compat: Fix RT signal mask corruption via sigprocmask
[zen-stable.git] / arch / x86 / kernel / vm86_32.c
blob328cb37bb827915ccc3e87cc6518acd7ccf25686
1 /*
2 * Copyright (C) 1994 Linus Torvalds
4 * 29 dec 2001 - Fixed oopses caused by unchecked access to the vm86
5 * stack - Manfred Spraul <manfred@colorfullife.com>
7 * 22 mar 2002 - Manfred detected the stackfaults, but didn't handle
8 * them correctly. Now the emulation will be in a
9 * consistent state after stackfaults - Kasper Dupont
10 * <kasperd@daimi.au.dk>
12 * 22 mar 2002 - Added missing clear_IF in set_vflags_* Kasper Dupont
13 * <kasperd@daimi.au.dk>
15 * ?? ??? 2002 - Fixed premature returns from handle_vm86_fault
16 * caused by Kasper Dupont's changes - Stas Sergeev
18 * 4 apr 2002 - Fixed CHECK_IF_IN_TRAP broken by Stas' changes.
19 * Kasper Dupont <kasperd@daimi.au.dk>
21 * 9 apr 2002 - Changed syntax of macros in handle_vm86_fault.
22 * Kasper Dupont <kasperd@daimi.au.dk>
24 * 9 apr 2002 - Changed stack access macros to jump to a label
25 * instead of returning to userspace. This simplifies
26 * do_int, and is needed by handle_vm6_fault. Kasper
27 * Dupont <kasperd@daimi.au.dk>
31 #include <linux/capability.h>
32 #include <linux/errno.h>
33 #include <linux/interrupt.h>
34 #include <linux/sched.h>
35 #include <linux/kernel.h>
36 #include <linux/signal.h>
37 #include <linux/string.h>
38 #include <linux/mm.h>
39 #include <linux/smp.h>
40 #include <linux/highmem.h>
41 #include <linux/ptrace.h>
42 #include <linux/audit.h>
43 #include <linux/stddef.h>
45 #include <asm/uaccess.h>
46 #include <asm/io.h>
47 #include <asm/tlbflush.h>
48 #include <asm/irq.h>
49 #include <asm/syscalls.h>
52 * Known problems:
54 * Interrupt handling is not guaranteed:
55 * - a real x86 will disable all interrupts for one instruction
56 * after a "mov ss,xx" to make stack handling atomic even without
57 * the 'lss' instruction. We can't guarantee this in v86 mode,
58 * as the next instruction might result in a page fault or similar.
59 * - a real x86 will have interrupts disabled for one instruction
60 * past the 'sti' that enables them. We don't bother with all the
61 * details yet.
63 * Let's hope these problems do not actually matter for anything.
67 #define KVM86 ((struct kernel_vm86_struct *)regs)
68 #define VMPI KVM86->vm86plus
72 * 8- and 16-bit register defines..
74 #define AL(regs) (((unsigned char *)&((regs)->pt.ax))[0])
75 #define AH(regs) (((unsigned char *)&((regs)->pt.ax))[1])
76 #define IP(regs) (*(unsigned short *)&((regs)->pt.ip))
77 #define SP(regs) (*(unsigned short *)&((regs)->pt.sp))
80 * virtual flags (16 and 32-bit versions)
82 #define VFLAGS (*(unsigned short *)&(current->thread.v86flags))
83 #define VEFLAGS (current->thread.v86flags)
85 #define set_flags(X, new, mask) \
86 ((X) = ((X) & ~(mask)) | ((new) & (mask)))
88 #define SAFE_MASK (0xDD5)
89 #define RETURN_MASK (0xDFF)
91 /* convert kernel_vm86_regs to vm86_regs */
92 static int copy_vm86_regs_to_user(struct vm86_regs __user *user,
93 const struct kernel_vm86_regs *regs)
95 int ret = 0;
98 * kernel_vm86_regs is missing gs, so copy everything up to
99 * (but not including) orig_eax, and then rest including orig_eax.
101 ret += copy_to_user(user, regs, offsetof(struct kernel_vm86_regs, pt.orig_ax));
102 ret += copy_to_user(&user->orig_eax, &regs->pt.orig_ax,
103 sizeof(struct kernel_vm86_regs) -
104 offsetof(struct kernel_vm86_regs, pt.orig_ax));
106 return ret;
109 /* convert vm86_regs to kernel_vm86_regs */
110 static int copy_vm86_regs_from_user(struct kernel_vm86_regs *regs,
111 const struct vm86_regs __user *user,
112 unsigned extra)
114 int ret = 0;
116 /* copy ax-fs inclusive */
117 ret += copy_from_user(regs, user, offsetof(struct kernel_vm86_regs, pt.orig_ax));
118 /* copy orig_ax-__gsh+extra */
119 ret += copy_from_user(&regs->pt.orig_ax, &user->orig_eax,
120 sizeof(struct kernel_vm86_regs) -
121 offsetof(struct kernel_vm86_regs, pt.orig_ax) +
122 extra);
123 return ret;
126 struct pt_regs *save_v86_state(struct kernel_vm86_regs *regs)
128 struct tss_struct *tss;
129 struct pt_regs *ret;
130 unsigned long tmp;
133 * This gets called from entry.S with interrupts disabled, but
134 * from process context. Enable interrupts here, before trying
135 * to access user space.
137 local_irq_enable();
139 if (!current->thread.vm86_info) {
140 printk("no vm86_info: BAD\n");
141 do_exit(SIGSEGV);
143 set_flags(regs->pt.flags, VEFLAGS, X86_EFLAGS_VIF | current->thread.v86mask);
144 tmp = copy_vm86_regs_to_user(&current->thread.vm86_info->regs, regs);
145 tmp += put_user(current->thread.screen_bitmap, &current->thread.vm86_info->screen_bitmap);
146 if (tmp) {
147 printk("vm86: could not access userspace vm86_info\n");
148 do_exit(SIGSEGV);
151 tss = &per_cpu(init_tss, get_cpu());
152 current->thread.sp0 = current->thread.saved_sp0;
153 current->thread.sysenter_cs = __KERNEL_CS;
154 load_sp0(tss, &current->thread);
155 current->thread.saved_sp0 = 0;
156 put_cpu();
158 ret = KVM86->regs32;
160 ret->fs = current->thread.saved_fs;
161 set_user_gs(ret, current->thread.saved_gs);
163 return ret;
166 static void mark_screen_rdonly(struct mm_struct *mm)
168 pgd_t *pgd;
169 pud_t *pud;
170 pmd_t *pmd;
171 pte_t *pte;
172 spinlock_t *ptl;
173 int i;
175 down_write(&mm->mmap_sem);
176 pgd = pgd_offset(mm, 0xA0000);
177 if (pgd_none_or_clear_bad(pgd))
178 goto out;
179 pud = pud_offset(pgd, 0xA0000);
180 if (pud_none_or_clear_bad(pud))
181 goto out;
182 pmd = pmd_offset(pud, 0xA0000);
183 split_huge_page_pmd(mm, pmd);
184 if (pmd_none_or_clear_bad(pmd))
185 goto out;
186 pte = pte_offset_map_lock(mm, pmd, 0xA0000, &ptl);
187 for (i = 0; i < 32; i++) {
188 if (pte_present(*pte))
189 set_pte(pte, pte_wrprotect(*pte));
190 pte++;
192 pte_unmap_unlock(pte, ptl);
193 out:
194 up_write(&mm->mmap_sem);
195 flush_tlb();
200 static int do_vm86_irq_handling(int subfunction, int irqnumber);
201 static void do_sys_vm86(struct kernel_vm86_struct *info, struct task_struct *tsk);
203 int sys_vm86old(struct vm86_struct __user *v86, struct pt_regs *regs)
205 struct kernel_vm86_struct info; /* declare this _on top_,
206 * this avoids wasting of stack space.
207 * This remains on the stack until we
208 * return to 32 bit user space.
210 struct task_struct *tsk;
211 int tmp, ret = -EPERM;
213 tsk = current;
214 if (tsk->thread.saved_sp0)
215 goto out;
216 tmp = copy_vm86_regs_from_user(&info.regs, &v86->regs,
217 offsetof(struct kernel_vm86_struct, vm86plus) -
218 sizeof(info.regs));
219 ret = -EFAULT;
220 if (tmp)
221 goto out;
222 memset(&info.vm86plus, 0, (int)&info.regs32 - (int)&info.vm86plus);
223 info.regs32 = regs;
224 tsk->thread.vm86_info = v86;
225 do_sys_vm86(&info, tsk);
226 ret = 0; /* we never return here */
227 out:
228 return ret;
232 int sys_vm86(unsigned long cmd, unsigned long arg, struct pt_regs *regs)
234 struct kernel_vm86_struct info; /* declare this _on top_,
235 * this avoids wasting of stack space.
236 * This remains on the stack until we
237 * return to 32 bit user space.
239 struct task_struct *tsk;
240 int tmp, ret;
241 struct vm86plus_struct __user *v86;
243 tsk = current;
244 switch (cmd) {
245 case VM86_REQUEST_IRQ:
246 case VM86_FREE_IRQ:
247 case VM86_GET_IRQ_BITS:
248 case VM86_GET_AND_RESET_IRQ:
249 ret = do_vm86_irq_handling(cmd, (int)arg);
250 goto out;
251 case VM86_PLUS_INSTALL_CHECK:
253 * NOTE: on old vm86 stuff this will return the error
254 * from access_ok(), because the subfunction is
255 * interpreted as (invalid) address to vm86_struct.
256 * So the installation check works.
258 ret = 0;
259 goto out;
262 /* we come here only for functions VM86_ENTER, VM86_ENTER_NO_BYPASS */
263 ret = -EPERM;
264 if (tsk->thread.saved_sp0)
265 goto out;
266 v86 = (struct vm86plus_struct __user *)arg;
267 tmp = copy_vm86_regs_from_user(&info.regs, &v86->regs,
268 offsetof(struct kernel_vm86_struct, regs32) -
269 sizeof(info.regs));
270 ret = -EFAULT;
271 if (tmp)
272 goto out;
273 info.regs32 = regs;
274 info.vm86plus.is_vm86pus = 1;
275 tsk->thread.vm86_info = (struct vm86_struct __user *)v86;
276 do_sys_vm86(&info, tsk);
277 ret = 0; /* we never return here */
278 out:
279 return ret;
283 static void do_sys_vm86(struct kernel_vm86_struct *info, struct task_struct *tsk)
285 struct tss_struct *tss;
287 * make sure the vm86() system call doesn't try to do anything silly
289 info->regs.pt.ds = 0;
290 info->regs.pt.es = 0;
291 info->regs.pt.fs = 0;
292 #ifndef CONFIG_X86_32_LAZY_GS
293 info->regs.pt.gs = 0;
294 #endif
297 * The flags register is also special: we cannot trust that the user
298 * has set it up safely, so this makes sure interrupt etc flags are
299 * inherited from protected mode.
301 VEFLAGS = info->regs.pt.flags;
302 info->regs.pt.flags &= SAFE_MASK;
303 info->regs.pt.flags |= info->regs32->flags & ~SAFE_MASK;
304 info->regs.pt.flags |= X86_VM_MASK;
306 switch (info->cpu_type) {
307 case CPU_286:
308 tsk->thread.v86mask = 0;
309 break;
310 case CPU_386:
311 tsk->thread.v86mask = X86_EFLAGS_NT | X86_EFLAGS_IOPL;
312 break;
313 case CPU_486:
314 tsk->thread.v86mask = X86_EFLAGS_AC | X86_EFLAGS_NT | X86_EFLAGS_IOPL;
315 break;
316 default:
317 tsk->thread.v86mask = X86_EFLAGS_ID | X86_EFLAGS_AC | X86_EFLAGS_NT | X86_EFLAGS_IOPL;
318 break;
322 * Save old state, set default return value (%ax) to 0 (VM86_SIGNAL)
324 info->regs32->ax = VM86_SIGNAL;
325 tsk->thread.saved_sp0 = tsk->thread.sp0;
326 tsk->thread.saved_fs = info->regs32->fs;
327 tsk->thread.saved_gs = get_user_gs(info->regs32);
329 tss = &per_cpu(init_tss, get_cpu());
330 tsk->thread.sp0 = (unsigned long) &info->VM86_TSS_ESP0;
331 if (cpu_has_sep)
332 tsk->thread.sysenter_cs = 0;
333 load_sp0(tss, &tsk->thread);
334 put_cpu();
336 tsk->thread.screen_bitmap = info->screen_bitmap;
337 if (info->flags & VM86_SCREEN_BITMAP)
338 mark_screen_rdonly(tsk->mm);
340 /*call __audit_syscall_exit since we do not exit via the normal paths */
341 #ifdef CONFIG_AUDITSYSCALL
342 if (unlikely(current->audit_context))
343 __audit_syscall_exit(1, 0);
344 #endif
346 __asm__ __volatile__(
347 "movl %0,%%esp\n\t"
348 "movl %1,%%ebp\n\t"
349 #ifdef CONFIG_X86_32_LAZY_GS
350 "mov %2, %%gs\n\t"
351 #endif
352 "jmp resume_userspace"
353 : /* no outputs */
354 :"r" (&info->regs), "r" (task_thread_info(tsk)), "r" (0));
355 /* we never return here */
358 static inline void return_to_32bit(struct kernel_vm86_regs *regs16, int retval)
360 struct pt_regs *regs32;
362 regs32 = save_v86_state(regs16);
363 regs32->ax = retval;
364 __asm__ __volatile__("movl %0,%%esp\n\t"
365 "movl %1,%%ebp\n\t"
366 "jmp resume_userspace"
367 : : "r" (regs32), "r" (current_thread_info()));
370 static inline void set_IF(struct kernel_vm86_regs *regs)
372 VEFLAGS |= X86_EFLAGS_VIF;
373 if (VEFLAGS & X86_EFLAGS_VIP)
374 return_to_32bit(regs, VM86_STI);
377 static inline void clear_IF(struct kernel_vm86_regs *regs)
379 VEFLAGS &= ~X86_EFLAGS_VIF;
382 static inline void clear_TF(struct kernel_vm86_regs *regs)
384 regs->pt.flags &= ~X86_EFLAGS_TF;
387 static inline void clear_AC(struct kernel_vm86_regs *regs)
389 regs->pt.flags &= ~X86_EFLAGS_AC;
393 * It is correct to call set_IF(regs) from the set_vflags_*
394 * functions. However someone forgot to call clear_IF(regs)
395 * in the opposite case.
396 * After the command sequence CLI PUSHF STI POPF you should
397 * end up with interrupts disabled, but you ended up with
398 * interrupts enabled.
399 * ( I was testing my own changes, but the only bug I
400 * could find was in a function I had not changed. )
401 * [KD]
404 static inline void set_vflags_long(unsigned long flags, struct kernel_vm86_regs *regs)
406 set_flags(VEFLAGS, flags, current->thread.v86mask);
407 set_flags(regs->pt.flags, flags, SAFE_MASK);
408 if (flags & X86_EFLAGS_IF)
409 set_IF(regs);
410 else
411 clear_IF(regs);
414 static inline void set_vflags_short(unsigned short flags, struct kernel_vm86_regs *regs)
416 set_flags(VFLAGS, flags, current->thread.v86mask);
417 set_flags(regs->pt.flags, flags, SAFE_MASK);
418 if (flags & X86_EFLAGS_IF)
419 set_IF(regs);
420 else
421 clear_IF(regs);
424 static inline unsigned long get_vflags(struct kernel_vm86_regs *regs)
426 unsigned long flags = regs->pt.flags & RETURN_MASK;
428 if (VEFLAGS & X86_EFLAGS_VIF)
429 flags |= X86_EFLAGS_IF;
430 flags |= X86_EFLAGS_IOPL;
431 return flags | (VEFLAGS & current->thread.v86mask);
434 static inline int is_revectored(int nr, struct revectored_struct *bitmap)
436 __asm__ __volatile__("btl %2,%1\n\tsbbl %0,%0"
437 :"=r" (nr)
438 :"m" (*bitmap), "r" (nr));
439 return nr;
442 #define val_byte(val, n) (((__u8 *)&val)[n])
444 #define pushb(base, ptr, val, err_label) \
445 do { \
446 __u8 __val = val; \
447 ptr--; \
448 if (put_user(__val, base + ptr) < 0) \
449 goto err_label; \
450 } while (0)
452 #define pushw(base, ptr, val, err_label) \
453 do { \
454 __u16 __val = val; \
455 ptr--; \
456 if (put_user(val_byte(__val, 1), base + ptr) < 0) \
457 goto err_label; \
458 ptr--; \
459 if (put_user(val_byte(__val, 0), base + ptr) < 0) \
460 goto err_label; \
461 } while (0)
463 #define pushl(base, ptr, val, err_label) \
464 do { \
465 __u32 __val = val; \
466 ptr--; \
467 if (put_user(val_byte(__val, 3), base + ptr) < 0) \
468 goto err_label; \
469 ptr--; \
470 if (put_user(val_byte(__val, 2), base + ptr) < 0) \
471 goto err_label; \
472 ptr--; \
473 if (put_user(val_byte(__val, 1), base + ptr) < 0) \
474 goto err_label; \
475 ptr--; \
476 if (put_user(val_byte(__val, 0), base + ptr) < 0) \
477 goto err_label; \
478 } while (0)
480 #define popb(base, ptr, err_label) \
481 ({ \
482 __u8 __res; \
483 if (get_user(__res, base + ptr) < 0) \
484 goto err_label; \
485 ptr++; \
486 __res; \
489 #define popw(base, ptr, err_label) \
490 ({ \
491 __u16 __res; \
492 if (get_user(val_byte(__res, 0), base + ptr) < 0) \
493 goto err_label; \
494 ptr++; \
495 if (get_user(val_byte(__res, 1), base + ptr) < 0) \
496 goto err_label; \
497 ptr++; \
498 __res; \
501 #define popl(base, ptr, err_label) \
502 ({ \
503 __u32 __res; \
504 if (get_user(val_byte(__res, 0), base + ptr) < 0) \
505 goto err_label; \
506 ptr++; \
507 if (get_user(val_byte(__res, 1), base + ptr) < 0) \
508 goto err_label; \
509 ptr++; \
510 if (get_user(val_byte(__res, 2), base + ptr) < 0) \
511 goto err_label; \
512 ptr++; \
513 if (get_user(val_byte(__res, 3), base + ptr) < 0) \
514 goto err_label; \
515 ptr++; \
516 __res; \
519 /* There are so many possible reasons for this function to return
520 * VM86_INTx, so adding another doesn't bother me. We can expect
521 * userspace programs to be able to handle it. (Getting a problem
522 * in userspace is always better than an Oops anyway.) [KD]
524 static void do_int(struct kernel_vm86_regs *regs, int i,
525 unsigned char __user *ssp, unsigned short sp)
527 unsigned long __user *intr_ptr;
528 unsigned long segoffs;
530 if (regs->pt.cs == BIOSSEG)
531 goto cannot_handle;
532 if (is_revectored(i, &KVM86->int_revectored))
533 goto cannot_handle;
534 if (i == 0x21 && is_revectored(AH(regs), &KVM86->int21_revectored))
535 goto cannot_handle;
536 intr_ptr = (unsigned long __user *) (i << 2);
537 if (get_user(segoffs, intr_ptr))
538 goto cannot_handle;
539 if ((segoffs >> 16) == BIOSSEG)
540 goto cannot_handle;
541 pushw(ssp, sp, get_vflags(regs), cannot_handle);
542 pushw(ssp, sp, regs->pt.cs, cannot_handle);
543 pushw(ssp, sp, IP(regs), cannot_handle);
544 regs->pt.cs = segoffs >> 16;
545 SP(regs) -= 6;
546 IP(regs) = segoffs & 0xffff;
547 clear_TF(regs);
548 clear_IF(regs);
549 clear_AC(regs);
550 return;
552 cannot_handle:
553 return_to_32bit(regs, VM86_INTx + (i << 8));
556 int handle_vm86_trap(struct kernel_vm86_regs *regs, long error_code, int trapno)
558 if (VMPI.is_vm86pus) {
559 if ((trapno == 3) || (trapno == 1)) {
560 KVM86->regs32->ax = VM86_TRAP + (trapno << 8);
561 /* setting this flag forces the code in entry_32.S to
562 call save_v86_state() and change the stack pointer
563 to KVM86->regs32 */
564 set_thread_flag(TIF_IRET);
565 return 0;
567 do_int(regs, trapno, (unsigned char __user *) (regs->pt.ss << 4), SP(regs));
568 return 0;
570 if (trapno != 1)
571 return 1; /* we let this handle by the calling routine */
572 current->thread.trap_no = trapno;
573 current->thread.error_code = error_code;
574 force_sig(SIGTRAP, current);
575 return 0;
578 void handle_vm86_fault(struct kernel_vm86_regs *regs, long error_code)
580 unsigned char opcode;
581 unsigned char __user *csp;
582 unsigned char __user *ssp;
583 unsigned short ip, sp, orig_flags;
584 int data32, pref_done;
586 #define CHECK_IF_IN_TRAP \
587 if (VMPI.vm86dbg_active && VMPI.vm86dbg_TFpendig) \
588 newflags |= X86_EFLAGS_TF
589 #define VM86_FAULT_RETURN do { \
590 if (VMPI.force_return_for_pic && (VEFLAGS & (X86_EFLAGS_IF | X86_EFLAGS_VIF))) \
591 return_to_32bit(regs, VM86_PICRETURN); \
592 if (orig_flags & X86_EFLAGS_TF) \
593 handle_vm86_trap(regs, 0, 1); \
594 return; } while (0)
596 orig_flags = *(unsigned short *)&regs->pt.flags;
598 csp = (unsigned char __user *) (regs->pt.cs << 4);
599 ssp = (unsigned char __user *) (regs->pt.ss << 4);
600 sp = SP(regs);
601 ip = IP(regs);
603 data32 = 0;
604 pref_done = 0;
605 do {
606 switch (opcode = popb(csp, ip, simulate_sigsegv)) {
607 case 0x66: /* 32-bit data */ data32 = 1; break;
608 case 0x67: /* 32-bit address */ break;
609 case 0x2e: /* CS */ break;
610 case 0x3e: /* DS */ break;
611 case 0x26: /* ES */ break;
612 case 0x36: /* SS */ break;
613 case 0x65: /* GS */ break;
614 case 0x64: /* FS */ break;
615 case 0xf2: /* repnz */ break;
616 case 0xf3: /* rep */ break;
617 default: pref_done = 1;
619 } while (!pref_done);
621 switch (opcode) {
623 /* pushf */
624 case 0x9c:
625 if (data32) {
626 pushl(ssp, sp, get_vflags(regs), simulate_sigsegv);
627 SP(regs) -= 4;
628 } else {
629 pushw(ssp, sp, get_vflags(regs), simulate_sigsegv);
630 SP(regs) -= 2;
632 IP(regs) = ip;
633 VM86_FAULT_RETURN;
635 /* popf */
636 case 0x9d:
638 unsigned long newflags;
639 if (data32) {
640 newflags = popl(ssp, sp, simulate_sigsegv);
641 SP(regs) += 4;
642 } else {
643 newflags = popw(ssp, sp, simulate_sigsegv);
644 SP(regs) += 2;
646 IP(regs) = ip;
647 CHECK_IF_IN_TRAP;
648 if (data32)
649 set_vflags_long(newflags, regs);
650 else
651 set_vflags_short(newflags, regs);
653 VM86_FAULT_RETURN;
656 /* int xx */
657 case 0xcd: {
658 int intno = popb(csp, ip, simulate_sigsegv);
659 IP(regs) = ip;
660 if (VMPI.vm86dbg_active) {
661 if ((1 << (intno & 7)) & VMPI.vm86dbg_intxxtab[intno >> 3])
662 return_to_32bit(regs, VM86_INTx + (intno << 8));
664 do_int(regs, intno, ssp, sp);
665 return;
668 /* iret */
669 case 0xcf:
671 unsigned long newip;
672 unsigned long newcs;
673 unsigned long newflags;
674 if (data32) {
675 newip = popl(ssp, sp, simulate_sigsegv);
676 newcs = popl(ssp, sp, simulate_sigsegv);
677 newflags = popl(ssp, sp, simulate_sigsegv);
678 SP(regs) += 12;
679 } else {
680 newip = popw(ssp, sp, simulate_sigsegv);
681 newcs = popw(ssp, sp, simulate_sigsegv);
682 newflags = popw(ssp, sp, simulate_sigsegv);
683 SP(regs) += 6;
685 IP(regs) = newip;
686 regs->pt.cs = newcs;
687 CHECK_IF_IN_TRAP;
688 if (data32) {
689 set_vflags_long(newflags, regs);
690 } else {
691 set_vflags_short(newflags, regs);
693 VM86_FAULT_RETURN;
696 /* cli */
697 case 0xfa:
698 IP(regs) = ip;
699 clear_IF(regs);
700 VM86_FAULT_RETURN;
702 /* sti */
704 * Damn. This is incorrect: the 'sti' instruction should actually
705 * enable interrupts after the /next/ instruction. Not good.
707 * Probably needs some horsing around with the TF flag. Aiee..
709 case 0xfb:
710 IP(regs) = ip;
711 set_IF(regs);
712 VM86_FAULT_RETURN;
714 default:
715 return_to_32bit(regs, VM86_UNKNOWN);
718 return;
720 simulate_sigsegv:
721 /* FIXME: After a long discussion with Stas we finally
722 * agreed, that this is wrong. Here we should
723 * really send a SIGSEGV to the user program.
724 * But how do we create the correct context? We
725 * are inside a general protection fault handler
726 * and has just returned from a page fault handler.
727 * The correct context for the signal handler
728 * should be a mixture of the two, but how do we
729 * get the information? [KD]
731 return_to_32bit(regs, VM86_UNKNOWN);
734 /* ---------------- vm86 special IRQ passing stuff ----------------- */
736 #define VM86_IRQNAME "vm86irq"
738 static struct vm86_irqs {
739 struct task_struct *tsk;
740 int sig;
741 } vm86_irqs[16];
743 static DEFINE_SPINLOCK(irqbits_lock);
744 static int irqbits;
746 #define ALLOWED_SIGS (1 /* 0 = don't send a signal */ \
747 | (1 << SIGUSR1) | (1 << SIGUSR2) | (1 << SIGIO) | (1 << SIGURG) \
748 | (1 << SIGUNUSED))
750 static irqreturn_t irq_handler(int intno, void *dev_id)
752 int irq_bit;
753 unsigned long flags;
755 spin_lock_irqsave(&irqbits_lock, flags);
756 irq_bit = 1 << intno;
757 if ((irqbits & irq_bit) || !vm86_irqs[intno].tsk)
758 goto out;
759 irqbits |= irq_bit;
760 if (vm86_irqs[intno].sig)
761 send_sig(vm86_irqs[intno].sig, vm86_irqs[intno].tsk, 1);
763 * IRQ will be re-enabled when user asks for the irq (whether
764 * polling or as a result of the signal)
766 disable_irq_nosync(intno);
767 spin_unlock_irqrestore(&irqbits_lock, flags);
768 return IRQ_HANDLED;
770 out:
771 spin_unlock_irqrestore(&irqbits_lock, flags);
772 return IRQ_NONE;
775 static inline void free_vm86_irq(int irqnumber)
777 unsigned long flags;
779 free_irq(irqnumber, NULL);
780 vm86_irqs[irqnumber].tsk = NULL;
782 spin_lock_irqsave(&irqbits_lock, flags);
783 irqbits &= ~(1 << irqnumber);
784 spin_unlock_irqrestore(&irqbits_lock, flags);
787 void release_vm86_irqs(struct task_struct *task)
789 int i;
790 for (i = FIRST_VM86_IRQ ; i <= LAST_VM86_IRQ; i++)
791 if (vm86_irqs[i].tsk == task)
792 free_vm86_irq(i);
795 static inline int get_and_reset_irq(int irqnumber)
797 int bit;
798 unsigned long flags;
799 int ret = 0;
801 if (invalid_vm86_irq(irqnumber)) return 0;
802 if (vm86_irqs[irqnumber].tsk != current) return 0;
803 spin_lock_irqsave(&irqbits_lock, flags);
804 bit = irqbits & (1 << irqnumber);
805 irqbits &= ~bit;
806 if (bit) {
807 enable_irq(irqnumber);
808 ret = 1;
811 spin_unlock_irqrestore(&irqbits_lock, flags);
812 return ret;
816 static int do_vm86_irq_handling(int subfunction, int irqnumber)
818 int ret;
819 switch (subfunction) {
820 case VM86_GET_AND_RESET_IRQ: {
821 return get_and_reset_irq(irqnumber);
823 case VM86_GET_IRQ_BITS: {
824 return irqbits;
826 case VM86_REQUEST_IRQ: {
827 int sig = irqnumber >> 8;
828 int irq = irqnumber & 255;
829 if (!capable(CAP_SYS_ADMIN)) return -EPERM;
830 if (!((1 << sig) & ALLOWED_SIGS)) return -EPERM;
831 if (invalid_vm86_irq(irq)) return -EPERM;
832 if (vm86_irqs[irq].tsk) return -EPERM;
833 ret = request_irq(irq, &irq_handler, 0, VM86_IRQNAME, NULL);
834 if (ret) return ret;
835 vm86_irqs[irq].sig = sig;
836 vm86_irqs[irq].tsk = current;
837 return irq;
839 case VM86_FREE_IRQ: {
840 if (invalid_vm86_irq(irqnumber)) return -EPERM;
841 if (!vm86_irqs[irqnumber].tsk) return 0;
842 if (vm86_irqs[irqnumber].tsk != current) return -EPERM;
843 free_vm86_irq(irqnumber);
844 return 0;
847 return -EINVAL;