compat: Fix RT signal mask corruption via sigprocmask
[zen-stable.git] / arch / mips / kernel / setup.c
blob058e964e730344dc51adc3ed9737c97d0b4fc51f
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
6 * Copyright (C) 1995 Linus Torvalds
7 * Copyright (C) 1995 Waldorf Electronics
8 * Copyright (C) 1994, 95, 96, 97, 98, 99, 2000, 01, 02, 03 Ralf Baechle
9 * Copyright (C) 1996 Stoned Elipot
10 * Copyright (C) 1999 Silicon Graphics, Inc.
11 * Copyright (C) 2000, 2001, 2002, 2007 Maciej W. Rozycki
13 #include <linux/init.h>
14 #include <linux/ioport.h>
15 #include <linux/export.h>
16 #include <linux/screen_info.h>
17 #include <linux/memblock.h>
18 #include <linux/bootmem.h>
19 #include <linux/initrd.h>
20 #include <linux/root_dev.h>
21 #include <linux/highmem.h>
22 #include <linux/console.h>
23 #include <linux/pfn.h>
24 #include <linux/debugfs.h>
26 #include <asm/addrspace.h>
27 #include <asm/bootinfo.h>
28 #include <asm/bugs.h>
29 #include <asm/cache.h>
30 #include <asm/cpu.h>
31 #include <asm/sections.h>
32 #include <asm/setup.h>
33 #include <asm/smp-ops.h>
34 #include <asm/system.h>
35 #include <asm/prom.h>
37 struct cpuinfo_mips cpu_data[NR_CPUS] __read_mostly;
39 EXPORT_SYMBOL(cpu_data);
41 #ifdef CONFIG_VT
42 struct screen_info screen_info;
43 #endif
46 * Despite it's name this variable is even if we don't have PCI
48 unsigned int PCI_DMA_BUS_IS_PHYS;
50 EXPORT_SYMBOL(PCI_DMA_BUS_IS_PHYS);
53 * Setup information
55 * These are initialized so they are in the .data section
57 unsigned long mips_machtype __read_mostly = MACH_UNKNOWN;
59 EXPORT_SYMBOL(mips_machtype);
61 struct boot_mem_map boot_mem_map;
63 static char __initdata command_line[COMMAND_LINE_SIZE];
64 char __initdata arcs_cmdline[COMMAND_LINE_SIZE];
66 #ifdef CONFIG_CMDLINE_BOOL
67 static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
68 #endif
71 * mips_io_port_base is the begin of the address space to which x86 style
72 * I/O ports are mapped.
74 const unsigned long mips_io_port_base = -1;
75 EXPORT_SYMBOL(mips_io_port_base);
77 static struct resource code_resource = { .name = "Kernel code", };
78 static struct resource data_resource = { .name = "Kernel data", };
80 void __init add_memory_region(phys_t start, phys_t size, long type)
82 int x = boot_mem_map.nr_map;
83 struct boot_mem_map_entry *prev = boot_mem_map.map + x - 1;
85 /* Sanity check */
86 if (start + size < start) {
87 pr_warning("Trying to add an invalid memory region, skipped\n");
88 return;
92 * Try to merge with previous entry if any. This is far less than
93 * perfect but is sufficient for most real world cases.
95 if (x && prev->addr + prev->size == start && prev->type == type) {
96 prev->size += size;
97 return;
100 if (x == BOOT_MEM_MAP_MAX) {
101 pr_err("Ooops! Too many entries in the memory map!\n");
102 return;
105 boot_mem_map.map[x].addr = start;
106 boot_mem_map.map[x].size = size;
107 boot_mem_map.map[x].type = type;
108 boot_mem_map.nr_map++;
111 static void __init print_memory_map(void)
113 int i;
114 const int field = 2 * sizeof(unsigned long);
116 for (i = 0; i < boot_mem_map.nr_map; i++) {
117 printk(KERN_INFO " memory: %0*Lx @ %0*Lx ",
118 field, (unsigned long long) boot_mem_map.map[i].size,
119 field, (unsigned long long) boot_mem_map.map[i].addr);
121 switch (boot_mem_map.map[i].type) {
122 case BOOT_MEM_RAM:
123 printk(KERN_CONT "(usable)\n");
124 break;
125 case BOOT_MEM_INIT_RAM:
126 printk(KERN_CONT "(usable after init)\n");
127 break;
128 case BOOT_MEM_ROM_DATA:
129 printk(KERN_CONT "(ROM data)\n");
130 break;
131 case BOOT_MEM_RESERVED:
132 printk(KERN_CONT "(reserved)\n");
133 break;
134 default:
135 printk(KERN_CONT "type %lu\n", boot_mem_map.map[i].type);
136 break;
142 * Manage initrd
144 #ifdef CONFIG_BLK_DEV_INITRD
146 static int __init rd_start_early(char *p)
148 unsigned long start = memparse(p, &p);
150 #ifdef CONFIG_64BIT
151 /* Guess if the sign extension was forgotten by bootloader */
152 if (start < XKPHYS)
153 start = (int)start;
154 #endif
155 initrd_start = start;
156 initrd_end += start;
157 return 0;
159 early_param("rd_start", rd_start_early);
161 static int __init rd_size_early(char *p)
163 initrd_end += memparse(p, &p);
164 return 0;
166 early_param("rd_size", rd_size_early);
168 /* it returns the next free pfn after initrd */
169 static unsigned long __init init_initrd(void)
171 unsigned long end;
174 * Board specific code or command line parser should have
175 * already set up initrd_start and initrd_end. In these cases
176 * perfom sanity checks and use them if all looks good.
178 if (!initrd_start || initrd_end <= initrd_start)
179 goto disable;
181 if (initrd_start & ~PAGE_MASK) {
182 pr_err("initrd start must be page aligned\n");
183 goto disable;
185 if (initrd_start < PAGE_OFFSET) {
186 pr_err("initrd start < PAGE_OFFSET\n");
187 goto disable;
191 * Sanitize initrd addresses. For example firmware
192 * can't guess if they need to pass them through
193 * 64-bits values if the kernel has been built in pure
194 * 32-bit. We need also to switch from KSEG0 to XKPHYS
195 * addresses now, so the code can now safely use __pa().
197 end = __pa(initrd_end);
198 initrd_end = (unsigned long)__va(end);
199 initrd_start = (unsigned long)__va(__pa(initrd_start));
201 ROOT_DEV = Root_RAM0;
202 return PFN_UP(end);
203 disable:
204 initrd_start = 0;
205 initrd_end = 0;
206 return 0;
209 static void __init finalize_initrd(void)
211 unsigned long size = initrd_end - initrd_start;
213 if (size == 0) {
214 printk(KERN_INFO "Initrd not found or empty");
215 goto disable;
217 if (__pa(initrd_end) > PFN_PHYS(max_low_pfn)) {
218 printk(KERN_ERR "Initrd extends beyond end of memory");
219 goto disable;
222 reserve_bootmem(__pa(initrd_start), size, BOOTMEM_DEFAULT);
223 initrd_below_start_ok = 1;
225 pr_info("Initial ramdisk at: 0x%lx (%lu bytes)\n",
226 initrd_start, size);
227 return;
228 disable:
229 printk(KERN_CONT " - disabling initrd\n");
230 initrd_start = 0;
231 initrd_end = 0;
234 #else /* !CONFIG_BLK_DEV_INITRD */
236 static unsigned long __init init_initrd(void)
238 return 0;
241 #define finalize_initrd() do {} while (0)
243 #endif
246 * Initialize the bootmem allocator. It also setup initrd related data
247 * if needed.
249 #ifdef CONFIG_SGI_IP27
251 static void __init bootmem_init(void)
253 init_initrd();
254 finalize_initrd();
257 #else /* !CONFIG_SGI_IP27 */
259 static void __init bootmem_init(void)
261 unsigned long reserved_end;
262 unsigned long mapstart = ~0UL;
263 unsigned long bootmap_size;
264 int i;
267 * Init any data related to initrd. It's a nop if INITRD is
268 * not selected. Once that done we can determine the low bound
269 * of usable memory.
271 reserved_end = max(init_initrd(),
272 (unsigned long) PFN_UP(__pa_symbol(&_end)));
275 * max_low_pfn is not a number of pages. The number of pages
276 * of the system is given by 'max_low_pfn - min_low_pfn'.
278 min_low_pfn = ~0UL;
279 max_low_pfn = 0;
282 * Find the highest page frame number we have available.
284 for (i = 0; i < boot_mem_map.nr_map; i++) {
285 unsigned long start, end;
287 if (boot_mem_map.map[i].type != BOOT_MEM_RAM)
288 continue;
290 start = PFN_UP(boot_mem_map.map[i].addr);
291 end = PFN_DOWN(boot_mem_map.map[i].addr
292 + boot_mem_map.map[i].size);
294 if (end > max_low_pfn)
295 max_low_pfn = end;
296 if (start < min_low_pfn)
297 min_low_pfn = start;
298 if (end <= reserved_end)
299 continue;
300 if (start >= mapstart)
301 continue;
302 mapstart = max(reserved_end, start);
305 if (min_low_pfn >= max_low_pfn)
306 panic("Incorrect memory mapping !!!");
307 if (min_low_pfn > ARCH_PFN_OFFSET) {
308 pr_info("Wasting %lu bytes for tracking %lu unused pages\n",
309 (min_low_pfn - ARCH_PFN_OFFSET) * sizeof(struct page),
310 min_low_pfn - ARCH_PFN_OFFSET);
311 } else if (min_low_pfn < ARCH_PFN_OFFSET) {
312 pr_info("%lu free pages won't be used\n",
313 ARCH_PFN_OFFSET - min_low_pfn);
315 min_low_pfn = ARCH_PFN_OFFSET;
318 * Determine low and high memory ranges
320 max_pfn = max_low_pfn;
321 if (max_low_pfn > PFN_DOWN(HIGHMEM_START)) {
322 #ifdef CONFIG_HIGHMEM
323 highstart_pfn = PFN_DOWN(HIGHMEM_START);
324 highend_pfn = max_low_pfn;
325 #endif
326 max_low_pfn = PFN_DOWN(HIGHMEM_START);
330 * Initialize the boot-time allocator with low memory only.
332 bootmap_size = init_bootmem_node(NODE_DATA(0), mapstart,
333 min_low_pfn, max_low_pfn);
336 for (i = 0; i < boot_mem_map.nr_map; i++) {
337 unsigned long start, end;
339 start = PFN_UP(boot_mem_map.map[i].addr);
340 end = PFN_DOWN(boot_mem_map.map[i].addr
341 + boot_mem_map.map[i].size);
343 if (start <= min_low_pfn)
344 start = min_low_pfn;
345 if (start >= end)
346 continue;
348 #ifndef CONFIG_HIGHMEM
349 if (end > max_low_pfn)
350 end = max_low_pfn;
353 * ... finally, is the area going away?
355 if (end <= start)
356 continue;
357 #endif
359 memblock_add_node(PFN_PHYS(start), PFN_PHYS(end - start), 0);
363 * Register fully available low RAM pages with the bootmem allocator.
365 for (i = 0; i < boot_mem_map.nr_map; i++) {
366 unsigned long start, end, size;
368 start = PFN_UP(boot_mem_map.map[i].addr);
369 end = PFN_DOWN(boot_mem_map.map[i].addr
370 + boot_mem_map.map[i].size);
373 * Reserve usable memory.
375 switch (boot_mem_map.map[i].type) {
376 case BOOT_MEM_RAM:
377 break;
378 case BOOT_MEM_INIT_RAM:
379 memory_present(0, start, end);
380 continue;
381 default:
382 /* Not usable memory */
383 continue;
387 * We are rounding up the start address of usable memory
388 * and at the end of the usable range downwards.
390 if (start >= max_low_pfn)
391 continue;
392 if (start < reserved_end)
393 start = reserved_end;
394 if (end > max_low_pfn)
395 end = max_low_pfn;
398 * ... finally, is the area going away?
400 if (end <= start)
401 continue;
402 size = end - start;
404 /* Register lowmem ranges */
405 free_bootmem(PFN_PHYS(start), size << PAGE_SHIFT);
406 memory_present(0, start, end);
410 * Reserve the bootmap memory.
412 reserve_bootmem(PFN_PHYS(mapstart), bootmap_size, BOOTMEM_DEFAULT);
415 * Reserve initrd memory if needed.
417 finalize_initrd();
420 #endif /* CONFIG_SGI_IP27 */
423 * arch_mem_init - initialize memory management subsystem
425 * o plat_mem_setup() detects the memory configuration and will record detected
426 * memory areas using add_memory_region.
428 * At this stage the memory configuration of the system is known to the
429 * kernel but generic memory management system is still entirely uninitialized.
431 * o bootmem_init()
432 * o sparse_init()
433 * o paging_init()
435 * At this stage the bootmem allocator is ready to use.
437 * NOTE: historically plat_mem_setup did the entire platform initialization.
438 * This was rather impractical because it meant plat_mem_setup had to
439 * get away without any kind of memory allocator. To keep old code from
440 * breaking plat_setup was just renamed to plat_setup and a second platform
441 * initialization hook for anything else was introduced.
444 static int usermem __initdata;
446 static int __init early_parse_mem(char *p)
448 unsigned long start, size;
451 * If a user specifies memory size, we
452 * blow away any automatically generated
453 * size.
455 if (usermem == 0) {
456 boot_mem_map.nr_map = 0;
457 usermem = 1;
459 start = 0;
460 size = memparse(p, &p);
461 if (*p == '@')
462 start = memparse(p + 1, &p);
464 add_memory_region(start, size, BOOT_MEM_RAM);
465 return 0;
467 early_param("mem", early_parse_mem);
469 static void __init arch_mem_init(char **cmdline_p)
471 phys_t init_mem, init_end, init_size;
473 extern void plat_mem_setup(void);
475 /* call board setup routine */
476 plat_mem_setup();
478 init_mem = PFN_UP(__pa_symbol(&__init_begin)) << PAGE_SHIFT;
479 init_end = PFN_DOWN(__pa_symbol(&__init_end)) << PAGE_SHIFT;
480 init_size = init_end - init_mem;
481 if (init_size) {
482 /* Make sure it is in the boot_mem_map */
483 int i, found;
484 found = 0;
485 for (i = 0; i < boot_mem_map.nr_map; i++) {
486 if (init_mem >= boot_mem_map.map[i].addr &&
487 init_mem < (boot_mem_map.map[i].addr +
488 boot_mem_map.map[i].size)) {
489 found = 1;
490 break;
493 if (!found)
494 add_memory_region(init_mem, init_size,
495 BOOT_MEM_INIT_RAM);
498 pr_info("Determined physical RAM map:\n");
499 print_memory_map();
501 #ifdef CONFIG_CMDLINE_BOOL
502 #ifdef CONFIG_CMDLINE_OVERRIDE
503 strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
504 #else
505 if (builtin_cmdline[0]) {
506 strlcat(arcs_cmdline, " ", COMMAND_LINE_SIZE);
507 strlcat(arcs_cmdline, builtin_cmdline, COMMAND_LINE_SIZE);
509 strlcpy(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE);
510 #endif
511 #else
512 strlcpy(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE);
513 #endif
514 strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
516 *cmdline_p = command_line;
518 parse_early_param();
520 if (usermem) {
521 pr_info("User-defined physical RAM map:\n");
522 print_memory_map();
525 bootmem_init();
526 device_tree_init();
527 sparse_init();
528 plat_swiotlb_setup();
529 paging_init();
532 static void __init resource_init(void)
534 int i;
536 if (UNCAC_BASE != IO_BASE)
537 return;
539 code_resource.start = __pa_symbol(&_text);
540 code_resource.end = __pa_symbol(&_etext) - 1;
541 data_resource.start = __pa_symbol(&_etext);
542 data_resource.end = __pa_symbol(&_edata) - 1;
545 * Request address space for all standard RAM.
547 for (i = 0; i < boot_mem_map.nr_map; i++) {
548 struct resource *res;
549 unsigned long start, end;
551 start = boot_mem_map.map[i].addr;
552 end = boot_mem_map.map[i].addr + boot_mem_map.map[i].size - 1;
553 if (start >= HIGHMEM_START)
554 continue;
555 if (end >= HIGHMEM_START)
556 end = HIGHMEM_START - 1;
558 res = alloc_bootmem(sizeof(struct resource));
559 switch (boot_mem_map.map[i].type) {
560 case BOOT_MEM_RAM:
561 case BOOT_MEM_INIT_RAM:
562 case BOOT_MEM_ROM_DATA:
563 res->name = "System RAM";
564 break;
565 case BOOT_MEM_RESERVED:
566 default:
567 res->name = "reserved";
570 res->start = start;
571 res->end = end;
573 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
574 request_resource(&iomem_resource, res);
577 * We don't know which RAM region contains kernel data,
578 * so we try it repeatedly and let the resource manager
579 * test it.
581 request_resource(res, &code_resource);
582 request_resource(res, &data_resource);
586 void __init setup_arch(char **cmdline_p)
588 cpu_probe();
589 prom_init();
591 #ifdef CONFIG_EARLY_PRINTK
592 setup_early_printk();
593 #endif
594 cpu_report();
595 check_bugs_early();
597 #if defined(CONFIG_VT)
598 #if defined(CONFIG_VGA_CONSOLE)
599 conswitchp = &vga_con;
600 #elif defined(CONFIG_DUMMY_CONSOLE)
601 conswitchp = &dummy_con;
602 #endif
603 #endif
605 arch_mem_init(cmdline_p);
607 resource_init();
608 plat_smp_setup();
611 unsigned long kernelsp[NR_CPUS];
612 unsigned long fw_arg0, fw_arg1, fw_arg2, fw_arg3;
614 #ifdef CONFIG_DEBUG_FS
615 struct dentry *mips_debugfs_dir;
616 static int __init debugfs_mips(void)
618 struct dentry *d;
620 d = debugfs_create_dir("mips", NULL);
621 if (!d)
622 return -ENOMEM;
623 mips_debugfs_dir = d;
624 return 0;
626 arch_initcall(debugfs_mips);
627 #endif