compat: Fix RT signal mask corruption via sigprocmask
[zen-stable.git] / arch / powerpc / oprofile / op_model_cell.c
blobcb515cff745c91e586875e631450f4432ca84185
1 /*
2 * Cell Broadband Engine OProfile Support
4 * (C) Copyright IBM Corporation 2006
6 * Author: David Erb (djerb@us.ibm.com)
7 * Modifications:
8 * Carl Love <carll@us.ibm.com>
9 * Maynard Johnson <maynardj@us.ibm.com>
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
17 #include <linux/cpufreq.h>
18 #include <linux/delay.h>
19 #include <linux/init.h>
20 #include <linux/jiffies.h>
21 #include <linux/kthread.h>
22 #include <linux/oprofile.h>
23 #include <linux/percpu.h>
24 #include <linux/smp.h>
25 #include <linux/spinlock.h>
26 #include <linux/timer.h>
27 #include <asm/cell-pmu.h>
28 #include <asm/cputable.h>
29 #include <asm/firmware.h>
30 #include <asm/io.h>
31 #include <asm/oprofile_impl.h>
32 #include <asm/processor.h>
33 #include <asm/prom.h>
34 #include <asm/ptrace.h>
35 #include <asm/reg.h>
36 #include <asm/rtas.h>
37 #include <asm/system.h>
38 #include <asm/cell-regs.h>
40 #include "../platforms/cell/interrupt.h"
41 #include "cell/pr_util.h"
43 #define PPU_PROFILING 0
44 #define SPU_PROFILING_CYCLES 1
45 #define SPU_PROFILING_EVENTS 2
47 #define SPU_EVENT_NUM_START 4100
48 #define SPU_EVENT_NUM_STOP 4399
49 #define SPU_PROFILE_EVENT_ADDR 4363 /* spu, address trace, decimal */
50 #define SPU_PROFILE_EVENT_ADDR_MASK_A 0x146 /* sub unit set to zero */
51 #define SPU_PROFILE_EVENT_ADDR_MASK_B 0x186 /* sub unit set to zero */
53 #define NUM_SPUS_PER_NODE 8
54 #define SPU_CYCLES_EVENT_NUM 2 /* event number for SPU_CYCLES */
56 #define PPU_CYCLES_EVENT_NUM 1 /* event number for CYCLES */
57 #define PPU_CYCLES_GRP_NUM 1 /* special group number for identifying
58 * PPU_CYCLES event
60 #define CBE_COUNT_ALL_CYCLES 0x42800000 /* PPU cycle event specifier */
62 #define NUM_THREADS 2 /* number of physical threads in
63 * physical processor
65 #define NUM_DEBUG_BUS_WORDS 4
66 #define NUM_INPUT_BUS_WORDS 2
68 #define MAX_SPU_COUNT 0xFFFFFF /* maximum 24 bit LFSR value */
70 /* Minimum HW interval timer setting to send value to trace buffer is 10 cycle.
71 * To configure counter to send value every N cycles set counter to
72 * 2^32 - 1 - N.
74 #define NUM_INTERVAL_CYC 0xFFFFFFFF - 10
77 * spu_cycle_reset is the number of cycles between samples.
78 * This variable is used for SPU profiling and should ONLY be set
79 * at the beginning of cell_reg_setup; otherwise, it's read-only.
81 static unsigned int spu_cycle_reset;
82 static unsigned int profiling_mode;
83 static int spu_evnt_phys_spu_indx;
85 struct pmc_cntrl_data {
86 unsigned long vcntr;
87 unsigned long evnts;
88 unsigned long masks;
89 unsigned long enabled;
93 * ibm,cbe-perftools rtas parameters
95 struct pm_signal {
96 u16 cpu; /* Processor to modify */
97 u16 sub_unit; /* hw subunit this applies to (if applicable)*/
98 short int signal_group; /* Signal Group to Enable/Disable */
99 u8 bus_word; /* Enable/Disable on this Trace/Trigger/Event
100 * Bus Word(s) (bitmask)
102 u8 bit; /* Trigger/Event bit (if applicable) */
106 * rtas call arguments
108 enum {
109 SUBFUNC_RESET = 1,
110 SUBFUNC_ACTIVATE = 2,
111 SUBFUNC_DEACTIVATE = 3,
113 PASSTHRU_IGNORE = 0,
114 PASSTHRU_ENABLE = 1,
115 PASSTHRU_DISABLE = 2,
118 struct pm_cntrl {
119 u16 enable;
120 u16 stop_at_max;
121 u16 trace_mode;
122 u16 freeze;
123 u16 count_mode;
124 u16 spu_addr_trace;
125 u8 trace_buf_ovflw;
128 static struct {
129 u32 group_control;
130 u32 debug_bus_control;
131 struct pm_cntrl pm_cntrl;
132 u32 pm07_cntrl[NR_PHYS_CTRS];
133 } pm_regs;
135 #define GET_SUB_UNIT(x) ((x & 0x0000f000) >> 12)
136 #define GET_BUS_WORD(x) ((x & 0x000000f0) >> 4)
137 #define GET_BUS_TYPE(x) ((x & 0x00000300) >> 8)
138 #define GET_POLARITY(x) ((x & 0x00000002) >> 1)
139 #define GET_COUNT_CYCLES(x) (x & 0x00000001)
140 #define GET_INPUT_CONTROL(x) ((x & 0x00000004) >> 2)
142 static DEFINE_PER_CPU(unsigned long[NR_PHYS_CTRS], pmc_values);
143 static unsigned long spu_pm_cnt[MAX_NUMNODES * NUM_SPUS_PER_NODE];
144 static struct pmc_cntrl_data pmc_cntrl[NUM_THREADS][NR_PHYS_CTRS];
147 * The CELL profiling code makes rtas calls to setup the debug bus to
148 * route the performance signals. Additionally, SPU profiling requires
149 * a second rtas call to setup the hardware to capture the SPU PCs.
150 * The EIO error value is returned if the token lookups or the rtas
151 * call fail. The EIO error number is the best choice of the existing
152 * error numbers. The probability of rtas related error is very low. But
153 * by returning EIO and printing additional information to dmsg the user
154 * will know that OProfile did not start and dmesg will tell them why.
155 * OProfile does not support returning errors on Stop. Not a huge issue
156 * since failure to reset the debug bus or stop the SPU PC collection is
157 * not a fatel issue. Chances are if the Stop failed, Start doesn't work
158 * either.
162 * Interpetation of hdw_thread:
163 * 0 - even virtual cpus 0, 2, 4,...
164 * 1 - odd virtual cpus 1, 3, 5, ...
166 * FIXME: this is strictly wrong, we need to clean this up in a number
167 * of places. It works for now. -arnd
169 static u32 hdw_thread;
171 static u32 virt_cntr_inter_mask;
172 static struct timer_list timer_virt_cntr;
173 static struct timer_list timer_spu_event_swap;
176 * pm_signal needs to be global since it is initialized in
177 * cell_reg_setup at the time when the necessary information
178 * is available.
180 static struct pm_signal pm_signal[NR_PHYS_CTRS];
181 static int pm_rtas_token; /* token for debug bus setup call */
182 static int spu_rtas_token; /* token for SPU cycle profiling */
184 static u32 reset_value[NR_PHYS_CTRS];
185 static int num_counters;
186 static int oprofile_running;
187 static DEFINE_SPINLOCK(cntr_lock);
189 static u32 ctr_enabled;
191 static unsigned char input_bus[NUM_INPUT_BUS_WORDS];
194 * Firmware interface functions
196 static int
197 rtas_ibm_cbe_perftools(int subfunc, int passthru,
198 void *address, unsigned long length)
200 u64 paddr = __pa(address);
202 return rtas_call(pm_rtas_token, 5, 1, NULL, subfunc,
203 passthru, paddr >> 32, paddr & 0xffffffff, length);
206 static void pm_rtas_reset_signals(u32 node)
208 int ret;
209 struct pm_signal pm_signal_local;
212 * The debug bus is being set to the passthru disable state.
213 * However, the FW still expects atleast one legal signal routing
214 * entry or it will return an error on the arguments. If we don't
215 * supply a valid entry, we must ignore all return values. Ignoring
216 * all return values means we might miss an error we should be
217 * concerned about.
220 /* fw expects physical cpu #. */
221 pm_signal_local.cpu = node;
222 pm_signal_local.signal_group = 21;
223 pm_signal_local.bus_word = 1;
224 pm_signal_local.sub_unit = 0;
225 pm_signal_local.bit = 0;
227 ret = rtas_ibm_cbe_perftools(SUBFUNC_RESET, PASSTHRU_DISABLE,
228 &pm_signal_local,
229 sizeof(struct pm_signal));
231 if (unlikely(ret))
233 * Not a fatal error. For Oprofile stop, the oprofile
234 * functions do not support returning an error for
235 * failure to stop OProfile.
237 printk(KERN_WARNING "%s: rtas returned: %d\n",
238 __func__, ret);
241 static int pm_rtas_activate_signals(u32 node, u32 count)
243 int ret;
244 int i, j;
245 struct pm_signal pm_signal_local[NR_PHYS_CTRS];
248 * There is no debug setup required for the cycles event.
249 * Note that only events in the same group can be used.
250 * Otherwise, there will be conflicts in correctly routing
251 * the signals on the debug bus. It is the responsibility
252 * of the OProfile user tool to check the events are in
253 * the same group.
255 i = 0;
256 for (j = 0; j < count; j++) {
257 if (pm_signal[j].signal_group != PPU_CYCLES_GRP_NUM) {
259 /* fw expects physical cpu # */
260 pm_signal_local[i].cpu = node;
261 pm_signal_local[i].signal_group
262 = pm_signal[j].signal_group;
263 pm_signal_local[i].bus_word = pm_signal[j].bus_word;
264 pm_signal_local[i].sub_unit = pm_signal[j].sub_unit;
265 pm_signal_local[i].bit = pm_signal[j].bit;
266 i++;
270 if (i != 0) {
271 ret = rtas_ibm_cbe_perftools(SUBFUNC_ACTIVATE, PASSTHRU_ENABLE,
272 pm_signal_local,
273 i * sizeof(struct pm_signal));
275 if (unlikely(ret)) {
276 printk(KERN_WARNING "%s: rtas returned: %d\n",
277 __func__, ret);
278 return -EIO;
282 return 0;
286 * PM Signal functions
288 static void set_pm_event(u32 ctr, int event, u32 unit_mask)
290 struct pm_signal *p;
291 u32 signal_bit;
292 u32 bus_word, bus_type, count_cycles, polarity, input_control;
293 int j, i;
295 if (event == PPU_CYCLES_EVENT_NUM) {
296 /* Special Event: Count all cpu cycles */
297 pm_regs.pm07_cntrl[ctr] = CBE_COUNT_ALL_CYCLES;
298 p = &(pm_signal[ctr]);
299 p->signal_group = PPU_CYCLES_GRP_NUM;
300 p->bus_word = 1;
301 p->sub_unit = 0;
302 p->bit = 0;
303 goto out;
304 } else {
305 pm_regs.pm07_cntrl[ctr] = 0;
308 bus_word = GET_BUS_WORD(unit_mask);
309 bus_type = GET_BUS_TYPE(unit_mask);
310 count_cycles = GET_COUNT_CYCLES(unit_mask);
311 polarity = GET_POLARITY(unit_mask);
312 input_control = GET_INPUT_CONTROL(unit_mask);
313 signal_bit = (event % 100);
315 p = &(pm_signal[ctr]);
317 p->signal_group = event / 100;
318 p->bus_word = bus_word;
319 p->sub_unit = GET_SUB_UNIT(unit_mask);
321 pm_regs.pm07_cntrl[ctr] = 0;
322 pm_regs.pm07_cntrl[ctr] |= PM07_CTR_COUNT_CYCLES(count_cycles);
323 pm_regs.pm07_cntrl[ctr] |= PM07_CTR_POLARITY(polarity);
324 pm_regs.pm07_cntrl[ctr] |= PM07_CTR_INPUT_CONTROL(input_control);
327 * Some of the islands signal selection is based on 64 bit words.
328 * The debug bus words are 32 bits, the input words to the performance
329 * counters are defined as 32 bits. Need to convert the 64 bit island
330 * specification to the appropriate 32 input bit and bus word for the
331 * performance counter event selection. See the CELL Performance
332 * monitoring signals manual and the Perf cntr hardware descriptions
333 * for the details.
335 if (input_control == 0) {
336 if (signal_bit > 31) {
337 signal_bit -= 32;
338 if (bus_word == 0x3)
339 bus_word = 0x2;
340 else if (bus_word == 0xc)
341 bus_word = 0x8;
344 if ((bus_type == 0) && p->signal_group >= 60)
345 bus_type = 2;
346 if ((bus_type == 1) && p->signal_group >= 50)
347 bus_type = 0;
349 pm_regs.pm07_cntrl[ctr] |= PM07_CTR_INPUT_MUX(signal_bit);
350 } else {
351 pm_regs.pm07_cntrl[ctr] = 0;
352 p->bit = signal_bit;
355 for (i = 0; i < NUM_DEBUG_BUS_WORDS; i++) {
356 if (bus_word & (1 << i)) {
357 pm_regs.debug_bus_control |=
358 (bus_type << (30 - (2 * i)));
360 for (j = 0; j < NUM_INPUT_BUS_WORDS; j++) {
361 if (input_bus[j] == 0xff) {
362 input_bus[j] = i;
363 pm_regs.group_control |=
364 (i << (30 - (2 * j)));
366 break;
371 out:
375 static void write_pm_cntrl(int cpu)
378 * Oprofile will use 32 bit counters, set bits 7:10 to 0
379 * pmregs.pm_cntrl is a global
382 u32 val = 0;
383 if (pm_regs.pm_cntrl.enable == 1)
384 val |= CBE_PM_ENABLE_PERF_MON;
386 if (pm_regs.pm_cntrl.stop_at_max == 1)
387 val |= CBE_PM_STOP_AT_MAX;
389 if (pm_regs.pm_cntrl.trace_mode != 0)
390 val |= CBE_PM_TRACE_MODE_SET(pm_regs.pm_cntrl.trace_mode);
392 if (pm_regs.pm_cntrl.trace_buf_ovflw == 1)
393 val |= CBE_PM_TRACE_BUF_OVFLW(pm_regs.pm_cntrl.trace_buf_ovflw);
394 if (pm_regs.pm_cntrl.freeze == 1)
395 val |= CBE_PM_FREEZE_ALL_CTRS;
397 val |= CBE_PM_SPU_ADDR_TRACE_SET(pm_regs.pm_cntrl.spu_addr_trace);
400 * Routine set_count_mode must be called previously to set
401 * the count mode based on the user selection of user and kernel.
403 val |= CBE_PM_COUNT_MODE_SET(pm_regs.pm_cntrl.count_mode);
404 cbe_write_pm(cpu, pm_control, val);
407 static inline void
408 set_count_mode(u32 kernel, u32 user)
411 * The user must specify user and kernel if they want them. If
412 * neither is specified, OProfile will count in hypervisor mode.
413 * pm_regs.pm_cntrl is a global
415 if (kernel) {
416 if (user)
417 pm_regs.pm_cntrl.count_mode = CBE_COUNT_ALL_MODES;
418 else
419 pm_regs.pm_cntrl.count_mode =
420 CBE_COUNT_SUPERVISOR_MODE;
421 } else {
422 if (user)
423 pm_regs.pm_cntrl.count_mode = CBE_COUNT_PROBLEM_MODE;
424 else
425 pm_regs.pm_cntrl.count_mode =
426 CBE_COUNT_HYPERVISOR_MODE;
430 static inline void enable_ctr(u32 cpu, u32 ctr, u32 *pm07_cntrl)
433 pm07_cntrl[ctr] |= CBE_PM_CTR_ENABLE;
434 cbe_write_pm07_control(cpu, ctr, pm07_cntrl[ctr]);
438 * Oprofile is expected to collect data on all CPUs simultaneously.
439 * However, there is one set of performance counters per node. There are
440 * two hardware threads or virtual CPUs on each node. Hence, OProfile must
441 * multiplex in time the performance counter collection on the two virtual
442 * CPUs. The multiplexing of the performance counters is done by this
443 * virtual counter routine.
445 * The pmc_values used below is defined as 'per-cpu' but its use is
446 * more akin to 'per-node'. We need to store two sets of counter
447 * values per node -- one for the previous run and one for the next.
448 * The per-cpu[NR_PHYS_CTRS] gives us the storage we need. Each odd/even
449 * pair of per-cpu arrays is used for storing the previous and next
450 * pmc values for a given node.
451 * NOTE: We use the per-cpu variable to improve cache performance.
453 * This routine will alternate loading the virtual counters for
454 * virtual CPUs
456 static void cell_virtual_cntr(unsigned long data)
458 int i, prev_hdw_thread, next_hdw_thread;
459 u32 cpu;
460 unsigned long flags;
463 * Make sure that the interrupt_hander and the virt counter are
464 * not both playing with the counters on the same node.
467 spin_lock_irqsave(&cntr_lock, flags);
469 prev_hdw_thread = hdw_thread;
471 /* switch the cpu handling the interrupts */
472 hdw_thread = 1 ^ hdw_thread;
473 next_hdw_thread = hdw_thread;
475 pm_regs.group_control = 0;
476 pm_regs.debug_bus_control = 0;
478 for (i = 0; i < NUM_INPUT_BUS_WORDS; i++)
479 input_bus[i] = 0xff;
482 * There are some per thread events. Must do the
483 * set event, for the thread that is being started
485 for (i = 0; i < num_counters; i++)
486 set_pm_event(i,
487 pmc_cntrl[next_hdw_thread][i].evnts,
488 pmc_cntrl[next_hdw_thread][i].masks);
491 * The following is done only once per each node, but
492 * we need cpu #, not node #, to pass to the cbe_xxx functions.
494 for_each_online_cpu(cpu) {
495 if (cbe_get_hw_thread_id(cpu))
496 continue;
499 * stop counters, save counter values, restore counts
500 * for previous thread
502 cbe_disable_pm(cpu);
503 cbe_disable_pm_interrupts(cpu);
504 for (i = 0; i < num_counters; i++) {
505 per_cpu(pmc_values, cpu + prev_hdw_thread)[i]
506 = cbe_read_ctr(cpu, i);
508 if (per_cpu(pmc_values, cpu + next_hdw_thread)[i]
509 == 0xFFFFFFFF)
510 /* If the cntr value is 0xffffffff, we must
511 * reset that to 0xfffffff0 when the current
512 * thread is restarted. This will generate a
513 * new interrupt and make sure that we never
514 * restore the counters to the max value. If
515 * the counters were restored to the max value,
516 * they do not increment and no interrupts are
517 * generated. Hence no more samples will be
518 * collected on that cpu.
520 cbe_write_ctr(cpu, i, 0xFFFFFFF0);
521 else
522 cbe_write_ctr(cpu, i,
523 per_cpu(pmc_values,
524 cpu +
525 next_hdw_thread)[i]);
529 * Switch to the other thread. Change the interrupt
530 * and control regs to be scheduled on the CPU
531 * corresponding to the thread to execute.
533 for (i = 0; i < num_counters; i++) {
534 if (pmc_cntrl[next_hdw_thread][i].enabled) {
536 * There are some per thread events.
537 * Must do the set event, enable_cntr
538 * for each cpu.
540 enable_ctr(cpu, i,
541 pm_regs.pm07_cntrl);
542 } else {
543 cbe_write_pm07_control(cpu, i, 0);
547 /* Enable interrupts on the CPU thread that is starting */
548 cbe_enable_pm_interrupts(cpu, next_hdw_thread,
549 virt_cntr_inter_mask);
550 cbe_enable_pm(cpu);
553 spin_unlock_irqrestore(&cntr_lock, flags);
555 mod_timer(&timer_virt_cntr, jiffies + HZ / 10);
558 static void start_virt_cntrs(void)
560 init_timer(&timer_virt_cntr);
561 timer_virt_cntr.function = cell_virtual_cntr;
562 timer_virt_cntr.data = 0UL;
563 timer_virt_cntr.expires = jiffies + HZ / 10;
564 add_timer(&timer_virt_cntr);
567 static int cell_reg_setup_spu_cycles(struct op_counter_config *ctr,
568 struct op_system_config *sys, int num_ctrs)
570 spu_cycle_reset = ctr[0].count;
573 * Each node will need to make the rtas call to start
574 * and stop SPU profiling. Get the token once and store it.
576 spu_rtas_token = rtas_token("ibm,cbe-spu-perftools");
578 if (unlikely(spu_rtas_token == RTAS_UNKNOWN_SERVICE)) {
579 printk(KERN_ERR
580 "%s: rtas token ibm,cbe-spu-perftools unknown\n",
581 __func__);
582 return -EIO;
584 return 0;
587 /* Unfortunately, the hardware will only support event profiling
588 * on one SPU per node at a time. Therefore, we must time slice
589 * the profiling across all SPUs in the node. Note, we do this
590 * in parallel for each node. The following routine is called
591 * periodically based on kernel timer to switch which SPU is
592 * being monitored in a round robbin fashion.
594 static void spu_evnt_swap(unsigned long data)
596 int node;
597 int cur_phys_spu, nxt_phys_spu, cur_spu_evnt_phys_spu_indx;
598 unsigned long flags;
599 int cpu;
600 int ret;
601 u32 interrupt_mask;
604 /* enable interrupts on cntr 0 */
605 interrupt_mask = CBE_PM_CTR_OVERFLOW_INTR(0);
607 hdw_thread = 0;
609 /* Make sure spu event interrupt handler and spu event swap
610 * don't access the counters simultaneously.
612 spin_lock_irqsave(&cntr_lock, flags);
614 cur_spu_evnt_phys_spu_indx = spu_evnt_phys_spu_indx;
616 if (++(spu_evnt_phys_spu_indx) == NUM_SPUS_PER_NODE)
617 spu_evnt_phys_spu_indx = 0;
619 pm_signal[0].sub_unit = spu_evnt_phys_spu_indx;
620 pm_signal[1].sub_unit = spu_evnt_phys_spu_indx;
621 pm_signal[2].sub_unit = spu_evnt_phys_spu_indx;
623 /* switch the SPU being profiled on each node */
624 for_each_online_cpu(cpu) {
625 if (cbe_get_hw_thread_id(cpu))
626 continue;
628 node = cbe_cpu_to_node(cpu);
629 cur_phys_spu = (node * NUM_SPUS_PER_NODE)
630 + cur_spu_evnt_phys_spu_indx;
631 nxt_phys_spu = (node * NUM_SPUS_PER_NODE)
632 + spu_evnt_phys_spu_indx;
635 * stop counters, save counter values, restore counts
636 * for previous physical SPU
638 cbe_disable_pm(cpu);
639 cbe_disable_pm_interrupts(cpu);
641 spu_pm_cnt[cur_phys_spu]
642 = cbe_read_ctr(cpu, 0);
644 /* restore previous count for the next spu to sample */
645 /* NOTE, hardware issue, counter will not start if the
646 * counter value is at max (0xFFFFFFFF).
648 if (spu_pm_cnt[nxt_phys_spu] >= 0xFFFFFFFF)
649 cbe_write_ctr(cpu, 0, 0xFFFFFFF0);
650 else
651 cbe_write_ctr(cpu, 0, spu_pm_cnt[nxt_phys_spu]);
653 pm_rtas_reset_signals(cbe_cpu_to_node(cpu));
655 /* setup the debug bus measure the one event and
656 * the two events to route the next SPU's PC on
657 * the debug bus
659 ret = pm_rtas_activate_signals(cbe_cpu_to_node(cpu), 3);
660 if (ret)
661 printk(KERN_ERR "%s: pm_rtas_activate_signals failed, "
662 "SPU event swap\n", __func__);
664 /* clear the trace buffer, don't want to take PC for
665 * previous SPU*/
666 cbe_write_pm(cpu, trace_address, 0);
668 enable_ctr(cpu, 0, pm_regs.pm07_cntrl);
670 /* Enable interrupts on the CPU thread that is starting */
671 cbe_enable_pm_interrupts(cpu, hdw_thread,
672 interrupt_mask);
673 cbe_enable_pm(cpu);
676 spin_unlock_irqrestore(&cntr_lock, flags);
678 /* swap approximately every 0.1 seconds */
679 mod_timer(&timer_spu_event_swap, jiffies + HZ / 25);
682 static void start_spu_event_swap(void)
684 init_timer(&timer_spu_event_swap);
685 timer_spu_event_swap.function = spu_evnt_swap;
686 timer_spu_event_swap.data = 0UL;
687 timer_spu_event_swap.expires = jiffies + HZ / 25;
688 add_timer(&timer_spu_event_swap);
691 static int cell_reg_setup_spu_events(struct op_counter_config *ctr,
692 struct op_system_config *sys, int num_ctrs)
694 int i;
696 /* routine is called once for all nodes */
698 spu_evnt_phys_spu_indx = 0;
700 * For all events except PPU CYCLEs, each node will need to make
701 * the rtas cbe-perftools call to setup and reset the debug bus.
702 * Make the token lookup call once and store it in the global
703 * variable pm_rtas_token.
705 pm_rtas_token = rtas_token("ibm,cbe-perftools");
707 if (unlikely(pm_rtas_token == RTAS_UNKNOWN_SERVICE)) {
708 printk(KERN_ERR
709 "%s: rtas token ibm,cbe-perftools unknown\n",
710 __func__);
711 return -EIO;
714 /* setup the pm_control register settings,
715 * settings will be written per node by the
716 * cell_cpu_setup() function.
718 pm_regs.pm_cntrl.trace_buf_ovflw = 1;
720 /* Use the occurrence trace mode to have SPU PC saved
721 * to the trace buffer. Occurrence data in trace buffer
722 * is not used. Bit 2 must be set to store SPU addresses.
724 pm_regs.pm_cntrl.trace_mode = 2;
726 pm_regs.pm_cntrl.spu_addr_trace = 0x1; /* using debug bus
727 event 2 & 3 */
729 /* setup the debug bus event array with the SPU PC routing events.
730 * Note, pm_signal[0] will be filled in by set_pm_event() call below.
732 pm_signal[1].signal_group = SPU_PROFILE_EVENT_ADDR / 100;
733 pm_signal[1].bus_word = GET_BUS_WORD(SPU_PROFILE_EVENT_ADDR_MASK_A);
734 pm_signal[1].bit = SPU_PROFILE_EVENT_ADDR % 100;
735 pm_signal[1].sub_unit = spu_evnt_phys_spu_indx;
737 pm_signal[2].signal_group = SPU_PROFILE_EVENT_ADDR / 100;
738 pm_signal[2].bus_word = GET_BUS_WORD(SPU_PROFILE_EVENT_ADDR_MASK_B);
739 pm_signal[2].bit = SPU_PROFILE_EVENT_ADDR % 100;
740 pm_signal[2].sub_unit = spu_evnt_phys_spu_indx;
742 /* Set the user selected spu event to profile on,
743 * note, only one SPU profiling event is supported
745 num_counters = 1; /* Only support one SPU event at a time */
746 set_pm_event(0, ctr[0].event, ctr[0].unit_mask);
748 reset_value[0] = 0xFFFFFFFF - ctr[0].count;
750 /* global, used by cell_cpu_setup */
751 ctr_enabled |= 1;
753 /* Initialize the count for each SPU to the reset value */
754 for (i=0; i < MAX_NUMNODES * NUM_SPUS_PER_NODE; i++)
755 spu_pm_cnt[i] = reset_value[0];
757 return 0;
760 static int cell_reg_setup_ppu(struct op_counter_config *ctr,
761 struct op_system_config *sys, int num_ctrs)
763 /* routine is called once for all nodes */
764 int i, j, cpu;
766 num_counters = num_ctrs;
768 if (unlikely(num_ctrs > NR_PHYS_CTRS)) {
769 printk(KERN_ERR
770 "%s: Oprofile, number of specified events " \
771 "exceeds number of physical counters\n",
772 __func__);
773 return -EIO;
776 set_count_mode(sys->enable_kernel, sys->enable_user);
778 /* Setup the thread 0 events */
779 for (i = 0; i < num_ctrs; ++i) {
781 pmc_cntrl[0][i].evnts = ctr[i].event;
782 pmc_cntrl[0][i].masks = ctr[i].unit_mask;
783 pmc_cntrl[0][i].enabled = ctr[i].enabled;
784 pmc_cntrl[0][i].vcntr = i;
786 for_each_possible_cpu(j)
787 per_cpu(pmc_values, j)[i] = 0;
791 * Setup the thread 1 events, map the thread 0 event to the
792 * equivalent thread 1 event.
794 for (i = 0; i < num_ctrs; ++i) {
795 if ((ctr[i].event >= 2100) && (ctr[i].event <= 2111))
796 pmc_cntrl[1][i].evnts = ctr[i].event + 19;
797 else if (ctr[i].event == 2203)
798 pmc_cntrl[1][i].evnts = ctr[i].event;
799 else if ((ctr[i].event >= 2200) && (ctr[i].event <= 2215))
800 pmc_cntrl[1][i].evnts = ctr[i].event + 16;
801 else
802 pmc_cntrl[1][i].evnts = ctr[i].event;
804 pmc_cntrl[1][i].masks = ctr[i].unit_mask;
805 pmc_cntrl[1][i].enabled = ctr[i].enabled;
806 pmc_cntrl[1][i].vcntr = i;
809 for (i = 0; i < NUM_INPUT_BUS_WORDS; i++)
810 input_bus[i] = 0xff;
813 * Our counters count up, and "count" refers to
814 * how much before the next interrupt, and we interrupt
815 * on overflow. So we calculate the starting value
816 * which will give us "count" until overflow.
817 * Then we set the events on the enabled counters.
819 for (i = 0; i < num_counters; ++i) {
820 /* start with virtual counter set 0 */
821 if (pmc_cntrl[0][i].enabled) {
822 /* Using 32bit counters, reset max - count */
823 reset_value[i] = 0xFFFFFFFF - ctr[i].count;
824 set_pm_event(i,
825 pmc_cntrl[0][i].evnts,
826 pmc_cntrl[0][i].masks);
828 /* global, used by cell_cpu_setup */
829 ctr_enabled |= (1 << i);
833 /* initialize the previous counts for the virtual cntrs */
834 for_each_online_cpu(cpu)
835 for (i = 0; i < num_counters; ++i) {
836 per_cpu(pmc_values, cpu)[i] = reset_value[i];
839 return 0;
843 /* This function is called once for all cpus combined */
844 static int cell_reg_setup(struct op_counter_config *ctr,
845 struct op_system_config *sys, int num_ctrs)
847 int ret=0;
848 spu_cycle_reset = 0;
850 /* initialize the spu_arr_trace value, will be reset if
851 * doing spu event profiling.
853 pm_regs.group_control = 0;
854 pm_regs.debug_bus_control = 0;
855 pm_regs.pm_cntrl.stop_at_max = 1;
856 pm_regs.pm_cntrl.trace_mode = 0;
857 pm_regs.pm_cntrl.freeze = 1;
858 pm_regs.pm_cntrl.trace_buf_ovflw = 0;
859 pm_regs.pm_cntrl.spu_addr_trace = 0;
862 * For all events except PPU CYCLEs, each node will need to make
863 * the rtas cbe-perftools call to setup and reset the debug bus.
864 * Make the token lookup call once and store it in the global
865 * variable pm_rtas_token.
867 pm_rtas_token = rtas_token("ibm,cbe-perftools");
869 if (unlikely(pm_rtas_token == RTAS_UNKNOWN_SERVICE)) {
870 printk(KERN_ERR
871 "%s: rtas token ibm,cbe-perftools unknown\n",
872 __func__);
873 return -EIO;
876 if (ctr[0].event == SPU_CYCLES_EVENT_NUM) {
877 profiling_mode = SPU_PROFILING_CYCLES;
878 ret = cell_reg_setup_spu_cycles(ctr, sys, num_ctrs);
879 } else if ((ctr[0].event >= SPU_EVENT_NUM_START) &&
880 (ctr[0].event <= SPU_EVENT_NUM_STOP)) {
881 profiling_mode = SPU_PROFILING_EVENTS;
882 spu_cycle_reset = ctr[0].count;
884 /* for SPU event profiling, need to setup the
885 * pm_signal array with the events to route the
886 * SPU PC before making the FW call. Note, only
887 * one SPU event for profiling can be specified
888 * at a time.
890 cell_reg_setup_spu_events(ctr, sys, num_ctrs);
891 } else {
892 profiling_mode = PPU_PROFILING;
893 ret = cell_reg_setup_ppu(ctr, sys, num_ctrs);
896 return ret;
901 /* This function is called once for each cpu */
902 static int cell_cpu_setup(struct op_counter_config *cntr)
904 u32 cpu = smp_processor_id();
905 u32 num_enabled = 0;
906 int i;
907 int ret;
909 /* Cycle based SPU profiling does not use the performance
910 * counters. The trace array is configured to collect
911 * the data.
913 if (profiling_mode == SPU_PROFILING_CYCLES)
914 return 0;
916 /* There is one performance monitor per processor chip (i.e. node),
917 * so we only need to perform this function once per node.
919 if (cbe_get_hw_thread_id(cpu))
920 return 0;
922 /* Stop all counters */
923 cbe_disable_pm(cpu);
924 cbe_disable_pm_interrupts(cpu);
926 cbe_write_pm(cpu, pm_start_stop, 0);
927 cbe_write_pm(cpu, group_control, pm_regs.group_control);
928 cbe_write_pm(cpu, debug_bus_control, pm_regs.debug_bus_control);
929 write_pm_cntrl(cpu);
931 for (i = 0; i < num_counters; ++i) {
932 if (ctr_enabled & (1 << i)) {
933 pm_signal[num_enabled].cpu = cbe_cpu_to_node(cpu);
934 num_enabled++;
939 * The pm_rtas_activate_signals will return -EIO if the FW
940 * call failed.
942 if (profiling_mode == SPU_PROFILING_EVENTS) {
943 /* For SPU event profiling also need to setup the
944 * pm interval timer
946 ret = pm_rtas_activate_signals(cbe_cpu_to_node(cpu),
947 num_enabled+2);
948 /* store PC from debug bus to Trace buffer as often
949 * as possible (every 10 cycles)
951 cbe_write_pm(cpu, pm_interval, NUM_INTERVAL_CYC);
952 return ret;
953 } else
954 return pm_rtas_activate_signals(cbe_cpu_to_node(cpu),
955 num_enabled);
958 #define ENTRIES 303
959 #define MAXLFSR 0xFFFFFF
961 /* precomputed table of 24 bit LFSR values */
962 static int initial_lfsr[] = {
963 8221349, 12579195, 5379618, 10097839, 7512963, 7519310, 3955098, 10753424,
964 15507573, 7458917, 285419, 2641121, 9780088, 3915503, 6668768, 1548716,
965 4885000, 8774424, 9650099, 2044357, 2304411, 9326253, 10332526, 4421547,
966 3440748, 10179459, 13332843, 10375561, 1313462, 8375100, 5198480, 6071392,
967 9341783, 1526887, 3985002, 1439429, 13923762, 7010104, 11969769, 4547026,
968 2040072, 4025602, 3437678, 7939992, 11444177, 4496094, 9803157, 10745556,
969 3671780, 4257846, 5662259, 13196905, 3237343, 12077182, 16222879, 7587769,
970 14706824, 2184640, 12591135, 10420257, 7406075, 3648978, 11042541, 15906893,
971 11914928, 4732944, 10695697, 12928164, 11980531, 4430912, 11939291, 2917017,
972 6119256, 4172004, 9373765, 8410071, 14788383, 5047459, 5474428, 1737756,
973 15967514, 13351758, 6691285, 8034329, 2856544, 14394753, 11310160, 12149558,
974 7487528, 7542781, 15668898, 12525138, 12790975, 3707933, 9106617, 1965401,
975 16219109, 12801644, 2443203, 4909502, 8762329, 3120803, 6360315, 9309720,
976 15164599, 10844842, 4456529, 6667610, 14924259, 884312, 6234963, 3326042,
977 15973422, 13919464, 5272099, 6414643, 3909029, 2764324, 5237926, 4774955,
978 10445906, 4955302, 5203726, 10798229, 11443419, 2303395, 333836, 9646934,
979 3464726, 4159182, 568492, 995747, 10318756, 13299332, 4836017, 8237783,
980 3878992, 2581665, 11394667, 5672745, 14412947, 3159169, 9094251, 16467278,
981 8671392, 15230076, 4843545, 7009238, 15504095, 1494895, 9627886, 14485051,
982 8304291, 252817, 12421642, 16085736, 4774072, 2456177, 4160695, 15409741,
983 4902868, 5793091, 13162925, 16039714, 782255, 11347835, 14884586, 366972,
984 16308990, 11913488, 13390465, 2958444, 10340278, 1177858, 1319431, 10426302,
985 2868597, 126119, 5784857, 5245324, 10903900, 16436004, 3389013, 1742384,
986 14674502, 10279218, 8536112, 10364279, 6877778, 14051163, 1025130, 6072469,
987 1988305, 8354440, 8216060, 16342977, 13112639, 3976679, 5913576, 8816697,
988 6879995, 14043764, 3339515, 9364420, 15808858, 12261651, 2141560, 5636398,
989 10345425, 10414756, 781725, 6155650, 4746914, 5078683, 7469001, 6799140,
990 10156444, 9667150, 10116470, 4133858, 2121972, 1124204, 1003577, 1611214,
991 14304602, 16221850, 13878465, 13577744, 3629235, 8772583, 10881308, 2410386,
992 7300044, 5378855, 9301235, 12755149, 4977682, 8083074, 10327581, 6395087,
993 9155434, 15501696, 7514362, 14520507, 15808945, 3244584, 4741962, 9658130,
994 14336147, 8654727, 7969093, 15759799, 14029445, 5038459, 9894848, 8659300,
995 13699287, 8834306, 10712885, 14753895, 10410465, 3373251, 309501, 9561475,
996 5526688, 14647426, 14209836, 5339224, 207299, 14069911, 8722990, 2290950,
997 3258216, 12505185, 6007317, 9218111, 14661019, 10537428, 11731949, 9027003,
998 6641507, 9490160, 200241, 9720425, 16277895, 10816638, 1554761, 10431375,
999 7467528, 6790302, 3429078, 14633753, 14428997, 11463204, 3576212, 2003426,
1000 6123687, 820520, 9992513, 15784513, 5778891, 6428165, 8388607
1004 * The hardware uses an LFSR counting sequence to determine when to capture
1005 * the SPU PCs. An LFSR sequence is like a puesdo random number sequence
1006 * where each number occurs once in the sequence but the sequence is not in
1007 * numerical order. The SPU PC capture is done when the LFSR sequence reaches
1008 * the last value in the sequence. Hence the user specified value N
1009 * corresponds to the LFSR number that is N from the end of the sequence.
1011 * To avoid the time to compute the LFSR, a lookup table is used. The 24 bit
1012 * LFSR sequence is broken into four ranges. The spacing of the precomputed
1013 * values is adjusted in each range so the error between the user specifed
1014 * number (N) of events between samples and the actual number of events based
1015 * on the precomputed value will be les then about 6.2%. Note, if the user
1016 * specifies N < 2^16, the LFSR value that is 2^16 from the end will be used.
1017 * This is to prevent the loss of samples because the trace buffer is full.
1019 * User specified N Step between Index in
1020 * precomputed values precomputed
1021 * table
1022 * 0 to 2^16-1 ---- 0
1023 * 2^16 to 2^16+2^19-1 2^12 1 to 128
1024 * 2^16+2^19 to 2^16+2^19+2^22-1 2^15 129 to 256
1025 * 2^16+2^19+2^22 to 2^24-1 2^18 257 to 302
1028 * For example, the LFSR values in the second range are computed for 2^16,
1029 * 2^16+2^12, ... , 2^19-2^16, 2^19 and stored in the table at indicies
1030 * 1, 2,..., 127, 128.
1032 * The 24 bit LFSR value for the nth number in the sequence can be
1033 * calculated using the following code:
1035 * #define size 24
1036 * int calculate_lfsr(int n)
1038 * int i;
1039 * unsigned int newlfsr0;
1040 * unsigned int lfsr = 0xFFFFFF;
1041 * unsigned int howmany = n;
1043 * for (i = 2; i < howmany + 2; i++) {
1044 * newlfsr0 = (((lfsr >> (size - 1 - 0)) & 1) ^
1045 * ((lfsr >> (size - 1 - 1)) & 1) ^
1046 * (((lfsr >> (size - 1 - 6)) & 1) ^
1047 * ((lfsr >> (size - 1 - 23)) & 1)));
1049 * lfsr >>= 1;
1050 * lfsr = lfsr | (newlfsr0 << (size - 1));
1052 * return lfsr;
1056 #define V2_16 (0x1 << 16)
1057 #define V2_19 (0x1 << 19)
1058 #define V2_22 (0x1 << 22)
1060 static int calculate_lfsr(int n)
1063 * The ranges and steps are in powers of 2 so the calculations
1064 * can be done using shifts rather then divide.
1066 int index;
1068 if ((n >> 16) == 0)
1069 index = 0;
1070 else if (((n - V2_16) >> 19) == 0)
1071 index = ((n - V2_16) >> 12) + 1;
1072 else if (((n - V2_16 - V2_19) >> 22) == 0)
1073 index = ((n - V2_16 - V2_19) >> 15 ) + 1 + 128;
1074 else if (((n - V2_16 - V2_19 - V2_22) >> 24) == 0)
1075 index = ((n - V2_16 - V2_19 - V2_22) >> 18 ) + 1 + 256;
1076 else
1077 index = ENTRIES-1;
1079 /* make sure index is valid */
1080 if ((index >= ENTRIES) || (index < 0))
1081 index = ENTRIES-1;
1083 return initial_lfsr[index];
1086 static int pm_rtas_activate_spu_profiling(u32 node)
1088 int ret, i;
1089 struct pm_signal pm_signal_local[NUM_SPUS_PER_NODE];
1092 * Set up the rtas call to configure the debug bus to
1093 * route the SPU PCs. Setup the pm_signal for each SPU
1095 for (i = 0; i < ARRAY_SIZE(pm_signal_local); i++) {
1096 pm_signal_local[i].cpu = node;
1097 pm_signal_local[i].signal_group = 41;
1098 /* spu i on word (i/2) */
1099 pm_signal_local[i].bus_word = 1 << i / 2;
1100 /* spu i */
1101 pm_signal_local[i].sub_unit = i;
1102 pm_signal_local[i].bit = 63;
1105 ret = rtas_ibm_cbe_perftools(SUBFUNC_ACTIVATE,
1106 PASSTHRU_ENABLE, pm_signal_local,
1107 (ARRAY_SIZE(pm_signal_local)
1108 * sizeof(struct pm_signal)));
1110 if (unlikely(ret)) {
1111 printk(KERN_WARNING "%s: rtas returned: %d\n",
1112 __func__, ret);
1113 return -EIO;
1116 return 0;
1119 #ifdef CONFIG_CPU_FREQ
1120 static int
1121 oprof_cpufreq_notify(struct notifier_block *nb, unsigned long val, void *data)
1123 int ret = 0;
1124 struct cpufreq_freqs *frq = data;
1125 if ((val == CPUFREQ_PRECHANGE && frq->old < frq->new) ||
1126 (val == CPUFREQ_POSTCHANGE && frq->old > frq->new) ||
1127 (val == CPUFREQ_RESUMECHANGE || val == CPUFREQ_SUSPENDCHANGE))
1128 set_spu_profiling_frequency(frq->new, spu_cycle_reset);
1129 return ret;
1132 static struct notifier_block cpu_freq_notifier_block = {
1133 .notifier_call = oprof_cpufreq_notify
1135 #endif
1138 * Note the generic OProfile stop calls do not support returning
1139 * an error on stop. Hence, will not return an error if the FW
1140 * calls fail on stop. Failure to reset the debug bus is not an issue.
1141 * Failure to disable the SPU profiling is not an issue. The FW calls
1142 * to enable the performance counters and debug bus will work even if
1143 * the hardware was not cleanly reset.
1145 static void cell_global_stop_spu_cycles(void)
1147 int subfunc, rtn_value;
1148 unsigned int lfsr_value;
1149 int cpu;
1151 oprofile_running = 0;
1152 smp_wmb();
1154 #ifdef CONFIG_CPU_FREQ
1155 cpufreq_unregister_notifier(&cpu_freq_notifier_block,
1156 CPUFREQ_TRANSITION_NOTIFIER);
1157 #endif
1159 for_each_online_cpu(cpu) {
1160 if (cbe_get_hw_thread_id(cpu))
1161 continue;
1163 subfunc = 3; /*
1164 * 2 - activate SPU tracing,
1165 * 3 - deactivate
1167 lfsr_value = 0x8f100000;
1169 rtn_value = rtas_call(spu_rtas_token, 3, 1, NULL,
1170 subfunc, cbe_cpu_to_node(cpu),
1171 lfsr_value);
1173 if (unlikely(rtn_value != 0)) {
1174 printk(KERN_ERR
1175 "%s: rtas call ibm,cbe-spu-perftools " \
1176 "failed, return = %d\n",
1177 __func__, rtn_value);
1180 /* Deactivate the signals */
1181 pm_rtas_reset_signals(cbe_cpu_to_node(cpu));
1184 stop_spu_profiling_cycles();
1187 static void cell_global_stop_spu_events(void)
1189 int cpu;
1190 oprofile_running = 0;
1192 stop_spu_profiling_events();
1193 smp_wmb();
1195 for_each_online_cpu(cpu) {
1196 if (cbe_get_hw_thread_id(cpu))
1197 continue;
1199 cbe_sync_irq(cbe_cpu_to_node(cpu));
1200 /* Stop the counters */
1201 cbe_disable_pm(cpu);
1202 cbe_write_pm07_control(cpu, 0, 0);
1204 /* Deactivate the signals */
1205 pm_rtas_reset_signals(cbe_cpu_to_node(cpu));
1207 /* Deactivate interrupts */
1208 cbe_disable_pm_interrupts(cpu);
1210 del_timer_sync(&timer_spu_event_swap);
1213 static void cell_global_stop_ppu(void)
1215 int cpu;
1218 * This routine will be called once for the system.
1219 * There is one performance monitor per node, so we
1220 * only need to perform this function once per node.
1222 del_timer_sync(&timer_virt_cntr);
1223 oprofile_running = 0;
1224 smp_wmb();
1226 for_each_online_cpu(cpu) {
1227 if (cbe_get_hw_thread_id(cpu))
1228 continue;
1230 cbe_sync_irq(cbe_cpu_to_node(cpu));
1231 /* Stop the counters */
1232 cbe_disable_pm(cpu);
1234 /* Deactivate the signals */
1235 pm_rtas_reset_signals(cbe_cpu_to_node(cpu));
1237 /* Deactivate interrupts */
1238 cbe_disable_pm_interrupts(cpu);
1242 static void cell_global_stop(void)
1244 if (profiling_mode == PPU_PROFILING)
1245 cell_global_stop_ppu();
1246 else if (profiling_mode == SPU_PROFILING_EVENTS)
1247 cell_global_stop_spu_events();
1248 else
1249 cell_global_stop_spu_cycles();
1252 static int cell_global_start_spu_cycles(struct op_counter_config *ctr)
1254 int subfunc;
1255 unsigned int lfsr_value;
1256 int cpu;
1257 int ret;
1258 int rtas_error;
1259 unsigned int cpu_khzfreq = 0;
1261 /* The SPU profiling uses time-based profiling based on
1262 * cpu frequency, so if configured with the CPU_FREQ
1263 * option, we should detect frequency changes and react
1264 * accordingly.
1266 #ifdef CONFIG_CPU_FREQ
1267 ret = cpufreq_register_notifier(&cpu_freq_notifier_block,
1268 CPUFREQ_TRANSITION_NOTIFIER);
1269 if (ret < 0)
1270 /* this is not a fatal error */
1271 printk(KERN_ERR "CPU freq change registration failed: %d\n",
1272 ret);
1274 else
1275 cpu_khzfreq = cpufreq_quick_get(smp_processor_id());
1276 #endif
1278 set_spu_profiling_frequency(cpu_khzfreq, spu_cycle_reset);
1280 for_each_online_cpu(cpu) {
1281 if (cbe_get_hw_thread_id(cpu))
1282 continue;
1285 * Setup SPU cycle-based profiling.
1286 * Set perf_mon_control bit 0 to a zero before
1287 * enabling spu collection hardware.
1289 cbe_write_pm(cpu, pm_control, 0);
1291 if (spu_cycle_reset > MAX_SPU_COUNT)
1292 /* use largest possible value */
1293 lfsr_value = calculate_lfsr(MAX_SPU_COUNT-1);
1294 else
1295 lfsr_value = calculate_lfsr(spu_cycle_reset);
1297 /* must use a non zero value. Zero disables data collection. */
1298 if (lfsr_value == 0)
1299 lfsr_value = calculate_lfsr(1);
1301 lfsr_value = lfsr_value << 8; /* shift lfsr to correct
1302 * register location
1305 /* debug bus setup */
1306 ret = pm_rtas_activate_spu_profiling(cbe_cpu_to_node(cpu));
1308 if (unlikely(ret)) {
1309 rtas_error = ret;
1310 goto out;
1314 subfunc = 2; /* 2 - activate SPU tracing, 3 - deactivate */
1316 /* start profiling */
1317 ret = rtas_call(spu_rtas_token, 3, 1, NULL, subfunc,
1318 cbe_cpu_to_node(cpu), lfsr_value);
1320 if (unlikely(ret != 0)) {
1321 printk(KERN_ERR
1322 "%s: rtas call ibm,cbe-spu-perftools failed, " \
1323 "return = %d\n", __func__, ret);
1324 rtas_error = -EIO;
1325 goto out;
1329 rtas_error = start_spu_profiling_cycles(spu_cycle_reset);
1330 if (rtas_error)
1331 goto out_stop;
1333 oprofile_running = 1;
1334 return 0;
1336 out_stop:
1337 cell_global_stop_spu_cycles(); /* clean up the PMU/debug bus */
1338 out:
1339 return rtas_error;
1342 static int cell_global_start_spu_events(struct op_counter_config *ctr)
1344 int cpu;
1345 u32 interrupt_mask = 0;
1346 int rtn = 0;
1348 hdw_thread = 0;
1350 /* spu event profiling, uses the performance counters to generate
1351 * an interrupt. The hardware is setup to store the SPU program
1352 * counter into the trace array. The occurrence mode is used to
1353 * enable storing data to the trace buffer. The bits are set
1354 * to send/store the SPU address in the trace buffer. The debug
1355 * bus must be setup to route the SPU program counter onto the
1356 * debug bus. The occurrence data in the trace buffer is not used.
1359 /* This routine gets called once for the system.
1360 * There is one performance monitor per node, so we
1361 * only need to perform this function once per node.
1364 for_each_online_cpu(cpu) {
1365 if (cbe_get_hw_thread_id(cpu))
1366 continue;
1369 * Setup SPU event-based profiling.
1370 * Set perf_mon_control bit 0 to a zero before
1371 * enabling spu collection hardware.
1373 * Only support one SPU event on one SPU per node.
1375 if (ctr_enabled & 1) {
1376 cbe_write_ctr(cpu, 0, reset_value[0]);
1377 enable_ctr(cpu, 0, pm_regs.pm07_cntrl);
1378 interrupt_mask |=
1379 CBE_PM_CTR_OVERFLOW_INTR(0);
1380 } else {
1381 /* Disable counter */
1382 cbe_write_pm07_control(cpu, 0, 0);
1385 cbe_get_and_clear_pm_interrupts(cpu);
1386 cbe_enable_pm_interrupts(cpu, hdw_thread, interrupt_mask);
1387 cbe_enable_pm(cpu);
1389 /* clear the trace buffer */
1390 cbe_write_pm(cpu, trace_address, 0);
1393 /* Start the timer to time slice collecting the event profile
1394 * on each of the SPUs. Note, can collect profile on one SPU
1395 * per node at a time.
1397 start_spu_event_swap();
1398 start_spu_profiling_events();
1399 oprofile_running = 1;
1400 smp_wmb();
1402 return rtn;
1405 static int cell_global_start_ppu(struct op_counter_config *ctr)
1407 u32 cpu, i;
1408 u32 interrupt_mask = 0;
1410 /* This routine gets called once for the system.
1411 * There is one performance monitor per node, so we
1412 * only need to perform this function once per node.
1414 for_each_online_cpu(cpu) {
1415 if (cbe_get_hw_thread_id(cpu))
1416 continue;
1418 interrupt_mask = 0;
1420 for (i = 0; i < num_counters; ++i) {
1421 if (ctr_enabled & (1 << i)) {
1422 cbe_write_ctr(cpu, i, reset_value[i]);
1423 enable_ctr(cpu, i, pm_regs.pm07_cntrl);
1424 interrupt_mask |= CBE_PM_CTR_OVERFLOW_INTR(i);
1425 } else {
1426 /* Disable counter */
1427 cbe_write_pm07_control(cpu, i, 0);
1431 cbe_get_and_clear_pm_interrupts(cpu);
1432 cbe_enable_pm_interrupts(cpu, hdw_thread, interrupt_mask);
1433 cbe_enable_pm(cpu);
1436 virt_cntr_inter_mask = interrupt_mask;
1437 oprofile_running = 1;
1438 smp_wmb();
1441 * NOTE: start_virt_cntrs will result in cell_virtual_cntr() being
1442 * executed which manipulates the PMU. We start the "virtual counter"
1443 * here so that we do not need to synchronize access to the PMU in
1444 * the above for-loop.
1446 start_virt_cntrs();
1448 return 0;
1451 static int cell_global_start(struct op_counter_config *ctr)
1453 if (profiling_mode == SPU_PROFILING_CYCLES)
1454 return cell_global_start_spu_cycles(ctr);
1455 else if (profiling_mode == SPU_PROFILING_EVENTS)
1456 return cell_global_start_spu_events(ctr);
1457 else
1458 return cell_global_start_ppu(ctr);
1462 /* The SPU interrupt handler
1464 * SPU event profiling works as follows:
1465 * The pm_signal[0] holds the one SPU event to be measured. It is routed on
1466 * the debug bus using word 0 or 1. The value of pm_signal[1] and
1467 * pm_signal[2] contain the necessary events to route the SPU program
1468 * counter for the selected SPU onto the debug bus using words 2 and 3.
1469 * The pm_interval register is setup to write the SPU PC value into the
1470 * trace buffer at the maximum rate possible. The trace buffer is configured
1471 * to store the PCs, wrapping when it is full. The performance counter is
1472 * initialized to the max hardware count minus the number of events, N, between
1473 * samples. Once the N events have occurred, a HW counter overflow occurs
1474 * causing the generation of a HW counter interrupt which also stops the
1475 * writing of the SPU PC values to the trace buffer. Hence the last PC
1476 * written to the trace buffer is the SPU PC that we want. Unfortunately,
1477 * we have to read from the beginning of the trace buffer to get to the
1478 * last value written. We just hope the PPU has nothing better to do then
1479 * service this interrupt. The PC for the specific SPU being profiled is
1480 * extracted from the trace buffer processed and stored. The trace buffer
1481 * is cleared, interrupts are cleared, the counter is reset to max - N.
1482 * A kernel timer is used to periodically call the routine spu_evnt_swap()
1483 * to switch to the next physical SPU in the node to profile in round robbin
1484 * order. This way data is collected for all SPUs on the node. It does mean
1485 * that we need to use a relatively small value of N to ensure enough samples
1486 * on each SPU are collected each SPU is being profiled 1/8 of the time.
1487 * It may also be necessary to use a longer sample collection period.
1489 static void cell_handle_interrupt_spu(struct pt_regs *regs,
1490 struct op_counter_config *ctr)
1492 u32 cpu, cpu_tmp;
1493 u64 trace_entry;
1494 u32 interrupt_mask;
1495 u64 trace_buffer[2];
1496 u64 last_trace_buffer;
1497 u32 sample;
1498 u32 trace_addr;
1499 unsigned long sample_array_lock_flags;
1500 int spu_num;
1501 unsigned long flags;
1503 /* Make sure spu event interrupt handler and spu event swap
1504 * don't access the counters simultaneously.
1506 cpu = smp_processor_id();
1507 spin_lock_irqsave(&cntr_lock, flags);
1509 cpu_tmp = cpu;
1510 cbe_disable_pm(cpu);
1512 interrupt_mask = cbe_get_and_clear_pm_interrupts(cpu);
1514 sample = 0xABCDEF;
1515 trace_entry = 0xfedcba;
1516 last_trace_buffer = 0xdeadbeaf;
1518 if ((oprofile_running == 1) && (interrupt_mask != 0)) {
1519 /* disable writes to trace buff */
1520 cbe_write_pm(cpu, pm_interval, 0);
1522 /* only have one perf cntr being used, cntr 0 */
1523 if ((interrupt_mask & CBE_PM_CTR_OVERFLOW_INTR(0))
1524 && ctr[0].enabled)
1525 /* The SPU PC values will be read
1526 * from the trace buffer, reset counter
1529 cbe_write_ctr(cpu, 0, reset_value[0]);
1531 trace_addr = cbe_read_pm(cpu, trace_address);
1533 while (!(trace_addr & CBE_PM_TRACE_BUF_EMPTY)) {
1534 /* There is data in the trace buffer to process
1535 * Read the buffer until you get to the last
1536 * entry. This is the value we want.
1539 cbe_read_trace_buffer(cpu, trace_buffer);
1540 trace_addr = cbe_read_pm(cpu, trace_address);
1543 /* SPU Address 16 bit count format for 128 bit
1544 * HW trace buffer is used for the SPU PC storage
1545 * HDR bits 0:15
1546 * SPU Addr 0 bits 16:31
1547 * SPU Addr 1 bits 32:47
1548 * unused bits 48:127
1550 * HDR: bit4 = 1 SPU Address 0 valid
1551 * HDR: bit5 = 1 SPU Address 1 valid
1552 * - unfortunately, the valid bits don't seem to work
1554 * Note trace_buffer[0] holds bits 0:63 of the HW
1555 * trace buffer, trace_buffer[1] holds bits 64:127
1558 trace_entry = trace_buffer[0]
1559 & 0x00000000FFFF0000;
1561 /* only top 16 of the 18 bit SPU PC address
1562 * is stored in trace buffer, hence shift right
1563 * by 16 -2 bits */
1564 sample = trace_entry >> 14;
1565 last_trace_buffer = trace_buffer[0];
1567 spu_num = spu_evnt_phys_spu_indx
1568 + (cbe_cpu_to_node(cpu) * NUM_SPUS_PER_NODE);
1570 /* make sure only one process at a time is calling
1571 * spu_sync_buffer()
1573 spin_lock_irqsave(&oprof_spu_smpl_arry_lck,
1574 sample_array_lock_flags);
1575 spu_sync_buffer(spu_num, &sample, 1);
1576 spin_unlock_irqrestore(&oprof_spu_smpl_arry_lck,
1577 sample_array_lock_flags);
1579 smp_wmb(); /* insure spu event buffer updates are written
1580 * don't want events intermingled... */
1582 /* The counters were frozen by the interrupt.
1583 * Reenable the interrupt and restart the counters.
1585 cbe_write_pm(cpu, pm_interval, NUM_INTERVAL_CYC);
1586 cbe_enable_pm_interrupts(cpu, hdw_thread,
1587 virt_cntr_inter_mask);
1589 /* clear the trace buffer, re-enable writes to trace buff */
1590 cbe_write_pm(cpu, trace_address, 0);
1591 cbe_write_pm(cpu, pm_interval, NUM_INTERVAL_CYC);
1593 /* The writes to the various performance counters only writes
1594 * to a latch. The new values (interrupt setting bits, reset
1595 * counter value etc.) are not copied to the actual registers
1596 * until the performance monitor is enabled. In order to get
1597 * this to work as desired, the performance monitor needs to
1598 * be disabled while writing to the latches. This is a
1599 * HW design issue.
1601 write_pm_cntrl(cpu);
1602 cbe_enable_pm(cpu);
1604 spin_unlock_irqrestore(&cntr_lock, flags);
1607 static void cell_handle_interrupt_ppu(struct pt_regs *regs,
1608 struct op_counter_config *ctr)
1610 u32 cpu;
1611 u64 pc;
1612 int is_kernel;
1613 unsigned long flags = 0;
1614 u32 interrupt_mask;
1615 int i;
1617 cpu = smp_processor_id();
1620 * Need to make sure the interrupt handler and the virt counter
1621 * routine are not running at the same time. See the
1622 * cell_virtual_cntr() routine for additional comments.
1624 spin_lock_irqsave(&cntr_lock, flags);
1627 * Need to disable and reenable the performance counters
1628 * to get the desired behavior from the hardware. This
1629 * is hardware specific.
1632 cbe_disable_pm(cpu);
1634 interrupt_mask = cbe_get_and_clear_pm_interrupts(cpu);
1637 * If the interrupt mask has been cleared, then the virt cntr
1638 * has cleared the interrupt. When the thread that generated
1639 * the interrupt is restored, the data count will be restored to
1640 * 0xffffff0 to cause the interrupt to be regenerated.
1643 if ((oprofile_running == 1) && (interrupt_mask != 0)) {
1644 pc = regs->nip;
1645 is_kernel = is_kernel_addr(pc);
1647 for (i = 0; i < num_counters; ++i) {
1648 if ((interrupt_mask & CBE_PM_CTR_OVERFLOW_INTR(i))
1649 && ctr[i].enabled) {
1650 oprofile_add_ext_sample(pc, regs, i, is_kernel);
1651 cbe_write_ctr(cpu, i, reset_value[i]);
1656 * The counters were frozen by the interrupt.
1657 * Reenable the interrupt and restart the counters.
1658 * If there was a race between the interrupt handler and
1659 * the virtual counter routine. The virtual counter
1660 * routine may have cleared the interrupts. Hence must
1661 * use the virt_cntr_inter_mask to re-enable the interrupts.
1663 cbe_enable_pm_interrupts(cpu, hdw_thread,
1664 virt_cntr_inter_mask);
1667 * The writes to the various performance counters only writes
1668 * to a latch. The new values (interrupt setting bits, reset
1669 * counter value etc.) are not copied to the actual registers
1670 * until the performance monitor is enabled. In order to get
1671 * this to work as desired, the performance monitor needs to
1672 * be disabled while writing to the latches. This is a
1673 * HW design issue.
1675 cbe_enable_pm(cpu);
1677 spin_unlock_irqrestore(&cntr_lock, flags);
1680 static void cell_handle_interrupt(struct pt_regs *regs,
1681 struct op_counter_config *ctr)
1683 if (profiling_mode == PPU_PROFILING)
1684 cell_handle_interrupt_ppu(regs, ctr);
1685 else
1686 cell_handle_interrupt_spu(regs, ctr);
1690 * This function is called from the generic OProfile
1691 * driver. When profiling PPUs, we need to do the
1692 * generic sync start; otherwise, do spu_sync_start.
1694 static int cell_sync_start(void)
1696 if ((profiling_mode == SPU_PROFILING_CYCLES) ||
1697 (profiling_mode == SPU_PROFILING_EVENTS))
1698 return spu_sync_start();
1699 else
1700 return DO_GENERIC_SYNC;
1703 static int cell_sync_stop(void)
1705 if ((profiling_mode == SPU_PROFILING_CYCLES) ||
1706 (profiling_mode == SPU_PROFILING_EVENTS))
1707 return spu_sync_stop();
1708 else
1709 return 1;
1712 struct op_powerpc_model op_model_cell = {
1713 .reg_setup = cell_reg_setup,
1714 .cpu_setup = cell_cpu_setup,
1715 .global_start = cell_global_start,
1716 .global_stop = cell_global_stop,
1717 .sync_start = cell_sync_start,
1718 .sync_stop = cell_sync_stop,
1719 .handle_interrupt = cell_handle_interrupt,