2 * linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
4 * Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
5 * Copyright (C) 2010 ST-Ericsson SA
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 #include <linux/module.h>
12 #include <linux/moduleparam.h>
13 #include <linux/init.h>
14 #include <linux/ioport.h>
15 #include <linux/device.h>
16 #include <linux/interrupt.h>
17 #include <linux/kernel.h>
18 #include <linux/delay.h>
19 #include <linux/err.h>
20 #include <linux/highmem.h>
21 #include <linux/log2.h>
22 #include <linux/mmc/host.h>
23 #include <linux/mmc/card.h>
24 #include <linux/amba/bus.h>
25 #include <linux/clk.h>
26 #include <linux/scatterlist.h>
27 #include <linux/gpio.h>
28 #include <linux/regulator/consumer.h>
29 #include <linux/dmaengine.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/amba/mmci.h>
33 #include <asm/div64.h>
35 #include <asm/sizes.h>
39 #define DRIVER_NAME "mmci-pl18x"
41 static unsigned int fmax
= 515633;
44 * struct variant_data - MMCI variant-specific quirks
45 * @clkreg: default value for MCICLOCK register
46 * @clkreg_enable: enable value for MMCICLOCK register
47 * @datalength_bits: number of bits in the MMCIDATALENGTH register
48 * @fifosize: number of bytes that can be written when MMCI_TXFIFOEMPTY
49 * is asserted (likewise for RX)
50 * @fifohalfsize: number of bytes that can be written when MCI_TXFIFOHALFEMPTY
51 * is asserted (likewise for RX)
52 * @sdio: variant supports SDIO
53 * @st_clkdiv: true if using a ST-specific clock divider algorithm
54 * @blksz_datactrl16: true if Block size is at b16..b30 position in datactrl register
58 unsigned int clkreg_enable
;
59 unsigned int datalength_bits
;
60 unsigned int fifosize
;
61 unsigned int fifohalfsize
;
64 bool blksz_datactrl16
;
67 static struct variant_data variant_arm
= {
69 .fifohalfsize
= 8 * 4,
70 .datalength_bits
= 16,
73 static struct variant_data variant_arm_extended_fifo
= {
75 .fifohalfsize
= 64 * 4,
76 .datalength_bits
= 16,
79 static struct variant_data variant_u300
= {
81 .fifohalfsize
= 8 * 4,
82 .clkreg_enable
= MCI_ST_U300_HWFCEN
,
83 .datalength_bits
= 16,
87 static struct variant_data variant_ux500
= {
89 .fifohalfsize
= 8 * 4,
90 .clkreg
= MCI_CLK_ENABLE
,
91 .clkreg_enable
= MCI_ST_UX500_HWFCEN
,
92 .datalength_bits
= 24,
97 static struct variant_data variant_ux500v2
= {
99 .fifohalfsize
= 8 * 4,
100 .clkreg
= MCI_CLK_ENABLE
,
101 .clkreg_enable
= MCI_ST_UX500_HWFCEN
,
102 .datalength_bits
= 24,
105 .blksz_datactrl16
= true,
109 * This must be called with host->lock held
111 static void mmci_set_clkreg(struct mmci_host
*host
, unsigned int desired
)
113 struct variant_data
*variant
= host
->variant
;
114 u32 clk
= variant
->clkreg
;
117 if (desired
>= host
->mclk
) {
118 clk
= MCI_CLK_BYPASS
;
119 if (variant
->st_clkdiv
)
120 clk
|= MCI_ST_UX500_NEG_EDGE
;
121 host
->cclk
= host
->mclk
;
122 } else if (variant
->st_clkdiv
) {
124 * DB8500 TRM says f = mclk / (clkdiv + 2)
125 * => clkdiv = (mclk / f) - 2
126 * Round the divider up so we don't exceed the max
129 clk
= DIV_ROUND_UP(host
->mclk
, desired
) - 2;
132 host
->cclk
= host
->mclk
/ (clk
+ 2);
135 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
136 * => clkdiv = mclk / (2 * f) - 1
138 clk
= host
->mclk
/ (2 * desired
) - 1;
141 host
->cclk
= host
->mclk
/ (2 * (clk
+ 1));
144 clk
|= variant
->clkreg_enable
;
145 clk
|= MCI_CLK_ENABLE
;
146 /* This hasn't proven to be worthwhile */
147 /* clk |= MCI_CLK_PWRSAVE; */
150 if (host
->mmc
->ios
.bus_width
== MMC_BUS_WIDTH_4
)
152 if (host
->mmc
->ios
.bus_width
== MMC_BUS_WIDTH_8
)
153 clk
|= MCI_ST_8BIT_BUS
;
155 writel(clk
, host
->base
+ MMCICLOCK
);
159 mmci_request_end(struct mmci_host
*host
, struct mmc_request
*mrq
)
161 writel(0, host
->base
+ MMCICOMMAND
);
169 * Need to drop the host lock here; mmc_request_done may call
170 * back into the driver...
172 spin_unlock(&host
->lock
);
173 mmc_request_done(host
->mmc
, mrq
);
174 spin_lock(&host
->lock
);
177 static void mmci_set_mask1(struct mmci_host
*host
, unsigned int mask
)
179 void __iomem
*base
= host
->base
;
181 if (host
->singleirq
) {
182 unsigned int mask0
= readl(base
+ MMCIMASK0
);
184 mask0
&= ~MCI_IRQ1MASK
;
187 writel(mask0
, base
+ MMCIMASK0
);
190 writel(mask
, base
+ MMCIMASK1
);
193 static void mmci_stop_data(struct mmci_host
*host
)
195 writel(0, host
->base
+ MMCIDATACTRL
);
196 mmci_set_mask1(host
, 0);
200 static void mmci_init_sg(struct mmci_host
*host
, struct mmc_data
*data
)
202 unsigned int flags
= SG_MITER_ATOMIC
;
204 if (data
->flags
& MMC_DATA_READ
)
205 flags
|= SG_MITER_TO_SG
;
207 flags
|= SG_MITER_FROM_SG
;
209 sg_miter_start(&host
->sg_miter
, data
->sg
, data
->sg_len
, flags
);
213 * All the DMA operation mode stuff goes inside this ifdef.
214 * This assumes that you have a generic DMA device interface,
215 * no custom DMA interfaces are supported.
217 #ifdef CONFIG_DMA_ENGINE
218 static void __devinit
mmci_dma_setup(struct mmci_host
*host
)
220 struct mmci_platform_data
*plat
= host
->plat
;
221 const char *rxname
, *txname
;
224 if (!plat
|| !plat
->dma_filter
) {
225 dev_info(mmc_dev(host
->mmc
), "no DMA platform data\n");
229 /* Try to acquire a generic DMA engine slave channel */
231 dma_cap_set(DMA_SLAVE
, mask
);
234 * If only an RX channel is specified, the driver will
235 * attempt to use it bidirectionally, however if it is
236 * is specified but cannot be located, DMA will be disabled.
238 if (plat
->dma_rx_param
) {
239 host
->dma_rx_channel
= dma_request_channel(mask
,
242 /* E.g if no DMA hardware is present */
243 if (!host
->dma_rx_channel
)
244 dev_err(mmc_dev(host
->mmc
), "no RX DMA channel\n");
247 if (plat
->dma_tx_param
) {
248 host
->dma_tx_channel
= dma_request_channel(mask
,
251 if (!host
->dma_tx_channel
)
252 dev_warn(mmc_dev(host
->mmc
), "no TX DMA channel\n");
254 host
->dma_tx_channel
= host
->dma_rx_channel
;
257 if (host
->dma_rx_channel
)
258 rxname
= dma_chan_name(host
->dma_rx_channel
);
262 if (host
->dma_tx_channel
)
263 txname
= dma_chan_name(host
->dma_tx_channel
);
267 dev_info(mmc_dev(host
->mmc
), "DMA channels RX %s, TX %s\n",
271 * Limit the maximum segment size in any SG entry according to
272 * the parameters of the DMA engine device.
274 if (host
->dma_tx_channel
) {
275 struct device
*dev
= host
->dma_tx_channel
->device
->dev
;
276 unsigned int max_seg_size
= dma_get_max_seg_size(dev
);
278 if (max_seg_size
< host
->mmc
->max_seg_size
)
279 host
->mmc
->max_seg_size
= max_seg_size
;
281 if (host
->dma_rx_channel
) {
282 struct device
*dev
= host
->dma_rx_channel
->device
->dev
;
283 unsigned int max_seg_size
= dma_get_max_seg_size(dev
);
285 if (max_seg_size
< host
->mmc
->max_seg_size
)
286 host
->mmc
->max_seg_size
= max_seg_size
;
291 * This is used in __devinit or __devexit so inline it
292 * so it can be discarded.
294 static inline void mmci_dma_release(struct mmci_host
*host
)
296 struct mmci_platform_data
*plat
= host
->plat
;
298 if (host
->dma_rx_channel
)
299 dma_release_channel(host
->dma_rx_channel
);
300 if (host
->dma_tx_channel
&& plat
->dma_tx_param
)
301 dma_release_channel(host
->dma_tx_channel
);
302 host
->dma_rx_channel
= host
->dma_tx_channel
= NULL
;
305 static void mmci_dma_unmap(struct mmci_host
*host
, struct mmc_data
*data
)
307 struct dma_chan
*chan
= host
->dma_current
;
308 enum dma_data_direction dir
;
312 /* Wait up to 1ms for the DMA to complete */
314 status
= readl(host
->base
+ MMCISTATUS
);
315 if (!(status
& MCI_RXDATAAVLBLMASK
) || i
>= 100)
321 * Check to see whether we still have some data left in the FIFO -
322 * this catches DMA controllers which are unable to monitor the
323 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
324 * contiguous buffers. On TX, we'll get a FIFO underrun error.
326 if (status
& MCI_RXDATAAVLBLMASK
) {
327 dmaengine_terminate_all(chan
);
332 if (data
->flags
& MMC_DATA_WRITE
) {
335 dir
= DMA_FROM_DEVICE
;
338 dma_unmap_sg(chan
->device
->dev
, data
->sg
, data
->sg_len
, dir
);
341 * Use of DMA with scatter-gather is impossible.
342 * Give up with DMA and switch back to PIO mode.
344 if (status
& MCI_RXDATAAVLBLMASK
) {
345 dev_err(mmc_dev(host
->mmc
), "buggy DMA detected. Taking evasive action.\n");
346 mmci_dma_release(host
);
350 static void mmci_dma_data_error(struct mmci_host
*host
)
352 dev_err(mmc_dev(host
->mmc
), "error during DMA transfer!\n");
353 dmaengine_terminate_all(host
->dma_current
);
356 static int mmci_dma_start_data(struct mmci_host
*host
, unsigned int datactrl
)
358 struct variant_data
*variant
= host
->variant
;
359 struct dma_slave_config conf
= {
360 .src_addr
= host
->phybase
+ MMCIFIFO
,
361 .dst_addr
= host
->phybase
+ MMCIFIFO
,
362 .src_addr_width
= DMA_SLAVE_BUSWIDTH_4_BYTES
,
363 .dst_addr_width
= DMA_SLAVE_BUSWIDTH_4_BYTES
,
364 .src_maxburst
= variant
->fifohalfsize
>> 2, /* # of words */
365 .dst_maxburst
= variant
->fifohalfsize
>> 2, /* # of words */
367 struct mmc_data
*data
= host
->data
;
368 struct dma_chan
*chan
;
369 struct dma_device
*device
;
370 struct dma_async_tx_descriptor
*desc
;
373 host
->dma_current
= NULL
;
375 if (data
->flags
& MMC_DATA_READ
) {
376 conf
.direction
= DMA_FROM_DEVICE
;
377 chan
= host
->dma_rx_channel
;
379 conf
.direction
= DMA_TO_DEVICE
;
380 chan
= host
->dma_tx_channel
;
383 /* If there's no DMA channel, fall back to PIO */
387 /* If less than or equal to the fifo size, don't bother with DMA */
388 if (host
->size
<= variant
->fifosize
)
391 device
= chan
->device
;
392 nr_sg
= dma_map_sg(device
->dev
, data
->sg
, data
->sg_len
, conf
.direction
);
396 dmaengine_slave_config(chan
, &conf
);
397 desc
= device
->device_prep_slave_sg(chan
, data
->sg
, nr_sg
,
398 conf
.direction
, DMA_CTRL_ACK
);
402 /* Okay, go for it. */
403 host
->dma_current
= chan
;
405 dev_vdbg(mmc_dev(host
->mmc
),
406 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
407 data
->sg_len
, data
->blksz
, data
->blocks
, data
->flags
);
408 dmaengine_submit(desc
);
409 dma_async_issue_pending(chan
);
411 datactrl
|= MCI_DPSM_DMAENABLE
;
413 /* Trigger the DMA transfer */
414 writel(datactrl
, host
->base
+ MMCIDATACTRL
);
417 * Let the MMCI say when the data is ended and it's time
418 * to fire next DMA request. When that happens, MMCI will
419 * call mmci_data_end()
421 writel(readl(host
->base
+ MMCIMASK0
) | MCI_DATAENDMASK
,
422 host
->base
+ MMCIMASK0
);
426 dmaengine_terminate_all(chan
);
427 dma_unmap_sg(device
->dev
, data
->sg
, data
->sg_len
, conf
.direction
);
431 /* Blank functions if the DMA engine is not available */
432 static inline void mmci_dma_setup(struct mmci_host
*host
)
436 static inline void mmci_dma_release(struct mmci_host
*host
)
440 static inline void mmci_dma_unmap(struct mmci_host
*host
, struct mmc_data
*data
)
444 static inline void mmci_dma_data_error(struct mmci_host
*host
)
448 static inline int mmci_dma_start_data(struct mmci_host
*host
, unsigned int datactrl
)
454 static void mmci_start_data(struct mmci_host
*host
, struct mmc_data
*data
)
456 struct variant_data
*variant
= host
->variant
;
457 unsigned int datactrl
, timeout
, irqmask
;
458 unsigned long long clks
;
462 dev_dbg(mmc_dev(host
->mmc
), "blksz %04x blks %04x flags %08x\n",
463 data
->blksz
, data
->blocks
, data
->flags
);
466 host
->size
= data
->blksz
* data
->blocks
;
467 data
->bytes_xfered
= 0;
469 clks
= (unsigned long long)data
->timeout_ns
* host
->cclk
;
470 do_div(clks
, 1000000000UL);
472 timeout
= data
->timeout_clks
+ (unsigned int)clks
;
475 writel(timeout
, base
+ MMCIDATATIMER
);
476 writel(host
->size
, base
+ MMCIDATALENGTH
);
478 blksz_bits
= ffs(data
->blksz
) - 1;
479 BUG_ON(1 << blksz_bits
!= data
->blksz
);
481 if (variant
->blksz_datactrl16
)
482 datactrl
= MCI_DPSM_ENABLE
| (data
->blksz
<< 16);
484 datactrl
= MCI_DPSM_ENABLE
| blksz_bits
<< 4;
486 if (data
->flags
& MMC_DATA_READ
)
487 datactrl
|= MCI_DPSM_DIRECTION
;
490 * Attempt to use DMA operation mode, if this
491 * should fail, fall back to PIO mode
493 if (!mmci_dma_start_data(host
, datactrl
))
496 /* IRQ mode, map the SG list for CPU reading/writing */
497 mmci_init_sg(host
, data
);
499 if (data
->flags
& MMC_DATA_READ
) {
500 irqmask
= MCI_RXFIFOHALFFULLMASK
;
503 * If we have less than the fifo 'half-full' threshold to
504 * transfer, trigger a PIO interrupt as soon as any data
507 if (host
->size
< variant
->fifohalfsize
)
508 irqmask
|= MCI_RXDATAAVLBLMASK
;
511 * We don't actually need to include "FIFO empty" here
512 * since its implicit in "FIFO half empty".
514 irqmask
= MCI_TXFIFOHALFEMPTYMASK
;
517 /* The ST Micro variants has a special bit to enable SDIO */
518 if (variant
->sdio
&& host
->mmc
->card
)
519 if (mmc_card_sdio(host
->mmc
->card
))
520 datactrl
|= MCI_ST_DPSM_SDIOEN
;
522 writel(datactrl
, base
+ MMCIDATACTRL
);
523 writel(readl(base
+ MMCIMASK0
) & ~MCI_DATAENDMASK
, base
+ MMCIMASK0
);
524 mmci_set_mask1(host
, irqmask
);
528 mmci_start_command(struct mmci_host
*host
, struct mmc_command
*cmd
, u32 c
)
530 void __iomem
*base
= host
->base
;
532 dev_dbg(mmc_dev(host
->mmc
), "op %02x arg %08x flags %08x\n",
533 cmd
->opcode
, cmd
->arg
, cmd
->flags
);
535 if (readl(base
+ MMCICOMMAND
) & MCI_CPSM_ENABLE
) {
536 writel(0, base
+ MMCICOMMAND
);
540 c
|= cmd
->opcode
| MCI_CPSM_ENABLE
;
541 if (cmd
->flags
& MMC_RSP_PRESENT
) {
542 if (cmd
->flags
& MMC_RSP_136
)
543 c
|= MCI_CPSM_LONGRSP
;
544 c
|= MCI_CPSM_RESPONSE
;
547 c
|= MCI_CPSM_INTERRUPT
;
551 writel(cmd
->arg
, base
+ MMCIARGUMENT
);
552 writel(c
, base
+ MMCICOMMAND
);
556 mmci_data_irq(struct mmci_host
*host
, struct mmc_data
*data
,
559 /* First check for errors */
560 if (status
& (MCI_DATACRCFAIL
|MCI_DATATIMEOUT
|MCI_TXUNDERRUN
|MCI_RXOVERRUN
)) {
563 /* Terminate the DMA transfer */
564 if (dma_inprogress(host
))
565 mmci_dma_data_error(host
);
568 * Calculate how far we are into the transfer. Note that
569 * the data counter gives the number of bytes transferred
570 * on the MMC bus, not on the host side. On reads, this
571 * can be as much as a FIFO-worth of data ahead. This
572 * matters for FIFO overruns only.
574 remain
= readl(host
->base
+ MMCIDATACNT
);
575 success
= data
->blksz
* data
->blocks
- remain
;
577 dev_dbg(mmc_dev(host
->mmc
), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
579 if (status
& MCI_DATACRCFAIL
) {
580 /* Last block was not successful */
582 data
->error
= -EILSEQ
;
583 } else if (status
& MCI_DATATIMEOUT
) {
584 data
->error
= -ETIMEDOUT
;
585 } else if (status
& MCI_TXUNDERRUN
) {
587 } else if (status
& MCI_RXOVERRUN
) {
588 if (success
> host
->variant
->fifosize
)
589 success
-= host
->variant
->fifosize
;
594 data
->bytes_xfered
= round_down(success
, data
->blksz
);
597 if (status
& MCI_DATABLOCKEND
)
598 dev_err(mmc_dev(host
->mmc
), "stray MCI_DATABLOCKEND interrupt\n");
600 if (status
& MCI_DATAEND
|| data
->error
) {
601 if (dma_inprogress(host
))
602 mmci_dma_unmap(host
, data
);
603 mmci_stop_data(host
);
606 /* The error clause is handled above, success! */
607 data
->bytes_xfered
= data
->blksz
* data
->blocks
;
610 mmci_request_end(host
, data
->mrq
);
612 mmci_start_command(host
, data
->stop
, 0);
618 mmci_cmd_irq(struct mmci_host
*host
, struct mmc_command
*cmd
,
621 void __iomem
*base
= host
->base
;
625 if (status
& MCI_CMDTIMEOUT
) {
626 cmd
->error
= -ETIMEDOUT
;
627 } else if (status
& MCI_CMDCRCFAIL
&& cmd
->flags
& MMC_RSP_CRC
) {
628 cmd
->error
= -EILSEQ
;
630 cmd
->resp
[0] = readl(base
+ MMCIRESPONSE0
);
631 cmd
->resp
[1] = readl(base
+ MMCIRESPONSE1
);
632 cmd
->resp
[2] = readl(base
+ MMCIRESPONSE2
);
633 cmd
->resp
[3] = readl(base
+ MMCIRESPONSE3
);
636 if (!cmd
->data
|| cmd
->error
) {
638 mmci_stop_data(host
);
639 mmci_request_end(host
, cmd
->mrq
);
640 } else if (!(cmd
->data
->flags
& MMC_DATA_READ
)) {
641 mmci_start_data(host
, cmd
->data
);
645 static int mmci_pio_read(struct mmci_host
*host
, char *buffer
, unsigned int remain
)
647 void __iomem
*base
= host
->base
;
650 int host_remain
= host
->size
;
653 int count
= host_remain
- (readl(base
+ MMCIFIFOCNT
) << 2);
661 readsl(base
+ MMCIFIFO
, ptr
, count
>> 2);
665 host_remain
-= count
;
670 status
= readl(base
+ MMCISTATUS
);
671 } while (status
& MCI_RXDATAAVLBL
);
676 static int mmci_pio_write(struct mmci_host
*host
, char *buffer
, unsigned int remain
, u32 status
)
678 struct variant_data
*variant
= host
->variant
;
679 void __iomem
*base
= host
->base
;
683 unsigned int count
, maxcnt
;
685 maxcnt
= status
& MCI_TXFIFOEMPTY
?
686 variant
->fifosize
: variant
->fifohalfsize
;
687 count
= min(remain
, maxcnt
);
690 * The ST Micro variant for SDIO transfer sizes
691 * less then 8 bytes should have clock H/W flow
695 mmc_card_sdio(host
->mmc
->card
)) {
697 writel(readl(host
->base
+ MMCICLOCK
) &
698 ~variant
->clkreg_enable
,
699 host
->base
+ MMCICLOCK
);
701 writel(readl(host
->base
+ MMCICLOCK
) |
702 variant
->clkreg_enable
,
703 host
->base
+ MMCICLOCK
);
707 * SDIO especially may want to send something that is
708 * not divisible by 4 (as opposed to card sectors
709 * etc), and the FIFO only accept full 32-bit writes.
710 * So compensate by adding +3 on the count, a single
711 * byte become a 32bit write, 7 bytes will be two
714 writesl(base
+ MMCIFIFO
, ptr
, (count
+ 3) >> 2);
722 status
= readl(base
+ MMCISTATUS
);
723 } while (status
& MCI_TXFIFOHALFEMPTY
);
729 * PIO data transfer IRQ handler.
731 static irqreturn_t
mmci_pio_irq(int irq
, void *dev_id
)
733 struct mmci_host
*host
= dev_id
;
734 struct sg_mapping_iter
*sg_miter
= &host
->sg_miter
;
735 struct variant_data
*variant
= host
->variant
;
736 void __iomem
*base
= host
->base
;
740 status
= readl(base
+ MMCISTATUS
);
742 dev_dbg(mmc_dev(host
->mmc
), "irq1 (pio) %08x\n", status
);
744 local_irq_save(flags
);
747 unsigned int remain
, len
;
751 * For write, we only need to test the half-empty flag
752 * here - if the FIFO is completely empty, then by
753 * definition it is more than half empty.
755 * For read, check for data available.
757 if (!(status
& (MCI_TXFIFOHALFEMPTY
|MCI_RXDATAAVLBL
)))
760 if (!sg_miter_next(sg_miter
))
763 buffer
= sg_miter
->addr
;
764 remain
= sg_miter
->length
;
767 if (status
& MCI_RXACTIVE
)
768 len
= mmci_pio_read(host
, buffer
, remain
);
769 if (status
& MCI_TXACTIVE
)
770 len
= mmci_pio_write(host
, buffer
, remain
, status
);
772 sg_miter
->consumed
= len
;
780 status
= readl(base
+ MMCISTATUS
);
783 sg_miter_stop(sg_miter
);
785 local_irq_restore(flags
);
788 * If we have less than the fifo 'half-full' threshold to transfer,
789 * trigger a PIO interrupt as soon as any data is available.
791 if (status
& MCI_RXACTIVE
&& host
->size
< variant
->fifohalfsize
)
792 mmci_set_mask1(host
, MCI_RXDATAAVLBLMASK
);
795 * If we run out of data, disable the data IRQs; this
796 * prevents a race where the FIFO becomes empty before
797 * the chip itself has disabled the data path, and
798 * stops us racing with our data end IRQ.
800 if (host
->size
== 0) {
801 mmci_set_mask1(host
, 0);
802 writel(readl(base
+ MMCIMASK0
) | MCI_DATAENDMASK
, base
+ MMCIMASK0
);
809 * Handle completion of command and data transfers.
811 static irqreturn_t
mmci_irq(int irq
, void *dev_id
)
813 struct mmci_host
*host
= dev_id
;
817 spin_lock(&host
->lock
);
820 struct mmc_command
*cmd
;
821 struct mmc_data
*data
;
823 status
= readl(host
->base
+ MMCISTATUS
);
825 if (host
->singleirq
) {
826 if (status
& readl(host
->base
+ MMCIMASK1
))
827 mmci_pio_irq(irq
, dev_id
);
829 status
&= ~MCI_IRQ1MASK
;
832 status
&= readl(host
->base
+ MMCIMASK0
);
833 writel(status
, host
->base
+ MMCICLEAR
);
835 dev_dbg(mmc_dev(host
->mmc
), "irq0 (data+cmd) %08x\n", status
);
838 if (status
& (MCI_DATACRCFAIL
|MCI_DATATIMEOUT
|MCI_TXUNDERRUN
|
839 MCI_RXOVERRUN
|MCI_DATAEND
|MCI_DATABLOCKEND
) && data
)
840 mmci_data_irq(host
, data
, status
);
843 if (status
& (MCI_CMDCRCFAIL
|MCI_CMDTIMEOUT
|MCI_CMDSENT
|MCI_CMDRESPEND
) && cmd
)
844 mmci_cmd_irq(host
, cmd
, status
);
849 spin_unlock(&host
->lock
);
851 return IRQ_RETVAL(ret
);
854 static void mmci_request(struct mmc_host
*mmc
, struct mmc_request
*mrq
)
856 struct mmci_host
*host
= mmc_priv(mmc
);
859 WARN_ON(host
->mrq
!= NULL
);
861 if (mrq
->data
&& !is_power_of_2(mrq
->data
->blksz
)) {
862 dev_err(mmc_dev(mmc
), "unsupported block size (%d bytes)\n",
864 mrq
->cmd
->error
= -EINVAL
;
865 mmc_request_done(mmc
, mrq
);
869 spin_lock_irqsave(&host
->lock
, flags
);
873 if (mrq
->data
&& mrq
->data
->flags
& MMC_DATA_READ
)
874 mmci_start_data(host
, mrq
->data
);
876 mmci_start_command(host
, mrq
->cmd
, 0);
878 spin_unlock_irqrestore(&host
->lock
, flags
);
881 static void mmci_set_ios(struct mmc_host
*mmc
, struct mmc_ios
*ios
)
883 struct mmci_host
*host
= mmc_priv(mmc
);
888 switch (ios
->power_mode
) {
891 ret
= mmc_regulator_set_ocr(mmc
, host
->vcc
, 0);
895 ret
= mmc_regulator_set_ocr(mmc
, host
->vcc
, ios
->vdd
);
897 dev_err(mmc_dev(mmc
), "unable to set OCR\n");
899 * The .set_ios() function in the mmc_host_ops
900 * struct return void, and failing to set the
901 * power should be rare so we print an error
907 if (host
->plat
->vdd_handler
)
908 pwr
|= host
->plat
->vdd_handler(mmc_dev(mmc
), ios
->vdd
,
910 /* The ST version does not have this, fall through to POWER_ON */
911 if (host
->hw_designer
!= AMBA_VENDOR_ST
) {
920 if (ios
->bus_mode
== MMC_BUSMODE_OPENDRAIN
) {
921 if (host
->hw_designer
!= AMBA_VENDOR_ST
)
925 * The ST Micro variant use the ROD bit for something
926 * else and only has OD (Open Drain).
932 spin_lock_irqsave(&host
->lock
, flags
);
934 mmci_set_clkreg(host
, ios
->clock
);
936 if (host
->pwr
!= pwr
) {
938 writel(pwr
, host
->base
+ MMCIPOWER
);
941 spin_unlock_irqrestore(&host
->lock
, flags
);
944 static int mmci_get_ro(struct mmc_host
*mmc
)
946 struct mmci_host
*host
= mmc_priv(mmc
);
948 if (host
->gpio_wp
== -ENOSYS
)
951 return gpio_get_value_cansleep(host
->gpio_wp
);
954 static int mmci_get_cd(struct mmc_host
*mmc
)
956 struct mmci_host
*host
= mmc_priv(mmc
);
957 struct mmci_platform_data
*plat
= host
->plat
;
960 if (host
->gpio_cd
== -ENOSYS
) {
962 return 1; /* Assume always present */
964 status
= plat
->status(mmc_dev(host
->mmc
));
966 status
= !!gpio_get_value_cansleep(host
->gpio_cd
)
970 * Use positive logic throughout - status is zero for no card,
971 * non-zero for card inserted.
976 static irqreturn_t
mmci_cd_irq(int irq
, void *dev_id
)
978 struct mmci_host
*host
= dev_id
;
980 mmc_detect_change(host
->mmc
, msecs_to_jiffies(500));
985 static const struct mmc_host_ops mmci_ops
= {
986 .request
= mmci_request
,
987 .set_ios
= mmci_set_ios
,
988 .get_ro
= mmci_get_ro
,
989 .get_cd
= mmci_get_cd
,
992 static int __devinit
mmci_probe(struct amba_device
*dev
,
993 const struct amba_id
*id
)
995 struct mmci_platform_data
*plat
= dev
->dev
.platform_data
;
996 struct variant_data
*variant
= id
->data
;
997 struct mmci_host
*host
;
998 struct mmc_host
*mmc
;
1001 /* must have platform data */
1007 ret
= amba_request_regions(dev
, DRIVER_NAME
);
1011 mmc
= mmc_alloc_host(sizeof(struct mmci_host
), &dev
->dev
);
1017 host
= mmc_priv(mmc
);
1020 host
->gpio_wp
= -ENOSYS
;
1021 host
->gpio_cd
= -ENOSYS
;
1022 host
->gpio_cd_irq
= -1;
1024 host
->hw_designer
= amba_manf(dev
);
1025 host
->hw_revision
= amba_rev(dev
);
1026 dev_dbg(mmc_dev(mmc
), "designer ID = 0x%02x\n", host
->hw_designer
);
1027 dev_dbg(mmc_dev(mmc
), "revision = 0x%01x\n", host
->hw_revision
);
1029 host
->clk
= clk_get(&dev
->dev
, NULL
);
1030 if (IS_ERR(host
->clk
)) {
1031 ret
= PTR_ERR(host
->clk
);
1036 ret
= clk_enable(host
->clk
);
1041 host
->variant
= variant
;
1042 host
->mclk
= clk_get_rate(host
->clk
);
1044 * According to the spec, mclk is max 100 MHz,
1045 * so we try to adjust the clock down to this,
1048 if (host
->mclk
> 100000000) {
1049 ret
= clk_set_rate(host
->clk
, 100000000);
1052 host
->mclk
= clk_get_rate(host
->clk
);
1053 dev_dbg(mmc_dev(mmc
), "eventual mclk rate: %u Hz\n",
1056 host
->phybase
= dev
->res
.start
;
1057 host
->base
= ioremap(dev
->res
.start
, resource_size(&dev
->res
));
1063 mmc
->ops
= &mmci_ops
;
1064 mmc
->f_min
= (host
->mclk
+ 511) / 512;
1066 * If the platform data supplies a maximum operating
1067 * frequency, this takes precedence. Else, we fall back
1068 * to using the module parameter, which has a (low)
1069 * default value in case it is not specified. Either
1070 * value must not exceed the clock rate into the block,
1074 mmc
->f_max
= min(host
->mclk
, plat
->f_max
);
1076 mmc
->f_max
= min(host
->mclk
, fmax
);
1077 dev_dbg(mmc_dev(mmc
), "clocking block at %u Hz\n", mmc
->f_max
);
1079 #ifdef CONFIG_REGULATOR
1080 /* If we're using the regulator framework, try to fetch a regulator */
1081 host
->vcc
= regulator_get(&dev
->dev
, "vmmc");
1082 if (IS_ERR(host
->vcc
))
1085 int mask
= mmc_regulator_get_ocrmask(host
->vcc
);
1088 dev_err(&dev
->dev
, "error getting OCR mask (%d)\n",
1091 host
->mmc
->ocr_avail
= (u32
) mask
;
1094 "Provided ocr_mask/setpower will not be used "
1095 "(using regulator instead)\n");
1099 /* Fall back to platform data if no regulator is found */
1100 if (host
->vcc
== NULL
)
1101 mmc
->ocr_avail
= plat
->ocr_mask
;
1102 mmc
->caps
= plat
->capabilities
;
1107 mmc
->max_segs
= NR_SG
;
1110 * Since only a certain number of bits are valid in the data length
1111 * register, we must ensure that we don't exceed 2^num-1 bytes in a
1114 mmc
->max_req_size
= (1 << variant
->datalength_bits
) - 1;
1117 * Set the maximum segment size. Since we aren't doing DMA
1118 * (yet) we are only limited by the data length register.
1120 mmc
->max_seg_size
= mmc
->max_req_size
;
1123 * Block size can be up to 2048 bytes, but must be a power of two.
1125 mmc
->max_blk_size
= 2048;
1128 * No limit on the number of blocks transferred.
1130 mmc
->max_blk_count
= mmc
->max_req_size
;
1132 spin_lock_init(&host
->lock
);
1134 writel(0, host
->base
+ MMCIMASK0
);
1135 writel(0, host
->base
+ MMCIMASK1
);
1136 writel(0xfff, host
->base
+ MMCICLEAR
);
1138 if (gpio_is_valid(plat
->gpio_cd
)) {
1139 ret
= gpio_request(plat
->gpio_cd
, DRIVER_NAME
" (cd)");
1141 ret
= gpio_direction_input(plat
->gpio_cd
);
1143 host
->gpio_cd
= plat
->gpio_cd
;
1144 else if (ret
!= -ENOSYS
)
1147 ret
= request_any_context_irq(gpio_to_irq(plat
->gpio_cd
),
1149 DRIVER_NAME
" (cd)", host
);
1151 host
->gpio_cd_irq
= gpio_to_irq(plat
->gpio_cd
);
1153 if (gpio_is_valid(plat
->gpio_wp
)) {
1154 ret
= gpio_request(plat
->gpio_wp
, DRIVER_NAME
" (wp)");
1156 ret
= gpio_direction_input(plat
->gpio_wp
);
1158 host
->gpio_wp
= plat
->gpio_wp
;
1159 else if (ret
!= -ENOSYS
)
1163 if ((host
->plat
->status
|| host
->gpio_cd
!= -ENOSYS
)
1164 && host
->gpio_cd_irq
< 0)
1165 mmc
->caps
|= MMC_CAP_NEEDS_POLL
;
1167 ret
= request_irq(dev
->irq
[0], mmci_irq
, IRQF_SHARED
, DRIVER_NAME
" (cmd)", host
);
1171 if (dev
->irq
[1] == NO_IRQ
)
1172 host
->singleirq
= true;
1174 ret
= request_irq(dev
->irq
[1], mmci_pio_irq
, IRQF_SHARED
,
1175 DRIVER_NAME
" (pio)", host
);
1180 writel(MCI_IRQENABLE
, host
->base
+ MMCIMASK0
);
1182 amba_set_drvdata(dev
, mmc
);
1184 dev_info(&dev
->dev
, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
1185 mmc_hostname(mmc
), amba_part(dev
), amba_manf(dev
),
1186 amba_rev(dev
), (unsigned long long)dev
->res
.start
,
1187 dev
->irq
[0], dev
->irq
[1]);
1189 mmci_dma_setup(host
);
1196 free_irq(dev
->irq
[0], host
);
1198 if (host
->gpio_wp
!= -ENOSYS
)
1199 gpio_free(host
->gpio_wp
);
1201 if (host
->gpio_cd_irq
>= 0)
1202 free_irq(host
->gpio_cd_irq
, host
);
1203 if (host
->gpio_cd
!= -ENOSYS
)
1204 gpio_free(host
->gpio_cd
);
1206 iounmap(host
->base
);
1208 clk_disable(host
->clk
);
1214 amba_release_regions(dev
);
1219 static int __devexit
mmci_remove(struct amba_device
*dev
)
1221 struct mmc_host
*mmc
= amba_get_drvdata(dev
);
1223 amba_set_drvdata(dev
, NULL
);
1226 struct mmci_host
*host
= mmc_priv(mmc
);
1228 mmc_remove_host(mmc
);
1230 writel(0, host
->base
+ MMCIMASK0
);
1231 writel(0, host
->base
+ MMCIMASK1
);
1233 writel(0, host
->base
+ MMCICOMMAND
);
1234 writel(0, host
->base
+ MMCIDATACTRL
);
1236 mmci_dma_release(host
);
1237 free_irq(dev
->irq
[0], host
);
1238 if (!host
->singleirq
)
1239 free_irq(dev
->irq
[1], host
);
1241 if (host
->gpio_wp
!= -ENOSYS
)
1242 gpio_free(host
->gpio_wp
);
1243 if (host
->gpio_cd_irq
>= 0)
1244 free_irq(host
->gpio_cd_irq
, host
);
1245 if (host
->gpio_cd
!= -ENOSYS
)
1246 gpio_free(host
->gpio_cd
);
1248 iounmap(host
->base
);
1249 clk_disable(host
->clk
);
1253 mmc_regulator_set_ocr(mmc
, host
->vcc
, 0);
1254 regulator_put(host
->vcc
);
1258 amba_release_regions(dev
);
1265 static int mmci_suspend(struct amba_device
*dev
, pm_message_t state
)
1267 struct mmc_host
*mmc
= amba_get_drvdata(dev
);
1271 struct mmci_host
*host
= mmc_priv(mmc
);
1273 ret
= mmc_suspend_host(mmc
);
1275 writel(0, host
->base
+ MMCIMASK0
);
1281 static int mmci_resume(struct amba_device
*dev
)
1283 struct mmc_host
*mmc
= amba_get_drvdata(dev
);
1287 struct mmci_host
*host
= mmc_priv(mmc
);
1289 writel(MCI_IRQENABLE
, host
->base
+ MMCIMASK0
);
1291 ret
= mmc_resume_host(mmc
);
1297 #define mmci_suspend NULL
1298 #define mmci_resume NULL
1301 static struct amba_id mmci_ids
[] = {
1305 .data
= &variant_arm
,
1310 .data
= &variant_arm_extended_fifo
,
1315 .data
= &variant_arm
,
1317 /* ST Micro variants */
1321 .data
= &variant_u300
,
1326 .data
= &variant_u300
,
1331 .data
= &variant_ux500
,
1336 .data
= &variant_ux500v2
,
1341 static struct amba_driver mmci_driver
= {
1343 .name
= DRIVER_NAME
,
1345 .probe
= mmci_probe
,
1346 .remove
= __devexit_p(mmci_remove
),
1347 .suspend
= mmci_suspend
,
1348 .resume
= mmci_resume
,
1349 .id_table
= mmci_ids
,
1352 static int __init
mmci_init(void)
1354 return amba_driver_register(&mmci_driver
);
1357 static void __exit
mmci_exit(void)
1359 amba_driver_unregister(&mmci_driver
);
1362 module_init(mmci_init
);
1363 module_exit(mmci_exit
);
1364 module_param(fmax
, uint
, 0444);
1366 MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
1367 MODULE_LICENSE("GPL");