current_band
& BAND_VHF
) {
2162 state
->current_band
= BAND_CBAND
;
2163 tune
= dib0090_tuning_table_cband_7090
;
2167 if (tmp
== 0x4 || tmp
== 0x7) {
2168 /* CBAND tuner version for VHF */
2169 if (state
->current_band
== BAND_FM
|| state
->current_band
== BAND_CBAND
|| state
->current_band
== BAND_VHF
) {
2170 state
->current_band
= BAND_CBAND
; /* Force CBAND */
2172 tune
= dib0090_tuning_table_fm_vhf_on_cband
;
2173 if (state
->identity
.p1g
)
2174 tune
= dib0090_p1g_tuning_table_fm_vhf_on_cband
;
2178 pll
= dib0090_pll_table
;
2179 if (state
->identity
.p1g
)
2180 pll
= dib0090_p1g_pll_table
;
2182 /* Look for the interval */
2183 while (state
->rf_request
> tune
->max_freq
)
2185 while (state
->rf_request
> pll
->max_freq
)
2188 state
->current_tune_table_index
= tune
;
2189 state
->current_pll_table_index
= pll
;
2191 dib0090_write_reg(state
, 0x0b, 0xb800 | (tune
->switch_trim
));
2193 VCOF_kHz
= (pll
->hfdiv
* state
->rf_request
) * 2;
2195 FREF
= state
->config
->io
.clock_khz
;
2196 if (state
->config
->fref_clock_ratio
!= 0)
2197 FREF
/= state
->config
->fref_clock_ratio
;
2199 FBDiv
= (VCOF_kHz
/ pll
->topresc
/ FREF
);
2200 Rest
= (VCOF_kHz
/ pll
->topresc
) - FBDiv
* FREF
;
2204 else if (Rest
< 2 * LPF
)
2206 else if (Rest
> (FREF
- LPF
)) {
2209 } else if (Rest
> (FREF
- 2 * LPF
))
2210 Rest
= FREF
- 2 * LPF
;
2211 Rest
= (Rest
* 6528) / (FREF
/ 10);
2214 /* external loop filter, otherwise:
2215 * lo5 = (0 << 15) | (0 << 12) | (0 << 11) | (3 << 9) | (4 << 6) | (3 << 4) | 4;
2226 else if (state
->config
->analog_output
)
2232 if (state
->identity
.p1g
) { /* Bias is done automatically in P1G */
2233 if (state
->identity
.in_soc
) {
2234 if (state
->identity
.version
== SOC_8090_P1G_11R1
)
2242 lo5
|= (pll
->hfdiv_code
<< 11) | (pll
->vco_band
<< 7); /* bit 15 is the split to the slave, we do not do it here */
2244 if (!state
->config
->io
.pll_int_loop_filt
) {
2245 if (state
->identity
.in_soc
)
2247 else if (state
->identity
.p1g
|| (Rest
== 0))
2252 lo6
= (state
->config
->io
.pll_int_loop_filt
<< 3);
2257 if (state
->config
->analog_output
)
2258 lo6
|= (1 << 2) | 2;
2260 if (state
->identity
.in_soc
)
2261 lo6
|= (1 << 2) | 2;
2263 lo6
|= (1 << 2) | 2;
2267 dib0090_write_reg(state
, 0x15, (u16
) FBDiv
);
2268 if (state
->config
->fref_clock_ratio
!= 0)
2269 dib0090_write_reg(state
, 0x16, (Den
<< 8) | state
->config
->fref_clock_ratio
);
2271 dib0090_write_reg(state
, 0x16, (Den
<< 8) | 1);
2272 dib0090_write_reg(state
, 0x17, (u16
) Rest
);
2273 dib0090_write_reg(state
, 0x19, lo5
);
2274 dib0090_write_reg(state
, 0x1c, lo6
);
2276 lo6
= tune
->tuner_enable
;
2277 if (state
->config
->analog_output
)
2278 lo6
= (lo6
& 0xff9f) | 0x2;
2280 dib0090_write_reg(state
, 0x24, lo6
| EN_LO
| state
->config
->use_pwm_agc
* EN_CRYSTAL
);
2284 state
->current_rf
= state
->rf_request
;
2285 state
->current_standard
= state
->fe
->dtv_property_cache
.delivery_system
;
2288 state
->calibrate
= CAPTRIM_CAL
; /* captrim serach now */
2291 else if (*tune_state
== CT_TUNER_STEP_0
) { /* Warning : because of captrim cal, if you change this step, change it also in _cal.c file because it is the step following captrim cal state machine */
2292 const struct dib0090_wbd_slope
*wbd
= state
->current_wbd_table
;
2294 while (state
->current_rf
/ 1000 > wbd
->max_freq
)
2297 dib0090_write_reg(state
, 0x1e, 0x07ff);
2298 dprintk("Final Captrim: %d", (u32
) state
->fcaptrim
);
2299 dprintk("HFDIV code: %d", (u32
) pll
->hfdiv_code
);
2300 dprintk("VCO = %d", (u32
) pll
->vco_band
);
2301 dprintk("VCOF in kHz: %d ((%d*%d) << 1))", (u32
) ((pll
->hfdiv
* state
->rf_request
) * 2), (u32
) pll
->hfdiv
, (u32
) state
->rf_request
);
2302 dprintk("REFDIV: %d, FREF: %d", (u32
) 1, (u32
) state
->config
->io
.clock_khz
);
2303 dprintk("FBDIV: %d, Rest: %d", (u32
) dib0090_read_reg(state
, 0x15), (u32
) dib0090_read_reg(state
, 0x17));
2304 dprintk("Num: %d, Den: %d, SD: %d", (u32
) dib0090_read_reg(state
, 0x17), (u32
) (dib0090_read_reg(state
, 0x16) >> 8),
2305 (u32
) dib0090_read_reg(state
, 0x1c) & 0x3);
2307 #define WBD 0x781 /* 1 1 1 1 0000 0 0 1 */
2311 if (wbd
->wbd_gain
!= 0)
2314 state
->wbdmux
= (c
<< 13) | (i
<< 11) | (WBD
| (state
->config
->use_pwm_agc
<< 1));
2315 dib0090_write_reg(state
, 0x10, state
->wbdmux
);
2317 if ((tune
->tuner_enable
== EN_CAB
) && state
->identity
.p1g
) {
2318 dprintk("P1G : The cable band is selected and lna_tune = %d", tune
->lna_tune
);
2319 dib0090_write_reg(state
, 0x09, tune
->lna_bias
);
2320 dib0090_write_reg(state
, 0x0b, 0xb800 | (tune
->lna_tune
<< 6) | (tune
->switch_trim
));
2322 dib0090_write_reg(state
, 0x09, (tune
->lna_tune
<< 5) | tune
->lna_bias
);
2324 dib0090_write_reg(state
, 0x0c, tune
->v2i
);
2325 dib0090_write_reg(state
, 0x0d, tune
->mix
);
2326 dib0090_write_reg(state
, 0x0e, tune
->load
);
2327 *tune_state
= CT_TUNER_STEP_1
;
2329 } else if (*tune_state
== CT_TUNER_STEP_1
) {
2330 /* initialize the lt gain register */
2331 state
->rf_lt_def
= 0x7c00;
2333 dib0090_set_bandwidth(state
);
2334 state
->tuner_is_tuned
= 1;
2336 state
->calibrate
|= WBD_CAL
;
2337 state
->calibrate
|= TEMP_CAL
;
2338 *tune_state
= CT_TUNER_STOP
;
2340 ret
= FE_CALLBACK_TIME_NEVER
;
2344 static int dib0090_release(struct dvb_frontend
*fe
)
2346 kfree(fe
->tuner_priv
);
2347 fe
->tuner_priv
= NULL
;
2351 enum frontend_tune_state
dib0090_get_tune_state(struct dvb_frontend
*fe
)
2353 struct dib0090_state
*state
= fe
->tuner_priv
;
2355 return state
->tune_state
;
2358 EXPORT_SYMBOL(dib0090_get_tune_state
);
2360 int dib0090_set_tune_state(struct dvb_frontend
*fe
, enum frontend_tune_state tune_state
)
2362 struct dib0090_state
*state
= fe
->tuner_priv
;
2364 state
->tune_state
= tune_state
;
2368 EXPORT_SYMBOL(dib0090_set_tune_state
);
2370 static int dib0090_get_frequency(struct dvb_frontend
*fe
, u32
* frequency
)
2372 struct dib0090_state
*state
= fe
->tuner_priv
;
2374 *frequency
= 1000 * state
->current_rf
;
2378 static int dib0090_set_params(struct dvb_frontend
*fe
, struct dvb_frontend_parameters
*p
)
2380 struct dib0090_state
*state
= fe
->tuner_priv
;
2383 state
->tune_state
= CT_TUNER_START
;
2386 ret
= dib0090_tune(fe
);
2387 if (ret
!= FE_CALLBACK_TIME_NEVER
)
2391 } while (state
->tune_state
!= CT_TUNER_STOP
);
2396 static const struct dvb_tuner_ops dib0090_ops
= {
2398 .name
= "DiBcom DiB0090",
2399 .frequency_min
= 45000000,
2400 .frequency_max
= 860000000,
2401 .frequency_step
= 1000,
2403 .release
= dib0090_release
,
2405 .init
= dib0090_wakeup
,
2406 .sleep
= dib0090_sleep
,
2407 .set_params
= dib0090_set_params
,
2408 .get_frequency
= dib0090_get_frequency
,
2411 static const struct dvb_tuner_ops dib0090_fw_ops
= {
2413 .name
= "DiBcom DiB0090",
2414 .frequency_min
= 45000000,
2415 .frequency_max
= 860000000,
2416 .frequency_step
= 1000,
2418 .release
= dib0090_release
,
2423 .get_frequency
= NULL
,
2426 static const struct dib0090_wbd_slope dib0090_wbd_table_default
[] = {
2427 {470, 0, 250, 0, 100, 4},
2428 {860, 51, 866, 21, 375, 4},
2429 {1700, 0, 800, 0, 850, 4},
2430 {2900, 0, 250, 0, 100, 6},
2431 {0xFFFF, 0, 0, 0, 0, 0},
2434 struct dvb_frontend
*dib0090_register(struct dvb_frontend
*fe
, struct i2c_adapter
*i2c
, const struct dib0090_config
*config
)
2436 struct dib0090_state
*st
= kzalloc(sizeof(struct dib0090_state
), GFP_KERNEL
);
2440 st
->config
= config
;
2443 fe
->tuner_priv
= st
;
2445 if (config
->wbd
== NULL
)
2446 st
->current_wbd_table
= dib0090_wbd_table_default
;
2448 st
->current_wbd_table
= config
->wbd
;
2450 if (dib0090_reset(fe
) != 0)
2453 printk(KERN_INFO
"DiB0090: successfully identified\n");
2454 memcpy(&fe
->ops
.tuner_ops
, &dib0090_ops
, sizeof(struct dvb_tuner_ops
));
2459 fe
->tuner_priv
= NULL
;
2463 EXPORT_SYMBOL(dib0090_register
);
2465 struct dvb_frontend
*dib0090_fw_register(struct dvb_frontend
*fe
, struct i2c_adapter
*i2c
, const struct dib0090_config
*config
)
2467 struct dib0090_fw_state
*st
= kzalloc(sizeof(struct dib0090_fw_state
), GFP_KERNEL
);
2471 st
->config
= config
;
2474 fe
->tuner_priv
= st
;
2476 if (dib0090_fw_reset_digital(fe
, st
->config
) != 0)
2479 dprintk("DiB0090 FW: successfully identified");
2480 memcpy(&fe
->ops
.tuner_ops
, &dib0090_fw_ops
, sizeof(struct dvb_tuner_ops
));
2485 fe
->tuner_priv
= NULL
;
2488 EXPORT_SYMBOL(dib0090_fw_register
);
2490 MODULE_AUTHOR("Patrick Boettcher <pboettcher@dibcom.fr>");
2491 MODULE_AUTHOR("Olivier Grenie <olivier.grenie@dibcom.fr>");
2492 MODULE_DESCRIPTION("Driver for the DiBcom 0090 base-band RF Tuner");
2493 MODULE_LICENSE("GPL");