1 /* Intel Sandy Bridge -EN/-EP/-EX Memory Controller kernel module
3 * This driver supports the memory controllers found on the Intel
4 * processor family Sandy Bridge.
6 * This file may be distributed under the terms of the
7 * GNU General Public License version 2 only.
9 * Copyright (c) 2011 by:
10 * Mauro Carvalho Chehab <mchehab@redhat.com>
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/pci.h>
16 #include <linux/pci_ids.h>
17 #include <linux/slab.h>
18 #include <linux/delay.h>
19 #include <linux/edac.h>
20 #include <linux/mmzone.h>
21 #include <linux/smp.h>
22 #include <linux/bitmap.h>
23 #include <asm/processor.h>
26 #include "edac_core.h"
29 static LIST_HEAD(sbridge_edac_list
);
30 static DEFINE_MUTEX(sbridge_edac_lock
);
34 * Alter this version for the module when modifications are made
36 #define SBRIDGE_REVISION " Ver: 1.0.0 "
37 #define EDAC_MOD_STR "sbridge_edac"
42 #define sbridge_printk(level, fmt, arg...) \
43 edac_printk(level, "sbridge", fmt, ##arg)
45 #define sbridge_mc_printk(mci, level, fmt, arg...) \
46 edac_mc_chipset_printk(mci, level, "sbridge", fmt, ##arg)
49 * Get a bit field at register value <v>, from bit <lo> to bit <hi>
51 #define GET_BITFIELD(v, lo, hi) \
52 (((v) & ((1ULL << ((hi) - (lo) + 1)) - 1) << (lo)) >> (lo))
55 * sbridge Memory Controller Registers
59 * FIXME: For now, let's order by device function, as it makes
60 * easier for driver's development proccess. This table should be
61 * moved to pci_id.h when submitted upstream
63 #define PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0 0x3cf4 /* 12.6 */
64 #define PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1 0x3cf6 /* 12.7 */
65 #define PCI_DEVICE_ID_INTEL_SBRIDGE_BR 0x3cf5 /* 13.6 */
66 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0 0x3ca0 /* 14.0 */
67 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA 0x3ca8 /* 15.0 */
68 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS 0x3c71 /* 15.1 */
69 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0 0x3caa /* 15.2 */
70 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1 0x3cab /* 15.3 */
71 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2 0x3cac /* 15.4 */
72 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3 0x3cad /* 15.5 */
73 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO 0x3cb8 /* 17.0 */
76 * Currently, unused, but will be needed in the future
77 * implementations, as they hold the error counters
79 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR0 0x3c72 /* 16.2 */
80 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR1 0x3c73 /* 16.3 */
81 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR2 0x3c76 /* 16.6 */
82 #define PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_ERR3 0x3c77 /* 16.7 */
84 /* Devices 12 Function 6, Offsets 0x80 to 0xcc */
85 static const u32 dram_rule
[] = {
86 0x80, 0x88, 0x90, 0x98, 0xa0,
87 0xa8, 0xb0, 0xb8, 0xc0, 0xc8,
89 #define MAX_SAD ARRAY_SIZE(dram_rule)
91 #define SAD_LIMIT(reg) ((GET_BITFIELD(reg, 6, 25) << 26) | 0x3ffffff)
92 #define DRAM_ATTR(reg) GET_BITFIELD(reg, 2, 3)
93 #define INTERLEAVE_MODE(reg) GET_BITFIELD(reg, 1, 1)
94 #define DRAM_RULE_ENABLE(reg) GET_BITFIELD(reg, 0, 0)
96 static char *get_dram_attr(u32 reg
)
98 switch(DRAM_ATTR(reg
)) {
110 static const u32 interleave_list
[] = {
111 0x84, 0x8c, 0x94, 0x9c, 0xa4,
112 0xac, 0xb4, 0xbc, 0xc4, 0xcc,
114 #define MAX_INTERLEAVE ARRAY_SIZE(interleave_list)
116 #define SAD_PKG0(reg) GET_BITFIELD(reg, 0, 2)
117 #define SAD_PKG1(reg) GET_BITFIELD(reg, 3, 5)
118 #define SAD_PKG2(reg) GET_BITFIELD(reg, 8, 10)
119 #define SAD_PKG3(reg) GET_BITFIELD(reg, 11, 13)
120 #define SAD_PKG4(reg) GET_BITFIELD(reg, 16, 18)
121 #define SAD_PKG5(reg) GET_BITFIELD(reg, 19, 21)
122 #define SAD_PKG6(reg) GET_BITFIELD(reg, 24, 26)
123 #define SAD_PKG7(reg) GET_BITFIELD(reg, 27, 29)
125 static inline int sad_pkg(u32 reg
, int interleave
)
127 switch (interleave
) {
129 return SAD_PKG0(reg
);
131 return SAD_PKG1(reg
);
133 return SAD_PKG2(reg
);
135 return SAD_PKG3(reg
);
137 return SAD_PKG4(reg
);
139 return SAD_PKG5(reg
);
141 return SAD_PKG6(reg
);
143 return SAD_PKG7(reg
);
149 /* Devices 12 Function 7 */
154 #define GET_TOLM(reg) ((GET_BITFIELD(reg, 0, 3) << 28) | 0x3ffffff)
155 #define GET_TOHM(reg) ((GET_BITFIELD(reg, 0, 20) << 25) | 0x3ffffff)
157 /* Device 13 Function 6 */
159 #define SAD_TARGET 0xf0
161 #define SOURCE_ID(reg) GET_BITFIELD(reg, 9, 11)
163 #define SAD_CONTROL 0xf4
165 #define NODE_ID(reg) GET_BITFIELD(reg, 0, 2)
167 /* Device 14 function 0 */
169 static const u32 tad_dram_rule
[] = {
170 0x40, 0x44, 0x48, 0x4c,
171 0x50, 0x54, 0x58, 0x5c,
172 0x60, 0x64, 0x68, 0x6c,
174 #define MAX_TAD ARRAY_SIZE(tad_dram_rule)
176 #define TAD_LIMIT(reg) ((GET_BITFIELD(reg, 12, 31) << 26) | 0x3ffffff)
177 #define TAD_SOCK(reg) GET_BITFIELD(reg, 10, 11)
178 #define TAD_CH(reg) GET_BITFIELD(reg, 8, 9)
179 #define TAD_TGT3(reg) GET_BITFIELD(reg, 6, 7)
180 #define TAD_TGT2(reg) GET_BITFIELD(reg, 4, 5)
181 #define TAD_TGT1(reg) GET_BITFIELD(reg, 2, 3)
182 #define TAD_TGT0(reg) GET_BITFIELD(reg, 0, 1)
184 /* Device 15, function 0 */
188 #define IS_ECC_ENABLED(mcmtr) GET_BITFIELD(mcmtr, 2, 2)
189 #define IS_LOCKSTEP_ENABLED(mcmtr) GET_BITFIELD(mcmtr, 1, 1)
190 #define IS_CLOSE_PG(mcmtr) GET_BITFIELD(mcmtr, 0, 0)
192 /* Device 15, function 1 */
194 #define RASENABLES 0xac
195 #define IS_MIRROR_ENABLED(reg) GET_BITFIELD(reg, 0, 0)
197 /* Device 15, functions 2-5 */
199 static const int mtr_regs
[] = {
203 #define RANK_DISABLE(mtr) GET_BITFIELD(mtr, 16, 19)
204 #define IS_DIMM_PRESENT(mtr) GET_BITFIELD(mtr, 14, 14)
205 #define RANK_CNT_BITS(mtr) GET_BITFIELD(mtr, 12, 13)
206 #define RANK_WIDTH_BITS(mtr) GET_BITFIELD(mtr, 2, 4)
207 #define COL_WIDTH_BITS(mtr) GET_BITFIELD(mtr, 0, 1)
209 static const u32 tad_ch_nilv_offset
[] = {
210 0x90, 0x94, 0x98, 0x9c,
211 0xa0, 0xa4, 0xa8, 0xac,
212 0xb0, 0xb4, 0xb8, 0xbc,
214 #define CHN_IDX_OFFSET(reg) GET_BITFIELD(reg, 28, 29)
215 #define TAD_OFFSET(reg) (GET_BITFIELD(reg, 6, 25) << 26)
217 static const u32 rir_way_limit
[] = {
218 0x108, 0x10c, 0x110, 0x114, 0x118,
220 #define MAX_RIR_RANGES ARRAY_SIZE(rir_way_limit)
222 #define IS_RIR_VALID(reg) GET_BITFIELD(reg, 31, 31)
223 #define RIR_WAY(reg) GET_BITFIELD(reg, 28, 29)
224 #define RIR_LIMIT(reg) ((GET_BITFIELD(reg, 1, 10) << 29)| 0x1fffffff)
226 #define MAX_RIR_WAY 8
228 static const u32 rir_offset
[MAX_RIR_RANGES
][MAX_RIR_WAY
] = {
229 { 0x120, 0x124, 0x128, 0x12c, 0x130, 0x134, 0x138, 0x13c },
230 { 0x140, 0x144, 0x148, 0x14c, 0x150, 0x154, 0x158, 0x15c },
231 { 0x160, 0x164, 0x168, 0x16c, 0x170, 0x174, 0x178, 0x17c },
232 { 0x180, 0x184, 0x188, 0x18c, 0x190, 0x194, 0x198, 0x19c },
233 { 0x1a0, 0x1a4, 0x1a8, 0x1ac, 0x1b0, 0x1b4, 0x1b8, 0x1bc },
236 #define RIR_RNK_TGT(reg) GET_BITFIELD(reg, 16, 19)
237 #define RIR_OFFSET(reg) GET_BITFIELD(reg, 2, 14)
239 /* Device 16, functions 2-7 */
242 * FIXME: Implement the error count reads directly
245 static const u32 correrrcnt
[] = {
246 0x104, 0x108, 0x10c, 0x110,
249 #define RANK_ODD_OV(reg) GET_BITFIELD(reg, 31, 31)
250 #define RANK_ODD_ERR_CNT(reg) GET_BITFIELD(reg, 16, 30)
251 #define RANK_EVEN_OV(reg) GET_BITFIELD(reg, 15, 15)
252 #define RANK_EVEN_ERR_CNT(reg) GET_BITFIELD(reg, 0, 14)
254 static const u32 correrrthrsld
[] = {
255 0x11c, 0x120, 0x124, 0x128,
258 #define RANK_ODD_ERR_THRSLD(reg) GET_BITFIELD(reg, 16, 30)
259 #define RANK_EVEN_ERR_THRSLD(reg) GET_BITFIELD(reg, 0, 14)
262 /* Device 17, function 0 */
264 #define RANK_CFG_A 0x0328
266 #define IS_RDIMM_ENABLED(reg) GET_BITFIELD(reg, 11, 11)
272 #define NUM_CHANNELS 4
273 #define MAX_DIMMS 3 /* Max DIMMS per channel */
275 struct sbridge_info
{
279 struct sbridge_channel
{
284 struct pci_id_descr
{
291 struct pci_id_table
{
292 const struct pci_id_descr
*descr
;
297 struct list_head list
;
299 u8 node_id
, source_id
;
300 struct pci_dev
**pdev
;
302 struct mem_ctl_info
*mci
;
306 struct pci_dev
*pci_ta
, *pci_ddrio
, *pci_ras
;
307 struct pci_dev
*pci_sad0
, *pci_sad1
, *pci_ha0
;
308 struct pci_dev
*pci_br
;
309 struct pci_dev
*pci_tad
[NUM_CHANNELS
];
311 struct sbridge_dev
*sbridge_dev
;
313 struct sbridge_info info
;
314 struct sbridge_channel channel
[NUM_CHANNELS
];
316 int csrow_map
[NUM_CHANNELS
][MAX_DIMMS
];
318 /* Memory type detection */
319 bool is_mirrored
, is_lockstep
, is_close_pg
;
321 /* Fifo double buffers */
322 struct mce mce_entry
[MCE_LOG_LEN
];
323 struct mce mce_outentry
[MCE_LOG_LEN
];
325 /* Fifo in/out counters */
326 unsigned mce_in
, mce_out
;
328 /* Count indicator to show errors not got */
329 unsigned mce_overrun
;
331 /* Memory description */
335 #define PCI_DESCR(device, function, device_id) \
337 .func = (function), \
338 .dev_id = (device_id)
340 static const struct pci_id_descr pci_dev_descr_sbridge
[] = {
341 /* Processor Home Agent */
342 { PCI_DESCR(14, 0, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0
) },
344 /* Memory controller */
345 { PCI_DESCR(15, 0, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA
) },
346 { PCI_DESCR(15, 1, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS
) },
347 { PCI_DESCR(15, 2, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0
) },
348 { PCI_DESCR(15, 3, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1
) },
349 { PCI_DESCR(15, 4, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2
) },
350 { PCI_DESCR(15, 5, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3
) },
351 { PCI_DESCR(17, 0, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO
) },
353 /* System Address Decoder */
354 { PCI_DESCR(12, 6, PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0
) },
355 { PCI_DESCR(12, 7, PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1
) },
357 /* Broadcast Registers */
358 { PCI_DESCR(13, 6, PCI_DEVICE_ID_INTEL_SBRIDGE_BR
) },
361 #define PCI_ID_TABLE_ENTRY(A) { .descr=A, .n_devs = ARRAY_SIZE(A) }
362 static const struct pci_id_table pci_dev_descr_sbridge_table
[] = {
363 PCI_ID_TABLE_ENTRY(pci_dev_descr_sbridge
),
364 {0,} /* 0 terminated list. */
368 * pci_device_id table for which devices we are looking for
370 static const struct pci_device_id sbridge_pci_tbl
[] __devinitdata
= {
371 {PCI_DEVICE(PCI_VENDOR_ID_INTEL
, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA
)},
372 {0,} /* 0 terminated list. */
376 /****************************************************************************
377 Anciliary status routines
378 ****************************************************************************/
380 static inline int numrank(u32 mtr
)
382 int ranks
= (1 << RANK_CNT_BITS(mtr
));
385 debugf0("Invalid number of ranks: %d (max = 4) raw value = %x (%04x)",
386 ranks
, (unsigned int)RANK_CNT_BITS(mtr
), mtr
);
393 static inline int numrow(u32 mtr
)
395 int rows
= (RANK_WIDTH_BITS(mtr
) + 12);
397 if (rows
< 13 || rows
> 18) {
398 debugf0("Invalid number of rows: %d (should be between 14 and 17) raw value = %x (%04x)",
399 rows
, (unsigned int)RANK_WIDTH_BITS(mtr
), mtr
);
406 static inline int numcol(u32 mtr
)
408 int cols
= (COL_WIDTH_BITS(mtr
) + 10);
411 debugf0("Invalid number of cols: %d (max = 4) raw value = %x (%04x)",
412 cols
, (unsigned int)COL_WIDTH_BITS(mtr
), mtr
);
419 static struct sbridge_dev
*get_sbridge_dev(u8 bus
)
421 struct sbridge_dev
*sbridge_dev
;
423 list_for_each_entry(sbridge_dev
, &sbridge_edac_list
, list
) {
424 if (sbridge_dev
->bus
== bus
)
431 static struct sbridge_dev
*alloc_sbridge_dev(u8 bus
,
432 const struct pci_id_table
*table
)
434 struct sbridge_dev
*sbridge_dev
;
436 sbridge_dev
= kzalloc(sizeof(*sbridge_dev
), GFP_KERNEL
);
440 sbridge_dev
->pdev
= kzalloc(sizeof(*sbridge_dev
->pdev
) * table
->n_devs
,
442 if (!sbridge_dev
->pdev
) {
447 sbridge_dev
->bus
= bus
;
448 sbridge_dev
->n_devs
= table
->n_devs
;
449 list_add_tail(&sbridge_dev
->list
, &sbridge_edac_list
);
454 static void free_sbridge_dev(struct sbridge_dev
*sbridge_dev
)
456 list_del(&sbridge_dev
->list
);
457 kfree(sbridge_dev
->pdev
);
461 /****************************************************************************
462 Memory check routines
463 ****************************************************************************/
464 static struct pci_dev
*get_pdev_slot_func(u8 bus
, unsigned slot
,
467 struct sbridge_dev
*sbridge_dev
= get_sbridge_dev(bus
);
473 for (i
= 0; i
< sbridge_dev
->n_devs
; i
++) {
474 if (!sbridge_dev
->pdev
[i
])
477 if (PCI_SLOT(sbridge_dev
->pdev
[i
]->devfn
) == slot
&&
478 PCI_FUNC(sbridge_dev
->pdev
[i
]->devfn
) == func
) {
479 debugf1("Associated %02x.%02x.%d with %p\n",
480 bus
, slot
, func
, sbridge_dev
->pdev
[i
]);
481 return sbridge_dev
->pdev
[i
];
489 * sbridge_get_active_channels() - gets the number of channels and csrows
491 * @channels: Number of channels that will be returned
492 * @csrows: Number of csrows found
494 * Since EDAC core needs to know in advance the number of available channels
495 * and csrows, in order to allocate memory for csrows/channels, it is needed
496 * to run two similar steps. At the first step, implemented on this function,
497 * it checks the number of csrows/channels present at one socket, identified
498 * by the associated PCI bus.
499 * this is used in order to properly allocate the size of mci components.
500 * Note: one csrow is one dimm.
502 static int sbridge_get_active_channels(const u8 bus
, unsigned *channels
,
505 struct pci_dev
*pdev
= NULL
;
512 pdev
= get_pdev_slot_func(bus
, 15, 0);
514 sbridge_printk(KERN_ERR
, "Couldn't find PCI device "
520 pci_read_config_dword(pdev
, MCMTR
, &mcmtr
);
521 if (!IS_ECC_ENABLED(mcmtr
)) {
522 sbridge_printk(KERN_ERR
, "ECC is disabled. Aborting\n");
526 for (i
= 0; i
< NUM_CHANNELS
; i
++) {
529 /* Device 15 functions 2 - 5 */
530 pdev
= get_pdev_slot_func(bus
, 15, 2 + i
);
532 sbridge_printk(KERN_ERR
, "Couldn't find PCI device "
539 for (j
= 0; j
< ARRAY_SIZE(mtr_regs
); j
++) {
540 pci_read_config_dword(pdev
, mtr_regs
[j
], &mtr
);
541 debugf1("Bus#%02x channel #%d MTR%d = %x\n", bus
, i
, j
, mtr
);
542 if (IS_DIMM_PRESENT(mtr
))
547 debugf0("Number of active channels: %d, number of active dimms: %d\n",
553 static int get_dimm_config(const struct mem_ctl_info
*mci
)
555 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
556 struct csrow_info
*csr
;
557 int i
, j
, banks
, ranks
, rows
, cols
, size
, npages
;
559 unsigned long last_page
= 0;
564 pci_read_config_dword(pvt
->pci_br
, SAD_TARGET
, ®
);
565 pvt
->sbridge_dev
->source_id
= SOURCE_ID(reg
);
567 pci_read_config_dword(pvt
->pci_br
, SAD_CONTROL
, ®
);
568 pvt
->sbridge_dev
->node_id
= NODE_ID(reg
);
569 debugf0("mc#%d: Node ID: %d, source ID: %d\n",
570 pvt
->sbridge_dev
->mc
,
571 pvt
->sbridge_dev
->node_id
,
572 pvt
->sbridge_dev
->source_id
);
574 pci_read_config_dword(pvt
->pci_ras
, RASENABLES
, ®
);
575 if (IS_MIRROR_ENABLED(reg
)) {
576 debugf0("Memory mirror is enabled\n");
577 pvt
->is_mirrored
= true;
579 debugf0("Memory mirror is disabled\n");
580 pvt
->is_mirrored
= false;
583 pci_read_config_dword(pvt
->pci_ta
, MCMTR
, &pvt
->info
.mcmtr
);
584 if (IS_LOCKSTEP_ENABLED(pvt
->info
.mcmtr
)) {
585 debugf0("Lockstep is enabled\n");
586 mode
= EDAC_S8ECD8ED
;
587 pvt
->is_lockstep
= true;
589 debugf0("Lockstep is disabled\n");
590 mode
= EDAC_S4ECD4ED
;
591 pvt
->is_lockstep
= false;
593 if (IS_CLOSE_PG(pvt
->info
.mcmtr
)) {
594 debugf0("address map is on closed page mode\n");
595 pvt
->is_close_pg
= true;
597 debugf0("address map is on open page mode\n");
598 pvt
->is_close_pg
= false;
601 pci_read_config_dword(pvt
->pci_ta
, RANK_CFG_A
, ®
);
602 if (IS_RDIMM_ENABLED(reg
)) {
603 /* FIXME: Can also be LRDIMM */
604 debugf0("Memory is registered\n");
607 debugf0("Memory is unregistered\n");
611 /* On all supported DDR3 DIMM types, there are 8 banks available */
614 for (i
= 0; i
< NUM_CHANNELS
; i
++) {
617 for (j
= 0; j
< ARRAY_SIZE(mtr_regs
); j
++) {
618 pci_read_config_dword(pvt
->pci_tad
[i
],
620 debugf4("Channel #%d MTR%d = %x\n", i
, j
, mtr
);
621 if (IS_DIMM_PRESENT(mtr
)) {
622 pvt
->channel
[i
].dimms
++;
624 ranks
= numrank(mtr
);
628 /* DDR3 has 8 I/O banks */
629 size
= (rows
* cols
* banks
* ranks
) >> (20 - 3);
630 npages
= MiB_TO_PAGES(size
);
632 debugf0("mc#%d: channel %d, dimm %d, %d Mb (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n",
633 pvt
->sbridge_dev
->mc
, i
, j
,
635 banks
, ranks
, rows
, cols
);
636 csr
= &mci
->csrows
[csrow
];
638 csr
->first_page
= last_page
;
639 csr
->last_page
= last_page
+ npages
- 1;
640 csr
->page_mask
= 0UL; /* Unused */
641 csr
->nr_pages
= npages
;
643 csr
->csrow_idx
= csrow
;
644 csr
->dtype
= (banks
== 8) ? DEV_X8
: DEV_X4
;
648 csr
->edac_mode
= mode
;
649 csr
->nr_channels
= 1;
650 csr
->channels
[0].chan_idx
= i
;
651 csr
->channels
[0].ce_count
= 0;
652 pvt
->csrow_map
[i
][j
] = csrow
;
653 snprintf(csr
->channels
[0].label
,
654 sizeof(csr
->channels
[0].label
),
655 "CPU_SrcID#%u_Channel#%u_DIMM#%u",
656 pvt
->sbridge_dev
->source_id
, i
, j
);
666 static void get_memory_layout(const struct mem_ctl_info
*mci
)
668 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
669 int i
, j
, k
, n_sads
, n_tads
, sad_interl
;
676 * Step 1) Get TOLM/TOHM ranges
679 /* Address range is 32:28 */
680 pci_read_config_dword(pvt
->pci_sad1
, TOLM
,
682 pvt
->tolm
= GET_TOLM(reg
);
683 tmp_mb
= (1 + pvt
->tolm
) >> 20;
685 debugf0("TOLM: %Lu.%03Lu GB (0x%016Lx)\n",
686 tmp_mb
/ 1000, tmp_mb
% 1000, (u64
)pvt
->tolm
);
688 /* Address range is already 45:25 */
689 pci_read_config_dword(pvt
->pci_sad1
, TOHM
,
691 pvt
->tohm
= GET_TOHM(reg
);
692 tmp_mb
= (1 + pvt
->tohm
) >> 20;
694 debugf0("TOHM: %Lu.%03Lu GB (0x%016Lx)",
695 tmp_mb
/ 1000, tmp_mb
% 1000, (u64
)pvt
->tohm
);
698 * Step 2) Get SAD range and SAD Interleave list
699 * TAD registers contain the interleave wayness. However, it
700 * seems simpler to just discover it indirectly, with the
704 for (n_sads
= 0; n_sads
< MAX_SAD
; n_sads
++) {
705 /* SAD_LIMIT Address range is 45:26 */
706 pci_read_config_dword(pvt
->pci_sad0
, dram_rule
[n_sads
],
708 limit
= SAD_LIMIT(reg
);
710 if (!DRAM_RULE_ENABLE(reg
))
716 tmp_mb
= (limit
+ 1) >> 20;
717 debugf0("SAD#%d %s up to %Lu.%03Lu GB (0x%016Lx) %s reg=0x%08x\n",
720 tmp_mb
/ 1000, tmp_mb
% 1000,
721 ((u64
)tmp_mb
) << 20L,
722 INTERLEAVE_MODE(reg
) ? "Interleave: 8:6" : "Interleave: [8:6]XOR[18:16]",
726 pci_read_config_dword(pvt
->pci_sad0
, interleave_list
[n_sads
],
728 sad_interl
= sad_pkg(reg
, 0);
729 for (j
= 0; j
< 8; j
++) {
730 if (j
> 0 && sad_interl
== sad_pkg(reg
, j
))
733 debugf0("SAD#%d, interleave #%d: %d\n",
734 n_sads
, j
, sad_pkg(reg
, j
));
739 * Step 3) Get TAD range
742 for (n_tads
= 0; n_tads
< MAX_TAD
; n_tads
++) {
743 pci_read_config_dword(pvt
->pci_ha0
, tad_dram_rule
[n_tads
],
745 limit
= TAD_LIMIT(reg
);
748 tmp_mb
= (limit
+ 1) >> 20;
750 debugf0("TAD#%d: up to %Lu.%03Lu GB (0x%016Lx), socket interleave %d, memory interleave %d, TGT: %d, %d, %d, %d, reg=0x%08x\n",
751 n_tads
, tmp_mb
/ 1000, tmp_mb
% 1000,
752 ((u64
)tmp_mb
) << 20L,
764 * Step 4) Get TAD offsets, per each channel
766 for (i
= 0; i
< NUM_CHANNELS
; i
++) {
767 if (!pvt
->channel
[i
].dimms
)
769 for (j
= 0; j
< n_tads
; j
++) {
770 pci_read_config_dword(pvt
->pci_tad
[i
],
771 tad_ch_nilv_offset
[j
],
773 tmp_mb
= TAD_OFFSET(reg
) >> 20;
774 debugf0("TAD CH#%d, offset #%d: %Lu.%03Lu GB (0x%016Lx), reg=0x%08x\n",
776 tmp_mb
/ 1000, tmp_mb
% 1000,
777 ((u64
)tmp_mb
) << 20L,
783 * Step 6) Get RIR Wayness/Limit, per each channel
785 for (i
= 0; i
< NUM_CHANNELS
; i
++) {
786 if (!pvt
->channel
[i
].dimms
)
788 for (j
= 0; j
< MAX_RIR_RANGES
; j
++) {
789 pci_read_config_dword(pvt
->pci_tad
[i
],
793 if (!IS_RIR_VALID(reg
))
796 tmp_mb
= RIR_LIMIT(reg
) >> 20;
797 rir_way
= 1 << RIR_WAY(reg
);
798 debugf0("CH#%d RIR#%d, limit: %Lu.%03Lu GB (0x%016Lx), way: %d, reg=0x%08x\n",
800 tmp_mb
/ 1000, tmp_mb
% 1000,
801 ((u64
)tmp_mb
) << 20L,
805 for (k
= 0; k
< rir_way
; k
++) {
806 pci_read_config_dword(pvt
->pci_tad
[i
],
809 tmp_mb
= RIR_OFFSET(reg
) << 6;
811 debugf0("CH#%d RIR#%d INTL#%d, offset %Lu.%03Lu GB (0x%016Lx), tgt: %d, reg=0x%08x\n",
813 tmp_mb
/ 1000, tmp_mb
% 1000,
814 ((u64
)tmp_mb
) << 20L,
815 (u32
)RIR_RNK_TGT(reg
),
822 struct mem_ctl_info
*get_mci_for_node_id(u8 node_id
)
824 struct sbridge_dev
*sbridge_dev
;
826 list_for_each_entry(sbridge_dev
, &sbridge_edac_list
, list
) {
827 if (sbridge_dev
->node_id
== node_id
)
828 return sbridge_dev
->mci
;
833 static int get_memory_error_data(struct mem_ctl_info
*mci
,
840 struct mem_ctl_info
*new_mci
;
841 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
843 int n_rir
, n_sads
, n_tads
, sad_way
, sck_xch
;
844 int sad_interl
, idx
, base_ch
;
846 unsigned sad_interleave
[MAX_INTERLEAVE
];
851 u64 ch_addr
, offset
, limit
, prv
= 0;
855 * Step 0) Check if the address is at special memory ranges
856 * The check bellow is probably enough to fill all cases where
857 * the error is not inside a memory, except for the legacy
858 * range (e. g. VGA addresses). It is unlikely, however, that the
859 * memory controller would generate an error on that range.
861 if ((addr
> (u64
) pvt
->tolm
) && (addr
< (1L << 32))) {
862 sprintf(msg
, "Error at TOLM area, on addr 0x%08Lx", addr
);
863 edac_mc_handle_ce_no_info(mci
, msg
);
866 if (addr
>= (u64
)pvt
->tohm
) {
867 sprintf(msg
, "Error at MMIOH area, on addr 0x%016Lx", addr
);
868 edac_mc_handle_ce_no_info(mci
, msg
);
875 for (n_sads
= 0; n_sads
< MAX_SAD
; n_sads
++) {
876 pci_read_config_dword(pvt
->pci_sad0
, dram_rule
[n_sads
],
879 if (!DRAM_RULE_ENABLE(reg
))
882 limit
= SAD_LIMIT(reg
);
884 sprintf(msg
, "Can't discover the memory socket");
885 edac_mc_handle_ce_no_info(mci
, msg
);
892 if (n_sads
== MAX_SAD
) {
893 sprintf(msg
, "Can't discover the memory socket");
894 edac_mc_handle_ce_no_info(mci
, msg
);
897 area_type
= get_dram_attr(reg
);
898 interleave_mode
= INTERLEAVE_MODE(reg
);
900 pci_read_config_dword(pvt
->pci_sad0
, interleave_list
[n_sads
],
902 sad_interl
= sad_pkg(reg
, 0);
903 for (sad_way
= 0; sad_way
< 8; sad_way
++) {
904 if (sad_way
> 0 && sad_interl
== sad_pkg(reg
, sad_way
))
906 sad_interleave
[sad_way
] = sad_pkg(reg
, sad_way
);
907 debugf0("SAD interleave #%d: %d\n",
908 sad_way
, sad_interleave
[sad_way
]);
910 debugf0("mc#%d: Error detected on SAD#%d: address 0x%016Lx < 0x%016Lx, Interleave [%d:6]%s\n",
911 pvt
->sbridge_dev
->mc
,
916 INTERLEAVE_MODE(reg
) ? "" : "XOR[18:16]");
918 idx
= ((addr
>> 6) ^ (addr
>> 16)) & 7;
920 idx
= (addr
>> 6) & 7;
934 sprintf(msg
, "Can't discover socket interleave");
935 edac_mc_handle_ce_no_info(mci
, msg
);
938 *socket
= sad_interleave
[idx
];
939 debugf0("SAD interleave index: %d (wayness %d) = CPU socket %d\n",
940 idx
, sad_way
, *socket
);
943 * Move to the proper node structure, in order to access the
944 * right PCI registers
946 new_mci
= get_mci_for_node_id(*socket
);
948 sprintf(msg
, "Struct for socket #%u wasn't initialized",
950 edac_mc_handle_ce_no_info(mci
, msg
);
957 * Step 2) Get memory channel
960 for (n_tads
= 0; n_tads
< MAX_TAD
; n_tads
++) {
961 pci_read_config_dword(pvt
->pci_ha0
, tad_dram_rule
[n_tads
],
963 limit
= TAD_LIMIT(reg
);
965 sprintf(msg
, "Can't discover the memory channel");
966 edac_mc_handle_ce_no_info(mci
, msg
);
973 ch_way
= TAD_CH(reg
) + 1;
974 sck_way
= TAD_SOCK(reg
) + 1;
976 * FIXME: Is it right to always use channel 0 for offsets?
978 pci_read_config_dword(pvt
->pci_tad
[0],
979 tad_ch_nilv_offset
[n_tads
],
985 idx
= addr
>> (6 + sck_way
);
989 * FIXME: Shouldn't we use CHN_IDX_OFFSET() here, when ch_way == 3 ???
993 base_ch
= TAD_TGT0(reg
);
996 base_ch
= TAD_TGT1(reg
);
999 base_ch
= TAD_TGT2(reg
);
1002 base_ch
= TAD_TGT3(reg
);
1005 sprintf(msg
, "Can't discover the TAD target");
1006 edac_mc_handle_ce_no_info(mci
, msg
);
1009 *channel_mask
= 1 << base_ch
;
1011 if (pvt
->is_mirrored
) {
1012 *channel_mask
|= 1 << ((base_ch
+ 2) % 4);
1016 sck_xch
= 1 << sck_way
* (ch_way
>> 1);
1019 sprintf(msg
, "Invalid mirror set. Can't decode addr");
1020 edac_mc_handle_ce_no_info(mci
, msg
);
1024 sck_xch
= (1 << sck_way
) * ch_way
;
1026 if (pvt
->is_lockstep
)
1027 *channel_mask
|= 1 << ((base_ch
+ 1) % 4);
1029 offset
= TAD_OFFSET(tad_offset
);
1031 debugf0("TAD#%d: address 0x%016Lx < 0x%016Lx, socket interleave %d, channel interleave %d (offset 0x%08Lx), index %d, base ch: %d, ch mask: 0x%02lx\n",
1042 /* Calculate channel address */
1043 /* Remove the TAD offset */
1045 if (offset
> addr
) {
1046 sprintf(msg
, "Can't calculate ch addr: TAD offset 0x%08Lx is too high for addr 0x%08Lx!",
1048 edac_mc_handle_ce_no_info(mci
, msg
);
1052 /* Store the low bits [0:6] of the addr */
1053 ch_addr
= addr
& 0x7f;
1054 /* Remove socket wayness and remove 6 bits */
1058 /* Divide by channel way */
1059 addr
= addr
/ ch_way
;
1061 /* Recover the last 6 bits */
1062 ch_addr
|= addr
<< 6;
1065 * Step 3) Decode rank
1067 for (n_rir
= 0; n_rir
< MAX_RIR_RANGES
; n_rir
++) {
1068 pci_read_config_dword(pvt
->pci_tad
[base_ch
],
1069 rir_way_limit
[n_rir
],
1072 if (!IS_RIR_VALID(reg
))
1075 limit
= RIR_LIMIT(reg
);
1077 debugf0("RIR#%d, limit: %Lu.%03Lu GB (0x%016Lx), way: %d\n",
1079 (limit
>> 20) / 1000, (limit
>> 20) % 1000,
1082 if (ch_addr
<= limit
)
1085 if (n_rir
== MAX_RIR_RANGES
) {
1086 sprintf(msg
, "Can't discover the memory rank for ch addr 0x%08Lx",
1088 edac_mc_handle_ce_no_info(mci
, msg
);
1091 rir_way
= RIR_WAY(reg
);
1092 if (pvt
->is_close_pg
)
1093 idx
= (ch_addr
>> 6);
1095 idx
= (ch_addr
>> 13); /* FIXME: Datasheet says to shift by 15 */
1096 idx
%= 1 << rir_way
;
1098 pci_read_config_dword(pvt
->pci_tad
[base_ch
],
1099 rir_offset
[n_rir
][idx
],
1101 *rank
= RIR_RNK_TGT(reg
);
1103 debugf0("RIR#%d: channel address 0x%08Lx < 0x%08Lx, RIR interleave %d, index %d\n",
1113 /****************************************************************************
1114 Device initialization routines: put/get, init/exit
1115 ****************************************************************************/
1118 * sbridge_put_all_devices 'put' all the devices that we have
1119 * reserved via 'get'
1121 static void sbridge_put_devices(struct sbridge_dev
*sbridge_dev
)
1125 debugf0(__FILE__
": %s()\n", __func__
);
1126 for (i
= 0; i
< sbridge_dev
->n_devs
; i
++) {
1127 struct pci_dev
*pdev
= sbridge_dev
->pdev
[i
];
1130 debugf0("Removing dev %02x:%02x.%d\n",
1132 PCI_SLOT(pdev
->devfn
), PCI_FUNC(pdev
->devfn
));
1137 static void sbridge_put_all_devices(void)
1139 struct sbridge_dev
*sbridge_dev
, *tmp
;
1141 list_for_each_entry_safe(sbridge_dev
, tmp
, &sbridge_edac_list
, list
) {
1142 sbridge_put_devices(sbridge_dev
);
1143 free_sbridge_dev(sbridge_dev
);
1148 * sbridge_get_all_devices Find and perform 'get' operation on the MCH's
1149 * device/functions we want to reference for this driver
1151 * Need to 'get' device 16 func 1 and func 2
1153 static int sbridge_get_onedevice(struct pci_dev
**prev
,
1155 const struct pci_id_table
*table
,
1156 const unsigned devno
)
1158 struct sbridge_dev
*sbridge_dev
;
1159 const struct pci_id_descr
*dev_descr
= &table
->descr
[devno
];
1161 struct pci_dev
*pdev
= NULL
;
1164 sbridge_printk(KERN_INFO
,
1165 "Seeking for: dev %02x.%d PCI ID %04x:%04x\n",
1166 dev_descr
->dev
, dev_descr
->func
,
1167 PCI_VENDOR_ID_INTEL
, dev_descr
->dev_id
);
1169 pdev
= pci_get_device(PCI_VENDOR_ID_INTEL
,
1170 dev_descr
->dev_id
, *prev
);
1178 if (dev_descr
->optional
)
1184 sbridge_printk(KERN_INFO
,
1185 "Device not found: dev %02x.%d PCI ID %04x:%04x\n",
1186 dev_descr
->dev
, dev_descr
->func
,
1187 PCI_VENDOR_ID_INTEL
, dev_descr
->dev_id
);
1189 /* End of list, leave */
1192 bus
= pdev
->bus
->number
;
1194 sbridge_dev
= get_sbridge_dev(bus
);
1196 sbridge_dev
= alloc_sbridge_dev(bus
, table
);
1204 if (sbridge_dev
->pdev
[devno
]) {
1205 sbridge_printk(KERN_ERR
,
1206 "Duplicated device for "
1207 "dev %02x:%d.%d PCI ID %04x:%04x\n",
1208 bus
, dev_descr
->dev
, dev_descr
->func
,
1209 PCI_VENDOR_ID_INTEL
, dev_descr
->dev_id
);
1214 sbridge_dev
->pdev
[devno
] = pdev
;
1217 if (unlikely(PCI_SLOT(pdev
->devfn
) != dev_descr
->dev
||
1218 PCI_FUNC(pdev
->devfn
) != dev_descr
->func
)) {
1219 sbridge_printk(KERN_ERR
,
1220 "Device PCI ID %04x:%04x "
1221 "has dev %02x:%d.%d instead of dev %02x:%02x.%d\n",
1222 PCI_VENDOR_ID_INTEL
, dev_descr
->dev_id
,
1223 bus
, PCI_SLOT(pdev
->devfn
), PCI_FUNC(pdev
->devfn
),
1224 bus
, dev_descr
->dev
, dev_descr
->func
);
1228 /* Be sure that the device is enabled */
1229 if (unlikely(pci_enable_device(pdev
) < 0)) {
1230 sbridge_printk(KERN_ERR
,
1232 "dev %02x:%d.%d PCI ID %04x:%04x\n",
1233 bus
, dev_descr
->dev
, dev_descr
->func
,
1234 PCI_VENDOR_ID_INTEL
, dev_descr
->dev_id
);
1238 debugf0("Detected dev %02x:%d.%d PCI ID %04x:%04x\n",
1239 bus
, dev_descr
->dev
,
1241 PCI_VENDOR_ID_INTEL
, dev_descr
->dev_id
);
1244 * As stated on drivers/pci/search.c, the reference count for
1245 * @from is always decremented if it is not %NULL. So, as we need
1246 * to get all devices up to null, we need to do a get for the device
1255 static int sbridge_get_all_devices(u8
*num_mc
)
1258 struct pci_dev
*pdev
= NULL
;
1259 const struct pci_id_table
*table
= pci_dev_descr_sbridge_table
;
1261 while (table
&& table
->descr
) {
1262 for (i
= 0; i
< table
->n_devs
; i
++) {
1265 rc
= sbridge_get_onedevice(&pdev
, num_mc
,
1272 sbridge_put_all_devices();
1283 static int mci_bind_devs(struct mem_ctl_info
*mci
,
1284 struct sbridge_dev
*sbridge_dev
)
1286 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
1287 struct pci_dev
*pdev
;
1290 for (i
= 0; i
< sbridge_dev
->n_devs
; i
++) {
1291 pdev
= sbridge_dev
->pdev
[i
];
1294 slot
= PCI_SLOT(pdev
->devfn
);
1295 func
= PCI_FUNC(pdev
->devfn
);
1300 pvt
->pci_sad0
= pdev
;
1303 pvt
->pci_sad1
= pdev
;
1321 pvt
->pci_ha0
= pdev
;
1333 pvt
->pci_ras
= pdev
;
1339 pvt
->pci_tad
[func
- 2] = pdev
;
1348 pvt
->pci_ddrio
= pdev
;
1358 debugf0("Associated PCI %02x.%02d.%d with dev = %p\n",
1360 PCI_SLOT(pdev
->devfn
), PCI_FUNC(pdev
->devfn
),
1364 /* Check if everything were registered */
1365 if (!pvt
->pci_sad0
|| !pvt
->pci_sad1
|| !pvt
->pci_ha0
||
1366 !pvt
-> pci_tad
|| !pvt
->pci_ras
|| !pvt
->pci_ta
||
1370 for (i
= 0; i
< NUM_CHANNELS
; i
++) {
1371 if (!pvt
->pci_tad
[i
])
1377 sbridge_printk(KERN_ERR
, "Some needed devices are missing\n");
1381 sbridge_printk(KERN_ERR
, "Device %d, function %d "
1382 "is out of the expected range\n",
1387 /****************************************************************************
1388 Error check routines
1389 ****************************************************************************/
1392 * While Sandy Bridge has error count registers, SMI BIOS read values from
1393 * and resets the counters. So, they are not reliable for the OS to read
1394 * from them. So, we have no option but to just trust on whatever MCE is
1395 * telling us about the errors.
1397 static void sbridge_mce_output_error(struct mem_ctl_info
*mci
,
1398 const struct mce
*m
)
1400 struct mem_ctl_info
*new_mci
;
1401 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
1402 char *type
, *optype
, *msg
, *recoverable_msg
;
1403 bool ripv
= GET_BITFIELD(m
->mcgstatus
, 0, 0);
1404 bool overflow
= GET_BITFIELD(m
->status
, 62, 62);
1405 bool uncorrected_error
= GET_BITFIELD(m
->status
, 61, 61);
1406 bool recoverable
= GET_BITFIELD(m
->status
, 56, 56);
1407 u32 core_err_cnt
= GET_BITFIELD(m
->status
, 38, 52);
1408 u32 mscod
= GET_BITFIELD(m
->status
, 16, 31);
1409 u32 errcode
= GET_BITFIELD(m
->status
, 0, 15);
1410 u32 channel
= GET_BITFIELD(m
->status
, 0, 3);
1411 u32 optypenum
= GET_BITFIELD(m
->status
, 4, 6);
1412 long channel_mask
, first_channel
;
1414 int csrow
, rc
, dimm
;
1415 char *area_type
= "Unknown";
1423 * According with Table 15-9 of the Intel Archictecture spec vol 3A,
1424 * memory errors should fit in this mask:
1425 * 000f 0000 1mmm cccc (binary)
1427 * f = Correction Report Filtering Bit. If 1, subsequent errors
1431 * If the mask doesn't match, report an error to the parsing logic
1433 if (! ((errcode
& 0xef80) == 0x80)) {
1434 optype
= "Can't parse: it is not a mem";
1436 switch (optypenum
) {
1438 optype
= "generic undef request";
1441 optype
= "memory read";
1444 optype
= "memory write";
1447 optype
= "addr/cmd";
1450 optype
= "memory scrubbing";
1453 optype
= "reserved";
1458 rc
= get_memory_error_data(mci
, m
->addr
, &socket
,
1459 &channel_mask
, &rank
, area_type
);
1462 new_mci
= get_mci_for_node_id(socket
);
1464 edac_mc_handle_ce_no_info(mci
, "Error: socket got corrupted!");
1468 pvt
= mci
->pvt_info
;
1470 first_channel
= find_first_bit(&channel_mask
, NUM_CHANNELS
);
1479 csrow
= pvt
->csrow_map
[first_channel
][dimm
];
1481 if (uncorrected_error
&& recoverable
)
1482 recoverable_msg
= " recoverable";
1484 recoverable_msg
= "";
1487 * FIXME: What should we do with "channel" information on mcelog?
1488 * Probably, we can just discard it, as the channel information
1489 * comes from the get_memory_error_data() address decoding
1491 msg
= kasprintf(GFP_ATOMIC
,
1492 "%d %s error(s): %s on %s area %s%s: cpu=%d Err=%04x:%04x (ch=%d), "
1493 "addr = 0x%08llx => socket=%d, Channel=%ld(mask=%ld), rank=%d\n",
1499 overflow
? "OVERFLOW" : "",
1502 channel
, /* 1111b means not specified */
1503 (long long) m
->addr
,
1505 first_channel
, /* This is the real channel on SB */
1511 /* Call the helper to output message */
1512 if (uncorrected_error
)
1513 edac_mc_handle_fbd_ue(mci
, csrow
, 0, 0, msg
);
1515 edac_mc_handle_fbd_ce(mci
, csrow
, 0, msg
);
1521 * sbridge_check_error Retrieve and process errors reported by the
1522 * hardware. Called by the Core module.
1524 static void sbridge_check_error(struct mem_ctl_info
*mci
)
1526 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
1532 * MCE first step: Copy all mce errors into a temporary buffer
1533 * We use a double buffering here, to reduce the risk of
1537 count
= (pvt
->mce_out
+ MCE_LOG_LEN
- pvt
->mce_in
)
1542 m
= pvt
->mce_outentry
;
1543 if (pvt
->mce_in
+ count
> MCE_LOG_LEN
) {
1544 unsigned l
= MCE_LOG_LEN
- pvt
->mce_in
;
1546 memcpy(m
, &pvt
->mce_entry
[pvt
->mce_in
], sizeof(*m
) * l
);
1552 memcpy(m
, &pvt
->mce_entry
[pvt
->mce_in
], sizeof(*m
) * count
);
1554 pvt
->mce_in
+= count
;
1557 if (pvt
->mce_overrun
) {
1558 sbridge_printk(KERN_ERR
, "Lost %d memory errors\n",
1561 pvt
->mce_overrun
= 0;
1565 * MCE second step: parse errors and display
1567 for (i
= 0; i
< count
; i
++)
1568 sbridge_mce_output_error(mci
, &pvt
->mce_outentry
[i
]);
1572 * sbridge_mce_check_error Replicates mcelog routine to get errors
1573 * This routine simply queues mcelog errors, and
1574 * return. The error itself should be handled later
1575 * by sbridge_check_error.
1576 * WARNING: As this routine should be called at NMI time, extra care should
1577 * be taken to avoid deadlocks, and to be as fast as possible.
1579 static int sbridge_mce_check_error(struct notifier_block
*nb
, unsigned long val
,
1582 struct mce
*mce
= (struct mce
*)data
;
1583 struct mem_ctl_info
*mci
;
1584 struct sbridge_pvt
*pvt
;
1586 mci
= get_mci_for_node_id(mce
->socketid
);
1589 pvt
= mci
->pvt_info
;
1592 * Just let mcelog handle it if the error is
1593 * outside the memory controller. A memory error
1594 * is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0.
1595 * bit 12 has an special meaning.
1597 if ((mce
->status
& 0xefff) >> 7 != 1)
1600 printk("sbridge: HANDLING MCE MEMORY ERROR\n");
1602 printk("CPU %d: Machine Check Exception: %Lx Bank %d: %016Lx\n",
1603 mce
->extcpu
, mce
->mcgstatus
, mce
->bank
, mce
->status
);
1604 printk("TSC %llx ", mce
->tsc
);
1605 printk("ADDR %llx ", mce
->addr
);
1606 printk("MISC %llx ", mce
->misc
);
1608 printk("PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x\n",
1609 mce
->cpuvendor
, mce
->cpuid
, mce
->time
,
1610 mce
->socketid
, mce
->apicid
);
1613 /* Only handle if it is the right mc controller */
1614 if (cpu_data(mce
->cpu
).phys_proc_id
!= pvt
->sbridge_dev
->mc
)
1619 if ((pvt
->mce_out
+ 1) % MCE_LOG_LEN
== pvt
->mce_in
) {
1625 /* Copy memory error at the ringbuffer */
1626 memcpy(&pvt
->mce_entry
[pvt
->mce_out
], mce
, sizeof(*mce
));
1628 pvt
->mce_out
= (pvt
->mce_out
+ 1) % MCE_LOG_LEN
;
1630 /* Handle fatal errors immediately */
1631 if (mce
->mcgstatus
& 1)
1632 sbridge_check_error(mci
);
1634 /* Advice mcelog that the error were handled */
1638 static struct notifier_block sbridge_mce_dec
= {
1639 .notifier_call
= sbridge_mce_check_error
,
1642 /****************************************************************************
1643 EDAC register/unregister logic
1644 ****************************************************************************/
1646 static void sbridge_unregister_mci(struct sbridge_dev
*sbridge_dev
)
1648 struct mem_ctl_info
*mci
= sbridge_dev
->mci
;
1649 struct sbridge_pvt
*pvt
;
1651 if (unlikely(!mci
|| !mci
->pvt_info
)) {
1652 debugf0("MC: " __FILE__
": %s(): dev = %p\n",
1653 __func__
, &sbridge_dev
->pdev
[0]->dev
);
1655 sbridge_printk(KERN_ERR
, "Couldn't find mci handler\n");
1659 pvt
= mci
->pvt_info
;
1661 debugf0("MC: " __FILE__
": %s(): mci = %p, dev = %p\n",
1662 __func__
, mci
, &sbridge_dev
->pdev
[0]->dev
);
1664 atomic_notifier_chain_unregister(&x86_mce_decoder_chain
,
1667 /* Remove MC sysfs nodes */
1668 edac_mc_del_mc(mci
->dev
);
1670 debugf1("%s: free mci struct\n", mci
->ctl_name
);
1671 kfree(mci
->ctl_name
);
1673 sbridge_dev
->mci
= NULL
;
1676 static int sbridge_register_mci(struct sbridge_dev
*sbridge_dev
)
1678 struct mem_ctl_info
*mci
;
1679 struct sbridge_pvt
*pvt
;
1680 int rc
, channels
, csrows
;
1682 /* Check the number of active and not disabled channels */
1683 rc
= sbridge_get_active_channels(sbridge_dev
->bus
, &channels
, &csrows
);
1684 if (unlikely(rc
< 0))
1687 /* allocate a new MC control structure */
1688 mci
= edac_mc_alloc(sizeof(*pvt
), csrows
, channels
, sbridge_dev
->mc
);
1692 debugf0("MC: " __FILE__
": %s(): mci = %p, dev = %p\n",
1693 __func__
, mci
, &sbridge_dev
->pdev
[0]->dev
);
1695 pvt
= mci
->pvt_info
;
1696 memset(pvt
, 0, sizeof(*pvt
));
1698 /* Associate sbridge_dev and mci for future usage */
1699 pvt
->sbridge_dev
= sbridge_dev
;
1700 sbridge_dev
->mci
= mci
;
1702 mci
->mtype_cap
= MEM_FLAG_DDR3
;
1703 mci
->edac_ctl_cap
= EDAC_FLAG_NONE
;
1704 mci
->edac_cap
= EDAC_FLAG_NONE
;
1705 mci
->mod_name
= "sbridge_edac.c";
1706 mci
->mod_ver
= SBRIDGE_REVISION
;
1707 mci
->ctl_name
= kasprintf(GFP_KERNEL
, "Sandy Bridge Socket#%d", mci
->mc_idx
);
1708 mci
->dev_name
= pci_name(sbridge_dev
->pdev
[0]);
1709 mci
->ctl_page_to_phys
= NULL
;
1711 /* Set the function pointer to an actual operation function */
1712 mci
->edac_check
= sbridge_check_error
;
1714 /* Store pci devices at mci for faster access */
1715 rc
= mci_bind_devs(mci
, sbridge_dev
);
1716 if (unlikely(rc
< 0))
1719 /* Get dimm basic config and the memory layout */
1720 get_dimm_config(mci
);
1721 get_memory_layout(mci
);
1723 /* record ptr to the generic device */
1724 mci
->dev
= &sbridge_dev
->pdev
[0]->dev
;
1726 /* add this new MC control structure to EDAC's list of MCs */
1727 if (unlikely(edac_mc_add_mc(mci
))) {
1728 debugf0("MC: " __FILE__
1729 ": %s(): failed edac_mc_add_mc()\n", __func__
);
1734 atomic_notifier_chain_register(&x86_mce_decoder_chain
,
1739 kfree(mci
->ctl_name
);
1741 sbridge_dev
->mci
= NULL
;
1746 * sbridge_probe Probe for ONE instance of device to see if it is
1749 * 0 for FOUND a device
1750 * < 0 for error code
1753 static int __devinit
sbridge_probe(struct pci_dev
*pdev
,
1754 const struct pci_device_id
*id
)
1758 struct sbridge_dev
*sbridge_dev
;
1760 /* get the pci devices we want to reserve for our use */
1761 mutex_lock(&sbridge_edac_lock
);
1764 * All memory controllers are allocated at the first pass.
1766 if (unlikely(probed
>= 1)) {
1767 mutex_unlock(&sbridge_edac_lock
);
1772 rc
= sbridge_get_all_devices(&num_mc
);
1773 if (unlikely(rc
< 0))
1777 list_for_each_entry(sbridge_dev
, &sbridge_edac_list
, list
) {
1778 debugf0("Registering MC#%d (%d of %d)\n", mc
, mc
+ 1, num_mc
);
1779 sbridge_dev
->mc
= mc
++;
1780 rc
= sbridge_register_mci(sbridge_dev
);
1781 if (unlikely(rc
< 0))
1785 sbridge_printk(KERN_INFO
, "Driver loaded.\n");
1787 mutex_unlock(&sbridge_edac_lock
);
1791 list_for_each_entry(sbridge_dev
, &sbridge_edac_list
, list
)
1792 sbridge_unregister_mci(sbridge_dev
);
1794 sbridge_put_all_devices();
1796 mutex_unlock(&sbridge_edac_lock
);
1801 * sbridge_remove destructor for one instance of device
1804 static void __devexit
sbridge_remove(struct pci_dev
*pdev
)
1806 struct sbridge_dev
*sbridge_dev
;
1808 debugf0(__FILE__
": %s()\n", __func__
);
1811 * we have a trouble here: pdev value for removal will be wrong, since
1812 * it will point to the X58 register used to detect that the machine
1813 * is a Nehalem or upper design. However, due to the way several PCI
1814 * devices are grouped together to provide MC functionality, we need
1815 * to use a different method for releasing the devices
1818 mutex_lock(&sbridge_edac_lock
);
1820 if (unlikely(!probed
)) {
1821 mutex_unlock(&sbridge_edac_lock
);
1825 list_for_each_entry(sbridge_dev
, &sbridge_edac_list
, list
)
1826 sbridge_unregister_mci(sbridge_dev
);
1828 /* Release PCI resources */
1829 sbridge_put_all_devices();
1833 mutex_unlock(&sbridge_edac_lock
);
1836 MODULE_DEVICE_TABLE(pci
, sbridge_pci_tbl
);
1839 * sbridge_driver pci_driver structure for this module
1842 static struct pci_driver sbridge_driver
= {
1843 .name
= "sbridge_edac",
1844 .probe
= sbridge_probe
,
1845 .remove
= __devexit_p(sbridge_remove
),
1846 .id_table
= sbridge_pci_tbl
,
1850 * sbridge_init Module entry function
1851 * Try to initialize this module for its devices
1853 static int __init
sbridge_init(void)
1857 debugf2("MC: " __FILE__
": %s()\n", __func__
);
1859 /* Ensure that the OPSTATE is set correctly for POLL or NMI */
1862 pci_rc
= pci_register_driver(&sbridge_driver
);
1867 sbridge_printk(KERN_ERR
, "Failed to register device with error %d.\n",
1874 * sbridge_exit() Module exit function
1875 * Unregister the driver
1877 static void __exit
sbridge_exit(void)
1879 debugf2("MC: " __FILE__
": %s()\n", __func__
);
1880 pci_unregister_driver(&sbridge_driver
);
1883 module_init(sbridge_init
);
1884 module_exit(sbridge_exit
);
1886 module_param(edac_op_state
, int, 0444);
1887 MODULE_PARM_DESC(edac_op_state
, "EDAC Error Reporting state: 0=Poll,1=NMI");
1889 MODULE_LICENSE("GPL");
1890 MODULE_AUTHOR("Mauro Carvalho Chehab <mchehab@redhat.com>");
1891 MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
1892 MODULE_DESCRIPTION("MC Driver for Intel Sandy Bridge memory controllers - "