[ARM] pxa: use resource_size() in pwm.c
[zen-stable.git] / fs / xfs / linux-2.6 / xfs_sync.c
blob6fed97a8cd3e29ef46791c24ebecf16b6ef5ba11
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_dir2.h"
28 #include "xfs_dmapi.h"
29 #include "xfs_mount.h"
30 #include "xfs_bmap_btree.h"
31 #include "xfs_alloc_btree.h"
32 #include "xfs_ialloc_btree.h"
33 #include "xfs_btree.h"
34 #include "xfs_dir2_sf.h"
35 #include "xfs_attr_sf.h"
36 #include "xfs_inode.h"
37 #include "xfs_dinode.h"
38 #include "xfs_error.h"
39 #include "xfs_mru_cache.h"
40 #include "xfs_filestream.h"
41 #include "xfs_vnodeops.h"
42 #include "xfs_utils.h"
43 #include "xfs_buf_item.h"
44 #include "xfs_inode_item.h"
45 #include "xfs_rw.h"
46 #include "xfs_quota.h"
47 #include "xfs_trace.h"
49 #include <linux/kthread.h>
50 #include <linux/freezer.h>
53 STATIC xfs_inode_t *
54 xfs_inode_ag_lookup(
55 struct xfs_mount *mp,
56 struct xfs_perag *pag,
57 uint32_t *first_index,
58 int tag)
60 int nr_found;
61 struct xfs_inode *ip;
64 * use a gang lookup to find the next inode in the tree
65 * as the tree is sparse and a gang lookup walks to find
66 * the number of objects requested.
68 read_lock(&pag->pag_ici_lock);
69 if (tag == XFS_ICI_NO_TAG) {
70 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
71 (void **)&ip, *first_index, 1);
72 } else {
73 nr_found = radix_tree_gang_lookup_tag(&pag->pag_ici_root,
74 (void **)&ip, *first_index, 1, tag);
76 if (!nr_found)
77 goto unlock;
80 * Update the index for the next lookup. Catch overflows
81 * into the next AG range which can occur if we have inodes
82 * in the last block of the AG and we are currently
83 * pointing to the last inode.
85 *first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
86 if (*first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
87 goto unlock;
89 return ip;
91 unlock:
92 read_unlock(&pag->pag_ici_lock);
93 return NULL;
96 STATIC int
97 xfs_inode_ag_walk(
98 struct xfs_mount *mp,
99 xfs_agnumber_t ag,
100 int (*execute)(struct xfs_inode *ip,
101 struct xfs_perag *pag, int flags),
102 int flags,
103 int tag)
105 struct xfs_perag *pag = &mp->m_perag[ag];
106 uint32_t first_index;
107 int last_error = 0;
108 int skipped;
110 restart:
111 skipped = 0;
112 first_index = 0;
113 do {
114 int error = 0;
115 xfs_inode_t *ip;
117 ip = xfs_inode_ag_lookup(mp, pag, &first_index, tag);
118 if (!ip)
119 break;
121 error = execute(ip, pag, flags);
122 if (error == EAGAIN) {
123 skipped++;
124 continue;
126 if (error)
127 last_error = error;
129 * bail out if the filesystem is corrupted.
131 if (error == EFSCORRUPTED)
132 break;
134 } while (1);
136 if (skipped) {
137 delay(1);
138 goto restart;
141 xfs_put_perag(mp, pag);
142 return last_error;
146 xfs_inode_ag_iterator(
147 struct xfs_mount *mp,
148 int (*execute)(struct xfs_inode *ip,
149 struct xfs_perag *pag, int flags),
150 int flags,
151 int tag)
153 int error = 0;
154 int last_error = 0;
155 xfs_agnumber_t ag;
157 for (ag = 0; ag < mp->m_sb.sb_agcount; ag++) {
158 if (!mp->m_perag[ag].pag_ici_init)
159 continue;
160 error = xfs_inode_ag_walk(mp, ag, execute, flags, tag);
161 if (error) {
162 last_error = error;
163 if (error == EFSCORRUPTED)
164 break;
167 return XFS_ERROR(last_error);
170 /* must be called with pag_ici_lock held and releases it */
172 xfs_sync_inode_valid(
173 struct xfs_inode *ip,
174 struct xfs_perag *pag)
176 struct inode *inode = VFS_I(ip);
178 /* nothing to sync during shutdown */
179 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
180 read_unlock(&pag->pag_ici_lock);
181 return EFSCORRUPTED;
185 * If we can't get a reference on the inode, it must be in reclaim.
186 * Leave it for the reclaim code to flush. Also avoid inodes that
187 * haven't been fully initialised.
189 if (!igrab(inode)) {
190 read_unlock(&pag->pag_ici_lock);
191 return ENOENT;
193 read_unlock(&pag->pag_ici_lock);
195 if (is_bad_inode(inode) || xfs_iflags_test(ip, XFS_INEW)) {
196 IRELE(ip);
197 return ENOENT;
200 return 0;
203 STATIC int
204 xfs_sync_inode_data(
205 struct xfs_inode *ip,
206 struct xfs_perag *pag,
207 int flags)
209 struct inode *inode = VFS_I(ip);
210 struct address_space *mapping = inode->i_mapping;
211 int error = 0;
213 error = xfs_sync_inode_valid(ip, pag);
214 if (error)
215 return error;
217 if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
218 goto out_wait;
220 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED)) {
221 if (flags & SYNC_TRYLOCK)
222 goto out_wait;
223 xfs_ilock(ip, XFS_IOLOCK_SHARED);
226 error = xfs_flush_pages(ip, 0, -1, (flags & SYNC_WAIT) ?
227 0 : XFS_B_ASYNC, FI_NONE);
228 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
230 out_wait:
231 if (flags & SYNC_WAIT)
232 xfs_ioend_wait(ip);
233 IRELE(ip);
234 return error;
237 STATIC int
238 xfs_sync_inode_attr(
239 struct xfs_inode *ip,
240 struct xfs_perag *pag,
241 int flags)
243 int error = 0;
245 error = xfs_sync_inode_valid(ip, pag);
246 if (error)
247 return error;
249 xfs_ilock(ip, XFS_ILOCK_SHARED);
250 if (xfs_inode_clean(ip))
251 goto out_unlock;
252 if (!xfs_iflock_nowait(ip)) {
253 if (!(flags & SYNC_WAIT))
254 goto out_unlock;
255 xfs_iflock(ip);
258 if (xfs_inode_clean(ip)) {
259 xfs_ifunlock(ip);
260 goto out_unlock;
263 error = xfs_iflush(ip, (flags & SYNC_WAIT) ?
264 XFS_IFLUSH_SYNC : XFS_IFLUSH_DELWRI);
266 out_unlock:
267 xfs_iunlock(ip, XFS_ILOCK_SHARED);
268 IRELE(ip);
269 return error;
273 * Write out pagecache data for the whole filesystem.
276 xfs_sync_data(
277 struct xfs_mount *mp,
278 int flags)
280 int error;
282 ASSERT((flags & ~(SYNC_TRYLOCK|SYNC_WAIT)) == 0);
284 error = xfs_inode_ag_iterator(mp, xfs_sync_inode_data, flags,
285 XFS_ICI_NO_TAG);
286 if (error)
287 return XFS_ERROR(error);
289 xfs_log_force(mp, 0,
290 (flags & SYNC_WAIT) ?
291 XFS_LOG_FORCE | XFS_LOG_SYNC :
292 XFS_LOG_FORCE);
293 return 0;
297 * Write out inode metadata (attributes) for the whole filesystem.
300 xfs_sync_attr(
301 struct xfs_mount *mp,
302 int flags)
304 ASSERT((flags & ~SYNC_WAIT) == 0);
306 return xfs_inode_ag_iterator(mp, xfs_sync_inode_attr, flags,
307 XFS_ICI_NO_TAG);
310 STATIC int
311 xfs_commit_dummy_trans(
312 struct xfs_mount *mp,
313 uint flags)
315 struct xfs_inode *ip = mp->m_rootip;
316 struct xfs_trans *tp;
317 int error;
318 int log_flags = XFS_LOG_FORCE;
320 if (flags & SYNC_WAIT)
321 log_flags |= XFS_LOG_SYNC;
324 * Put a dummy transaction in the log to tell recovery
325 * that all others are OK.
327 tp = xfs_trans_alloc(mp, XFS_TRANS_DUMMY1);
328 error = xfs_trans_reserve(tp, 0, XFS_ICHANGE_LOG_RES(mp), 0, 0, 0);
329 if (error) {
330 xfs_trans_cancel(tp, 0);
331 return error;
334 xfs_ilock(ip, XFS_ILOCK_EXCL);
336 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
337 xfs_trans_ihold(tp, ip);
338 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
339 error = xfs_trans_commit(tp, 0);
340 xfs_iunlock(ip, XFS_ILOCK_EXCL);
342 /* the log force ensures this transaction is pushed to disk */
343 xfs_log_force(mp, 0, log_flags);
344 return error;
348 xfs_sync_fsdata(
349 struct xfs_mount *mp,
350 int flags)
352 struct xfs_buf *bp;
353 struct xfs_buf_log_item *bip;
354 int error = 0;
357 * If this is xfssyncd() then only sync the superblock if we can
358 * lock it without sleeping and it is not pinned.
360 if (flags & SYNC_TRYLOCK) {
361 ASSERT(!(flags & SYNC_WAIT));
363 bp = xfs_getsb(mp, XFS_BUF_TRYLOCK);
364 if (!bp)
365 goto out;
367 bip = XFS_BUF_FSPRIVATE(bp, struct xfs_buf_log_item *);
368 if (!bip || !xfs_buf_item_dirty(bip) || XFS_BUF_ISPINNED(bp))
369 goto out_brelse;
370 } else {
371 bp = xfs_getsb(mp, 0);
374 * If the buffer is pinned then push on the log so we won't
375 * get stuck waiting in the write for someone, maybe
376 * ourselves, to flush the log.
378 * Even though we just pushed the log above, we did not have
379 * the superblock buffer locked at that point so it can
380 * become pinned in between there and here.
382 if (XFS_BUF_ISPINNED(bp))
383 xfs_log_force(mp, 0, XFS_LOG_FORCE);
387 if (flags & SYNC_WAIT)
388 XFS_BUF_UNASYNC(bp);
389 else
390 XFS_BUF_ASYNC(bp);
392 error = xfs_bwrite(mp, bp);
393 if (error)
394 return error;
397 * If this is a data integrity sync make sure all pending buffers
398 * are flushed out for the log coverage check below.
400 if (flags & SYNC_WAIT)
401 xfs_flush_buftarg(mp->m_ddev_targp, 1);
403 if (xfs_log_need_covered(mp))
404 error = xfs_commit_dummy_trans(mp, flags);
405 return error;
407 out_brelse:
408 xfs_buf_relse(bp);
409 out:
410 return error;
414 * When remounting a filesystem read-only or freezing the filesystem, we have
415 * two phases to execute. This first phase is syncing the data before we
416 * quiesce the filesystem, and the second is flushing all the inodes out after
417 * we've waited for all the transactions created by the first phase to
418 * complete. The second phase ensures that the inodes are written to their
419 * location on disk rather than just existing in transactions in the log. This
420 * means after a quiesce there is no log replay required to write the inodes to
421 * disk (this is the main difference between a sync and a quiesce).
424 * First stage of freeze - no writers will make progress now we are here,
425 * so we flush delwri and delalloc buffers here, then wait for all I/O to
426 * complete. Data is frozen at that point. Metadata is not frozen,
427 * transactions can still occur here so don't bother flushing the buftarg
428 * because it'll just get dirty again.
431 xfs_quiesce_data(
432 struct xfs_mount *mp)
434 int error;
436 /* push non-blocking */
437 xfs_sync_data(mp, 0);
438 xfs_qm_sync(mp, SYNC_TRYLOCK);
440 /* push and block till complete */
441 xfs_sync_data(mp, SYNC_WAIT);
442 xfs_qm_sync(mp, SYNC_WAIT);
444 /* drop inode references pinned by filestreams */
445 xfs_filestream_flush(mp);
447 /* write superblock and hoover up shutdown errors */
448 error = xfs_sync_fsdata(mp, SYNC_WAIT);
450 /* flush data-only devices */
451 if (mp->m_rtdev_targp)
452 XFS_bflush(mp->m_rtdev_targp);
454 return error;
457 STATIC void
458 xfs_quiesce_fs(
459 struct xfs_mount *mp)
461 int count = 0, pincount;
463 xfs_flush_buftarg(mp->m_ddev_targp, 0);
464 xfs_reclaim_inodes(mp, XFS_IFLUSH_DELWRI_ELSE_ASYNC);
467 * This loop must run at least twice. The first instance of the loop
468 * will flush most meta data but that will generate more meta data
469 * (typically directory updates). Which then must be flushed and
470 * logged before we can write the unmount record.
472 do {
473 xfs_sync_attr(mp, SYNC_WAIT);
474 pincount = xfs_flush_buftarg(mp->m_ddev_targp, 1);
475 if (!pincount) {
476 delay(50);
477 count++;
479 } while (count < 2);
483 * Second stage of a quiesce. The data is already synced, now we have to take
484 * care of the metadata. New transactions are already blocked, so we need to
485 * wait for any remaining transactions to drain out before proceding.
487 void
488 xfs_quiesce_attr(
489 struct xfs_mount *mp)
491 int error = 0;
493 /* wait for all modifications to complete */
494 while (atomic_read(&mp->m_active_trans) > 0)
495 delay(100);
497 /* flush inodes and push all remaining buffers out to disk */
498 xfs_quiesce_fs(mp);
501 * Just warn here till VFS can correctly support
502 * read-only remount without racing.
504 WARN_ON(atomic_read(&mp->m_active_trans) != 0);
506 /* Push the superblock and write an unmount record */
507 error = xfs_log_sbcount(mp, 1);
508 if (error)
509 xfs_fs_cmn_err(CE_WARN, mp,
510 "xfs_attr_quiesce: failed to log sb changes. "
511 "Frozen image may not be consistent.");
512 xfs_log_unmount_write(mp);
513 xfs_unmountfs_writesb(mp);
517 * Enqueue a work item to be picked up by the vfs xfssyncd thread.
518 * Doing this has two advantages:
519 * - It saves on stack space, which is tight in certain situations
520 * - It can be used (with care) as a mechanism to avoid deadlocks.
521 * Flushing while allocating in a full filesystem requires both.
523 STATIC void
524 xfs_syncd_queue_work(
525 struct xfs_mount *mp,
526 void *data,
527 void (*syncer)(struct xfs_mount *, void *),
528 struct completion *completion)
530 struct xfs_sync_work *work;
532 work = kmem_alloc(sizeof(struct xfs_sync_work), KM_SLEEP);
533 INIT_LIST_HEAD(&work->w_list);
534 work->w_syncer = syncer;
535 work->w_data = data;
536 work->w_mount = mp;
537 work->w_completion = completion;
538 spin_lock(&mp->m_sync_lock);
539 list_add_tail(&work->w_list, &mp->m_sync_list);
540 spin_unlock(&mp->m_sync_lock);
541 wake_up_process(mp->m_sync_task);
545 * Flush delayed allocate data, attempting to free up reserved space
546 * from existing allocations. At this point a new allocation attempt
547 * has failed with ENOSPC and we are in the process of scratching our
548 * heads, looking about for more room...
550 STATIC void
551 xfs_flush_inodes_work(
552 struct xfs_mount *mp,
553 void *arg)
555 struct inode *inode = arg;
556 xfs_sync_data(mp, SYNC_TRYLOCK);
557 xfs_sync_data(mp, SYNC_TRYLOCK | SYNC_WAIT);
558 iput(inode);
561 void
562 xfs_flush_inodes(
563 xfs_inode_t *ip)
565 struct inode *inode = VFS_I(ip);
566 DECLARE_COMPLETION_ONSTACK(completion);
568 igrab(inode);
569 xfs_syncd_queue_work(ip->i_mount, inode, xfs_flush_inodes_work, &completion);
570 wait_for_completion(&completion);
571 xfs_log_force(ip->i_mount, (xfs_lsn_t)0, XFS_LOG_FORCE|XFS_LOG_SYNC);
575 * Every sync period we need to unpin all items, reclaim inodes, sync
576 * quota and write out the superblock. We might need to cover the log
577 * to indicate it is idle.
579 STATIC void
580 xfs_sync_worker(
581 struct xfs_mount *mp,
582 void *unused)
584 int error;
586 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
587 xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE);
588 xfs_reclaim_inodes(mp, XFS_IFLUSH_DELWRI_ELSE_ASYNC);
589 /* dgc: errors ignored here */
590 error = xfs_qm_sync(mp, SYNC_TRYLOCK);
591 error = xfs_sync_fsdata(mp, SYNC_TRYLOCK);
593 mp->m_sync_seq++;
594 wake_up(&mp->m_wait_single_sync_task);
597 STATIC int
598 xfssyncd(
599 void *arg)
601 struct xfs_mount *mp = arg;
602 long timeleft;
603 xfs_sync_work_t *work, *n;
604 LIST_HEAD (tmp);
606 set_freezable();
607 timeleft = xfs_syncd_centisecs * msecs_to_jiffies(10);
608 for (;;) {
609 timeleft = schedule_timeout_interruptible(timeleft);
610 /* swsusp */
611 try_to_freeze();
612 if (kthread_should_stop() && list_empty(&mp->m_sync_list))
613 break;
615 spin_lock(&mp->m_sync_lock);
617 * We can get woken by laptop mode, to do a sync -
618 * that's the (only!) case where the list would be
619 * empty with time remaining.
621 if (!timeleft || list_empty(&mp->m_sync_list)) {
622 if (!timeleft)
623 timeleft = xfs_syncd_centisecs *
624 msecs_to_jiffies(10);
625 INIT_LIST_HEAD(&mp->m_sync_work.w_list);
626 list_add_tail(&mp->m_sync_work.w_list,
627 &mp->m_sync_list);
629 list_for_each_entry_safe(work, n, &mp->m_sync_list, w_list)
630 list_move(&work->w_list, &tmp);
631 spin_unlock(&mp->m_sync_lock);
633 list_for_each_entry_safe(work, n, &tmp, w_list) {
634 (*work->w_syncer)(mp, work->w_data);
635 list_del(&work->w_list);
636 if (work == &mp->m_sync_work)
637 continue;
638 if (work->w_completion)
639 complete(work->w_completion);
640 kmem_free(work);
644 return 0;
648 xfs_syncd_init(
649 struct xfs_mount *mp)
651 mp->m_sync_work.w_syncer = xfs_sync_worker;
652 mp->m_sync_work.w_mount = mp;
653 mp->m_sync_work.w_completion = NULL;
654 mp->m_sync_task = kthread_run(xfssyncd, mp, "xfssyncd");
655 if (IS_ERR(mp->m_sync_task))
656 return -PTR_ERR(mp->m_sync_task);
657 return 0;
660 void
661 xfs_syncd_stop(
662 struct xfs_mount *mp)
664 kthread_stop(mp->m_sync_task);
667 STATIC int
668 xfs_reclaim_inode(
669 xfs_inode_t *ip,
670 int sync_mode)
672 xfs_perag_t *pag = xfs_get_perag(ip->i_mount, ip->i_ino);
674 /* The hash lock here protects a thread in xfs_iget_core from
675 * racing with us on linking the inode back with a vnode.
676 * Once we have the XFS_IRECLAIM flag set it will not touch
677 * us.
679 write_lock(&pag->pag_ici_lock);
680 spin_lock(&ip->i_flags_lock);
681 if (__xfs_iflags_test(ip, XFS_IRECLAIM) ||
682 !__xfs_iflags_test(ip, XFS_IRECLAIMABLE)) {
683 spin_unlock(&ip->i_flags_lock);
684 write_unlock(&pag->pag_ici_lock);
685 return -EAGAIN;
687 __xfs_iflags_set(ip, XFS_IRECLAIM);
688 spin_unlock(&ip->i_flags_lock);
689 write_unlock(&pag->pag_ici_lock);
690 xfs_put_perag(ip->i_mount, pag);
693 * If the inode is still dirty, then flush it out. If the inode
694 * is not in the AIL, then it will be OK to flush it delwri as
695 * long as xfs_iflush() does not keep any references to the inode.
696 * We leave that decision up to xfs_iflush() since it has the
697 * knowledge of whether it's OK to simply do a delwri flush of
698 * the inode or whether we need to wait until the inode is
699 * pulled from the AIL.
700 * We get the flush lock regardless, though, just to make sure
701 * we don't free it while it is being flushed.
703 xfs_ilock(ip, XFS_ILOCK_EXCL);
704 xfs_iflock(ip);
707 * In the case of a forced shutdown we rely on xfs_iflush() to
708 * wait for the inode to be unpinned before returning an error.
710 if (!is_bad_inode(VFS_I(ip)) && xfs_iflush(ip, sync_mode) == 0) {
711 /* synchronize with xfs_iflush_done */
712 xfs_iflock(ip);
713 xfs_ifunlock(ip);
716 xfs_iunlock(ip, XFS_ILOCK_EXCL);
717 xfs_ireclaim(ip);
718 return 0;
721 void
722 __xfs_inode_set_reclaim_tag(
723 struct xfs_perag *pag,
724 struct xfs_inode *ip)
726 radix_tree_tag_set(&pag->pag_ici_root,
727 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino),
728 XFS_ICI_RECLAIM_TAG);
732 * We set the inode flag atomically with the radix tree tag.
733 * Once we get tag lookups on the radix tree, this inode flag
734 * can go away.
736 void
737 xfs_inode_set_reclaim_tag(
738 xfs_inode_t *ip)
740 xfs_mount_t *mp = ip->i_mount;
741 xfs_perag_t *pag = xfs_get_perag(mp, ip->i_ino);
743 read_lock(&pag->pag_ici_lock);
744 spin_lock(&ip->i_flags_lock);
745 __xfs_inode_set_reclaim_tag(pag, ip);
746 __xfs_iflags_set(ip, XFS_IRECLAIMABLE);
747 spin_unlock(&ip->i_flags_lock);
748 read_unlock(&pag->pag_ici_lock);
749 xfs_put_perag(mp, pag);
752 void
753 __xfs_inode_clear_reclaim_tag(
754 xfs_mount_t *mp,
755 xfs_perag_t *pag,
756 xfs_inode_t *ip)
758 radix_tree_tag_clear(&pag->pag_ici_root,
759 XFS_INO_TO_AGINO(mp, ip->i_ino), XFS_ICI_RECLAIM_TAG);
762 STATIC int
763 xfs_reclaim_inode_now(
764 struct xfs_inode *ip,
765 struct xfs_perag *pag,
766 int flags)
768 /* ignore if already under reclaim */
769 if (xfs_iflags_test(ip, XFS_IRECLAIM)) {
770 read_unlock(&pag->pag_ici_lock);
771 return 0;
773 read_unlock(&pag->pag_ici_lock);
775 return xfs_reclaim_inode(ip, flags);
779 xfs_reclaim_inodes(
780 xfs_mount_t *mp,
781 int mode)
783 return xfs_inode_ag_iterator(mp, xfs_reclaim_inode_now, mode,
784 XFS_ICI_RECLAIM_TAG);