2 * Kernel-based Virtual Machine driver for Linux
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 * Yaniv Kamay <yaniv@qumranet.com>
11 * Avi Kivity <avi@qumranet.com>
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
17 #include <linux/kvm_host.h>
21 #include "kvm_cache_regs.h"
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/vmalloc.h>
27 #include <linux/highmem.h>
28 #include <linux/sched.h>
29 #include <linux/ftrace_event.h>
30 #include <linux/slab.h>
32 #include <asm/perf_event.h>
33 #include <asm/tlbflush.h>
35 #include <asm/kvm_para.h>
37 #include <asm/virtext.h>
40 #define __ex(x) __kvm_handle_fault_on_reboot(x)
42 MODULE_AUTHOR("Qumranet");
43 MODULE_LICENSE("GPL");
45 #define IOPM_ALLOC_ORDER 2
46 #define MSRPM_ALLOC_ORDER 1
48 #define SEG_TYPE_LDT 2
49 #define SEG_TYPE_BUSY_TSS16 3
51 #define SVM_FEATURE_NPT (1 << 0)
52 #define SVM_FEATURE_LBRV (1 << 1)
53 #define SVM_FEATURE_SVML (1 << 2)
54 #define SVM_FEATURE_NRIP (1 << 3)
55 #define SVM_FEATURE_TSC_RATE (1 << 4)
56 #define SVM_FEATURE_VMCB_CLEAN (1 << 5)
57 #define SVM_FEATURE_FLUSH_ASID (1 << 6)
58 #define SVM_FEATURE_DECODE_ASSIST (1 << 7)
59 #define SVM_FEATURE_PAUSE_FILTER (1 << 10)
61 #define NESTED_EXIT_HOST 0 /* Exit handled on host level */
62 #define NESTED_EXIT_DONE 1 /* Exit caused nested vmexit */
63 #define NESTED_EXIT_CONTINUE 2 /* Further checks needed */
65 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
67 #define TSC_RATIO_RSVD 0xffffff0000000000ULL
68 #define TSC_RATIO_MIN 0x0000000000000001ULL
69 #define TSC_RATIO_MAX 0x000000ffffffffffULL
71 static bool erratum_383_found __read_mostly
;
73 static const u32 host_save_user_msrs
[] = {
75 MSR_STAR
, MSR_LSTAR
, MSR_CSTAR
, MSR_SYSCALL_MASK
, MSR_KERNEL_GS_BASE
,
78 MSR_IA32_SYSENTER_CS
, MSR_IA32_SYSENTER_ESP
, MSR_IA32_SYSENTER_EIP
,
81 #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
91 /* These are the merged vectors */
94 /* gpa pointers to the real vectors */
98 /* A VMEXIT is required but not yet emulated */
101 /* cache for intercepts of the guest */
104 u32 intercept_exceptions
;
107 /* Nested Paging related state */
111 #define MSRPM_OFFSETS 16
112 static u32 msrpm_offsets
[MSRPM_OFFSETS
] __read_mostly
;
115 struct kvm_vcpu vcpu
;
117 unsigned long vmcb_pa
;
118 struct svm_cpu_data
*svm_data
;
119 uint64_t asid_generation
;
120 uint64_t sysenter_esp
;
121 uint64_t sysenter_eip
;
125 u64 host_user_msrs
[NR_HOST_SAVE_USER_MSRS
];
137 struct nested_state nested
;
141 unsigned int3_injected
;
142 unsigned long int3_rip
;
148 static DEFINE_PER_CPU(u64
, current_tsc_ratio
);
149 #define TSC_RATIO_DEFAULT 0x0100000000ULL
151 #define MSR_INVALID 0xffffffffU
153 static struct svm_direct_access_msrs
{
154 u32 index
; /* Index of the MSR */
155 bool always
; /* True if intercept is always on */
156 } direct_access_msrs
[] = {
157 { .index
= MSR_STAR
, .always
= true },
158 { .index
= MSR_IA32_SYSENTER_CS
, .always
= true },
160 { .index
= MSR_GS_BASE
, .always
= true },
161 { .index
= MSR_FS_BASE
, .always
= true },
162 { .index
= MSR_KERNEL_GS_BASE
, .always
= true },
163 { .index
= MSR_LSTAR
, .always
= true },
164 { .index
= MSR_CSTAR
, .always
= true },
165 { .index
= MSR_SYSCALL_MASK
, .always
= true },
167 { .index
= MSR_IA32_LASTBRANCHFROMIP
, .always
= false },
168 { .index
= MSR_IA32_LASTBRANCHTOIP
, .always
= false },
169 { .index
= MSR_IA32_LASTINTFROMIP
, .always
= false },
170 { .index
= MSR_IA32_LASTINTTOIP
, .always
= false },
171 { .index
= MSR_INVALID
, .always
= false },
174 /* enable NPT for AMD64 and X86 with PAE */
175 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
176 static bool npt_enabled
= true;
178 static bool npt_enabled
;
182 module_param(npt
, int, S_IRUGO
);
184 static int nested
= 1;
185 module_param(nested
, int, S_IRUGO
);
187 static void svm_flush_tlb(struct kvm_vcpu
*vcpu
);
188 static void svm_complete_interrupts(struct vcpu_svm
*svm
);
190 static int nested_svm_exit_handled(struct vcpu_svm
*svm
);
191 static int nested_svm_intercept(struct vcpu_svm
*svm
);
192 static int nested_svm_vmexit(struct vcpu_svm
*svm
);
193 static int nested_svm_check_exception(struct vcpu_svm
*svm
, unsigned nr
,
194 bool has_error_code
, u32 error_code
);
195 static u64
__scale_tsc(u64 ratio
, u64 tsc
);
198 VMCB_INTERCEPTS
, /* Intercept vectors, TSC offset,
199 pause filter count */
200 VMCB_PERM_MAP
, /* IOPM Base and MSRPM Base */
201 VMCB_ASID
, /* ASID */
202 VMCB_INTR
, /* int_ctl, int_vector */
203 VMCB_NPT
, /* npt_en, nCR3, gPAT */
204 VMCB_CR
, /* CR0, CR3, CR4, EFER */
205 VMCB_DR
, /* DR6, DR7 */
206 VMCB_DT
, /* GDT, IDT */
207 VMCB_SEG
, /* CS, DS, SS, ES, CPL */
208 VMCB_CR2
, /* CR2 only */
209 VMCB_LBR
, /* DBGCTL, BR_FROM, BR_TO, LAST_EX_FROM, LAST_EX_TO */
213 /* TPR and CR2 are always written before VMRUN */
214 #define VMCB_ALWAYS_DIRTY_MASK ((1U << VMCB_INTR) | (1U << VMCB_CR2))
216 static inline void mark_all_dirty(struct vmcb
*vmcb
)
218 vmcb
->control
.clean
= 0;
221 static inline void mark_all_clean(struct vmcb
*vmcb
)
223 vmcb
->control
.clean
= ((1 << VMCB_DIRTY_MAX
) - 1)
224 & ~VMCB_ALWAYS_DIRTY_MASK
;
227 static inline void mark_dirty(struct vmcb
*vmcb
, int bit
)
229 vmcb
->control
.clean
&= ~(1 << bit
);
232 static inline struct vcpu_svm
*to_svm(struct kvm_vcpu
*vcpu
)
234 return container_of(vcpu
, struct vcpu_svm
, vcpu
);
237 static void recalc_intercepts(struct vcpu_svm
*svm
)
239 struct vmcb_control_area
*c
, *h
;
240 struct nested_state
*g
;
242 mark_dirty(svm
->vmcb
, VMCB_INTERCEPTS
);
244 if (!is_guest_mode(&svm
->vcpu
))
247 c
= &svm
->vmcb
->control
;
248 h
= &svm
->nested
.hsave
->control
;
251 c
->intercept_cr
= h
->intercept_cr
| g
->intercept_cr
;
252 c
->intercept_dr
= h
->intercept_dr
| g
->intercept_dr
;
253 c
->intercept_exceptions
= h
->intercept_exceptions
| g
->intercept_exceptions
;
254 c
->intercept
= h
->intercept
| g
->intercept
;
257 static inline struct vmcb
*get_host_vmcb(struct vcpu_svm
*svm
)
259 if (is_guest_mode(&svm
->vcpu
))
260 return svm
->nested
.hsave
;
265 static inline void set_cr_intercept(struct vcpu_svm
*svm
, int bit
)
267 struct vmcb
*vmcb
= get_host_vmcb(svm
);
269 vmcb
->control
.intercept_cr
|= (1U << bit
);
271 recalc_intercepts(svm
);
274 static inline void clr_cr_intercept(struct vcpu_svm
*svm
, int bit
)
276 struct vmcb
*vmcb
= get_host_vmcb(svm
);
278 vmcb
->control
.intercept_cr
&= ~(1U << bit
);
280 recalc_intercepts(svm
);
283 static inline bool is_cr_intercept(struct vcpu_svm
*svm
, int bit
)
285 struct vmcb
*vmcb
= get_host_vmcb(svm
);
287 return vmcb
->control
.intercept_cr
& (1U << bit
);
290 static inline void set_dr_intercept(struct vcpu_svm
*svm
, int bit
)
292 struct vmcb
*vmcb
= get_host_vmcb(svm
);
294 vmcb
->control
.intercept_dr
|= (1U << bit
);
296 recalc_intercepts(svm
);
299 static inline void clr_dr_intercept(struct vcpu_svm
*svm
, int bit
)
301 struct vmcb
*vmcb
= get_host_vmcb(svm
);
303 vmcb
->control
.intercept_dr
&= ~(1U << bit
);
305 recalc_intercepts(svm
);
308 static inline void set_exception_intercept(struct vcpu_svm
*svm
, int bit
)
310 struct vmcb
*vmcb
= get_host_vmcb(svm
);
312 vmcb
->control
.intercept_exceptions
|= (1U << bit
);
314 recalc_intercepts(svm
);
317 static inline void clr_exception_intercept(struct vcpu_svm
*svm
, int bit
)
319 struct vmcb
*vmcb
= get_host_vmcb(svm
);
321 vmcb
->control
.intercept_exceptions
&= ~(1U << bit
);
323 recalc_intercepts(svm
);
326 static inline void set_intercept(struct vcpu_svm
*svm
, int bit
)
328 struct vmcb
*vmcb
= get_host_vmcb(svm
);
330 vmcb
->control
.intercept
|= (1ULL << bit
);
332 recalc_intercepts(svm
);
335 static inline void clr_intercept(struct vcpu_svm
*svm
, int bit
)
337 struct vmcb
*vmcb
= get_host_vmcb(svm
);
339 vmcb
->control
.intercept
&= ~(1ULL << bit
);
341 recalc_intercepts(svm
);
344 static inline void enable_gif(struct vcpu_svm
*svm
)
346 svm
->vcpu
.arch
.hflags
|= HF_GIF_MASK
;
349 static inline void disable_gif(struct vcpu_svm
*svm
)
351 svm
->vcpu
.arch
.hflags
&= ~HF_GIF_MASK
;
354 static inline bool gif_set(struct vcpu_svm
*svm
)
356 return !!(svm
->vcpu
.arch
.hflags
& HF_GIF_MASK
);
359 static unsigned long iopm_base
;
361 struct kvm_ldttss_desc
{
364 unsigned base1
:8, type
:5, dpl
:2, p
:1;
365 unsigned limit1
:4, zero0
:3, g
:1, base2
:8;
368 } __attribute__((packed
));
370 struct svm_cpu_data
{
376 struct kvm_ldttss_desc
*tss_desc
;
378 struct page
*save_area
;
381 static DEFINE_PER_CPU(struct svm_cpu_data
*, svm_data
);
383 struct svm_init_data
{
388 static u32 msrpm_ranges
[] = {0, 0xc0000000, 0xc0010000};
390 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
391 #define MSRS_RANGE_SIZE 2048
392 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
394 static u32
svm_msrpm_offset(u32 msr
)
399 for (i
= 0; i
< NUM_MSR_MAPS
; i
++) {
400 if (msr
< msrpm_ranges
[i
] ||
401 msr
>= msrpm_ranges
[i
] + MSRS_IN_RANGE
)
404 offset
= (msr
- msrpm_ranges
[i
]) / 4; /* 4 msrs per u8 */
405 offset
+= (i
* MSRS_RANGE_SIZE
); /* add range offset */
407 /* Now we have the u8 offset - but need the u32 offset */
411 /* MSR not in any range */
415 #define MAX_INST_SIZE 15
417 static inline void clgi(void)
419 asm volatile (__ex(SVM_CLGI
));
422 static inline void stgi(void)
424 asm volatile (__ex(SVM_STGI
));
427 static inline void invlpga(unsigned long addr
, u32 asid
)
429 asm volatile (__ex(SVM_INVLPGA
) : : "a"(addr
), "c"(asid
));
432 static int get_npt_level(void)
435 return PT64_ROOT_LEVEL
;
437 return PT32E_ROOT_LEVEL
;
441 static void svm_set_efer(struct kvm_vcpu
*vcpu
, u64 efer
)
443 vcpu
->arch
.efer
= efer
;
444 if (!npt_enabled
&& !(efer
& EFER_LMA
))
447 to_svm(vcpu
)->vmcb
->save
.efer
= efer
| EFER_SVME
;
448 mark_dirty(to_svm(vcpu
)->vmcb
, VMCB_CR
);
451 static int is_external_interrupt(u32 info
)
453 info
&= SVM_EVTINJ_TYPE_MASK
| SVM_EVTINJ_VALID
;
454 return info
== (SVM_EVTINJ_VALID
| SVM_EVTINJ_TYPE_INTR
);
457 static u32
svm_get_interrupt_shadow(struct kvm_vcpu
*vcpu
, int mask
)
459 struct vcpu_svm
*svm
= to_svm(vcpu
);
462 if (svm
->vmcb
->control
.int_state
& SVM_INTERRUPT_SHADOW_MASK
)
463 ret
|= KVM_X86_SHADOW_INT_STI
| KVM_X86_SHADOW_INT_MOV_SS
;
467 static void svm_set_interrupt_shadow(struct kvm_vcpu
*vcpu
, int mask
)
469 struct vcpu_svm
*svm
= to_svm(vcpu
);
472 svm
->vmcb
->control
.int_state
&= ~SVM_INTERRUPT_SHADOW_MASK
;
474 svm
->vmcb
->control
.int_state
|= SVM_INTERRUPT_SHADOW_MASK
;
478 static void skip_emulated_instruction(struct kvm_vcpu
*vcpu
)
480 struct vcpu_svm
*svm
= to_svm(vcpu
);
482 if (svm
->vmcb
->control
.next_rip
!= 0)
483 svm
->next_rip
= svm
->vmcb
->control
.next_rip
;
485 if (!svm
->next_rip
) {
486 if (emulate_instruction(vcpu
, EMULTYPE_SKIP
) !=
488 printk(KERN_DEBUG
"%s: NOP\n", __func__
);
491 if (svm
->next_rip
- kvm_rip_read(vcpu
) > MAX_INST_SIZE
)
492 printk(KERN_ERR
"%s: ip 0x%lx next 0x%llx\n",
493 __func__
, kvm_rip_read(vcpu
), svm
->next_rip
);
495 kvm_rip_write(vcpu
, svm
->next_rip
);
496 svm_set_interrupt_shadow(vcpu
, 0);
499 static void svm_queue_exception(struct kvm_vcpu
*vcpu
, unsigned nr
,
500 bool has_error_code
, u32 error_code
,
503 struct vcpu_svm
*svm
= to_svm(vcpu
);
506 * If we are within a nested VM we'd better #VMEXIT and let the guest
507 * handle the exception
510 nested_svm_check_exception(svm
, nr
, has_error_code
, error_code
))
513 if (nr
== BP_VECTOR
&& !static_cpu_has(X86_FEATURE_NRIPS
)) {
514 unsigned long rip
, old_rip
= kvm_rip_read(&svm
->vcpu
);
517 * For guest debugging where we have to reinject #BP if some
518 * INT3 is guest-owned:
519 * Emulate nRIP by moving RIP forward. Will fail if injection
520 * raises a fault that is not intercepted. Still better than
521 * failing in all cases.
523 skip_emulated_instruction(&svm
->vcpu
);
524 rip
= kvm_rip_read(&svm
->vcpu
);
525 svm
->int3_rip
= rip
+ svm
->vmcb
->save
.cs
.base
;
526 svm
->int3_injected
= rip
- old_rip
;
529 svm
->vmcb
->control
.event_inj
= nr
531 | (has_error_code
? SVM_EVTINJ_VALID_ERR
: 0)
532 | SVM_EVTINJ_TYPE_EXEPT
;
533 svm
->vmcb
->control
.event_inj_err
= error_code
;
536 static void svm_init_erratum_383(void)
542 if (!cpu_has_amd_erratum(amd_erratum_383
))
545 /* Use _safe variants to not break nested virtualization */
546 val
= native_read_msr_safe(MSR_AMD64_DC_CFG
, &err
);
552 low
= lower_32_bits(val
);
553 high
= upper_32_bits(val
);
555 native_write_msr_safe(MSR_AMD64_DC_CFG
, low
, high
);
557 erratum_383_found
= true;
560 static int has_svm(void)
564 if (!cpu_has_svm(&msg
)) {
565 printk(KERN_INFO
"has_svm: %s\n", msg
);
572 static void svm_hardware_disable(void *garbage
)
574 /* Make sure we clean up behind us */
575 if (static_cpu_has(X86_FEATURE_TSCRATEMSR
))
576 wrmsrl(MSR_AMD64_TSC_RATIO
, TSC_RATIO_DEFAULT
);
580 amd_pmu_disable_virt();
583 static int svm_hardware_enable(void *garbage
)
586 struct svm_cpu_data
*sd
;
588 struct desc_ptr gdt_descr
;
589 struct desc_struct
*gdt
;
590 int me
= raw_smp_processor_id();
592 rdmsrl(MSR_EFER
, efer
);
593 if (efer
& EFER_SVME
)
597 printk(KERN_ERR
"svm_hardware_enable: err EOPNOTSUPP on %d\n",
601 sd
= per_cpu(svm_data
, me
);
604 printk(KERN_ERR
"svm_hardware_enable: svm_data is NULL on %d\n",
609 sd
->asid_generation
= 1;
610 sd
->max_asid
= cpuid_ebx(SVM_CPUID_FUNC
) - 1;
611 sd
->next_asid
= sd
->max_asid
+ 1;
613 native_store_gdt(&gdt_descr
);
614 gdt
= (struct desc_struct
*)gdt_descr
.address
;
615 sd
->tss_desc
= (struct kvm_ldttss_desc
*)(gdt
+ GDT_ENTRY_TSS
);
617 wrmsrl(MSR_EFER
, efer
| EFER_SVME
);
619 wrmsrl(MSR_VM_HSAVE_PA
, page_to_pfn(sd
->save_area
) << PAGE_SHIFT
);
621 if (static_cpu_has(X86_FEATURE_TSCRATEMSR
)) {
622 wrmsrl(MSR_AMD64_TSC_RATIO
, TSC_RATIO_DEFAULT
);
623 __get_cpu_var(current_tsc_ratio
) = TSC_RATIO_DEFAULT
;
626 svm_init_erratum_383();
628 amd_pmu_enable_virt();
633 static void svm_cpu_uninit(int cpu
)
635 struct svm_cpu_data
*sd
= per_cpu(svm_data
, raw_smp_processor_id());
640 per_cpu(svm_data
, raw_smp_processor_id()) = NULL
;
641 __free_page(sd
->save_area
);
645 static int svm_cpu_init(int cpu
)
647 struct svm_cpu_data
*sd
;
650 sd
= kzalloc(sizeof(struct svm_cpu_data
), GFP_KERNEL
);
654 sd
->save_area
= alloc_page(GFP_KERNEL
);
659 per_cpu(svm_data
, cpu
) = sd
;
669 static bool valid_msr_intercept(u32 index
)
673 for (i
= 0; direct_access_msrs
[i
].index
!= MSR_INVALID
; i
++)
674 if (direct_access_msrs
[i
].index
== index
)
680 static void set_msr_interception(u32
*msrpm
, unsigned msr
,
683 u8 bit_read
, bit_write
;
688 * If this warning triggers extend the direct_access_msrs list at the
689 * beginning of the file
691 WARN_ON(!valid_msr_intercept(msr
));
693 offset
= svm_msrpm_offset(msr
);
694 bit_read
= 2 * (msr
& 0x0f);
695 bit_write
= 2 * (msr
& 0x0f) + 1;
698 BUG_ON(offset
== MSR_INVALID
);
700 read
? clear_bit(bit_read
, &tmp
) : set_bit(bit_read
, &tmp
);
701 write
? clear_bit(bit_write
, &tmp
) : set_bit(bit_write
, &tmp
);
706 static void svm_vcpu_init_msrpm(u32
*msrpm
)
710 memset(msrpm
, 0xff, PAGE_SIZE
* (1 << MSRPM_ALLOC_ORDER
));
712 for (i
= 0; direct_access_msrs
[i
].index
!= MSR_INVALID
; i
++) {
713 if (!direct_access_msrs
[i
].always
)
716 set_msr_interception(msrpm
, direct_access_msrs
[i
].index
, 1, 1);
720 static void add_msr_offset(u32 offset
)
724 for (i
= 0; i
< MSRPM_OFFSETS
; ++i
) {
726 /* Offset already in list? */
727 if (msrpm_offsets
[i
] == offset
)
730 /* Slot used by another offset? */
731 if (msrpm_offsets
[i
] != MSR_INVALID
)
734 /* Add offset to list */
735 msrpm_offsets
[i
] = offset
;
741 * If this BUG triggers the msrpm_offsets table has an overflow. Just
742 * increase MSRPM_OFFSETS in this case.
747 static void init_msrpm_offsets(void)
751 memset(msrpm_offsets
, 0xff, sizeof(msrpm_offsets
));
753 for (i
= 0; direct_access_msrs
[i
].index
!= MSR_INVALID
; i
++) {
756 offset
= svm_msrpm_offset(direct_access_msrs
[i
].index
);
757 BUG_ON(offset
== MSR_INVALID
);
759 add_msr_offset(offset
);
763 static void svm_enable_lbrv(struct vcpu_svm
*svm
)
765 u32
*msrpm
= svm
->msrpm
;
767 svm
->vmcb
->control
.lbr_ctl
= 1;
768 set_msr_interception(msrpm
, MSR_IA32_LASTBRANCHFROMIP
, 1, 1);
769 set_msr_interception(msrpm
, MSR_IA32_LASTBRANCHTOIP
, 1, 1);
770 set_msr_interception(msrpm
, MSR_IA32_LASTINTFROMIP
, 1, 1);
771 set_msr_interception(msrpm
, MSR_IA32_LASTINTTOIP
, 1, 1);
774 static void svm_disable_lbrv(struct vcpu_svm
*svm
)
776 u32
*msrpm
= svm
->msrpm
;
778 svm
->vmcb
->control
.lbr_ctl
= 0;
779 set_msr_interception(msrpm
, MSR_IA32_LASTBRANCHFROMIP
, 0, 0);
780 set_msr_interception(msrpm
, MSR_IA32_LASTBRANCHTOIP
, 0, 0);
781 set_msr_interception(msrpm
, MSR_IA32_LASTINTFROMIP
, 0, 0);
782 set_msr_interception(msrpm
, MSR_IA32_LASTINTTOIP
, 0, 0);
785 static __init
int svm_hardware_setup(void)
788 struct page
*iopm_pages
;
792 iopm_pages
= alloc_pages(GFP_KERNEL
, IOPM_ALLOC_ORDER
);
797 iopm_va
= page_address(iopm_pages
);
798 memset(iopm_va
, 0xff, PAGE_SIZE
* (1 << IOPM_ALLOC_ORDER
));
799 iopm_base
= page_to_pfn(iopm_pages
) << PAGE_SHIFT
;
801 init_msrpm_offsets();
803 if (boot_cpu_has(X86_FEATURE_NX
))
804 kvm_enable_efer_bits(EFER_NX
);
806 if (boot_cpu_has(X86_FEATURE_FXSR_OPT
))
807 kvm_enable_efer_bits(EFER_FFXSR
);
809 if (boot_cpu_has(X86_FEATURE_TSCRATEMSR
)) {
812 kvm_has_tsc_control
= true;
815 * Make sure the user can only configure tsc_khz values that
816 * fit into a signed integer.
817 * A min value is not calculated needed because it will always
818 * be 1 on all machines and a value of 0 is used to disable
819 * tsc-scaling for the vcpu.
821 max
= min(0x7fffffffULL
, __scale_tsc(tsc_khz
, TSC_RATIO_MAX
));
823 kvm_max_guest_tsc_khz
= max
;
827 printk(KERN_INFO
"kvm: Nested Virtualization enabled\n");
828 kvm_enable_efer_bits(EFER_SVME
| EFER_LMSLE
);
831 for_each_possible_cpu(cpu
) {
832 r
= svm_cpu_init(cpu
);
837 if (!boot_cpu_has(X86_FEATURE_NPT
))
840 if (npt_enabled
&& !npt
) {
841 printk(KERN_INFO
"kvm: Nested Paging disabled\n");
846 printk(KERN_INFO
"kvm: Nested Paging enabled\n");
854 __free_pages(iopm_pages
, IOPM_ALLOC_ORDER
);
859 static __exit
void svm_hardware_unsetup(void)
863 for_each_possible_cpu(cpu
)
866 __free_pages(pfn_to_page(iopm_base
>> PAGE_SHIFT
), IOPM_ALLOC_ORDER
);
870 static void init_seg(struct vmcb_seg
*seg
)
873 seg
->attrib
= SVM_SELECTOR_P_MASK
| SVM_SELECTOR_S_MASK
|
874 SVM_SELECTOR_WRITE_MASK
; /* Read/Write Data Segment */
879 static void init_sys_seg(struct vmcb_seg
*seg
, uint32_t type
)
882 seg
->attrib
= SVM_SELECTOR_P_MASK
| type
;
887 static u64
__scale_tsc(u64 ratio
, u64 tsc
)
889 u64 mult
, frac
, _tsc
;
892 frac
= ratio
& ((1ULL << 32) - 1);
896 _tsc
+= (tsc
>> 32) * frac
;
897 _tsc
+= ((tsc
& ((1ULL << 32) - 1)) * frac
) >> 32;
902 static u64
svm_scale_tsc(struct kvm_vcpu
*vcpu
, u64 tsc
)
904 struct vcpu_svm
*svm
= to_svm(vcpu
);
907 if (svm
->tsc_ratio
!= TSC_RATIO_DEFAULT
)
908 _tsc
= __scale_tsc(svm
->tsc_ratio
, tsc
);
913 static void svm_set_tsc_khz(struct kvm_vcpu
*vcpu
, u32 user_tsc_khz
)
915 struct vcpu_svm
*svm
= to_svm(vcpu
);
919 /* TSC scaling supported? */
920 if (!boot_cpu_has(X86_FEATURE_TSCRATEMSR
))
923 /* TSC-Scaling disabled or guest TSC same frequency as host TSC? */
924 if (user_tsc_khz
== 0) {
925 vcpu
->arch
.virtual_tsc_khz
= 0;
926 svm
->tsc_ratio
= TSC_RATIO_DEFAULT
;
932 /* TSC scaling required - calculate ratio */
934 do_div(ratio
, tsc_khz
);
936 if (ratio
== 0 || ratio
& TSC_RATIO_RSVD
) {
937 WARN_ONCE(1, "Invalid TSC ratio - virtual-tsc-khz=%u\n",
941 vcpu
->arch
.virtual_tsc_khz
= user_tsc_khz
;
942 svm
->tsc_ratio
= ratio
;
945 static void svm_write_tsc_offset(struct kvm_vcpu
*vcpu
, u64 offset
)
947 struct vcpu_svm
*svm
= to_svm(vcpu
);
948 u64 g_tsc_offset
= 0;
950 if (is_guest_mode(vcpu
)) {
951 g_tsc_offset
= svm
->vmcb
->control
.tsc_offset
-
952 svm
->nested
.hsave
->control
.tsc_offset
;
953 svm
->nested
.hsave
->control
.tsc_offset
= offset
;
956 svm
->vmcb
->control
.tsc_offset
= offset
+ g_tsc_offset
;
958 mark_dirty(svm
->vmcb
, VMCB_INTERCEPTS
);
961 static void svm_adjust_tsc_offset(struct kvm_vcpu
*vcpu
, s64 adjustment
)
963 struct vcpu_svm
*svm
= to_svm(vcpu
);
965 svm
->vmcb
->control
.tsc_offset
+= adjustment
;
966 if (is_guest_mode(vcpu
))
967 svm
->nested
.hsave
->control
.tsc_offset
+= adjustment
;
968 mark_dirty(svm
->vmcb
, VMCB_INTERCEPTS
);
971 static u64
svm_compute_tsc_offset(struct kvm_vcpu
*vcpu
, u64 target_tsc
)
975 tsc
= svm_scale_tsc(vcpu
, native_read_tsc());
977 return target_tsc
- tsc
;
980 static void init_vmcb(struct vcpu_svm
*svm
)
982 struct vmcb_control_area
*control
= &svm
->vmcb
->control
;
983 struct vmcb_save_area
*save
= &svm
->vmcb
->save
;
985 svm
->vcpu
.fpu_active
= 1;
986 svm
->vcpu
.arch
.hflags
= 0;
988 set_cr_intercept(svm
, INTERCEPT_CR0_READ
);
989 set_cr_intercept(svm
, INTERCEPT_CR3_READ
);
990 set_cr_intercept(svm
, INTERCEPT_CR4_READ
);
991 set_cr_intercept(svm
, INTERCEPT_CR0_WRITE
);
992 set_cr_intercept(svm
, INTERCEPT_CR3_WRITE
);
993 set_cr_intercept(svm
, INTERCEPT_CR4_WRITE
);
994 set_cr_intercept(svm
, INTERCEPT_CR8_WRITE
);
996 set_dr_intercept(svm
, INTERCEPT_DR0_READ
);
997 set_dr_intercept(svm
, INTERCEPT_DR1_READ
);
998 set_dr_intercept(svm
, INTERCEPT_DR2_READ
);
999 set_dr_intercept(svm
, INTERCEPT_DR3_READ
);
1000 set_dr_intercept(svm
, INTERCEPT_DR4_READ
);
1001 set_dr_intercept(svm
, INTERCEPT_DR5_READ
);
1002 set_dr_intercept(svm
, INTERCEPT_DR6_READ
);
1003 set_dr_intercept(svm
, INTERCEPT_DR7_READ
);
1005 set_dr_intercept(svm
, INTERCEPT_DR0_WRITE
);
1006 set_dr_intercept(svm
, INTERCEPT_DR1_WRITE
);
1007 set_dr_intercept(svm
, INTERCEPT_DR2_WRITE
);
1008 set_dr_intercept(svm
, INTERCEPT_DR3_WRITE
);
1009 set_dr_intercept(svm
, INTERCEPT_DR4_WRITE
);
1010 set_dr_intercept(svm
, INTERCEPT_DR5_WRITE
);
1011 set_dr_intercept(svm
, INTERCEPT_DR6_WRITE
);
1012 set_dr_intercept(svm
, INTERCEPT_DR7_WRITE
);
1014 set_exception_intercept(svm
, PF_VECTOR
);
1015 set_exception_intercept(svm
, UD_VECTOR
);
1016 set_exception_intercept(svm
, MC_VECTOR
);
1018 set_intercept(svm
, INTERCEPT_INTR
);
1019 set_intercept(svm
, INTERCEPT_NMI
);
1020 set_intercept(svm
, INTERCEPT_SMI
);
1021 set_intercept(svm
, INTERCEPT_SELECTIVE_CR0
);
1022 set_intercept(svm
, INTERCEPT_RDPMC
);
1023 set_intercept(svm
, INTERCEPT_CPUID
);
1024 set_intercept(svm
, INTERCEPT_INVD
);
1025 set_intercept(svm
, INTERCEPT_HLT
);
1026 set_intercept(svm
, INTERCEPT_INVLPG
);
1027 set_intercept(svm
, INTERCEPT_INVLPGA
);
1028 set_intercept(svm
, INTERCEPT_IOIO_PROT
);
1029 set_intercept(svm
, INTERCEPT_MSR_PROT
);
1030 set_intercept(svm
, INTERCEPT_TASK_SWITCH
);
1031 set_intercept(svm
, INTERCEPT_SHUTDOWN
);
1032 set_intercept(svm
, INTERCEPT_VMRUN
);
1033 set_intercept(svm
, INTERCEPT_VMMCALL
);
1034 set_intercept(svm
, INTERCEPT_VMLOAD
);
1035 set_intercept(svm
, INTERCEPT_VMSAVE
);
1036 set_intercept(svm
, INTERCEPT_STGI
);
1037 set_intercept(svm
, INTERCEPT_CLGI
);
1038 set_intercept(svm
, INTERCEPT_SKINIT
);
1039 set_intercept(svm
, INTERCEPT_WBINVD
);
1040 set_intercept(svm
, INTERCEPT_MONITOR
);
1041 set_intercept(svm
, INTERCEPT_MWAIT
);
1042 set_intercept(svm
, INTERCEPT_XSETBV
);
1044 control
->iopm_base_pa
= iopm_base
;
1045 control
->msrpm_base_pa
= __pa(svm
->msrpm
);
1046 control
->int_ctl
= V_INTR_MASKING_MASK
;
1048 init_seg(&save
->es
);
1049 init_seg(&save
->ss
);
1050 init_seg(&save
->ds
);
1051 init_seg(&save
->fs
);
1052 init_seg(&save
->gs
);
1054 save
->cs
.selector
= 0xf000;
1055 /* Executable/Readable Code Segment */
1056 save
->cs
.attrib
= SVM_SELECTOR_READ_MASK
| SVM_SELECTOR_P_MASK
|
1057 SVM_SELECTOR_S_MASK
| SVM_SELECTOR_CODE_MASK
;
1058 save
->cs
.limit
= 0xffff;
1060 * cs.base should really be 0xffff0000, but vmx can't handle that, so
1061 * be consistent with it.
1063 * Replace when we have real mode working for vmx.
1065 save
->cs
.base
= 0xf0000;
1067 save
->gdtr
.limit
= 0xffff;
1068 save
->idtr
.limit
= 0xffff;
1070 init_sys_seg(&save
->ldtr
, SEG_TYPE_LDT
);
1071 init_sys_seg(&save
->tr
, SEG_TYPE_BUSY_TSS16
);
1073 svm_set_efer(&svm
->vcpu
, 0);
1074 save
->dr6
= 0xffff0ff0;
1076 kvm_set_rflags(&svm
->vcpu
, 2);
1077 save
->rip
= 0x0000fff0;
1078 svm
->vcpu
.arch
.regs
[VCPU_REGS_RIP
] = save
->rip
;
1081 * This is the guest-visible cr0 value.
1082 * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
1084 svm
->vcpu
.arch
.cr0
= 0;
1085 (void)kvm_set_cr0(&svm
->vcpu
, X86_CR0_NW
| X86_CR0_CD
| X86_CR0_ET
);
1087 save
->cr4
= X86_CR4_PAE
;
1091 /* Setup VMCB for Nested Paging */
1092 control
->nested_ctl
= 1;
1093 clr_intercept(svm
, INTERCEPT_INVLPG
);
1094 clr_exception_intercept(svm
, PF_VECTOR
);
1095 clr_cr_intercept(svm
, INTERCEPT_CR3_READ
);
1096 clr_cr_intercept(svm
, INTERCEPT_CR3_WRITE
);
1097 save
->g_pat
= 0x0007040600070406ULL
;
1101 svm
->asid_generation
= 0;
1103 svm
->nested
.vmcb
= 0;
1104 svm
->vcpu
.arch
.hflags
= 0;
1106 if (boot_cpu_has(X86_FEATURE_PAUSEFILTER
)) {
1107 control
->pause_filter_count
= 3000;
1108 set_intercept(svm
, INTERCEPT_PAUSE
);
1111 mark_all_dirty(svm
->vmcb
);
1116 static int svm_vcpu_reset(struct kvm_vcpu
*vcpu
)
1118 struct vcpu_svm
*svm
= to_svm(vcpu
);
1122 if (!kvm_vcpu_is_bsp(vcpu
)) {
1123 kvm_rip_write(vcpu
, 0);
1124 svm
->vmcb
->save
.cs
.base
= svm
->vcpu
.arch
.sipi_vector
<< 12;
1125 svm
->vmcb
->save
.cs
.selector
= svm
->vcpu
.arch
.sipi_vector
<< 8;
1127 vcpu
->arch
.regs_avail
= ~0;
1128 vcpu
->arch
.regs_dirty
= ~0;
1133 static struct kvm_vcpu
*svm_create_vcpu(struct kvm
*kvm
, unsigned int id
)
1135 struct vcpu_svm
*svm
;
1137 struct page
*msrpm_pages
;
1138 struct page
*hsave_page
;
1139 struct page
*nested_msrpm_pages
;
1142 svm
= kmem_cache_zalloc(kvm_vcpu_cache
, GFP_KERNEL
);
1148 svm
->tsc_ratio
= TSC_RATIO_DEFAULT
;
1150 err
= kvm_vcpu_init(&svm
->vcpu
, kvm
, id
);
1155 page
= alloc_page(GFP_KERNEL
);
1159 msrpm_pages
= alloc_pages(GFP_KERNEL
, MSRPM_ALLOC_ORDER
);
1163 nested_msrpm_pages
= alloc_pages(GFP_KERNEL
, MSRPM_ALLOC_ORDER
);
1164 if (!nested_msrpm_pages
)
1167 hsave_page
= alloc_page(GFP_KERNEL
);
1171 svm
->nested
.hsave
= page_address(hsave_page
);
1173 svm
->msrpm
= page_address(msrpm_pages
);
1174 svm_vcpu_init_msrpm(svm
->msrpm
);
1176 svm
->nested
.msrpm
= page_address(nested_msrpm_pages
);
1177 svm_vcpu_init_msrpm(svm
->nested
.msrpm
);
1179 svm
->vmcb
= page_address(page
);
1180 clear_page(svm
->vmcb
);
1181 svm
->vmcb_pa
= page_to_pfn(page
) << PAGE_SHIFT
;
1182 svm
->asid_generation
= 0;
1184 kvm_write_tsc(&svm
->vcpu
, 0);
1186 err
= fx_init(&svm
->vcpu
);
1190 svm
->vcpu
.arch
.apic_base
= 0xfee00000 | MSR_IA32_APICBASE_ENABLE
;
1191 if (kvm_vcpu_is_bsp(&svm
->vcpu
))
1192 svm
->vcpu
.arch
.apic_base
|= MSR_IA32_APICBASE_BSP
;
1197 __free_page(hsave_page
);
1199 __free_pages(nested_msrpm_pages
, MSRPM_ALLOC_ORDER
);
1201 __free_pages(msrpm_pages
, MSRPM_ALLOC_ORDER
);
1205 kvm_vcpu_uninit(&svm
->vcpu
);
1207 kmem_cache_free(kvm_vcpu_cache
, svm
);
1209 return ERR_PTR(err
);
1212 static void svm_free_vcpu(struct kvm_vcpu
*vcpu
)
1214 struct vcpu_svm
*svm
= to_svm(vcpu
);
1216 __free_page(pfn_to_page(svm
->vmcb_pa
>> PAGE_SHIFT
));
1217 __free_pages(virt_to_page(svm
->msrpm
), MSRPM_ALLOC_ORDER
);
1218 __free_page(virt_to_page(svm
->nested
.hsave
));
1219 __free_pages(virt_to_page(svm
->nested
.msrpm
), MSRPM_ALLOC_ORDER
);
1220 kvm_vcpu_uninit(vcpu
);
1221 kmem_cache_free(kvm_vcpu_cache
, svm
);
1224 static void svm_vcpu_load(struct kvm_vcpu
*vcpu
, int cpu
)
1226 struct vcpu_svm
*svm
= to_svm(vcpu
);
1229 if (unlikely(cpu
!= vcpu
->cpu
)) {
1230 svm
->asid_generation
= 0;
1231 mark_all_dirty(svm
->vmcb
);
1234 #ifdef CONFIG_X86_64
1235 rdmsrl(MSR_GS_BASE
, to_svm(vcpu
)->host
.gs_base
);
1237 savesegment(fs
, svm
->host
.fs
);
1238 savesegment(gs
, svm
->host
.gs
);
1239 svm
->host
.ldt
= kvm_read_ldt();
1241 for (i
= 0; i
< NR_HOST_SAVE_USER_MSRS
; i
++)
1242 rdmsrl(host_save_user_msrs
[i
], svm
->host_user_msrs
[i
]);
1244 if (static_cpu_has(X86_FEATURE_TSCRATEMSR
) &&
1245 svm
->tsc_ratio
!= __get_cpu_var(current_tsc_ratio
)) {
1246 __get_cpu_var(current_tsc_ratio
) = svm
->tsc_ratio
;
1247 wrmsrl(MSR_AMD64_TSC_RATIO
, svm
->tsc_ratio
);
1251 static void svm_vcpu_put(struct kvm_vcpu
*vcpu
)
1253 struct vcpu_svm
*svm
= to_svm(vcpu
);
1256 ++vcpu
->stat
.host_state_reload
;
1257 kvm_load_ldt(svm
->host
.ldt
);
1258 #ifdef CONFIG_X86_64
1259 loadsegment(fs
, svm
->host
.fs
);
1260 wrmsrl(MSR_KERNEL_GS_BASE
, current
->thread
.gs
);
1261 load_gs_index(svm
->host
.gs
);
1263 #ifdef CONFIG_X86_32_LAZY_GS
1264 loadsegment(gs
, svm
->host
.gs
);
1267 for (i
= 0; i
< NR_HOST_SAVE_USER_MSRS
; i
++)
1268 wrmsrl(host_save_user_msrs
[i
], svm
->host_user_msrs
[i
]);
1271 static unsigned long svm_get_rflags(struct kvm_vcpu
*vcpu
)
1273 return to_svm(vcpu
)->vmcb
->save
.rflags
;
1276 static void svm_set_rflags(struct kvm_vcpu
*vcpu
, unsigned long rflags
)
1278 to_svm(vcpu
)->vmcb
->save
.rflags
= rflags
;
1281 static void svm_cache_reg(struct kvm_vcpu
*vcpu
, enum kvm_reg reg
)
1284 case VCPU_EXREG_PDPTR
:
1285 BUG_ON(!npt_enabled
);
1286 load_pdptrs(vcpu
, vcpu
->arch
.walk_mmu
, kvm_read_cr3(vcpu
));
1293 static void svm_set_vintr(struct vcpu_svm
*svm
)
1295 set_intercept(svm
, INTERCEPT_VINTR
);
1298 static void svm_clear_vintr(struct vcpu_svm
*svm
)
1300 clr_intercept(svm
, INTERCEPT_VINTR
);
1303 static struct vmcb_seg
*svm_seg(struct kvm_vcpu
*vcpu
, int seg
)
1305 struct vmcb_save_area
*save
= &to_svm(vcpu
)->vmcb
->save
;
1308 case VCPU_SREG_CS
: return &save
->cs
;
1309 case VCPU_SREG_DS
: return &save
->ds
;
1310 case VCPU_SREG_ES
: return &save
->es
;
1311 case VCPU_SREG_FS
: return &save
->fs
;
1312 case VCPU_SREG_GS
: return &save
->gs
;
1313 case VCPU_SREG_SS
: return &save
->ss
;
1314 case VCPU_SREG_TR
: return &save
->tr
;
1315 case VCPU_SREG_LDTR
: return &save
->ldtr
;
1321 static u64
svm_get_segment_base(struct kvm_vcpu
*vcpu
, int seg
)
1323 struct vmcb_seg
*s
= svm_seg(vcpu
, seg
);
1328 static void svm_get_segment(struct kvm_vcpu
*vcpu
,
1329 struct kvm_segment
*var
, int seg
)
1331 struct vmcb_seg
*s
= svm_seg(vcpu
, seg
);
1333 var
->base
= s
->base
;
1334 var
->limit
= s
->limit
;
1335 var
->selector
= s
->selector
;
1336 var
->type
= s
->attrib
& SVM_SELECTOR_TYPE_MASK
;
1337 var
->s
= (s
->attrib
>> SVM_SELECTOR_S_SHIFT
) & 1;
1338 var
->dpl
= (s
->attrib
>> SVM_SELECTOR_DPL_SHIFT
) & 3;
1339 var
->present
= (s
->attrib
>> SVM_SELECTOR_P_SHIFT
) & 1;
1340 var
->avl
= (s
->attrib
>> SVM_SELECTOR_AVL_SHIFT
) & 1;
1341 var
->l
= (s
->attrib
>> SVM_SELECTOR_L_SHIFT
) & 1;
1342 var
->db
= (s
->attrib
>> SVM_SELECTOR_DB_SHIFT
) & 1;
1343 var
->g
= (s
->attrib
>> SVM_SELECTOR_G_SHIFT
) & 1;
1346 * AMD's VMCB does not have an explicit unusable field, so emulate it
1347 * for cross vendor migration purposes by "not present"
1349 var
->unusable
= !var
->present
|| (var
->type
== 0);
1354 * SVM always stores 0 for the 'G' bit in the CS selector in
1355 * the VMCB on a VMEXIT. This hurts cross-vendor migration:
1356 * Intel's VMENTRY has a check on the 'G' bit.
1358 var
->g
= s
->limit
> 0xfffff;
1362 * Work around a bug where the busy flag in the tr selector
1372 * The accessed bit must always be set in the segment
1373 * descriptor cache, although it can be cleared in the
1374 * descriptor, the cached bit always remains at 1. Since
1375 * Intel has a check on this, set it here to support
1376 * cross-vendor migration.
1383 * On AMD CPUs sometimes the DB bit in the segment
1384 * descriptor is left as 1, although the whole segment has
1385 * been made unusable. Clear it here to pass an Intel VMX
1386 * entry check when cross vendor migrating.
1394 static int svm_get_cpl(struct kvm_vcpu
*vcpu
)
1396 struct vmcb_save_area
*save
= &to_svm(vcpu
)->vmcb
->save
;
1401 static void svm_get_idt(struct kvm_vcpu
*vcpu
, struct desc_ptr
*dt
)
1403 struct vcpu_svm
*svm
= to_svm(vcpu
);
1405 dt
->size
= svm
->vmcb
->save
.idtr
.limit
;
1406 dt
->address
= svm
->vmcb
->save
.idtr
.base
;
1409 static void svm_set_idt(struct kvm_vcpu
*vcpu
, struct desc_ptr
*dt
)
1411 struct vcpu_svm
*svm
= to_svm(vcpu
);
1413 svm
->vmcb
->save
.idtr
.limit
= dt
->size
;
1414 svm
->vmcb
->save
.idtr
.base
= dt
->address
;
1415 mark_dirty(svm
->vmcb
, VMCB_DT
);
1418 static void svm_get_gdt(struct kvm_vcpu
*vcpu
, struct desc_ptr
*dt
)
1420 struct vcpu_svm
*svm
= to_svm(vcpu
);
1422 dt
->size
= svm
->vmcb
->save
.gdtr
.limit
;
1423 dt
->address
= svm
->vmcb
->save
.gdtr
.base
;
1426 static void svm_set_gdt(struct kvm_vcpu
*vcpu
, struct desc_ptr
*dt
)
1428 struct vcpu_svm
*svm
= to_svm(vcpu
);
1430 svm
->vmcb
->save
.gdtr
.limit
= dt
->size
;
1431 svm
->vmcb
->save
.gdtr
.base
= dt
->address
;
1432 mark_dirty(svm
->vmcb
, VMCB_DT
);
1435 static void svm_decache_cr0_guest_bits(struct kvm_vcpu
*vcpu
)
1439 static void svm_decache_cr3(struct kvm_vcpu
*vcpu
)
1443 static void svm_decache_cr4_guest_bits(struct kvm_vcpu
*vcpu
)
1447 static void update_cr0_intercept(struct vcpu_svm
*svm
)
1449 ulong gcr0
= svm
->vcpu
.arch
.cr0
;
1450 u64
*hcr0
= &svm
->vmcb
->save
.cr0
;
1452 if (!svm
->vcpu
.fpu_active
)
1453 *hcr0
|= SVM_CR0_SELECTIVE_MASK
;
1455 *hcr0
= (*hcr0
& ~SVM_CR0_SELECTIVE_MASK
)
1456 | (gcr0
& SVM_CR0_SELECTIVE_MASK
);
1458 mark_dirty(svm
->vmcb
, VMCB_CR
);
1460 if (gcr0
== *hcr0
&& svm
->vcpu
.fpu_active
) {
1461 clr_cr_intercept(svm
, INTERCEPT_CR0_READ
);
1462 clr_cr_intercept(svm
, INTERCEPT_CR0_WRITE
);
1464 set_cr_intercept(svm
, INTERCEPT_CR0_READ
);
1465 set_cr_intercept(svm
, INTERCEPT_CR0_WRITE
);
1469 static void svm_set_cr0(struct kvm_vcpu
*vcpu
, unsigned long cr0
)
1471 struct vcpu_svm
*svm
= to_svm(vcpu
);
1473 #ifdef CONFIG_X86_64
1474 if (vcpu
->arch
.efer
& EFER_LME
) {
1475 if (!is_paging(vcpu
) && (cr0
& X86_CR0_PG
)) {
1476 vcpu
->arch
.efer
|= EFER_LMA
;
1477 svm
->vmcb
->save
.efer
|= EFER_LMA
| EFER_LME
;
1480 if (is_paging(vcpu
) && !(cr0
& X86_CR0_PG
)) {
1481 vcpu
->arch
.efer
&= ~EFER_LMA
;
1482 svm
->vmcb
->save
.efer
&= ~(EFER_LMA
| EFER_LME
);
1486 vcpu
->arch
.cr0
= cr0
;
1489 cr0
|= X86_CR0_PG
| X86_CR0_WP
;
1491 if (!vcpu
->fpu_active
)
1494 * re-enable caching here because the QEMU bios
1495 * does not do it - this results in some delay at
1498 cr0
&= ~(X86_CR0_CD
| X86_CR0_NW
);
1499 svm
->vmcb
->save
.cr0
= cr0
;
1500 mark_dirty(svm
->vmcb
, VMCB_CR
);
1501 update_cr0_intercept(svm
);
1504 static int svm_set_cr4(struct kvm_vcpu
*vcpu
, unsigned long cr4
)
1506 unsigned long host_cr4_mce
= read_cr4() & X86_CR4_MCE
;
1507 unsigned long old_cr4
= to_svm(vcpu
)->vmcb
->save
.cr4
;
1509 if (cr4
& X86_CR4_VMXE
)
1512 if (npt_enabled
&& ((old_cr4
^ cr4
) & X86_CR4_PGE
))
1513 svm_flush_tlb(vcpu
);
1515 vcpu
->arch
.cr4
= cr4
;
1518 cr4
|= host_cr4_mce
;
1519 to_svm(vcpu
)->vmcb
->save
.cr4
= cr4
;
1520 mark_dirty(to_svm(vcpu
)->vmcb
, VMCB_CR
);
1524 static void svm_set_segment(struct kvm_vcpu
*vcpu
,
1525 struct kvm_segment
*var
, int seg
)
1527 struct vcpu_svm
*svm
= to_svm(vcpu
);
1528 struct vmcb_seg
*s
= svm_seg(vcpu
, seg
);
1530 s
->base
= var
->base
;
1531 s
->limit
= var
->limit
;
1532 s
->selector
= var
->selector
;
1536 s
->attrib
= (var
->type
& SVM_SELECTOR_TYPE_MASK
);
1537 s
->attrib
|= (var
->s
& 1) << SVM_SELECTOR_S_SHIFT
;
1538 s
->attrib
|= (var
->dpl
& 3) << SVM_SELECTOR_DPL_SHIFT
;
1539 s
->attrib
|= (var
->present
& 1) << SVM_SELECTOR_P_SHIFT
;
1540 s
->attrib
|= (var
->avl
& 1) << SVM_SELECTOR_AVL_SHIFT
;
1541 s
->attrib
|= (var
->l
& 1) << SVM_SELECTOR_L_SHIFT
;
1542 s
->attrib
|= (var
->db
& 1) << SVM_SELECTOR_DB_SHIFT
;
1543 s
->attrib
|= (var
->g
& 1) << SVM_SELECTOR_G_SHIFT
;
1545 if (seg
== VCPU_SREG_CS
)
1547 = (svm
->vmcb
->save
.cs
.attrib
1548 >> SVM_SELECTOR_DPL_SHIFT
) & 3;
1550 mark_dirty(svm
->vmcb
, VMCB_SEG
);
1553 static void update_db_intercept(struct kvm_vcpu
*vcpu
)
1555 struct vcpu_svm
*svm
= to_svm(vcpu
);
1557 clr_exception_intercept(svm
, DB_VECTOR
);
1558 clr_exception_intercept(svm
, BP_VECTOR
);
1560 if (svm
->nmi_singlestep
)
1561 set_exception_intercept(svm
, DB_VECTOR
);
1563 if (vcpu
->guest_debug
& KVM_GUESTDBG_ENABLE
) {
1564 if (vcpu
->guest_debug
&
1565 (KVM_GUESTDBG_SINGLESTEP
| KVM_GUESTDBG_USE_HW_BP
))
1566 set_exception_intercept(svm
, DB_VECTOR
);
1567 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_SW_BP
)
1568 set_exception_intercept(svm
, BP_VECTOR
);
1570 vcpu
->guest_debug
= 0;
1573 static void svm_guest_debug(struct kvm_vcpu
*vcpu
, struct kvm_guest_debug
*dbg
)
1575 struct vcpu_svm
*svm
= to_svm(vcpu
);
1577 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
)
1578 svm
->vmcb
->save
.dr7
= dbg
->arch
.debugreg
[7];
1580 svm
->vmcb
->save
.dr7
= vcpu
->arch
.dr7
;
1582 mark_dirty(svm
->vmcb
, VMCB_DR
);
1584 update_db_intercept(vcpu
);
1587 static void new_asid(struct vcpu_svm
*svm
, struct svm_cpu_data
*sd
)
1589 if (sd
->next_asid
> sd
->max_asid
) {
1590 ++sd
->asid_generation
;
1592 svm
->vmcb
->control
.tlb_ctl
= TLB_CONTROL_FLUSH_ALL_ASID
;
1595 svm
->asid_generation
= sd
->asid_generation
;
1596 svm
->vmcb
->control
.asid
= sd
->next_asid
++;
1598 mark_dirty(svm
->vmcb
, VMCB_ASID
);
1601 static void svm_set_dr7(struct kvm_vcpu
*vcpu
, unsigned long value
)
1603 struct vcpu_svm
*svm
= to_svm(vcpu
);
1605 svm
->vmcb
->save
.dr7
= value
;
1606 mark_dirty(svm
->vmcb
, VMCB_DR
);
1609 static int pf_interception(struct vcpu_svm
*svm
)
1611 u64 fault_address
= svm
->vmcb
->control
.exit_info_2
;
1615 switch (svm
->apf_reason
) {
1617 error_code
= svm
->vmcb
->control
.exit_info_1
;
1619 trace_kvm_page_fault(fault_address
, error_code
);
1620 if (!npt_enabled
&& kvm_event_needs_reinjection(&svm
->vcpu
))
1621 kvm_mmu_unprotect_page_virt(&svm
->vcpu
, fault_address
);
1622 r
= kvm_mmu_page_fault(&svm
->vcpu
, fault_address
, error_code
,
1623 svm
->vmcb
->control
.insn_bytes
,
1624 svm
->vmcb
->control
.insn_len
);
1626 case KVM_PV_REASON_PAGE_NOT_PRESENT
:
1627 svm
->apf_reason
= 0;
1628 local_irq_disable();
1629 kvm_async_pf_task_wait(fault_address
);
1632 case KVM_PV_REASON_PAGE_READY
:
1633 svm
->apf_reason
= 0;
1634 local_irq_disable();
1635 kvm_async_pf_task_wake(fault_address
);
1642 static int db_interception(struct vcpu_svm
*svm
)
1644 struct kvm_run
*kvm_run
= svm
->vcpu
.run
;
1646 if (!(svm
->vcpu
.guest_debug
&
1647 (KVM_GUESTDBG_SINGLESTEP
| KVM_GUESTDBG_USE_HW_BP
)) &&
1648 !svm
->nmi_singlestep
) {
1649 kvm_queue_exception(&svm
->vcpu
, DB_VECTOR
);
1653 if (svm
->nmi_singlestep
) {
1654 svm
->nmi_singlestep
= false;
1655 if (!(svm
->vcpu
.guest_debug
& KVM_GUESTDBG_SINGLESTEP
))
1656 svm
->vmcb
->save
.rflags
&=
1657 ~(X86_EFLAGS_TF
| X86_EFLAGS_RF
);
1658 update_db_intercept(&svm
->vcpu
);
1661 if (svm
->vcpu
.guest_debug
&
1662 (KVM_GUESTDBG_SINGLESTEP
| KVM_GUESTDBG_USE_HW_BP
)) {
1663 kvm_run
->exit_reason
= KVM_EXIT_DEBUG
;
1664 kvm_run
->debug
.arch
.pc
=
1665 svm
->vmcb
->save
.cs
.base
+ svm
->vmcb
->save
.rip
;
1666 kvm_run
->debug
.arch
.exception
= DB_VECTOR
;
1673 static int bp_interception(struct vcpu_svm
*svm
)
1675 struct kvm_run
*kvm_run
= svm
->vcpu
.run
;
1677 kvm_run
->exit_reason
= KVM_EXIT_DEBUG
;
1678 kvm_run
->debug
.arch
.pc
= svm
->vmcb
->save
.cs
.base
+ svm
->vmcb
->save
.rip
;
1679 kvm_run
->debug
.arch
.exception
= BP_VECTOR
;
1683 static int ud_interception(struct vcpu_svm
*svm
)
1687 er
= emulate_instruction(&svm
->vcpu
, EMULTYPE_TRAP_UD
);
1688 if (er
!= EMULATE_DONE
)
1689 kvm_queue_exception(&svm
->vcpu
, UD_VECTOR
);
1693 static void svm_fpu_activate(struct kvm_vcpu
*vcpu
)
1695 struct vcpu_svm
*svm
= to_svm(vcpu
);
1697 clr_exception_intercept(svm
, NM_VECTOR
);
1699 svm
->vcpu
.fpu_active
= 1;
1700 update_cr0_intercept(svm
);
1703 static int nm_interception(struct vcpu_svm
*svm
)
1705 svm_fpu_activate(&svm
->vcpu
);
1709 static bool is_erratum_383(void)
1714 if (!erratum_383_found
)
1717 value
= native_read_msr_safe(MSR_IA32_MC0_STATUS
, &err
);
1721 /* Bit 62 may or may not be set for this mce */
1722 value
&= ~(1ULL << 62);
1724 if (value
!= 0xb600000000010015ULL
)
1727 /* Clear MCi_STATUS registers */
1728 for (i
= 0; i
< 6; ++i
)
1729 native_write_msr_safe(MSR_IA32_MCx_STATUS(i
), 0, 0);
1731 value
= native_read_msr_safe(MSR_IA32_MCG_STATUS
, &err
);
1735 value
&= ~(1ULL << 2);
1736 low
= lower_32_bits(value
);
1737 high
= upper_32_bits(value
);
1739 native_write_msr_safe(MSR_IA32_MCG_STATUS
, low
, high
);
1742 /* Flush tlb to evict multi-match entries */
1748 static void svm_handle_mce(struct vcpu_svm
*svm
)
1750 if (is_erratum_383()) {
1752 * Erratum 383 triggered. Guest state is corrupt so kill the
1755 pr_err("KVM: Guest triggered AMD Erratum 383\n");
1757 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, &svm
->vcpu
);
1763 * On an #MC intercept the MCE handler is not called automatically in
1764 * the host. So do it by hand here.
1768 /* not sure if we ever come back to this point */
1773 static int mc_interception(struct vcpu_svm
*svm
)
1778 static int shutdown_interception(struct vcpu_svm
*svm
)
1780 struct kvm_run
*kvm_run
= svm
->vcpu
.run
;
1783 * VMCB is undefined after a SHUTDOWN intercept
1784 * so reinitialize it.
1786 clear_page(svm
->vmcb
);
1789 kvm_run
->exit_reason
= KVM_EXIT_SHUTDOWN
;
1793 static int io_interception(struct vcpu_svm
*svm
)
1795 struct kvm_vcpu
*vcpu
= &svm
->vcpu
;
1796 u32 io_info
= svm
->vmcb
->control
.exit_info_1
; /* address size bug? */
1797 int size
, in
, string
;
1800 ++svm
->vcpu
.stat
.io_exits
;
1801 string
= (io_info
& SVM_IOIO_STR_MASK
) != 0;
1802 in
= (io_info
& SVM_IOIO_TYPE_MASK
) != 0;
1804 return emulate_instruction(vcpu
, 0) == EMULATE_DONE
;
1806 port
= io_info
>> 16;
1807 size
= (io_info
& SVM_IOIO_SIZE_MASK
) >> SVM_IOIO_SIZE_SHIFT
;
1808 svm
->next_rip
= svm
->vmcb
->control
.exit_info_2
;
1809 skip_emulated_instruction(&svm
->vcpu
);
1811 return kvm_fast_pio_out(vcpu
, size
, port
);
1814 static int nmi_interception(struct vcpu_svm
*svm
)
1819 static int intr_interception(struct vcpu_svm
*svm
)
1821 ++svm
->vcpu
.stat
.irq_exits
;
1825 static int nop_on_interception(struct vcpu_svm
*svm
)
1830 static int halt_interception(struct vcpu_svm
*svm
)
1832 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 1;
1833 skip_emulated_instruction(&svm
->vcpu
);
1834 return kvm_emulate_halt(&svm
->vcpu
);
1837 static int vmmcall_interception(struct vcpu_svm
*svm
)
1839 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 3;
1840 skip_emulated_instruction(&svm
->vcpu
);
1841 kvm_emulate_hypercall(&svm
->vcpu
);
1845 static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu
*vcpu
)
1847 struct vcpu_svm
*svm
= to_svm(vcpu
);
1849 return svm
->nested
.nested_cr3
;
1852 static u64
nested_svm_get_tdp_pdptr(struct kvm_vcpu
*vcpu
, int index
)
1854 struct vcpu_svm
*svm
= to_svm(vcpu
);
1855 u64 cr3
= svm
->nested
.nested_cr3
;
1859 ret
= kvm_read_guest_page(vcpu
->kvm
, gpa_to_gfn(cr3
), &pdpte
,
1860 offset_in_page(cr3
) + index
* 8, 8);
1866 static void nested_svm_set_tdp_cr3(struct kvm_vcpu
*vcpu
,
1869 struct vcpu_svm
*svm
= to_svm(vcpu
);
1871 svm
->vmcb
->control
.nested_cr3
= root
;
1872 mark_dirty(svm
->vmcb
, VMCB_NPT
);
1873 svm_flush_tlb(vcpu
);
1876 static void nested_svm_inject_npf_exit(struct kvm_vcpu
*vcpu
,
1877 struct x86_exception
*fault
)
1879 struct vcpu_svm
*svm
= to_svm(vcpu
);
1881 svm
->vmcb
->control
.exit_code
= SVM_EXIT_NPF
;
1882 svm
->vmcb
->control
.exit_code_hi
= 0;
1883 svm
->vmcb
->control
.exit_info_1
= fault
->error_code
;
1884 svm
->vmcb
->control
.exit_info_2
= fault
->address
;
1886 nested_svm_vmexit(svm
);
1889 static int nested_svm_init_mmu_context(struct kvm_vcpu
*vcpu
)
1893 r
= kvm_init_shadow_mmu(vcpu
, &vcpu
->arch
.mmu
);
1895 vcpu
->arch
.mmu
.set_cr3
= nested_svm_set_tdp_cr3
;
1896 vcpu
->arch
.mmu
.get_cr3
= nested_svm_get_tdp_cr3
;
1897 vcpu
->arch
.mmu
.get_pdptr
= nested_svm_get_tdp_pdptr
;
1898 vcpu
->arch
.mmu
.inject_page_fault
= nested_svm_inject_npf_exit
;
1899 vcpu
->arch
.mmu
.shadow_root_level
= get_npt_level();
1900 vcpu
->arch
.walk_mmu
= &vcpu
->arch
.nested_mmu
;
1905 static void nested_svm_uninit_mmu_context(struct kvm_vcpu
*vcpu
)
1907 vcpu
->arch
.walk_mmu
= &vcpu
->arch
.mmu
;
1910 static int nested_svm_check_permissions(struct vcpu_svm
*svm
)
1912 if (!(svm
->vcpu
.arch
.efer
& EFER_SVME
)
1913 || !is_paging(&svm
->vcpu
)) {
1914 kvm_queue_exception(&svm
->vcpu
, UD_VECTOR
);
1918 if (svm
->vmcb
->save
.cpl
) {
1919 kvm_inject_gp(&svm
->vcpu
, 0);
1926 static int nested_svm_check_exception(struct vcpu_svm
*svm
, unsigned nr
,
1927 bool has_error_code
, u32 error_code
)
1931 if (!is_guest_mode(&svm
->vcpu
))
1934 svm
->vmcb
->control
.exit_code
= SVM_EXIT_EXCP_BASE
+ nr
;
1935 svm
->vmcb
->control
.exit_code_hi
= 0;
1936 svm
->vmcb
->control
.exit_info_1
= error_code
;
1937 svm
->vmcb
->control
.exit_info_2
= svm
->vcpu
.arch
.cr2
;
1939 vmexit
= nested_svm_intercept(svm
);
1940 if (vmexit
== NESTED_EXIT_DONE
)
1941 svm
->nested
.exit_required
= true;
1946 /* This function returns true if it is save to enable the irq window */
1947 static inline bool nested_svm_intr(struct vcpu_svm
*svm
)
1949 if (!is_guest_mode(&svm
->vcpu
))
1952 if (!(svm
->vcpu
.arch
.hflags
& HF_VINTR_MASK
))
1955 if (!(svm
->vcpu
.arch
.hflags
& HF_HIF_MASK
))
1959 * if vmexit was already requested (by intercepted exception
1960 * for instance) do not overwrite it with "external interrupt"
1963 if (svm
->nested
.exit_required
)
1966 svm
->vmcb
->control
.exit_code
= SVM_EXIT_INTR
;
1967 svm
->vmcb
->control
.exit_info_1
= 0;
1968 svm
->vmcb
->control
.exit_info_2
= 0;
1970 if (svm
->nested
.intercept
& 1ULL) {
1972 * The #vmexit can't be emulated here directly because this
1973 * code path runs with irqs and preemtion disabled. A
1974 * #vmexit emulation might sleep. Only signal request for
1977 svm
->nested
.exit_required
= true;
1978 trace_kvm_nested_intr_vmexit(svm
->vmcb
->save
.rip
);
1985 /* This function returns true if it is save to enable the nmi window */
1986 static inline bool nested_svm_nmi(struct vcpu_svm
*svm
)
1988 if (!is_guest_mode(&svm
->vcpu
))
1991 if (!(svm
->nested
.intercept
& (1ULL << INTERCEPT_NMI
)))
1994 svm
->vmcb
->control
.exit_code
= SVM_EXIT_NMI
;
1995 svm
->nested
.exit_required
= true;
2000 static void *nested_svm_map(struct vcpu_svm
*svm
, u64 gpa
, struct page
**_page
)
2006 page
= gfn_to_page(svm
->vcpu
.kvm
, gpa
>> PAGE_SHIFT
);
2007 if (is_error_page(page
))
2015 kvm_release_page_clean(page
);
2016 kvm_inject_gp(&svm
->vcpu
, 0);
2021 static void nested_svm_unmap(struct page
*page
)
2024 kvm_release_page_dirty(page
);
2027 static int nested_svm_intercept_ioio(struct vcpu_svm
*svm
)
2033 if (!(svm
->nested
.intercept
& (1ULL << INTERCEPT_IOIO_PROT
)))
2034 return NESTED_EXIT_HOST
;
2036 port
= svm
->vmcb
->control
.exit_info_1
>> 16;
2037 gpa
= svm
->nested
.vmcb_iopm
+ (port
/ 8);
2041 if (kvm_read_guest(svm
->vcpu
.kvm
, gpa
, &val
, 1))
2044 return val
? NESTED_EXIT_DONE
: NESTED_EXIT_HOST
;
2047 static int nested_svm_exit_handled_msr(struct vcpu_svm
*svm
)
2049 u32 offset
, msr
, value
;
2052 if (!(svm
->nested
.intercept
& (1ULL << INTERCEPT_MSR_PROT
)))
2053 return NESTED_EXIT_HOST
;
2055 msr
= svm
->vcpu
.arch
.regs
[VCPU_REGS_RCX
];
2056 offset
= svm_msrpm_offset(msr
);
2057 write
= svm
->vmcb
->control
.exit_info_1
& 1;
2058 mask
= 1 << ((2 * (msr
& 0xf)) + write
);
2060 if (offset
== MSR_INVALID
)
2061 return NESTED_EXIT_DONE
;
2063 /* Offset is in 32 bit units but need in 8 bit units */
2066 if (kvm_read_guest(svm
->vcpu
.kvm
, svm
->nested
.vmcb_msrpm
+ offset
, &value
, 4))
2067 return NESTED_EXIT_DONE
;
2069 return (value
& mask
) ? NESTED_EXIT_DONE
: NESTED_EXIT_HOST
;
2072 static int nested_svm_exit_special(struct vcpu_svm
*svm
)
2074 u32 exit_code
= svm
->vmcb
->control
.exit_code
;
2076 switch (exit_code
) {
2079 case SVM_EXIT_EXCP_BASE
+ MC_VECTOR
:
2080 return NESTED_EXIT_HOST
;
2082 /* For now we are always handling NPFs when using them */
2084 return NESTED_EXIT_HOST
;
2086 case SVM_EXIT_EXCP_BASE
+ PF_VECTOR
:
2087 /* When we're shadowing, trap PFs, but not async PF */
2088 if (!npt_enabled
&& svm
->apf_reason
== 0)
2089 return NESTED_EXIT_HOST
;
2091 case SVM_EXIT_EXCP_BASE
+ NM_VECTOR
:
2092 nm_interception(svm
);
2098 return NESTED_EXIT_CONTINUE
;
2102 * If this function returns true, this #vmexit was already handled
2104 static int nested_svm_intercept(struct vcpu_svm
*svm
)
2106 u32 exit_code
= svm
->vmcb
->control
.exit_code
;
2107 int vmexit
= NESTED_EXIT_HOST
;
2109 switch (exit_code
) {
2111 vmexit
= nested_svm_exit_handled_msr(svm
);
2114 vmexit
= nested_svm_intercept_ioio(svm
);
2116 case SVM_EXIT_READ_CR0
... SVM_EXIT_WRITE_CR8
: {
2117 u32 bit
= 1U << (exit_code
- SVM_EXIT_READ_CR0
);
2118 if (svm
->nested
.intercept_cr
& bit
)
2119 vmexit
= NESTED_EXIT_DONE
;
2122 case SVM_EXIT_READ_DR0
... SVM_EXIT_WRITE_DR7
: {
2123 u32 bit
= 1U << (exit_code
- SVM_EXIT_READ_DR0
);
2124 if (svm
->nested
.intercept_dr
& bit
)
2125 vmexit
= NESTED_EXIT_DONE
;
2128 case SVM_EXIT_EXCP_BASE
... SVM_EXIT_EXCP_BASE
+ 0x1f: {
2129 u32 excp_bits
= 1 << (exit_code
- SVM_EXIT_EXCP_BASE
);
2130 if (svm
->nested
.intercept_exceptions
& excp_bits
)
2131 vmexit
= NESTED_EXIT_DONE
;
2132 /* async page fault always cause vmexit */
2133 else if ((exit_code
== SVM_EXIT_EXCP_BASE
+ PF_VECTOR
) &&
2134 svm
->apf_reason
!= 0)
2135 vmexit
= NESTED_EXIT_DONE
;
2138 case SVM_EXIT_ERR
: {
2139 vmexit
= NESTED_EXIT_DONE
;
2143 u64 exit_bits
= 1ULL << (exit_code
- SVM_EXIT_INTR
);
2144 if (svm
->nested
.intercept
& exit_bits
)
2145 vmexit
= NESTED_EXIT_DONE
;
2152 static int nested_svm_exit_handled(struct vcpu_svm
*svm
)
2156 vmexit
= nested_svm_intercept(svm
);
2158 if (vmexit
== NESTED_EXIT_DONE
)
2159 nested_svm_vmexit(svm
);
2164 static inline void copy_vmcb_control_area(struct vmcb
*dst_vmcb
, struct vmcb
*from_vmcb
)
2166 struct vmcb_control_area
*dst
= &dst_vmcb
->control
;
2167 struct vmcb_control_area
*from
= &from_vmcb
->control
;
2169 dst
->intercept_cr
= from
->intercept_cr
;
2170 dst
->intercept_dr
= from
->intercept_dr
;
2171 dst
->intercept_exceptions
= from
->intercept_exceptions
;
2172 dst
->intercept
= from
->intercept
;
2173 dst
->iopm_base_pa
= from
->iopm_base_pa
;
2174 dst
->msrpm_base_pa
= from
->msrpm_base_pa
;
2175 dst
->tsc_offset
= from
->tsc_offset
;
2176 dst
->asid
= from
->asid
;
2177 dst
->tlb_ctl
= from
->tlb_ctl
;
2178 dst
->int_ctl
= from
->int_ctl
;
2179 dst
->int_vector
= from
->int_vector
;
2180 dst
->int_state
= from
->int_state
;
2181 dst
->exit_code
= from
->exit_code
;
2182 dst
->exit_code_hi
= from
->exit_code_hi
;
2183 dst
->exit_info_1
= from
->exit_info_1
;
2184 dst
->exit_info_2
= from
->exit_info_2
;
2185 dst
->exit_int_info
= from
->exit_int_info
;
2186 dst
->exit_int_info_err
= from
->exit_int_info_err
;
2187 dst
->nested_ctl
= from
->nested_ctl
;
2188 dst
->event_inj
= from
->event_inj
;
2189 dst
->event_inj_err
= from
->event_inj_err
;
2190 dst
->nested_cr3
= from
->nested_cr3
;
2191 dst
->lbr_ctl
= from
->lbr_ctl
;
2194 static int nested_svm_vmexit(struct vcpu_svm
*svm
)
2196 struct vmcb
*nested_vmcb
;
2197 struct vmcb
*hsave
= svm
->nested
.hsave
;
2198 struct vmcb
*vmcb
= svm
->vmcb
;
2201 trace_kvm_nested_vmexit_inject(vmcb
->control
.exit_code
,
2202 vmcb
->control
.exit_info_1
,
2203 vmcb
->control
.exit_info_2
,
2204 vmcb
->control
.exit_int_info
,
2205 vmcb
->control
.exit_int_info_err
,
2208 nested_vmcb
= nested_svm_map(svm
, svm
->nested
.vmcb
, &page
);
2212 /* Exit Guest-Mode */
2213 leave_guest_mode(&svm
->vcpu
);
2214 svm
->nested
.vmcb
= 0;
2216 /* Give the current vmcb to the guest */
2219 nested_vmcb
->save
.es
= vmcb
->save
.es
;
2220 nested_vmcb
->save
.cs
= vmcb
->save
.cs
;
2221 nested_vmcb
->save
.ss
= vmcb
->save
.ss
;
2222 nested_vmcb
->save
.ds
= vmcb
->save
.ds
;
2223 nested_vmcb
->save
.gdtr
= vmcb
->save
.gdtr
;
2224 nested_vmcb
->save
.idtr
= vmcb
->save
.idtr
;
2225 nested_vmcb
->save
.efer
= svm
->vcpu
.arch
.efer
;
2226 nested_vmcb
->save
.cr0
= kvm_read_cr0(&svm
->vcpu
);
2227 nested_vmcb
->save
.cr3
= kvm_read_cr3(&svm
->vcpu
);
2228 nested_vmcb
->save
.cr2
= vmcb
->save
.cr2
;
2229 nested_vmcb
->save
.cr4
= svm
->vcpu
.arch
.cr4
;
2230 nested_vmcb
->save
.rflags
= kvm_get_rflags(&svm
->vcpu
);
2231 nested_vmcb
->save
.rip
= vmcb
->save
.rip
;
2232 nested_vmcb
->save
.rsp
= vmcb
->save
.rsp
;
2233 nested_vmcb
->save
.rax
= vmcb
->save
.rax
;
2234 nested_vmcb
->save
.dr7
= vmcb
->save
.dr7
;
2235 nested_vmcb
->save
.dr6
= vmcb
->save
.dr6
;
2236 nested_vmcb
->save
.cpl
= vmcb
->save
.cpl
;
2238 nested_vmcb
->control
.int_ctl
= vmcb
->control
.int_ctl
;
2239 nested_vmcb
->control
.int_vector
= vmcb
->control
.int_vector
;
2240 nested_vmcb
->control
.int_state
= vmcb
->control
.int_state
;
2241 nested_vmcb
->control
.exit_code
= vmcb
->control
.exit_code
;
2242 nested_vmcb
->control
.exit_code_hi
= vmcb
->control
.exit_code_hi
;
2243 nested_vmcb
->control
.exit_info_1
= vmcb
->control
.exit_info_1
;
2244 nested_vmcb
->control
.exit_info_2
= vmcb
->control
.exit_info_2
;
2245 nested_vmcb
->control
.exit_int_info
= vmcb
->control
.exit_int_info
;
2246 nested_vmcb
->control
.exit_int_info_err
= vmcb
->control
.exit_int_info_err
;
2247 nested_vmcb
->control
.next_rip
= vmcb
->control
.next_rip
;
2250 * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
2251 * to make sure that we do not lose injected events. So check event_inj
2252 * here and copy it to exit_int_info if it is valid.
2253 * Exit_int_info and event_inj can't be both valid because the case
2254 * below only happens on a VMRUN instruction intercept which has
2255 * no valid exit_int_info set.
2257 if (vmcb
->control
.event_inj
& SVM_EVTINJ_VALID
) {
2258 struct vmcb_control_area
*nc
= &nested_vmcb
->control
;
2260 nc
->exit_int_info
= vmcb
->control
.event_inj
;
2261 nc
->exit_int_info_err
= vmcb
->control
.event_inj_err
;
2264 nested_vmcb
->control
.tlb_ctl
= 0;
2265 nested_vmcb
->control
.event_inj
= 0;
2266 nested_vmcb
->control
.event_inj_err
= 0;
2268 /* We always set V_INTR_MASKING and remember the old value in hflags */
2269 if (!(svm
->vcpu
.arch
.hflags
& HF_VINTR_MASK
))
2270 nested_vmcb
->control
.int_ctl
&= ~V_INTR_MASKING_MASK
;
2272 /* Restore the original control entries */
2273 copy_vmcb_control_area(vmcb
, hsave
);
2275 kvm_clear_exception_queue(&svm
->vcpu
);
2276 kvm_clear_interrupt_queue(&svm
->vcpu
);
2278 svm
->nested
.nested_cr3
= 0;
2280 /* Restore selected save entries */
2281 svm
->vmcb
->save
.es
= hsave
->save
.es
;
2282 svm
->vmcb
->save
.cs
= hsave
->save
.cs
;
2283 svm
->vmcb
->save
.ss
= hsave
->save
.ss
;
2284 svm
->vmcb
->save
.ds
= hsave
->save
.ds
;
2285 svm
->vmcb
->save
.gdtr
= hsave
->save
.gdtr
;
2286 svm
->vmcb
->save
.idtr
= hsave
->save
.idtr
;
2287 kvm_set_rflags(&svm
->vcpu
, hsave
->save
.rflags
);
2288 svm_set_efer(&svm
->vcpu
, hsave
->save
.efer
);
2289 svm_set_cr0(&svm
->vcpu
, hsave
->save
.cr0
| X86_CR0_PE
);
2290 svm_set_cr4(&svm
->vcpu
, hsave
->save
.cr4
);
2292 svm
->vmcb
->save
.cr3
= hsave
->save
.cr3
;
2293 svm
->vcpu
.arch
.cr3
= hsave
->save
.cr3
;
2295 (void)kvm_set_cr3(&svm
->vcpu
, hsave
->save
.cr3
);
2297 kvm_register_write(&svm
->vcpu
, VCPU_REGS_RAX
, hsave
->save
.rax
);
2298 kvm_register_write(&svm
->vcpu
, VCPU_REGS_RSP
, hsave
->save
.rsp
);
2299 kvm_register_write(&svm
->vcpu
, VCPU_REGS_RIP
, hsave
->save
.rip
);
2300 svm
->vmcb
->save
.dr7
= 0;
2301 svm
->vmcb
->save
.cpl
= 0;
2302 svm
->vmcb
->control
.exit_int_info
= 0;
2304 mark_all_dirty(svm
->vmcb
);
2306 nested_svm_unmap(page
);
2308 nested_svm_uninit_mmu_context(&svm
->vcpu
);
2309 kvm_mmu_reset_context(&svm
->vcpu
);
2310 kvm_mmu_load(&svm
->vcpu
);
2315 static bool nested_svm_vmrun_msrpm(struct vcpu_svm
*svm
)
2318 * This function merges the msr permission bitmaps of kvm and the
2319 * nested vmcb. It is omptimized in that it only merges the parts where
2320 * the kvm msr permission bitmap may contain zero bits
2324 if (!(svm
->nested
.intercept
& (1ULL << INTERCEPT_MSR_PROT
)))
2327 for (i
= 0; i
< MSRPM_OFFSETS
; i
++) {
2331 if (msrpm_offsets
[i
] == 0xffffffff)
2334 p
= msrpm_offsets
[i
];
2335 offset
= svm
->nested
.vmcb_msrpm
+ (p
* 4);
2337 if (kvm_read_guest(svm
->vcpu
.kvm
, offset
, &value
, 4))
2340 svm
->nested
.msrpm
[p
] = svm
->msrpm
[p
] | value
;
2343 svm
->vmcb
->control
.msrpm_base_pa
= __pa(svm
->nested
.msrpm
);
2348 static bool nested_vmcb_checks(struct vmcb
*vmcb
)
2350 if ((vmcb
->control
.intercept
& (1ULL << INTERCEPT_VMRUN
)) == 0)
2353 if (vmcb
->control
.asid
== 0)
2356 if (vmcb
->control
.nested_ctl
&& !npt_enabled
)
2362 static bool nested_svm_vmrun(struct vcpu_svm
*svm
)
2364 struct vmcb
*nested_vmcb
;
2365 struct vmcb
*hsave
= svm
->nested
.hsave
;
2366 struct vmcb
*vmcb
= svm
->vmcb
;
2370 vmcb_gpa
= svm
->vmcb
->save
.rax
;
2372 nested_vmcb
= nested_svm_map(svm
, svm
->vmcb
->save
.rax
, &page
);
2376 if (!nested_vmcb_checks(nested_vmcb
)) {
2377 nested_vmcb
->control
.exit_code
= SVM_EXIT_ERR
;
2378 nested_vmcb
->control
.exit_code_hi
= 0;
2379 nested_vmcb
->control
.exit_info_1
= 0;
2380 nested_vmcb
->control
.exit_info_2
= 0;
2382 nested_svm_unmap(page
);
2387 trace_kvm_nested_vmrun(svm
->vmcb
->save
.rip
, vmcb_gpa
,
2388 nested_vmcb
->save
.rip
,
2389 nested_vmcb
->control
.int_ctl
,
2390 nested_vmcb
->control
.event_inj
,
2391 nested_vmcb
->control
.nested_ctl
);
2393 trace_kvm_nested_intercepts(nested_vmcb
->control
.intercept_cr
& 0xffff,
2394 nested_vmcb
->control
.intercept_cr
>> 16,
2395 nested_vmcb
->control
.intercept_exceptions
,
2396 nested_vmcb
->control
.intercept
);
2398 /* Clear internal status */
2399 kvm_clear_exception_queue(&svm
->vcpu
);
2400 kvm_clear_interrupt_queue(&svm
->vcpu
);
2403 * Save the old vmcb, so we don't need to pick what we save, but can
2404 * restore everything when a VMEXIT occurs
2406 hsave
->save
.es
= vmcb
->save
.es
;
2407 hsave
->save
.cs
= vmcb
->save
.cs
;
2408 hsave
->save
.ss
= vmcb
->save
.ss
;
2409 hsave
->save
.ds
= vmcb
->save
.ds
;
2410 hsave
->save
.gdtr
= vmcb
->save
.gdtr
;
2411 hsave
->save
.idtr
= vmcb
->save
.idtr
;
2412 hsave
->save
.efer
= svm
->vcpu
.arch
.efer
;
2413 hsave
->save
.cr0
= kvm_read_cr0(&svm
->vcpu
);
2414 hsave
->save
.cr4
= svm
->vcpu
.arch
.cr4
;
2415 hsave
->save
.rflags
= kvm_get_rflags(&svm
->vcpu
);
2416 hsave
->save
.rip
= kvm_rip_read(&svm
->vcpu
);
2417 hsave
->save
.rsp
= vmcb
->save
.rsp
;
2418 hsave
->save
.rax
= vmcb
->save
.rax
;
2420 hsave
->save
.cr3
= vmcb
->save
.cr3
;
2422 hsave
->save
.cr3
= kvm_read_cr3(&svm
->vcpu
);
2424 copy_vmcb_control_area(hsave
, vmcb
);
2426 if (kvm_get_rflags(&svm
->vcpu
) & X86_EFLAGS_IF
)
2427 svm
->vcpu
.arch
.hflags
|= HF_HIF_MASK
;
2429 svm
->vcpu
.arch
.hflags
&= ~HF_HIF_MASK
;
2431 if (nested_vmcb
->control
.nested_ctl
) {
2432 kvm_mmu_unload(&svm
->vcpu
);
2433 svm
->nested
.nested_cr3
= nested_vmcb
->control
.nested_cr3
;
2434 nested_svm_init_mmu_context(&svm
->vcpu
);
2437 /* Load the nested guest state */
2438 svm
->vmcb
->save
.es
= nested_vmcb
->save
.es
;
2439 svm
->vmcb
->save
.cs
= nested_vmcb
->save
.cs
;
2440 svm
->vmcb
->save
.ss
= nested_vmcb
->save
.ss
;
2441 svm
->vmcb
->save
.ds
= nested_vmcb
->save
.ds
;
2442 svm
->vmcb
->save
.gdtr
= nested_vmcb
->save
.gdtr
;
2443 svm
->vmcb
->save
.idtr
= nested_vmcb
->save
.idtr
;
2444 kvm_set_rflags(&svm
->vcpu
, nested_vmcb
->save
.rflags
);
2445 svm_set_efer(&svm
->vcpu
, nested_vmcb
->save
.efer
);
2446 svm_set_cr0(&svm
->vcpu
, nested_vmcb
->save
.cr0
);
2447 svm_set_cr4(&svm
->vcpu
, nested_vmcb
->save
.cr4
);
2449 svm
->vmcb
->save
.cr3
= nested_vmcb
->save
.cr3
;
2450 svm
->vcpu
.arch
.cr3
= nested_vmcb
->save
.cr3
;
2452 (void)kvm_set_cr3(&svm
->vcpu
, nested_vmcb
->save
.cr3
);
2454 /* Guest paging mode is active - reset mmu */
2455 kvm_mmu_reset_context(&svm
->vcpu
);
2457 svm
->vmcb
->save
.cr2
= svm
->vcpu
.arch
.cr2
= nested_vmcb
->save
.cr2
;
2458 kvm_register_write(&svm
->vcpu
, VCPU_REGS_RAX
, nested_vmcb
->save
.rax
);
2459 kvm_register_write(&svm
->vcpu
, VCPU_REGS_RSP
, nested_vmcb
->save
.rsp
);
2460 kvm_register_write(&svm
->vcpu
, VCPU_REGS_RIP
, nested_vmcb
->save
.rip
);
2462 /* In case we don't even reach vcpu_run, the fields are not updated */
2463 svm
->vmcb
->save
.rax
= nested_vmcb
->save
.rax
;
2464 svm
->vmcb
->save
.rsp
= nested_vmcb
->save
.rsp
;
2465 svm
->vmcb
->save
.rip
= nested_vmcb
->save
.rip
;
2466 svm
->vmcb
->save
.dr7
= nested_vmcb
->save
.dr7
;
2467 svm
->vmcb
->save
.dr6
= nested_vmcb
->save
.dr6
;
2468 svm
->vmcb
->save
.cpl
= nested_vmcb
->save
.cpl
;
2470 svm
->nested
.vmcb_msrpm
= nested_vmcb
->control
.msrpm_base_pa
& ~0x0fffULL
;
2471 svm
->nested
.vmcb_iopm
= nested_vmcb
->control
.iopm_base_pa
& ~0x0fffULL
;
2473 /* cache intercepts */
2474 svm
->nested
.intercept_cr
= nested_vmcb
->control
.intercept_cr
;
2475 svm
->nested
.intercept_dr
= nested_vmcb
->control
.intercept_dr
;
2476 svm
->nested
.intercept_exceptions
= nested_vmcb
->control
.intercept_exceptions
;
2477 svm
->nested
.intercept
= nested_vmcb
->control
.intercept
;
2479 svm_flush_tlb(&svm
->vcpu
);
2480 svm
->vmcb
->control
.int_ctl
= nested_vmcb
->control
.int_ctl
| V_INTR_MASKING_MASK
;
2481 if (nested_vmcb
->control
.int_ctl
& V_INTR_MASKING_MASK
)
2482 svm
->vcpu
.arch
.hflags
|= HF_VINTR_MASK
;
2484 svm
->vcpu
.arch
.hflags
&= ~HF_VINTR_MASK
;
2486 if (svm
->vcpu
.arch
.hflags
& HF_VINTR_MASK
) {
2487 /* We only want the cr8 intercept bits of the guest */
2488 clr_cr_intercept(svm
, INTERCEPT_CR8_READ
);
2489 clr_cr_intercept(svm
, INTERCEPT_CR8_WRITE
);
2492 /* We don't want to see VMMCALLs from a nested guest */
2493 clr_intercept(svm
, INTERCEPT_VMMCALL
);
2495 svm
->vmcb
->control
.lbr_ctl
= nested_vmcb
->control
.lbr_ctl
;
2496 svm
->vmcb
->control
.int_vector
= nested_vmcb
->control
.int_vector
;
2497 svm
->vmcb
->control
.int_state
= nested_vmcb
->control
.int_state
;
2498 svm
->vmcb
->control
.tsc_offset
+= nested_vmcb
->control
.tsc_offset
;
2499 svm
->vmcb
->control
.event_inj
= nested_vmcb
->control
.event_inj
;
2500 svm
->vmcb
->control
.event_inj_err
= nested_vmcb
->control
.event_inj_err
;
2502 nested_svm_unmap(page
);
2504 /* Enter Guest-Mode */
2505 enter_guest_mode(&svm
->vcpu
);
2508 * Merge guest and host intercepts - must be called with vcpu in
2509 * guest-mode to take affect here
2511 recalc_intercepts(svm
);
2513 svm
->nested
.vmcb
= vmcb_gpa
;
2517 mark_all_dirty(svm
->vmcb
);
2522 static void nested_svm_vmloadsave(struct vmcb
*from_vmcb
, struct vmcb
*to_vmcb
)
2524 to_vmcb
->save
.fs
= from_vmcb
->save
.fs
;
2525 to_vmcb
->save
.gs
= from_vmcb
->save
.gs
;
2526 to_vmcb
->save
.tr
= from_vmcb
->save
.tr
;
2527 to_vmcb
->save
.ldtr
= from_vmcb
->save
.ldtr
;
2528 to_vmcb
->save
.kernel_gs_base
= from_vmcb
->save
.kernel_gs_base
;
2529 to_vmcb
->save
.star
= from_vmcb
->save
.star
;
2530 to_vmcb
->save
.lstar
= from_vmcb
->save
.lstar
;
2531 to_vmcb
->save
.cstar
= from_vmcb
->save
.cstar
;
2532 to_vmcb
->save
.sfmask
= from_vmcb
->save
.sfmask
;
2533 to_vmcb
->save
.sysenter_cs
= from_vmcb
->save
.sysenter_cs
;
2534 to_vmcb
->save
.sysenter_esp
= from_vmcb
->save
.sysenter_esp
;
2535 to_vmcb
->save
.sysenter_eip
= from_vmcb
->save
.sysenter_eip
;
2538 static int vmload_interception(struct vcpu_svm
*svm
)
2540 struct vmcb
*nested_vmcb
;
2543 if (nested_svm_check_permissions(svm
))
2546 nested_vmcb
= nested_svm_map(svm
, svm
->vmcb
->save
.rax
, &page
);
2550 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 3;
2551 skip_emulated_instruction(&svm
->vcpu
);
2553 nested_svm_vmloadsave(nested_vmcb
, svm
->vmcb
);
2554 nested_svm_unmap(page
);
2559 static int vmsave_interception(struct vcpu_svm
*svm
)
2561 struct vmcb
*nested_vmcb
;
2564 if (nested_svm_check_permissions(svm
))
2567 nested_vmcb
= nested_svm_map(svm
, svm
->vmcb
->save
.rax
, &page
);
2571 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 3;
2572 skip_emulated_instruction(&svm
->vcpu
);
2574 nested_svm_vmloadsave(svm
->vmcb
, nested_vmcb
);
2575 nested_svm_unmap(page
);
2580 static int vmrun_interception(struct vcpu_svm
*svm
)
2582 if (nested_svm_check_permissions(svm
))
2585 /* Save rip after vmrun instruction */
2586 kvm_rip_write(&svm
->vcpu
, kvm_rip_read(&svm
->vcpu
) + 3);
2588 if (!nested_svm_vmrun(svm
))
2591 if (!nested_svm_vmrun_msrpm(svm
))
2598 svm
->vmcb
->control
.exit_code
= SVM_EXIT_ERR
;
2599 svm
->vmcb
->control
.exit_code_hi
= 0;
2600 svm
->vmcb
->control
.exit_info_1
= 0;
2601 svm
->vmcb
->control
.exit_info_2
= 0;
2603 nested_svm_vmexit(svm
);
2608 static int stgi_interception(struct vcpu_svm
*svm
)
2610 if (nested_svm_check_permissions(svm
))
2613 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 3;
2614 skip_emulated_instruction(&svm
->vcpu
);
2615 kvm_make_request(KVM_REQ_EVENT
, &svm
->vcpu
);
2622 static int clgi_interception(struct vcpu_svm
*svm
)
2624 if (nested_svm_check_permissions(svm
))
2627 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 3;
2628 skip_emulated_instruction(&svm
->vcpu
);
2632 /* After a CLGI no interrupts should come */
2633 svm_clear_vintr(svm
);
2634 svm
->vmcb
->control
.int_ctl
&= ~V_IRQ_MASK
;
2636 mark_dirty(svm
->vmcb
, VMCB_INTR
);
2641 static int invlpga_interception(struct vcpu_svm
*svm
)
2643 struct kvm_vcpu
*vcpu
= &svm
->vcpu
;
2645 trace_kvm_invlpga(svm
->vmcb
->save
.rip
, vcpu
->arch
.regs
[VCPU_REGS_RCX
],
2646 vcpu
->arch
.regs
[VCPU_REGS_RAX
]);
2648 /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2649 kvm_mmu_invlpg(vcpu
, vcpu
->arch
.regs
[VCPU_REGS_RAX
]);
2651 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 3;
2652 skip_emulated_instruction(&svm
->vcpu
);
2656 static int skinit_interception(struct vcpu_svm
*svm
)
2658 trace_kvm_skinit(svm
->vmcb
->save
.rip
, svm
->vcpu
.arch
.regs
[VCPU_REGS_RAX
]);
2660 kvm_queue_exception(&svm
->vcpu
, UD_VECTOR
);
2664 static int xsetbv_interception(struct vcpu_svm
*svm
)
2666 u64 new_bv
= kvm_read_edx_eax(&svm
->vcpu
);
2667 u32 index
= kvm_register_read(&svm
->vcpu
, VCPU_REGS_RCX
);
2669 if (kvm_set_xcr(&svm
->vcpu
, index
, new_bv
) == 0) {
2670 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 3;
2671 skip_emulated_instruction(&svm
->vcpu
);
2677 static int invalid_op_interception(struct vcpu_svm
*svm
)
2679 kvm_queue_exception(&svm
->vcpu
, UD_VECTOR
);
2683 static int task_switch_interception(struct vcpu_svm
*svm
)
2687 int int_type
= svm
->vmcb
->control
.exit_int_info
&
2688 SVM_EXITINTINFO_TYPE_MASK
;
2689 int int_vec
= svm
->vmcb
->control
.exit_int_info
& SVM_EVTINJ_VEC_MASK
;
2691 svm
->vmcb
->control
.exit_int_info
& SVM_EXITINTINFO_TYPE_MASK
;
2693 svm
->vmcb
->control
.exit_int_info
& SVM_EXITINTINFO_VALID
;
2694 bool has_error_code
= false;
2697 tss_selector
= (u16
)svm
->vmcb
->control
.exit_info_1
;
2699 if (svm
->vmcb
->control
.exit_info_2
&
2700 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET
))
2701 reason
= TASK_SWITCH_IRET
;
2702 else if (svm
->vmcb
->control
.exit_info_2
&
2703 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP
))
2704 reason
= TASK_SWITCH_JMP
;
2706 reason
= TASK_SWITCH_GATE
;
2708 reason
= TASK_SWITCH_CALL
;
2710 if (reason
== TASK_SWITCH_GATE
) {
2712 case SVM_EXITINTINFO_TYPE_NMI
:
2713 svm
->vcpu
.arch
.nmi_injected
= false;
2715 case SVM_EXITINTINFO_TYPE_EXEPT
:
2716 if (svm
->vmcb
->control
.exit_info_2
&
2717 (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE
)) {
2718 has_error_code
= true;
2720 (u32
)svm
->vmcb
->control
.exit_info_2
;
2722 kvm_clear_exception_queue(&svm
->vcpu
);
2724 case SVM_EXITINTINFO_TYPE_INTR
:
2725 kvm_clear_interrupt_queue(&svm
->vcpu
);
2732 if (reason
!= TASK_SWITCH_GATE
||
2733 int_type
== SVM_EXITINTINFO_TYPE_SOFT
||
2734 (int_type
== SVM_EXITINTINFO_TYPE_EXEPT
&&
2735 (int_vec
== OF_VECTOR
|| int_vec
== BP_VECTOR
)))
2736 skip_emulated_instruction(&svm
->vcpu
);
2738 if (kvm_task_switch(&svm
->vcpu
, tss_selector
, reason
,
2739 has_error_code
, error_code
) == EMULATE_FAIL
) {
2740 svm
->vcpu
.run
->exit_reason
= KVM_EXIT_INTERNAL_ERROR
;
2741 svm
->vcpu
.run
->internal
.suberror
= KVM_INTERNAL_ERROR_EMULATION
;
2742 svm
->vcpu
.run
->internal
.ndata
= 0;
2748 static int cpuid_interception(struct vcpu_svm
*svm
)
2750 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 2;
2751 kvm_emulate_cpuid(&svm
->vcpu
);
2755 static int iret_interception(struct vcpu_svm
*svm
)
2757 ++svm
->vcpu
.stat
.nmi_window_exits
;
2758 clr_intercept(svm
, INTERCEPT_IRET
);
2759 svm
->vcpu
.arch
.hflags
|= HF_IRET_MASK
;
2760 svm
->nmi_iret_rip
= kvm_rip_read(&svm
->vcpu
);
2764 static int invlpg_interception(struct vcpu_svm
*svm
)
2766 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS
))
2767 return emulate_instruction(&svm
->vcpu
, 0) == EMULATE_DONE
;
2769 kvm_mmu_invlpg(&svm
->vcpu
, svm
->vmcb
->control
.exit_info_1
);
2770 skip_emulated_instruction(&svm
->vcpu
);
2774 static int emulate_on_interception(struct vcpu_svm
*svm
)
2776 return emulate_instruction(&svm
->vcpu
, 0) == EMULATE_DONE
;
2779 static int rdpmc_interception(struct vcpu_svm
*svm
)
2783 if (!static_cpu_has(X86_FEATURE_NRIPS
))
2784 return emulate_on_interception(svm
);
2786 err
= kvm_rdpmc(&svm
->vcpu
);
2787 kvm_complete_insn_gp(&svm
->vcpu
, err
);
2792 bool check_selective_cr0_intercepted(struct vcpu_svm
*svm
, unsigned long val
)
2794 unsigned long cr0
= svm
->vcpu
.arch
.cr0
;
2798 intercept
= svm
->nested
.intercept
;
2800 if (!is_guest_mode(&svm
->vcpu
) ||
2801 (!(intercept
& (1ULL << INTERCEPT_SELECTIVE_CR0
))))
2804 cr0
&= ~SVM_CR0_SELECTIVE_MASK
;
2805 val
&= ~SVM_CR0_SELECTIVE_MASK
;
2808 svm
->vmcb
->control
.exit_code
= SVM_EXIT_CR0_SEL_WRITE
;
2809 ret
= (nested_svm_exit_handled(svm
) == NESTED_EXIT_DONE
);
2815 #define CR_VALID (1ULL << 63)
2817 static int cr_interception(struct vcpu_svm
*svm
)
2823 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS
))
2824 return emulate_on_interception(svm
);
2826 if (unlikely((svm
->vmcb
->control
.exit_info_1
& CR_VALID
) == 0))
2827 return emulate_on_interception(svm
);
2829 reg
= svm
->vmcb
->control
.exit_info_1
& SVM_EXITINFO_REG_MASK
;
2830 cr
= svm
->vmcb
->control
.exit_code
- SVM_EXIT_READ_CR0
;
2833 if (cr
>= 16) { /* mov to cr */
2835 val
= kvm_register_read(&svm
->vcpu
, reg
);
2838 if (!check_selective_cr0_intercepted(svm
, val
))
2839 err
= kvm_set_cr0(&svm
->vcpu
, val
);
2845 err
= kvm_set_cr3(&svm
->vcpu
, val
);
2848 err
= kvm_set_cr4(&svm
->vcpu
, val
);
2851 err
= kvm_set_cr8(&svm
->vcpu
, val
);
2854 WARN(1, "unhandled write to CR%d", cr
);
2855 kvm_queue_exception(&svm
->vcpu
, UD_VECTOR
);
2858 } else { /* mov from cr */
2861 val
= kvm_read_cr0(&svm
->vcpu
);
2864 val
= svm
->vcpu
.arch
.cr2
;
2867 val
= kvm_read_cr3(&svm
->vcpu
);
2870 val
= kvm_read_cr4(&svm
->vcpu
);
2873 val
= kvm_get_cr8(&svm
->vcpu
);
2876 WARN(1, "unhandled read from CR%d", cr
);
2877 kvm_queue_exception(&svm
->vcpu
, UD_VECTOR
);
2880 kvm_register_write(&svm
->vcpu
, reg
, val
);
2882 kvm_complete_insn_gp(&svm
->vcpu
, err
);
2887 static int dr_interception(struct vcpu_svm
*svm
)
2893 if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS
))
2894 return emulate_on_interception(svm
);
2896 reg
= svm
->vmcb
->control
.exit_info_1
& SVM_EXITINFO_REG_MASK
;
2897 dr
= svm
->vmcb
->control
.exit_code
- SVM_EXIT_READ_DR0
;
2899 if (dr
>= 16) { /* mov to DRn */
2900 val
= kvm_register_read(&svm
->vcpu
, reg
);
2901 kvm_set_dr(&svm
->vcpu
, dr
- 16, val
);
2903 err
= kvm_get_dr(&svm
->vcpu
, dr
, &val
);
2905 kvm_register_write(&svm
->vcpu
, reg
, val
);
2908 skip_emulated_instruction(&svm
->vcpu
);
2913 static int cr8_write_interception(struct vcpu_svm
*svm
)
2915 struct kvm_run
*kvm_run
= svm
->vcpu
.run
;
2918 u8 cr8_prev
= kvm_get_cr8(&svm
->vcpu
);
2919 /* instruction emulation calls kvm_set_cr8() */
2920 r
= cr_interception(svm
);
2921 if (irqchip_in_kernel(svm
->vcpu
.kvm
)) {
2922 clr_cr_intercept(svm
, INTERCEPT_CR8_WRITE
);
2925 if (cr8_prev
<= kvm_get_cr8(&svm
->vcpu
))
2927 kvm_run
->exit_reason
= KVM_EXIT_SET_TPR
;
2931 u64
svm_read_l1_tsc(struct kvm_vcpu
*vcpu
)
2933 struct vmcb
*vmcb
= get_host_vmcb(to_svm(vcpu
));
2934 return vmcb
->control
.tsc_offset
+
2935 svm_scale_tsc(vcpu
, native_read_tsc());
2938 static int svm_get_msr(struct kvm_vcpu
*vcpu
, unsigned ecx
, u64
*data
)
2940 struct vcpu_svm
*svm
= to_svm(vcpu
);
2943 case MSR_IA32_TSC
: {
2944 *data
= svm
->vmcb
->control
.tsc_offset
+
2945 svm_scale_tsc(vcpu
, native_read_tsc());
2950 *data
= svm
->vmcb
->save
.star
;
2952 #ifdef CONFIG_X86_64
2954 *data
= svm
->vmcb
->save
.lstar
;
2957 *data
= svm
->vmcb
->save
.cstar
;
2959 case MSR_KERNEL_GS_BASE
:
2960 *data
= svm
->vmcb
->save
.kernel_gs_base
;
2962 case MSR_SYSCALL_MASK
:
2963 *data
= svm
->vmcb
->save
.sfmask
;
2966 case MSR_IA32_SYSENTER_CS
:
2967 *data
= svm
->vmcb
->save
.sysenter_cs
;
2969 case MSR_IA32_SYSENTER_EIP
:
2970 *data
= svm
->sysenter_eip
;
2972 case MSR_IA32_SYSENTER_ESP
:
2973 *data
= svm
->sysenter_esp
;
2976 * Nobody will change the following 5 values in the VMCB so we can
2977 * safely return them on rdmsr. They will always be 0 until LBRV is
2980 case MSR_IA32_DEBUGCTLMSR
:
2981 *data
= svm
->vmcb
->save
.dbgctl
;
2983 case MSR_IA32_LASTBRANCHFROMIP
:
2984 *data
= svm
->vmcb
->save
.br_from
;
2986 case MSR_IA32_LASTBRANCHTOIP
:
2987 *data
= svm
->vmcb
->save
.br_to
;
2989 case MSR_IA32_LASTINTFROMIP
:
2990 *data
= svm
->vmcb
->save
.last_excp_from
;
2992 case MSR_IA32_LASTINTTOIP
:
2993 *data
= svm
->vmcb
->save
.last_excp_to
;
2995 case MSR_VM_HSAVE_PA
:
2996 *data
= svm
->nested
.hsave_msr
;
2999 *data
= svm
->nested
.vm_cr_msr
;
3001 case MSR_IA32_UCODE_REV
:
3005 return kvm_get_msr_common(vcpu
, ecx
, data
);
3010 static int rdmsr_interception(struct vcpu_svm
*svm
)
3012 u32 ecx
= svm
->vcpu
.arch
.regs
[VCPU_REGS_RCX
];
3015 if (svm_get_msr(&svm
->vcpu
, ecx
, &data
)) {
3016 trace_kvm_msr_read_ex(ecx
);
3017 kvm_inject_gp(&svm
->vcpu
, 0);
3019 trace_kvm_msr_read(ecx
, data
);
3021 svm
->vcpu
.arch
.regs
[VCPU_REGS_RAX
] = data
& 0xffffffff;
3022 svm
->vcpu
.arch
.regs
[VCPU_REGS_RDX
] = data
>> 32;
3023 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 2;
3024 skip_emulated_instruction(&svm
->vcpu
);
3029 static int svm_set_vm_cr(struct kvm_vcpu
*vcpu
, u64 data
)
3031 struct vcpu_svm
*svm
= to_svm(vcpu
);
3032 int svm_dis
, chg_mask
;
3034 if (data
& ~SVM_VM_CR_VALID_MASK
)
3037 chg_mask
= SVM_VM_CR_VALID_MASK
;
3039 if (svm
->nested
.vm_cr_msr
& SVM_VM_CR_SVM_DIS_MASK
)
3040 chg_mask
&= ~(SVM_VM_CR_SVM_LOCK_MASK
| SVM_VM_CR_SVM_DIS_MASK
);
3042 svm
->nested
.vm_cr_msr
&= ~chg_mask
;
3043 svm
->nested
.vm_cr_msr
|= (data
& chg_mask
);
3045 svm_dis
= svm
->nested
.vm_cr_msr
& SVM_VM_CR_SVM_DIS_MASK
;
3047 /* check for svm_disable while efer.svme is set */
3048 if (svm_dis
&& (vcpu
->arch
.efer
& EFER_SVME
))
3054 static int svm_set_msr(struct kvm_vcpu
*vcpu
, unsigned ecx
, u64 data
)
3056 struct vcpu_svm
*svm
= to_svm(vcpu
);
3060 kvm_write_tsc(vcpu
, data
);
3063 svm
->vmcb
->save
.star
= data
;
3065 #ifdef CONFIG_X86_64
3067 svm
->vmcb
->save
.lstar
= data
;
3070 svm
->vmcb
->save
.cstar
= data
;
3072 case MSR_KERNEL_GS_BASE
:
3073 svm
->vmcb
->save
.kernel_gs_base
= data
;
3075 case MSR_SYSCALL_MASK
:
3076 svm
->vmcb
->save
.sfmask
= data
;
3079 case MSR_IA32_SYSENTER_CS
:
3080 svm
->vmcb
->save
.sysenter_cs
= data
;
3082 case MSR_IA32_SYSENTER_EIP
:
3083 svm
->sysenter_eip
= data
;
3084 svm
->vmcb
->save
.sysenter_eip
= data
;
3086 case MSR_IA32_SYSENTER_ESP
:
3087 svm
->sysenter_esp
= data
;
3088 svm
->vmcb
->save
.sysenter_esp
= data
;
3090 case MSR_IA32_DEBUGCTLMSR
:
3091 if (!boot_cpu_has(X86_FEATURE_LBRV
)) {
3092 pr_unimpl(vcpu
, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
3096 if (data
& DEBUGCTL_RESERVED_BITS
)
3099 svm
->vmcb
->save
.dbgctl
= data
;
3100 mark_dirty(svm
->vmcb
, VMCB_LBR
);
3101 if (data
& (1ULL<<0))
3102 svm_enable_lbrv(svm
);
3104 svm_disable_lbrv(svm
);
3106 case MSR_VM_HSAVE_PA
:
3107 svm
->nested
.hsave_msr
= data
;
3110 return svm_set_vm_cr(vcpu
, data
);
3112 pr_unimpl(vcpu
, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx
, data
);
3115 return kvm_set_msr_common(vcpu
, ecx
, data
);
3120 static int wrmsr_interception(struct vcpu_svm
*svm
)
3122 u32 ecx
= svm
->vcpu
.arch
.regs
[VCPU_REGS_RCX
];
3123 u64 data
= (svm
->vcpu
.arch
.regs
[VCPU_REGS_RAX
] & -1u)
3124 | ((u64
)(svm
->vcpu
.arch
.regs
[VCPU_REGS_RDX
] & -1u) << 32);
3127 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 2;
3128 if (svm_set_msr(&svm
->vcpu
, ecx
, data
)) {
3129 trace_kvm_msr_write_ex(ecx
, data
);
3130 kvm_inject_gp(&svm
->vcpu
, 0);
3132 trace_kvm_msr_write(ecx
, data
);
3133 skip_emulated_instruction(&svm
->vcpu
);
3138 static int msr_interception(struct vcpu_svm
*svm
)
3140 if (svm
->vmcb
->control
.exit_info_1
)
3141 return wrmsr_interception(svm
);
3143 return rdmsr_interception(svm
);
3146 static int interrupt_window_interception(struct vcpu_svm
*svm
)
3148 struct kvm_run
*kvm_run
= svm
->vcpu
.run
;
3150 kvm_make_request(KVM_REQ_EVENT
, &svm
->vcpu
);
3151 svm_clear_vintr(svm
);
3152 svm
->vmcb
->control
.int_ctl
&= ~V_IRQ_MASK
;
3153 mark_dirty(svm
->vmcb
, VMCB_INTR
);
3155 * If the user space waits to inject interrupts, exit as soon as
3158 if (!irqchip_in_kernel(svm
->vcpu
.kvm
) &&
3159 kvm_run
->request_interrupt_window
&&
3160 !kvm_cpu_has_interrupt(&svm
->vcpu
)) {
3161 ++svm
->vcpu
.stat
.irq_window_exits
;
3162 kvm_run
->exit_reason
= KVM_EXIT_IRQ_WINDOW_OPEN
;
3169 static int pause_interception(struct vcpu_svm
*svm
)
3171 kvm_vcpu_on_spin(&(svm
->vcpu
));
3175 static int (*svm_exit_handlers
[])(struct vcpu_svm
*svm
) = {
3176 [SVM_EXIT_READ_CR0
] = cr_interception
,
3177 [SVM_EXIT_READ_CR3
] = cr_interception
,
3178 [SVM_EXIT_READ_CR4
] = cr_interception
,
3179 [SVM_EXIT_READ_CR8
] = cr_interception
,
3180 [SVM_EXIT_CR0_SEL_WRITE
] = emulate_on_interception
,
3181 [SVM_EXIT_WRITE_CR0
] = cr_interception
,
3182 [SVM_EXIT_WRITE_CR3
] = cr_interception
,
3183 [SVM_EXIT_WRITE_CR4
] = cr_interception
,
3184 [SVM_EXIT_WRITE_CR8
] = cr8_write_interception
,
3185 [SVM_EXIT_READ_DR0
] = dr_interception
,
3186 [SVM_EXIT_READ_DR1
] = dr_interception
,
3187 [SVM_EXIT_READ_DR2
] = dr_interception
,
3188 [SVM_EXIT_READ_DR3
] = dr_interception
,
3189 [SVM_EXIT_READ_DR4
] = dr_interception
,
3190 [SVM_EXIT_READ_DR5
] = dr_interception
,
3191 [SVM_EXIT_READ_DR6
] = dr_interception
,
3192 [SVM_EXIT_READ_DR7
] = dr_interception
,
3193 [SVM_EXIT_WRITE_DR0
] = dr_interception
,
3194 [SVM_EXIT_WRITE_DR1
] = dr_interception
,
3195 [SVM_EXIT_WRITE_DR2
] = dr_interception
,
3196 [SVM_EXIT_WRITE_DR3
] = dr_interception
,
3197 [SVM_EXIT_WRITE_DR4
] = dr_interception
,
3198 [SVM_EXIT_WRITE_DR5
] = dr_interception
,
3199 [SVM_EXIT_WRITE_DR6
] = dr_interception
,
3200 [SVM_EXIT_WRITE_DR7
] = dr_interception
,
3201 [SVM_EXIT_EXCP_BASE
+ DB_VECTOR
] = db_interception
,
3202 [SVM_EXIT_EXCP_BASE
+ BP_VECTOR
] = bp_interception
,
3203 [SVM_EXIT_EXCP_BASE
+ UD_VECTOR
] = ud_interception
,
3204 [SVM_EXIT_EXCP_BASE
+ PF_VECTOR
] = pf_interception
,
3205 [SVM_EXIT_EXCP_BASE
+ NM_VECTOR
] = nm_interception
,
3206 [SVM_EXIT_EXCP_BASE
+ MC_VECTOR
] = mc_interception
,
3207 [SVM_EXIT_INTR
] = intr_interception
,
3208 [SVM_EXIT_NMI
] = nmi_interception
,
3209 [SVM_EXIT_SMI
] = nop_on_interception
,
3210 [SVM_EXIT_INIT
] = nop_on_interception
,
3211 [SVM_EXIT_VINTR
] = interrupt_window_interception
,
3212 [SVM_EXIT_RDPMC
] = rdpmc_interception
,
3213 [SVM_EXIT_CPUID
] = cpuid_interception
,
3214 [SVM_EXIT_IRET
] = iret_interception
,
3215 [SVM_EXIT_INVD
] = emulate_on_interception
,
3216 [SVM_EXIT_PAUSE
] = pause_interception
,
3217 [SVM_EXIT_HLT
] = halt_interception
,
3218 [SVM_EXIT_INVLPG
] = invlpg_interception
,
3219 [SVM_EXIT_INVLPGA
] = invlpga_interception
,
3220 [SVM_EXIT_IOIO
] = io_interception
,
3221 [SVM_EXIT_MSR
] = msr_interception
,
3222 [SVM_EXIT_TASK_SWITCH
] = task_switch_interception
,
3223 [SVM_EXIT_SHUTDOWN
] = shutdown_interception
,
3224 [SVM_EXIT_VMRUN
] = vmrun_interception
,
3225 [SVM_EXIT_VMMCALL
] = vmmcall_interception
,
3226 [SVM_EXIT_VMLOAD
] = vmload_interception
,
3227 [SVM_EXIT_VMSAVE
] = vmsave_interception
,
3228 [SVM_EXIT_STGI
] = stgi_interception
,
3229 [SVM_EXIT_CLGI
] = clgi_interception
,
3230 [SVM_EXIT_SKINIT
] = skinit_interception
,
3231 [SVM_EXIT_WBINVD
] = emulate_on_interception
,
3232 [SVM_EXIT_MONITOR
] = invalid_op_interception
,
3233 [SVM_EXIT_MWAIT
] = invalid_op_interception
,
3234 [SVM_EXIT_XSETBV
] = xsetbv_interception
,
3235 [SVM_EXIT_NPF
] = pf_interception
,
3238 static void dump_vmcb(struct kvm_vcpu
*vcpu
)
3240 struct vcpu_svm
*svm
= to_svm(vcpu
);
3241 struct vmcb_control_area
*control
= &svm
->vmcb
->control
;
3242 struct vmcb_save_area
*save
= &svm
->vmcb
->save
;
3244 pr_err("VMCB Control Area:\n");
3245 pr_err("%-20s%04x\n", "cr_read:", control
->intercept_cr
& 0xffff);
3246 pr_err("%-20s%04x\n", "cr_write:", control
->intercept_cr
>> 16);
3247 pr_err("%-20s%04x\n", "dr_read:", control
->intercept_dr
& 0xffff);
3248 pr_err("%-20s%04x\n", "dr_write:", control
->intercept_dr
>> 16);
3249 pr_err("%-20s%08x\n", "exceptions:", control
->intercept_exceptions
);
3250 pr_err("%-20s%016llx\n", "intercepts:", control
->intercept
);
3251 pr_err("%-20s%d\n", "pause filter count:", control
->pause_filter_count
);
3252 pr_err("%-20s%016llx\n", "iopm_base_pa:", control
->iopm_base_pa
);
3253 pr_err("%-20s%016llx\n", "msrpm_base_pa:", control
->msrpm_base_pa
);
3254 pr_err("%-20s%016llx\n", "tsc_offset:", control
->tsc_offset
);
3255 pr_err("%-20s%d\n", "asid:", control
->asid
);
3256 pr_err("%-20s%d\n", "tlb_ctl:", control
->tlb_ctl
);
3257 pr_err("%-20s%08x\n", "int_ctl:", control
->int_ctl
);
3258 pr_err("%-20s%08x\n", "int_vector:", control
->int_vector
);
3259 pr_err("%-20s%08x\n", "int_state:", control
->int_state
);
3260 pr_err("%-20s%08x\n", "exit_code:", control
->exit_code
);
3261 pr_err("%-20s%016llx\n", "exit_info1:", control
->exit_info_1
);
3262 pr_err("%-20s%016llx\n", "exit_info2:", control
->exit_info_2
);
3263 pr_err("%-20s%08x\n", "exit_int_info:", control
->exit_int_info
);
3264 pr_err("%-20s%08x\n", "exit_int_info_err:", control
->exit_int_info_err
);
3265 pr_err("%-20s%lld\n", "nested_ctl:", control
->nested_ctl
);
3266 pr_err("%-20s%016llx\n", "nested_cr3:", control
->nested_cr3
);
3267 pr_err("%-20s%08x\n", "event_inj:", control
->event_inj
);
3268 pr_err("%-20s%08x\n", "event_inj_err:", control
->event_inj_err
);
3269 pr_err("%-20s%lld\n", "lbr_ctl:", control
->lbr_ctl
);
3270 pr_err("%-20s%016llx\n", "next_rip:", control
->next_rip
);
3271 pr_err("VMCB State Save Area:\n");
3272 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3274 save
->es
.selector
, save
->es
.attrib
,
3275 save
->es
.limit
, save
->es
.base
);
3276 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3278 save
->cs
.selector
, save
->cs
.attrib
,
3279 save
->cs
.limit
, save
->cs
.base
);
3280 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3282 save
->ss
.selector
, save
->ss
.attrib
,
3283 save
->ss
.limit
, save
->ss
.base
);
3284 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3286 save
->ds
.selector
, save
->ds
.attrib
,
3287 save
->ds
.limit
, save
->ds
.base
);
3288 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3290 save
->fs
.selector
, save
->fs
.attrib
,
3291 save
->fs
.limit
, save
->fs
.base
);
3292 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3294 save
->gs
.selector
, save
->gs
.attrib
,
3295 save
->gs
.limit
, save
->gs
.base
);
3296 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3298 save
->gdtr
.selector
, save
->gdtr
.attrib
,
3299 save
->gdtr
.limit
, save
->gdtr
.base
);
3300 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3302 save
->ldtr
.selector
, save
->ldtr
.attrib
,
3303 save
->ldtr
.limit
, save
->ldtr
.base
);
3304 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3306 save
->idtr
.selector
, save
->idtr
.attrib
,
3307 save
->idtr
.limit
, save
->idtr
.base
);
3308 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3310 save
->tr
.selector
, save
->tr
.attrib
,
3311 save
->tr
.limit
, save
->tr
.base
);
3312 pr_err("cpl: %d efer: %016llx\n",
3313 save
->cpl
, save
->efer
);
3314 pr_err("%-15s %016llx %-13s %016llx\n",
3315 "cr0:", save
->cr0
, "cr2:", save
->cr2
);
3316 pr_err("%-15s %016llx %-13s %016llx\n",
3317 "cr3:", save
->cr3
, "cr4:", save
->cr4
);
3318 pr_err("%-15s %016llx %-13s %016llx\n",
3319 "dr6:", save
->dr6
, "dr7:", save
->dr7
);
3320 pr_err("%-15s %016llx %-13s %016llx\n",
3321 "rip:", save
->rip
, "rflags:", save
->rflags
);
3322 pr_err("%-15s %016llx %-13s %016llx\n",
3323 "rsp:", save
->rsp
, "rax:", save
->rax
);
3324 pr_err("%-15s %016llx %-13s %016llx\n",
3325 "star:", save
->star
, "lstar:", save
->lstar
);
3326 pr_err("%-15s %016llx %-13s %016llx\n",
3327 "cstar:", save
->cstar
, "sfmask:", save
->sfmask
);
3328 pr_err("%-15s %016llx %-13s %016llx\n",
3329 "kernel_gs_base:", save
->kernel_gs_base
,
3330 "sysenter_cs:", save
->sysenter_cs
);
3331 pr_err("%-15s %016llx %-13s %016llx\n",
3332 "sysenter_esp:", save
->sysenter_esp
,
3333 "sysenter_eip:", save
->sysenter_eip
);
3334 pr_err("%-15s %016llx %-13s %016llx\n",
3335 "gpat:", save
->g_pat
, "dbgctl:", save
->dbgctl
);
3336 pr_err("%-15s %016llx %-13s %016llx\n",
3337 "br_from:", save
->br_from
, "br_to:", save
->br_to
);
3338 pr_err("%-15s %016llx %-13s %016llx\n",
3339 "excp_from:", save
->last_excp_from
,
3340 "excp_to:", save
->last_excp_to
);
3343 static void svm_get_exit_info(struct kvm_vcpu
*vcpu
, u64
*info1
, u64
*info2
)
3345 struct vmcb_control_area
*control
= &to_svm(vcpu
)->vmcb
->control
;
3347 *info1
= control
->exit_info_1
;
3348 *info2
= control
->exit_info_2
;
3351 static int handle_exit(struct kvm_vcpu
*vcpu
)
3353 struct vcpu_svm
*svm
= to_svm(vcpu
);
3354 struct kvm_run
*kvm_run
= vcpu
->run
;
3355 u32 exit_code
= svm
->vmcb
->control
.exit_code
;
3357 if (!is_cr_intercept(svm
, INTERCEPT_CR0_WRITE
))
3358 vcpu
->arch
.cr0
= svm
->vmcb
->save
.cr0
;
3360 vcpu
->arch
.cr3
= svm
->vmcb
->save
.cr3
;
3362 if (unlikely(svm
->nested
.exit_required
)) {
3363 nested_svm_vmexit(svm
);
3364 svm
->nested
.exit_required
= false;
3369 if (is_guest_mode(vcpu
)) {
3372 trace_kvm_nested_vmexit(svm
->vmcb
->save
.rip
, exit_code
,
3373 svm
->vmcb
->control
.exit_info_1
,
3374 svm
->vmcb
->control
.exit_info_2
,
3375 svm
->vmcb
->control
.exit_int_info
,
3376 svm
->vmcb
->control
.exit_int_info_err
,
3379 vmexit
= nested_svm_exit_special(svm
);
3381 if (vmexit
== NESTED_EXIT_CONTINUE
)
3382 vmexit
= nested_svm_exit_handled(svm
);
3384 if (vmexit
== NESTED_EXIT_DONE
)
3388 svm_complete_interrupts(svm
);
3390 if (svm
->vmcb
->control
.exit_code
== SVM_EXIT_ERR
) {
3391 kvm_run
->exit_reason
= KVM_EXIT_FAIL_ENTRY
;
3392 kvm_run
->fail_entry
.hardware_entry_failure_reason
3393 = svm
->vmcb
->control
.exit_code
;
3394 pr_err("KVM: FAILED VMRUN WITH VMCB:\n");
3399 if (is_external_interrupt(svm
->vmcb
->control
.exit_int_info
) &&
3400 exit_code
!= SVM_EXIT_EXCP_BASE
+ PF_VECTOR
&&
3401 exit_code
!= SVM_EXIT_NPF
&& exit_code
!= SVM_EXIT_TASK_SWITCH
&&
3402 exit_code
!= SVM_EXIT_INTR
&& exit_code
!= SVM_EXIT_NMI
)
3403 printk(KERN_ERR
"%s: unexpected exit_ini_info 0x%x "
3405 __func__
, svm
->vmcb
->control
.exit_int_info
,
3408 if (exit_code
>= ARRAY_SIZE(svm_exit_handlers
)
3409 || !svm_exit_handlers
[exit_code
]) {
3410 kvm_run
->exit_reason
= KVM_EXIT_UNKNOWN
;
3411 kvm_run
->hw
.hardware_exit_reason
= exit_code
;
3415 return svm_exit_handlers
[exit_code
](svm
);
3418 static void reload_tss(struct kvm_vcpu
*vcpu
)
3420 int cpu
= raw_smp_processor_id();
3422 struct svm_cpu_data
*sd
= per_cpu(svm_data
, cpu
);
3423 sd
->tss_desc
->type
= 9; /* available 32/64-bit TSS */
3427 static void pre_svm_run(struct vcpu_svm
*svm
)
3429 int cpu
= raw_smp_processor_id();
3431 struct svm_cpu_data
*sd
= per_cpu(svm_data
, cpu
);
3433 /* FIXME: handle wraparound of asid_generation */
3434 if (svm
->asid_generation
!= sd
->asid_generation
)
3438 static void svm_inject_nmi(struct kvm_vcpu
*vcpu
)
3440 struct vcpu_svm
*svm
= to_svm(vcpu
);
3442 svm
->vmcb
->control
.event_inj
= SVM_EVTINJ_VALID
| SVM_EVTINJ_TYPE_NMI
;
3443 vcpu
->arch
.hflags
|= HF_NMI_MASK
;
3444 set_intercept(svm
, INTERCEPT_IRET
);
3445 ++vcpu
->stat
.nmi_injections
;
3448 static inline void svm_inject_irq(struct vcpu_svm
*svm
, int irq
)
3450 struct vmcb_control_area
*control
;
3452 control
= &svm
->vmcb
->control
;
3453 control
->int_vector
= irq
;
3454 control
->int_ctl
&= ~V_INTR_PRIO_MASK
;
3455 control
->int_ctl
|= V_IRQ_MASK
|
3456 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT
);
3457 mark_dirty(svm
->vmcb
, VMCB_INTR
);
3460 static void svm_set_irq(struct kvm_vcpu
*vcpu
)
3462 struct vcpu_svm
*svm
= to_svm(vcpu
);
3464 BUG_ON(!(gif_set(svm
)));
3466 trace_kvm_inj_virq(vcpu
->arch
.interrupt
.nr
);
3467 ++vcpu
->stat
.irq_injections
;
3469 svm
->vmcb
->control
.event_inj
= vcpu
->arch
.interrupt
.nr
|
3470 SVM_EVTINJ_VALID
| SVM_EVTINJ_TYPE_INTR
;
3473 static void update_cr8_intercept(struct kvm_vcpu
*vcpu
, int tpr
, int irr
)
3475 struct vcpu_svm
*svm
= to_svm(vcpu
);
3477 if (is_guest_mode(vcpu
) && (vcpu
->arch
.hflags
& HF_VINTR_MASK
))
3484 set_cr_intercept(svm
, INTERCEPT_CR8_WRITE
);
3487 static int svm_nmi_allowed(struct kvm_vcpu
*vcpu
)
3489 struct vcpu_svm
*svm
= to_svm(vcpu
);
3490 struct vmcb
*vmcb
= svm
->vmcb
;
3492 ret
= !(vmcb
->control
.int_state
& SVM_INTERRUPT_SHADOW_MASK
) &&
3493 !(svm
->vcpu
.arch
.hflags
& HF_NMI_MASK
);
3494 ret
= ret
&& gif_set(svm
) && nested_svm_nmi(svm
);
3499 static bool svm_get_nmi_mask(struct kvm_vcpu
*vcpu
)
3501 struct vcpu_svm
*svm
= to_svm(vcpu
);
3503 return !!(svm
->vcpu
.arch
.hflags
& HF_NMI_MASK
);
3506 static void svm_set_nmi_mask(struct kvm_vcpu
*vcpu
, bool masked
)
3508 struct vcpu_svm
*svm
= to_svm(vcpu
);
3511 svm
->vcpu
.arch
.hflags
|= HF_NMI_MASK
;
3512 set_intercept(svm
, INTERCEPT_IRET
);
3514 svm
->vcpu
.arch
.hflags
&= ~HF_NMI_MASK
;
3515 clr_intercept(svm
, INTERCEPT_IRET
);
3519 static int svm_interrupt_allowed(struct kvm_vcpu
*vcpu
)
3521 struct vcpu_svm
*svm
= to_svm(vcpu
);
3522 struct vmcb
*vmcb
= svm
->vmcb
;
3525 if (!gif_set(svm
) ||
3526 (vmcb
->control
.int_state
& SVM_INTERRUPT_SHADOW_MASK
))
3529 ret
= !!(kvm_get_rflags(vcpu
) & X86_EFLAGS_IF
);
3531 if (is_guest_mode(vcpu
))
3532 return ret
&& !(svm
->vcpu
.arch
.hflags
& HF_VINTR_MASK
);
3537 static void enable_irq_window(struct kvm_vcpu
*vcpu
)
3539 struct vcpu_svm
*svm
= to_svm(vcpu
);
3542 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3543 * 1, because that's a separate STGI/VMRUN intercept. The next time we
3544 * get that intercept, this function will be called again though and
3545 * we'll get the vintr intercept.
3547 if (gif_set(svm
) && nested_svm_intr(svm
)) {
3549 svm_inject_irq(svm
, 0x0);
3553 static void enable_nmi_window(struct kvm_vcpu
*vcpu
)
3555 struct vcpu_svm
*svm
= to_svm(vcpu
);
3557 if ((svm
->vcpu
.arch
.hflags
& (HF_NMI_MASK
| HF_IRET_MASK
))
3559 return; /* IRET will cause a vm exit */
3562 * Something prevents NMI from been injected. Single step over possible
3563 * problem (IRET or exception injection or interrupt shadow)
3565 svm
->nmi_singlestep
= true;
3566 svm
->vmcb
->save
.rflags
|= (X86_EFLAGS_TF
| X86_EFLAGS_RF
);
3567 update_db_intercept(vcpu
);
3570 static int svm_set_tss_addr(struct kvm
*kvm
, unsigned int addr
)
3575 static void svm_flush_tlb(struct kvm_vcpu
*vcpu
)
3577 struct vcpu_svm
*svm
= to_svm(vcpu
);
3579 if (static_cpu_has(X86_FEATURE_FLUSHBYASID
))
3580 svm
->vmcb
->control
.tlb_ctl
= TLB_CONTROL_FLUSH_ASID
;
3582 svm
->asid_generation
--;
3585 static void svm_prepare_guest_switch(struct kvm_vcpu
*vcpu
)
3589 static inline void sync_cr8_to_lapic(struct kvm_vcpu
*vcpu
)
3591 struct vcpu_svm
*svm
= to_svm(vcpu
);
3593 if (is_guest_mode(vcpu
) && (vcpu
->arch
.hflags
& HF_VINTR_MASK
))
3596 if (!is_cr_intercept(svm
, INTERCEPT_CR8_WRITE
)) {
3597 int cr8
= svm
->vmcb
->control
.int_ctl
& V_TPR_MASK
;
3598 kvm_set_cr8(vcpu
, cr8
);
3602 static inline void sync_lapic_to_cr8(struct kvm_vcpu
*vcpu
)
3604 struct vcpu_svm
*svm
= to_svm(vcpu
);
3607 if (is_guest_mode(vcpu
) && (vcpu
->arch
.hflags
& HF_VINTR_MASK
))
3610 cr8
= kvm_get_cr8(vcpu
);
3611 svm
->vmcb
->control
.int_ctl
&= ~V_TPR_MASK
;
3612 svm
->vmcb
->control
.int_ctl
|= cr8
& V_TPR_MASK
;
3615 static void svm_complete_interrupts(struct vcpu_svm
*svm
)
3619 u32 exitintinfo
= svm
->vmcb
->control
.exit_int_info
;
3620 unsigned int3_injected
= svm
->int3_injected
;
3622 svm
->int3_injected
= 0;
3625 * If we've made progress since setting HF_IRET_MASK, we've
3626 * executed an IRET and can allow NMI injection.
3628 if ((svm
->vcpu
.arch
.hflags
& HF_IRET_MASK
)
3629 && kvm_rip_read(&svm
->vcpu
) != svm
->nmi_iret_rip
) {
3630 svm
->vcpu
.arch
.hflags
&= ~(HF_NMI_MASK
| HF_IRET_MASK
);
3631 kvm_make_request(KVM_REQ_EVENT
, &svm
->vcpu
);
3634 svm
->vcpu
.arch
.nmi_injected
= false;
3635 kvm_clear_exception_queue(&svm
->vcpu
);
3636 kvm_clear_interrupt_queue(&svm
->vcpu
);
3638 if (!(exitintinfo
& SVM_EXITINTINFO_VALID
))
3641 kvm_make_request(KVM_REQ_EVENT
, &svm
->vcpu
);
3643 vector
= exitintinfo
& SVM_EXITINTINFO_VEC_MASK
;
3644 type
= exitintinfo
& SVM_EXITINTINFO_TYPE_MASK
;
3647 case SVM_EXITINTINFO_TYPE_NMI
:
3648 svm
->vcpu
.arch
.nmi_injected
= true;
3650 case SVM_EXITINTINFO_TYPE_EXEPT
:
3652 * In case of software exceptions, do not reinject the vector,
3653 * but re-execute the instruction instead. Rewind RIP first
3654 * if we emulated INT3 before.
3656 if (kvm_exception_is_soft(vector
)) {
3657 if (vector
== BP_VECTOR
&& int3_injected
&&
3658 kvm_is_linear_rip(&svm
->vcpu
, svm
->int3_rip
))
3659 kvm_rip_write(&svm
->vcpu
,
3660 kvm_rip_read(&svm
->vcpu
) -
3664 if (exitintinfo
& SVM_EXITINTINFO_VALID_ERR
) {
3665 u32 err
= svm
->vmcb
->control
.exit_int_info_err
;
3666 kvm_requeue_exception_e(&svm
->vcpu
, vector
, err
);
3669 kvm_requeue_exception(&svm
->vcpu
, vector
);
3671 case SVM_EXITINTINFO_TYPE_INTR
:
3672 kvm_queue_interrupt(&svm
->vcpu
, vector
, false);
3679 static void svm_cancel_injection(struct kvm_vcpu
*vcpu
)
3681 struct vcpu_svm
*svm
= to_svm(vcpu
);
3682 struct vmcb_control_area
*control
= &svm
->vmcb
->control
;
3684 control
->exit_int_info
= control
->event_inj
;
3685 control
->exit_int_info_err
= control
->event_inj_err
;
3686 control
->event_inj
= 0;
3687 svm_complete_interrupts(svm
);
3690 #ifdef CONFIG_X86_64
3696 static void svm_vcpu_run(struct kvm_vcpu
*vcpu
)
3698 struct vcpu_svm
*svm
= to_svm(vcpu
);
3700 svm
->vmcb
->save
.rax
= vcpu
->arch
.regs
[VCPU_REGS_RAX
];
3701 svm
->vmcb
->save
.rsp
= vcpu
->arch
.regs
[VCPU_REGS_RSP
];
3702 svm
->vmcb
->save
.rip
= vcpu
->arch
.regs
[VCPU_REGS_RIP
];
3705 * A vmexit emulation is required before the vcpu can be executed
3708 if (unlikely(svm
->nested
.exit_required
))
3713 sync_lapic_to_cr8(vcpu
);
3715 svm
->vmcb
->save
.cr2
= vcpu
->arch
.cr2
;
3722 "push %%"R
"bp; \n\t"
3723 "mov %c[rbx](%[svm]), %%"R
"bx \n\t"
3724 "mov %c[rcx](%[svm]), %%"R
"cx \n\t"
3725 "mov %c[rdx](%[svm]), %%"R
"dx \n\t"
3726 "mov %c[rsi](%[svm]), %%"R
"si \n\t"
3727 "mov %c[rdi](%[svm]), %%"R
"di \n\t"
3728 "mov %c[rbp](%[svm]), %%"R
"bp \n\t"
3729 #ifdef CONFIG_X86_64
3730 "mov %c[r8](%[svm]), %%r8 \n\t"
3731 "mov %c[r9](%[svm]), %%r9 \n\t"
3732 "mov %c[r10](%[svm]), %%r10 \n\t"
3733 "mov %c[r11](%[svm]), %%r11 \n\t"
3734 "mov %c[r12](%[svm]), %%r12 \n\t"
3735 "mov %c[r13](%[svm]), %%r13 \n\t"
3736 "mov %c[r14](%[svm]), %%r14 \n\t"
3737 "mov %c[r15](%[svm]), %%r15 \n\t"
3740 /* Enter guest mode */
3742 "mov %c[vmcb](%[svm]), %%"R
"ax \n\t"
3743 __ex(SVM_VMLOAD
) "\n\t"
3744 __ex(SVM_VMRUN
) "\n\t"
3745 __ex(SVM_VMSAVE
) "\n\t"
3748 /* Save guest registers, load host registers */
3749 "mov %%"R
"bx, %c[rbx](%[svm]) \n\t"
3750 "mov %%"R
"cx, %c[rcx](%[svm]) \n\t"
3751 "mov %%"R
"dx, %c[rdx](%[svm]) \n\t"
3752 "mov %%"R
"si, %c[rsi](%[svm]) \n\t"
3753 "mov %%"R
"di, %c[rdi](%[svm]) \n\t"
3754 "mov %%"R
"bp, %c[rbp](%[svm]) \n\t"
3755 #ifdef CONFIG_X86_64
3756 "mov %%r8, %c[r8](%[svm]) \n\t"
3757 "mov %%r9, %c[r9](%[svm]) \n\t"
3758 "mov %%r10, %c[r10](%[svm]) \n\t"
3759 "mov %%r11, %c[r11](%[svm]) \n\t"
3760 "mov %%r12, %c[r12](%[svm]) \n\t"
3761 "mov %%r13, %c[r13](%[svm]) \n\t"
3762 "mov %%r14, %c[r14](%[svm]) \n\t"
3763 "mov %%r15, %c[r15](%[svm]) \n\t"
3768 [vmcb
]"i"(offsetof(struct vcpu_svm
, vmcb_pa
)),
3769 [rbx
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_RBX
])),
3770 [rcx
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_RCX
])),
3771 [rdx
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_RDX
])),
3772 [rsi
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_RSI
])),
3773 [rdi
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_RDI
])),
3774 [rbp
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_RBP
]))
3775 #ifdef CONFIG_X86_64
3776 , [r8
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_R8
])),
3777 [r9
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_R9
])),
3778 [r10
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_R10
])),
3779 [r11
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_R11
])),
3780 [r12
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_R12
])),
3781 [r13
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_R13
])),
3782 [r14
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_R14
])),
3783 [r15
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_R15
]))
3786 , R
"bx", R
"cx", R
"dx", R
"si", R
"di"
3787 #ifdef CONFIG_X86_64
3788 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
3792 #ifdef CONFIG_X86_64
3793 wrmsrl(MSR_GS_BASE
, svm
->host
.gs_base
);
3795 loadsegment(fs
, svm
->host
.fs
);
3796 #ifndef CONFIG_X86_32_LAZY_GS
3797 loadsegment(gs
, svm
->host
.gs
);
3803 local_irq_disable();
3805 vcpu
->arch
.cr2
= svm
->vmcb
->save
.cr2
;
3806 vcpu
->arch
.regs
[VCPU_REGS_RAX
] = svm
->vmcb
->save
.rax
;
3807 vcpu
->arch
.regs
[VCPU_REGS_RSP
] = svm
->vmcb
->save
.rsp
;
3808 vcpu
->arch
.regs
[VCPU_REGS_RIP
] = svm
->vmcb
->save
.rip
;
3810 trace_kvm_exit(svm
->vmcb
->control
.exit_code
, vcpu
, KVM_ISA_SVM
);
3812 if (unlikely(svm
->vmcb
->control
.exit_code
== SVM_EXIT_NMI
))
3813 kvm_before_handle_nmi(&svm
->vcpu
);
3817 /* Any pending NMI will happen here */
3819 if (unlikely(svm
->vmcb
->control
.exit_code
== SVM_EXIT_NMI
))
3820 kvm_after_handle_nmi(&svm
->vcpu
);
3822 sync_cr8_to_lapic(vcpu
);
3826 svm
->vmcb
->control
.tlb_ctl
= TLB_CONTROL_DO_NOTHING
;
3828 /* if exit due to PF check for async PF */
3829 if (svm
->vmcb
->control
.exit_code
== SVM_EXIT_EXCP_BASE
+ PF_VECTOR
)
3830 svm
->apf_reason
= kvm_read_and_reset_pf_reason();
3833 vcpu
->arch
.regs_avail
&= ~(1 << VCPU_EXREG_PDPTR
);
3834 vcpu
->arch
.regs_dirty
&= ~(1 << VCPU_EXREG_PDPTR
);
3838 * We need to handle MC intercepts here before the vcpu has a chance to
3839 * change the physical cpu
3841 if (unlikely(svm
->vmcb
->control
.exit_code
==
3842 SVM_EXIT_EXCP_BASE
+ MC_VECTOR
))
3843 svm_handle_mce(svm
);
3845 mark_all_clean(svm
->vmcb
);
3850 static void svm_set_cr3(struct kvm_vcpu
*vcpu
, unsigned long root
)
3852 struct vcpu_svm
*svm
= to_svm(vcpu
);
3854 svm
->vmcb
->save
.cr3
= root
;
3855 mark_dirty(svm
->vmcb
, VMCB_CR
);
3856 svm_flush_tlb(vcpu
);
3859 static void set_tdp_cr3(struct kvm_vcpu
*vcpu
, unsigned long root
)
3861 struct vcpu_svm
*svm
= to_svm(vcpu
);
3863 svm
->vmcb
->control
.nested_cr3
= root
;
3864 mark_dirty(svm
->vmcb
, VMCB_NPT
);
3866 /* Also sync guest cr3 here in case we live migrate */
3867 svm
->vmcb
->save
.cr3
= kvm_read_cr3(vcpu
);
3868 mark_dirty(svm
->vmcb
, VMCB_CR
);
3870 svm_flush_tlb(vcpu
);
3873 static int is_disabled(void)
3877 rdmsrl(MSR_VM_CR
, vm_cr
);
3878 if (vm_cr
& (1 << SVM_VM_CR_SVM_DISABLE
))
3885 svm_patch_hypercall(struct kvm_vcpu
*vcpu
, unsigned char *hypercall
)
3888 * Patch in the VMMCALL instruction:
3890 hypercall
[0] = 0x0f;
3891 hypercall
[1] = 0x01;
3892 hypercall
[2] = 0xd9;
3895 static void svm_check_processor_compat(void *rtn
)
3900 static bool svm_cpu_has_accelerated_tpr(void)
3905 static u64
svm_get_mt_mask(struct kvm_vcpu
*vcpu
, gfn_t gfn
, bool is_mmio
)
3910 static void svm_cpuid_update(struct kvm_vcpu
*vcpu
)
3914 static void svm_set_supported_cpuid(u32 func
, struct kvm_cpuid_entry2
*entry
)
3919 entry
->ecx
|= (1 << 2); /* Set SVM bit */
3922 entry
->eax
= 1; /* SVM revision 1 */
3923 entry
->ebx
= 8; /* Lets support 8 ASIDs in case we add proper
3924 ASID emulation to nested SVM */
3925 entry
->ecx
= 0; /* Reserved */
3926 entry
->edx
= 0; /* Per default do not support any
3927 additional features */
3929 /* Support next_rip if host supports it */
3930 if (boot_cpu_has(X86_FEATURE_NRIPS
))
3931 entry
->edx
|= SVM_FEATURE_NRIP
;
3933 /* Support NPT for the guest if enabled */
3935 entry
->edx
|= SVM_FEATURE_NPT
;
3941 static int svm_get_lpage_level(void)
3943 return PT_PDPE_LEVEL
;
3946 static bool svm_rdtscp_supported(void)
3951 static bool svm_has_wbinvd_exit(void)
3956 static void svm_fpu_deactivate(struct kvm_vcpu
*vcpu
)
3958 struct vcpu_svm
*svm
= to_svm(vcpu
);
3960 set_exception_intercept(svm
, NM_VECTOR
);
3961 update_cr0_intercept(svm
);
3964 #define PRE_EX(exit) { .exit_code = (exit), \
3965 .stage = X86_ICPT_PRE_EXCEPT, }
3966 #define POST_EX(exit) { .exit_code = (exit), \
3967 .stage = X86_ICPT_POST_EXCEPT, }
3968 #define POST_MEM(exit) { .exit_code = (exit), \
3969 .stage = X86_ICPT_POST_MEMACCESS, }
3971 static struct __x86_intercept
{
3973 enum x86_intercept_stage stage
;
3974 } x86_intercept_map
[] = {
3975 [x86_intercept_cr_read
] = POST_EX(SVM_EXIT_READ_CR0
),
3976 [x86_intercept_cr_write
] = POST_EX(SVM_EXIT_WRITE_CR0
),
3977 [x86_intercept_clts
] = POST_EX(SVM_EXIT_WRITE_CR0
),
3978 [x86_intercept_lmsw
] = POST_EX(SVM_EXIT_WRITE_CR0
),
3979 [x86_intercept_smsw
] = POST_EX(SVM_EXIT_READ_CR0
),
3980 [x86_intercept_dr_read
] = POST_EX(SVM_EXIT_READ_DR0
),
3981 [x86_intercept_dr_write
] = POST_EX(SVM_EXIT_WRITE_DR0
),
3982 [x86_intercept_sldt
] = POST_EX(SVM_EXIT_LDTR_READ
),
3983 [x86_intercept_str
] = POST_EX(SVM_EXIT_TR_READ
),
3984 [x86_intercept_lldt
] = POST_EX(SVM_EXIT_LDTR_WRITE
),
3985 [x86_intercept_ltr
] = POST_EX(SVM_EXIT_TR_WRITE
),
3986 [x86_intercept_sgdt
] = POST_EX(SVM_EXIT_GDTR_READ
),
3987 [x86_intercept_sidt
] = POST_EX(SVM_EXIT_IDTR_READ
),
3988 [x86_intercept_lgdt
] = POST_EX(SVM_EXIT_GDTR_WRITE
),
3989 [x86_intercept_lidt
] = POST_EX(SVM_EXIT_IDTR_WRITE
),
3990 [x86_intercept_vmrun
] = POST_EX(SVM_EXIT_VMRUN
),
3991 [x86_intercept_vmmcall
] = POST_EX(SVM_EXIT_VMMCALL
),
3992 [x86_intercept_vmload
] = POST_EX(SVM_EXIT_VMLOAD
),
3993 [x86_intercept_vmsave
] = POST_EX(SVM_EXIT_VMSAVE
),
3994 [x86_intercept_stgi
] = POST_EX(SVM_EXIT_STGI
),
3995 [x86_intercept_clgi
] = POST_EX(SVM_EXIT_CLGI
),
3996 [x86_intercept_skinit
] = POST_EX(SVM_EXIT_SKINIT
),
3997 [x86_intercept_invlpga
] = POST_EX(SVM_EXIT_INVLPGA
),
3998 [x86_intercept_rdtscp
] = POST_EX(SVM_EXIT_RDTSCP
),
3999 [x86_intercept_monitor
] = POST_MEM(SVM_EXIT_MONITOR
),
4000 [x86_intercept_mwait
] = POST_EX(SVM_EXIT_MWAIT
),
4001 [x86_intercept_invlpg
] = POST_EX(SVM_EXIT_INVLPG
),
4002 [x86_intercept_invd
] = POST_EX(SVM_EXIT_INVD
),
4003 [x86_intercept_wbinvd
] = POST_EX(SVM_EXIT_WBINVD
),
4004 [x86_intercept_wrmsr
] = POST_EX(SVM_EXIT_MSR
),
4005 [x86_intercept_rdtsc
] = POST_EX(SVM_EXIT_RDTSC
),
4006 [x86_intercept_rdmsr
] = POST_EX(SVM_EXIT_MSR
),
4007 [x86_intercept_rdpmc
] = POST_EX(SVM_EXIT_RDPMC
),
4008 [x86_intercept_cpuid
] = PRE_EX(SVM_EXIT_CPUID
),
4009 [x86_intercept_rsm
] = PRE_EX(SVM_EXIT_RSM
),
4010 [x86_intercept_pause
] = PRE_EX(SVM_EXIT_PAUSE
),
4011 [x86_intercept_pushf
] = PRE_EX(SVM_EXIT_PUSHF
),
4012 [x86_intercept_popf
] = PRE_EX(SVM_EXIT_POPF
),
4013 [x86_intercept_intn
] = PRE_EX(SVM_EXIT_SWINT
),
4014 [x86_intercept_iret
] = PRE_EX(SVM_EXIT_IRET
),
4015 [x86_intercept_icebp
] = PRE_EX(SVM_EXIT_ICEBP
),
4016 [x86_intercept_hlt
] = POST_EX(SVM_EXIT_HLT
),
4017 [x86_intercept_in
] = POST_EX(SVM_EXIT_IOIO
),
4018 [x86_intercept_ins
] = POST_EX(SVM_EXIT_IOIO
),
4019 [x86_intercept_out
] = POST_EX(SVM_EXIT_IOIO
),
4020 [x86_intercept_outs
] = POST_EX(SVM_EXIT_IOIO
),
4027 static int svm_check_intercept(struct kvm_vcpu
*vcpu
,
4028 struct x86_instruction_info
*info
,
4029 enum x86_intercept_stage stage
)
4031 struct vcpu_svm
*svm
= to_svm(vcpu
);
4032 int vmexit
, ret
= X86EMUL_CONTINUE
;
4033 struct __x86_intercept icpt_info
;
4034 struct vmcb
*vmcb
= svm
->vmcb
;
4036 if (info
->intercept
>= ARRAY_SIZE(x86_intercept_map
))
4039 icpt_info
= x86_intercept_map
[info
->intercept
];
4041 if (stage
!= icpt_info
.stage
)
4044 switch (icpt_info
.exit_code
) {
4045 case SVM_EXIT_READ_CR0
:
4046 if (info
->intercept
== x86_intercept_cr_read
)
4047 icpt_info
.exit_code
+= info
->modrm_reg
;
4049 case SVM_EXIT_WRITE_CR0
: {
4050 unsigned long cr0
, val
;
4053 if (info
->intercept
== x86_intercept_cr_write
)
4054 icpt_info
.exit_code
+= info
->modrm_reg
;
4056 if (icpt_info
.exit_code
!= SVM_EXIT_WRITE_CR0
)
4059 intercept
= svm
->nested
.intercept
;
4061 if (!(intercept
& (1ULL << INTERCEPT_SELECTIVE_CR0
)))
4064 cr0
= vcpu
->arch
.cr0
& ~SVM_CR0_SELECTIVE_MASK
;
4065 val
= info
->src_val
& ~SVM_CR0_SELECTIVE_MASK
;
4067 if (info
->intercept
== x86_intercept_lmsw
) {
4070 /* lmsw can't clear PE - catch this here */
4071 if (cr0
& X86_CR0_PE
)
4076 icpt_info
.exit_code
= SVM_EXIT_CR0_SEL_WRITE
;
4080 case SVM_EXIT_READ_DR0
:
4081 case SVM_EXIT_WRITE_DR0
:
4082 icpt_info
.exit_code
+= info
->modrm_reg
;
4085 if (info
->intercept
== x86_intercept_wrmsr
)
4086 vmcb
->control
.exit_info_1
= 1;
4088 vmcb
->control
.exit_info_1
= 0;
4090 case SVM_EXIT_PAUSE
:
4092 * We get this for NOP only, but pause
4093 * is rep not, check this here
4095 if (info
->rep_prefix
!= REPE_PREFIX
)
4097 case SVM_EXIT_IOIO
: {
4101 exit_info
= (vcpu
->arch
.regs
[VCPU_REGS_RDX
] & 0xffff) << 16;
4103 if (info
->intercept
== x86_intercept_in
||
4104 info
->intercept
== x86_intercept_ins
) {
4105 exit_info
|= SVM_IOIO_TYPE_MASK
;
4106 bytes
= info
->src_bytes
;
4108 bytes
= info
->dst_bytes
;
4111 if (info
->intercept
== x86_intercept_outs
||
4112 info
->intercept
== x86_intercept_ins
)
4113 exit_info
|= SVM_IOIO_STR_MASK
;
4115 if (info
->rep_prefix
)
4116 exit_info
|= SVM_IOIO_REP_MASK
;
4118 bytes
= min(bytes
, 4u);
4120 exit_info
|= bytes
<< SVM_IOIO_SIZE_SHIFT
;
4122 exit_info
|= (u32
)info
->ad_bytes
<< (SVM_IOIO_ASIZE_SHIFT
- 1);
4124 vmcb
->control
.exit_info_1
= exit_info
;
4125 vmcb
->control
.exit_info_2
= info
->next_rip
;
4133 vmcb
->control
.next_rip
= info
->next_rip
;
4134 vmcb
->control
.exit_code
= icpt_info
.exit_code
;
4135 vmexit
= nested_svm_exit_handled(svm
);
4137 ret
= (vmexit
== NESTED_EXIT_DONE
) ? X86EMUL_INTERCEPTED
4144 static struct kvm_x86_ops svm_x86_ops
= {
4145 .cpu_has_kvm_support
= has_svm
,
4146 .disabled_by_bios
= is_disabled
,
4147 .hardware_setup
= svm_hardware_setup
,
4148 .hardware_unsetup
= svm_hardware_unsetup
,
4149 .check_processor_compatibility
= svm_check_processor_compat
,
4150 .hardware_enable
= svm_hardware_enable
,
4151 .hardware_disable
= svm_hardware_disable
,
4152 .cpu_has_accelerated_tpr
= svm_cpu_has_accelerated_tpr
,
4154 .vcpu_create
= svm_create_vcpu
,
4155 .vcpu_free
= svm_free_vcpu
,
4156 .vcpu_reset
= svm_vcpu_reset
,
4158 .prepare_guest_switch
= svm_prepare_guest_switch
,
4159 .vcpu_load
= svm_vcpu_load
,
4160 .vcpu_put
= svm_vcpu_put
,
4162 .set_guest_debug
= svm_guest_debug
,
4163 .get_msr
= svm_get_msr
,
4164 .set_msr
= svm_set_msr
,
4165 .get_segment_base
= svm_get_segment_base
,
4166 .get_segment
= svm_get_segment
,
4167 .set_segment
= svm_set_segment
,
4168 .get_cpl
= svm_get_cpl
,
4169 .get_cs_db_l_bits
= kvm_get_cs_db_l_bits
,
4170 .decache_cr0_guest_bits
= svm_decache_cr0_guest_bits
,
4171 .decache_cr3
= svm_decache_cr3
,
4172 .decache_cr4_guest_bits
= svm_decache_cr4_guest_bits
,
4173 .set_cr0
= svm_set_cr0
,
4174 .set_cr3
= svm_set_cr3
,
4175 .set_cr4
= svm_set_cr4
,
4176 .set_efer
= svm_set_efer
,
4177 .get_idt
= svm_get_idt
,
4178 .set_idt
= svm_set_idt
,
4179 .get_gdt
= svm_get_gdt
,
4180 .set_gdt
= svm_set_gdt
,
4181 .set_dr7
= svm_set_dr7
,
4182 .cache_reg
= svm_cache_reg
,
4183 .get_rflags
= svm_get_rflags
,
4184 .set_rflags
= svm_set_rflags
,
4185 .fpu_activate
= svm_fpu_activate
,
4186 .fpu_deactivate
= svm_fpu_deactivate
,
4188 .tlb_flush
= svm_flush_tlb
,
4190 .run
= svm_vcpu_run
,
4191 .handle_exit
= handle_exit
,
4192 .skip_emulated_instruction
= skip_emulated_instruction
,
4193 .set_interrupt_shadow
= svm_set_interrupt_shadow
,
4194 .get_interrupt_shadow
= svm_get_interrupt_shadow
,
4195 .patch_hypercall
= svm_patch_hypercall
,
4196 .set_irq
= svm_set_irq
,
4197 .set_nmi
= svm_inject_nmi
,
4198 .queue_exception
= svm_queue_exception
,
4199 .cancel_injection
= svm_cancel_injection
,
4200 .interrupt_allowed
= svm_interrupt_allowed
,
4201 .nmi_allowed
= svm_nmi_allowed
,
4202 .get_nmi_mask
= svm_get_nmi_mask
,
4203 .set_nmi_mask
= svm_set_nmi_mask
,
4204 .enable_nmi_window
= enable_nmi_window
,
4205 .enable_irq_window
= enable_irq_window
,
4206 .update_cr8_intercept
= update_cr8_intercept
,
4208 .set_tss_addr
= svm_set_tss_addr
,
4209 .get_tdp_level
= get_npt_level
,
4210 .get_mt_mask
= svm_get_mt_mask
,
4212 .get_exit_info
= svm_get_exit_info
,
4214 .get_lpage_level
= svm_get_lpage_level
,
4216 .cpuid_update
= svm_cpuid_update
,
4218 .rdtscp_supported
= svm_rdtscp_supported
,
4220 .set_supported_cpuid
= svm_set_supported_cpuid
,
4222 .has_wbinvd_exit
= svm_has_wbinvd_exit
,
4224 .set_tsc_khz
= svm_set_tsc_khz
,
4225 .write_tsc_offset
= svm_write_tsc_offset
,
4226 .adjust_tsc_offset
= svm_adjust_tsc_offset
,
4227 .compute_tsc_offset
= svm_compute_tsc_offset
,
4228 .read_l1_tsc
= svm_read_l1_tsc
,
4230 .set_tdp_cr3
= set_tdp_cr3
,
4232 .check_intercept
= svm_check_intercept
,
4235 static int __init
svm_init(void)
4237 return kvm_init(&svm_x86_ops
, sizeof(struct vcpu_svm
),
4238 __alignof__(struct vcpu_svm
), THIS_MODULE
);
4241 static void __exit
svm_exit(void)
4246 module_init(svm_init
)
4247 module_exit(svm_exit
)