2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 #include "xfs_types.h"
24 #include "xfs_trans.h"
28 #include "xfs_dmapi.h"
29 #include "xfs_mount.h"
30 #include "xfs_bmap_btree.h"
31 #include "xfs_alloc_btree.h"
32 #include "xfs_ialloc_btree.h"
33 #include "xfs_btree.h"
34 #include "xfs_dir2_sf.h"
35 #include "xfs_attr_sf.h"
36 #include "xfs_inode.h"
37 #include "xfs_dinode.h"
38 #include "xfs_error.h"
39 #include "xfs_mru_cache.h"
40 #include "xfs_filestream.h"
41 #include "xfs_vnodeops.h"
42 #include "xfs_utils.h"
43 #include "xfs_buf_item.h"
44 #include "xfs_inode_item.h"
46 #include "xfs_quota.h"
47 #include "xfs_trace.h"
49 #include <linux/kthread.h>
50 #include <linux/freezer.h>
56 struct xfs_perag
*pag
,
57 uint32_t *first_index
,
64 * use a gang lookup to find the next inode in the tree
65 * as the tree is sparse and a gang lookup walks to find
66 * the number of objects requested.
68 read_lock(&pag
->pag_ici_lock
);
69 if (tag
== XFS_ICI_NO_TAG
) {
70 nr_found
= radix_tree_gang_lookup(&pag
->pag_ici_root
,
71 (void **)&ip
, *first_index
, 1);
73 nr_found
= radix_tree_gang_lookup_tag(&pag
->pag_ici_root
,
74 (void **)&ip
, *first_index
, 1, tag
);
80 * Update the index for the next lookup. Catch overflows
81 * into the next AG range which can occur if we have inodes
82 * in the last block of the AG and we are currently
83 * pointing to the last inode.
85 *first_index
= XFS_INO_TO_AGINO(mp
, ip
->i_ino
+ 1);
86 if (*first_index
< XFS_INO_TO_AGINO(mp
, ip
->i_ino
))
92 read_unlock(&pag
->pag_ici_lock
);
100 int (*execute
)(struct xfs_inode
*ip
,
101 struct xfs_perag
*pag
, int flags
),
105 struct xfs_perag
*pag
= &mp
->m_perag
[ag
];
106 uint32_t first_index
;
117 ip
= xfs_inode_ag_lookup(mp
, pag
, &first_index
, tag
);
121 error
= execute(ip
, pag
, flags
);
122 if (error
== EAGAIN
) {
129 * bail out if the filesystem is corrupted.
131 if (error
== EFSCORRUPTED
)
141 xfs_put_perag(mp
, pag
);
146 xfs_inode_ag_iterator(
147 struct xfs_mount
*mp
,
148 int (*execute
)(struct xfs_inode
*ip
,
149 struct xfs_perag
*pag
, int flags
),
157 for (ag
= 0; ag
< mp
->m_sb
.sb_agcount
; ag
++) {
158 if (!mp
->m_perag
[ag
].pag_ici_init
)
160 error
= xfs_inode_ag_walk(mp
, ag
, execute
, flags
, tag
);
163 if (error
== EFSCORRUPTED
)
167 return XFS_ERROR(last_error
);
170 /* must be called with pag_ici_lock held and releases it */
172 xfs_sync_inode_valid(
173 struct xfs_inode
*ip
,
174 struct xfs_perag
*pag
)
176 struct inode
*inode
= VFS_I(ip
);
178 /* nothing to sync during shutdown */
179 if (XFS_FORCED_SHUTDOWN(ip
->i_mount
)) {
180 read_unlock(&pag
->pag_ici_lock
);
185 * If we can't get a reference on the inode, it must be in reclaim.
186 * Leave it for the reclaim code to flush. Also avoid inodes that
187 * haven't been fully initialised.
190 read_unlock(&pag
->pag_ici_lock
);
193 read_unlock(&pag
->pag_ici_lock
);
195 if (is_bad_inode(inode
) || xfs_iflags_test(ip
, XFS_INEW
)) {
205 struct xfs_inode
*ip
,
206 struct xfs_perag
*pag
,
209 struct inode
*inode
= VFS_I(ip
);
210 struct address_space
*mapping
= inode
->i_mapping
;
213 error
= xfs_sync_inode_valid(ip
, pag
);
217 if (!mapping_tagged(mapping
, PAGECACHE_TAG_DIRTY
))
220 if (!xfs_ilock_nowait(ip
, XFS_IOLOCK_SHARED
)) {
221 if (flags
& SYNC_TRYLOCK
)
223 xfs_ilock(ip
, XFS_IOLOCK_SHARED
);
226 error
= xfs_flush_pages(ip
, 0, -1, (flags
& SYNC_WAIT
) ?
227 0 : XFS_B_ASYNC
, FI_NONE
);
228 xfs_iunlock(ip
, XFS_IOLOCK_SHARED
);
231 if (flags
& SYNC_WAIT
)
239 struct xfs_inode
*ip
,
240 struct xfs_perag
*pag
,
245 error
= xfs_sync_inode_valid(ip
, pag
);
249 xfs_ilock(ip
, XFS_ILOCK_SHARED
);
250 if (xfs_inode_clean(ip
))
252 if (!xfs_iflock_nowait(ip
)) {
253 if (!(flags
& SYNC_WAIT
))
258 if (xfs_inode_clean(ip
)) {
263 error
= xfs_iflush(ip
, (flags
& SYNC_WAIT
) ?
264 XFS_IFLUSH_SYNC
: XFS_IFLUSH_DELWRI
);
267 xfs_iunlock(ip
, XFS_ILOCK_SHARED
);
273 * Write out pagecache data for the whole filesystem.
277 struct xfs_mount
*mp
,
282 ASSERT((flags
& ~(SYNC_TRYLOCK
|SYNC_WAIT
)) == 0);
284 error
= xfs_inode_ag_iterator(mp
, xfs_sync_inode_data
, flags
,
287 return XFS_ERROR(error
);
290 (flags
& SYNC_WAIT
) ?
291 XFS_LOG_FORCE
| XFS_LOG_SYNC
:
297 * Write out inode metadata (attributes) for the whole filesystem.
301 struct xfs_mount
*mp
,
304 ASSERT((flags
& ~SYNC_WAIT
) == 0);
306 return xfs_inode_ag_iterator(mp
, xfs_sync_inode_attr
, flags
,
311 xfs_commit_dummy_trans(
312 struct xfs_mount
*mp
,
315 struct xfs_inode
*ip
= mp
->m_rootip
;
316 struct xfs_trans
*tp
;
318 int log_flags
= XFS_LOG_FORCE
;
320 if (flags
& SYNC_WAIT
)
321 log_flags
|= XFS_LOG_SYNC
;
324 * Put a dummy transaction in the log to tell recovery
325 * that all others are OK.
327 tp
= xfs_trans_alloc(mp
, XFS_TRANS_DUMMY1
);
328 error
= xfs_trans_reserve(tp
, 0, XFS_ICHANGE_LOG_RES(mp
), 0, 0, 0);
330 xfs_trans_cancel(tp
, 0);
334 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
336 xfs_trans_ijoin(tp
, ip
, XFS_ILOCK_EXCL
);
337 xfs_trans_ihold(tp
, ip
);
338 xfs_trans_log_inode(tp
, ip
, XFS_ILOG_CORE
);
339 error
= xfs_trans_commit(tp
, 0);
340 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
342 /* the log force ensures this transaction is pushed to disk */
343 xfs_log_force(mp
, 0, log_flags
);
349 struct xfs_mount
*mp
,
353 struct xfs_buf_log_item
*bip
;
357 * If this is xfssyncd() then only sync the superblock if we can
358 * lock it without sleeping and it is not pinned.
360 if (flags
& SYNC_TRYLOCK
) {
361 ASSERT(!(flags
& SYNC_WAIT
));
363 bp
= xfs_getsb(mp
, XFS_BUF_TRYLOCK
);
367 bip
= XFS_BUF_FSPRIVATE(bp
, struct xfs_buf_log_item
*);
368 if (!bip
|| !xfs_buf_item_dirty(bip
) || XFS_BUF_ISPINNED(bp
))
371 bp
= xfs_getsb(mp
, 0);
374 * If the buffer is pinned then push on the log so we won't
375 * get stuck waiting in the write for someone, maybe
376 * ourselves, to flush the log.
378 * Even though we just pushed the log above, we did not have
379 * the superblock buffer locked at that point so it can
380 * become pinned in between there and here.
382 if (XFS_BUF_ISPINNED(bp
))
383 xfs_log_force(mp
, 0, XFS_LOG_FORCE
);
387 if (flags
& SYNC_WAIT
)
392 error
= xfs_bwrite(mp
, bp
);
397 * If this is a data integrity sync make sure all pending buffers
398 * are flushed out for the log coverage check below.
400 if (flags
& SYNC_WAIT
)
401 xfs_flush_buftarg(mp
->m_ddev_targp
, 1);
403 if (xfs_log_need_covered(mp
))
404 error
= xfs_commit_dummy_trans(mp
, flags
);
414 * When remounting a filesystem read-only or freezing the filesystem, we have
415 * two phases to execute. This first phase is syncing the data before we
416 * quiesce the filesystem, and the second is flushing all the inodes out after
417 * we've waited for all the transactions created by the first phase to
418 * complete. The second phase ensures that the inodes are written to their
419 * location on disk rather than just existing in transactions in the log. This
420 * means after a quiesce there is no log replay required to write the inodes to
421 * disk (this is the main difference between a sync and a quiesce).
424 * First stage of freeze - no writers will make progress now we are here,
425 * so we flush delwri and delalloc buffers here, then wait for all I/O to
426 * complete. Data is frozen at that point. Metadata is not frozen,
427 * transactions can still occur here so don't bother flushing the buftarg
428 * because it'll just get dirty again.
432 struct xfs_mount
*mp
)
436 /* push non-blocking */
437 xfs_sync_data(mp
, 0);
438 xfs_qm_sync(mp
, SYNC_TRYLOCK
);
440 /* push and block till complete */
441 xfs_sync_data(mp
, SYNC_WAIT
);
442 xfs_qm_sync(mp
, SYNC_WAIT
);
444 /* drop inode references pinned by filestreams */
445 xfs_filestream_flush(mp
);
447 /* write superblock and hoover up shutdown errors */
448 error
= xfs_sync_fsdata(mp
, SYNC_WAIT
);
450 /* flush data-only devices */
451 if (mp
->m_rtdev_targp
)
452 XFS_bflush(mp
->m_rtdev_targp
);
459 struct xfs_mount
*mp
)
461 int count
= 0, pincount
;
463 xfs_flush_buftarg(mp
->m_ddev_targp
, 0);
464 xfs_reclaim_inodes(mp
, XFS_IFLUSH_DELWRI_ELSE_ASYNC
);
467 * This loop must run at least twice. The first instance of the loop
468 * will flush most meta data but that will generate more meta data
469 * (typically directory updates). Which then must be flushed and
470 * logged before we can write the unmount record.
473 xfs_sync_attr(mp
, SYNC_WAIT
);
474 pincount
= xfs_flush_buftarg(mp
->m_ddev_targp
, 1);
483 * Second stage of a quiesce. The data is already synced, now we have to take
484 * care of the metadata. New transactions are already blocked, so we need to
485 * wait for any remaining transactions to drain out before proceding.
489 struct xfs_mount
*mp
)
493 /* wait for all modifications to complete */
494 while (atomic_read(&mp
->m_active_trans
) > 0)
497 /* flush inodes and push all remaining buffers out to disk */
501 * Just warn here till VFS can correctly support
502 * read-only remount without racing.
504 WARN_ON(atomic_read(&mp
->m_active_trans
) != 0);
506 /* Push the superblock and write an unmount record */
507 error
= xfs_log_sbcount(mp
, 1);
509 xfs_fs_cmn_err(CE_WARN
, mp
,
510 "xfs_attr_quiesce: failed to log sb changes. "
511 "Frozen image may not be consistent.");
512 xfs_log_unmount_write(mp
);
513 xfs_unmountfs_writesb(mp
);
517 * Enqueue a work item to be picked up by the vfs xfssyncd thread.
518 * Doing this has two advantages:
519 * - It saves on stack space, which is tight in certain situations
520 * - It can be used (with care) as a mechanism to avoid deadlocks.
521 * Flushing while allocating in a full filesystem requires both.
524 xfs_syncd_queue_work(
525 struct xfs_mount
*mp
,
527 void (*syncer
)(struct xfs_mount
*, void *),
528 struct completion
*completion
)
530 struct xfs_sync_work
*work
;
532 work
= kmem_alloc(sizeof(struct xfs_sync_work
), KM_SLEEP
);
533 INIT_LIST_HEAD(&work
->w_list
);
534 work
->w_syncer
= syncer
;
537 work
->w_completion
= completion
;
538 spin_lock(&mp
->m_sync_lock
);
539 list_add_tail(&work
->w_list
, &mp
->m_sync_list
);
540 spin_unlock(&mp
->m_sync_lock
);
541 wake_up_process(mp
->m_sync_task
);
545 * Flush delayed allocate data, attempting to free up reserved space
546 * from existing allocations. At this point a new allocation attempt
547 * has failed with ENOSPC and we are in the process of scratching our
548 * heads, looking about for more room...
551 xfs_flush_inodes_work(
552 struct xfs_mount
*mp
,
555 struct inode
*inode
= arg
;
556 xfs_sync_data(mp
, SYNC_TRYLOCK
);
557 xfs_sync_data(mp
, SYNC_TRYLOCK
| SYNC_WAIT
);
565 struct inode
*inode
= VFS_I(ip
);
566 DECLARE_COMPLETION_ONSTACK(completion
);
569 xfs_syncd_queue_work(ip
->i_mount
, inode
, xfs_flush_inodes_work
, &completion
);
570 wait_for_completion(&completion
);
571 xfs_log_force(ip
->i_mount
, (xfs_lsn_t
)0, XFS_LOG_FORCE
|XFS_LOG_SYNC
);
575 * Every sync period we need to unpin all items, reclaim inodes, sync
576 * quota and write out the superblock. We might need to cover the log
577 * to indicate it is idle.
581 struct xfs_mount
*mp
,
586 if (!(mp
->m_flags
& XFS_MOUNT_RDONLY
)) {
587 xfs_log_force(mp
, (xfs_lsn_t
)0, XFS_LOG_FORCE
);
588 xfs_reclaim_inodes(mp
, XFS_IFLUSH_DELWRI_ELSE_ASYNC
);
589 /* dgc: errors ignored here */
590 error
= xfs_qm_sync(mp
, SYNC_TRYLOCK
);
591 error
= xfs_sync_fsdata(mp
, SYNC_TRYLOCK
);
594 wake_up(&mp
->m_wait_single_sync_task
);
601 struct xfs_mount
*mp
= arg
;
603 xfs_sync_work_t
*work
, *n
;
607 timeleft
= xfs_syncd_centisecs
* msecs_to_jiffies(10);
609 timeleft
= schedule_timeout_interruptible(timeleft
);
612 if (kthread_should_stop() && list_empty(&mp
->m_sync_list
))
615 spin_lock(&mp
->m_sync_lock
);
617 * We can get woken by laptop mode, to do a sync -
618 * that's the (only!) case where the list would be
619 * empty with time remaining.
621 if (!timeleft
|| list_empty(&mp
->m_sync_list
)) {
623 timeleft
= xfs_syncd_centisecs
*
624 msecs_to_jiffies(10);
625 INIT_LIST_HEAD(&mp
->m_sync_work
.w_list
);
626 list_add_tail(&mp
->m_sync_work
.w_list
,
629 list_for_each_entry_safe(work
, n
, &mp
->m_sync_list
, w_list
)
630 list_move(&work
->w_list
, &tmp
);
631 spin_unlock(&mp
->m_sync_lock
);
633 list_for_each_entry_safe(work
, n
, &tmp
, w_list
) {
634 (*work
->w_syncer
)(mp
, work
->w_data
);
635 list_del(&work
->w_list
);
636 if (work
== &mp
->m_sync_work
)
638 if (work
->w_completion
)
639 complete(work
->w_completion
);
649 struct xfs_mount
*mp
)
651 mp
->m_sync_work
.w_syncer
= xfs_sync_worker
;
652 mp
->m_sync_work
.w_mount
= mp
;
653 mp
->m_sync_work
.w_completion
= NULL
;
654 mp
->m_sync_task
= kthread_run(xfssyncd
, mp
, "xfssyncd");
655 if (IS_ERR(mp
->m_sync_task
))
656 return -PTR_ERR(mp
->m_sync_task
);
662 struct xfs_mount
*mp
)
664 kthread_stop(mp
->m_sync_task
);
672 xfs_perag_t
*pag
= xfs_get_perag(ip
->i_mount
, ip
->i_ino
);
674 /* The hash lock here protects a thread in xfs_iget_core from
675 * racing with us on linking the inode back with a vnode.
676 * Once we have the XFS_IRECLAIM flag set it will not touch
679 write_lock(&pag
->pag_ici_lock
);
680 spin_lock(&ip
->i_flags_lock
);
681 if (__xfs_iflags_test(ip
, XFS_IRECLAIM
) ||
682 !__xfs_iflags_test(ip
, XFS_IRECLAIMABLE
)) {
683 spin_unlock(&ip
->i_flags_lock
);
684 write_unlock(&pag
->pag_ici_lock
);
687 __xfs_iflags_set(ip
, XFS_IRECLAIM
);
688 spin_unlock(&ip
->i_flags_lock
);
689 write_unlock(&pag
->pag_ici_lock
);
690 xfs_put_perag(ip
->i_mount
, pag
);
693 * If the inode is still dirty, then flush it out. If the inode
694 * is not in the AIL, then it will be OK to flush it delwri as
695 * long as xfs_iflush() does not keep any references to the inode.
696 * We leave that decision up to xfs_iflush() since it has the
697 * knowledge of whether it's OK to simply do a delwri flush of
698 * the inode or whether we need to wait until the inode is
699 * pulled from the AIL.
700 * We get the flush lock regardless, though, just to make sure
701 * we don't free it while it is being flushed.
703 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
707 * In the case of a forced shutdown we rely on xfs_iflush() to
708 * wait for the inode to be unpinned before returning an error.
710 if (!is_bad_inode(VFS_I(ip
)) && xfs_iflush(ip
, sync_mode
) == 0) {
711 /* synchronize with xfs_iflush_done */
716 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
722 __xfs_inode_set_reclaim_tag(
723 struct xfs_perag
*pag
,
724 struct xfs_inode
*ip
)
726 radix_tree_tag_set(&pag
->pag_ici_root
,
727 XFS_INO_TO_AGINO(ip
->i_mount
, ip
->i_ino
),
728 XFS_ICI_RECLAIM_TAG
);
732 * We set the inode flag atomically with the radix tree tag.
733 * Once we get tag lookups on the radix tree, this inode flag
737 xfs_inode_set_reclaim_tag(
740 xfs_mount_t
*mp
= ip
->i_mount
;
741 xfs_perag_t
*pag
= xfs_get_perag(mp
, ip
->i_ino
);
743 read_lock(&pag
->pag_ici_lock
);
744 spin_lock(&ip
->i_flags_lock
);
745 __xfs_inode_set_reclaim_tag(pag
, ip
);
746 __xfs_iflags_set(ip
, XFS_IRECLAIMABLE
);
747 spin_unlock(&ip
->i_flags_lock
);
748 read_unlock(&pag
->pag_ici_lock
);
749 xfs_put_perag(mp
, pag
);
753 __xfs_inode_clear_reclaim_tag(
758 radix_tree_tag_clear(&pag
->pag_ici_root
,
759 XFS_INO_TO_AGINO(mp
, ip
->i_ino
), XFS_ICI_RECLAIM_TAG
);
763 xfs_reclaim_inode_now(
764 struct xfs_inode
*ip
,
765 struct xfs_perag
*pag
,
768 /* ignore if already under reclaim */
769 if (xfs_iflags_test(ip
, XFS_IRECLAIM
)) {
770 read_unlock(&pag
->pag_ici_lock
);
773 read_unlock(&pag
->pag_ici_lock
);
775 return xfs_reclaim_inode(ip
, flags
);
783 return xfs_inode_ag_iterator(mp
, xfs_reclaim_inode_now
, mode
,
784 XFS_ICI_RECLAIM_TAG
);