compat: Fix RT signal mask corruption via sigprocmask
[zen-stable.git] / net / sunrpc / xprtrdma / svc_rdma_transport.c
blob894cb42db91d6c9e2cb71a9ae0aa076db4573d96
1 /*
2 * Copyright (c) 2005-2007 Network Appliance, Inc. All rights reserved.
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the BSD-type
8 * license below:
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
14 * Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
17 * Redistributions in binary form must reproduce the above
18 * copyright notice, this list of conditions and the following
19 * disclaimer in the documentation and/or other materials provided
20 * with the distribution.
22 * Neither the name of the Network Appliance, Inc. nor the names of
23 * its contributors may be used to endorse or promote products
24 * derived from this software without specific prior written
25 * permission.
27 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
28 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
29 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
30 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
31 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
32 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
33 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
34 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
35 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
36 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
37 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 * Author: Tom Tucker <tom@opengridcomputing.com>
42 #include <linux/sunrpc/svc_xprt.h>
43 #include <linux/sunrpc/debug.h>
44 #include <linux/sunrpc/rpc_rdma.h>
45 #include <linux/interrupt.h>
46 #include <linux/sched.h>
47 #include <linux/slab.h>
48 #include <linux/spinlock.h>
49 #include <linux/workqueue.h>
50 #include <rdma/ib_verbs.h>
51 #include <rdma/rdma_cm.h>
52 #include <linux/sunrpc/svc_rdma.h>
53 #include <linux/export.h>
55 #define RPCDBG_FACILITY RPCDBG_SVCXPRT
57 static struct svc_xprt *svc_rdma_create(struct svc_serv *serv,
58 struct net *net,
59 struct sockaddr *sa, int salen,
60 int flags);
61 static struct svc_xprt *svc_rdma_accept(struct svc_xprt *xprt);
62 static void svc_rdma_release_rqst(struct svc_rqst *);
63 static void dto_tasklet_func(unsigned long data);
64 static void svc_rdma_detach(struct svc_xprt *xprt);
65 static void svc_rdma_free(struct svc_xprt *xprt);
66 static int svc_rdma_has_wspace(struct svc_xprt *xprt);
67 static void rq_cq_reap(struct svcxprt_rdma *xprt);
68 static void sq_cq_reap(struct svcxprt_rdma *xprt);
70 static DECLARE_TASKLET(dto_tasklet, dto_tasklet_func, 0UL);
71 static DEFINE_SPINLOCK(dto_lock);
72 static LIST_HEAD(dto_xprt_q);
74 static struct svc_xprt_ops svc_rdma_ops = {
75 .xpo_create = svc_rdma_create,
76 .xpo_recvfrom = svc_rdma_recvfrom,
77 .xpo_sendto = svc_rdma_sendto,
78 .xpo_release_rqst = svc_rdma_release_rqst,
79 .xpo_detach = svc_rdma_detach,
80 .xpo_free = svc_rdma_free,
81 .xpo_prep_reply_hdr = svc_rdma_prep_reply_hdr,
82 .xpo_has_wspace = svc_rdma_has_wspace,
83 .xpo_accept = svc_rdma_accept,
86 struct svc_xprt_class svc_rdma_class = {
87 .xcl_name = "rdma",
88 .xcl_owner = THIS_MODULE,
89 .xcl_ops = &svc_rdma_ops,
90 .xcl_max_payload = RPCSVC_MAXPAYLOAD_TCP,
93 /* WR context cache. Created in svc_rdma.c */
94 extern struct kmem_cache *svc_rdma_ctxt_cachep;
96 /* Workqueue created in svc_rdma.c */
97 extern struct workqueue_struct *svc_rdma_wq;
99 struct svc_rdma_op_ctxt *svc_rdma_get_context(struct svcxprt_rdma *xprt)
101 struct svc_rdma_op_ctxt *ctxt;
103 while (1) {
104 ctxt = kmem_cache_alloc(svc_rdma_ctxt_cachep, GFP_KERNEL);
105 if (ctxt)
106 break;
107 schedule_timeout_uninterruptible(msecs_to_jiffies(500));
109 ctxt->xprt = xprt;
110 INIT_LIST_HEAD(&ctxt->dto_q);
111 ctxt->count = 0;
112 ctxt->frmr = NULL;
113 atomic_inc(&xprt->sc_ctxt_used);
114 return ctxt;
117 void svc_rdma_unmap_dma(struct svc_rdma_op_ctxt *ctxt)
119 struct svcxprt_rdma *xprt = ctxt->xprt;
120 int i;
121 for (i = 0; i < ctxt->count && ctxt->sge[i].length; i++) {
123 * Unmap the DMA addr in the SGE if the lkey matches
124 * the sc_dma_lkey, otherwise, ignore it since it is
125 * an FRMR lkey and will be unmapped later when the
126 * last WR that uses it completes.
128 if (ctxt->sge[i].lkey == xprt->sc_dma_lkey) {
129 atomic_dec(&xprt->sc_dma_used);
130 ib_dma_unmap_page(xprt->sc_cm_id->device,
131 ctxt->sge[i].addr,
132 ctxt->sge[i].length,
133 ctxt->direction);
138 void svc_rdma_put_context(struct svc_rdma_op_ctxt *ctxt, int free_pages)
140 struct svcxprt_rdma *xprt;
141 int i;
143 BUG_ON(!ctxt);
144 xprt = ctxt->xprt;
145 if (free_pages)
146 for (i = 0; i < ctxt->count; i++)
147 put_page(ctxt->pages[i]);
149 kmem_cache_free(svc_rdma_ctxt_cachep, ctxt);
150 atomic_dec(&xprt->sc_ctxt_used);
153 /* Temporary NFS request map cache. Created in svc_rdma.c */
154 extern struct kmem_cache *svc_rdma_map_cachep;
157 * Temporary NFS req mappings are shared across all transport
158 * instances. These are short lived and should be bounded by the number
159 * of concurrent server threads * depth of the SQ.
161 struct svc_rdma_req_map *svc_rdma_get_req_map(void)
163 struct svc_rdma_req_map *map;
164 while (1) {
165 map = kmem_cache_alloc(svc_rdma_map_cachep, GFP_KERNEL);
166 if (map)
167 break;
168 schedule_timeout_uninterruptible(msecs_to_jiffies(500));
170 map->count = 0;
171 map->frmr = NULL;
172 return map;
175 void svc_rdma_put_req_map(struct svc_rdma_req_map *map)
177 kmem_cache_free(svc_rdma_map_cachep, map);
180 /* ib_cq event handler */
181 static void cq_event_handler(struct ib_event *event, void *context)
183 struct svc_xprt *xprt = context;
184 dprintk("svcrdma: received CQ event id=%d, context=%p\n",
185 event->event, context);
186 set_bit(XPT_CLOSE, &xprt->xpt_flags);
189 /* QP event handler */
190 static void qp_event_handler(struct ib_event *event, void *context)
192 struct svc_xprt *xprt = context;
194 switch (event->event) {
195 /* These are considered benign events */
196 case IB_EVENT_PATH_MIG:
197 case IB_EVENT_COMM_EST:
198 case IB_EVENT_SQ_DRAINED:
199 case IB_EVENT_QP_LAST_WQE_REACHED:
200 dprintk("svcrdma: QP event %d received for QP=%p\n",
201 event->event, event->element.qp);
202 break;
203 /* These are considered fatal events */
204 case IB_EVENT_PATH_MIG_ERR:
205 case IB_EVENT_QP_FATAL:
206 case IB_EVENT_QP_REQ_ERR:
207 case IB_EVENT_QP_ACCESS_ERR:
208 case IB_EVENT_DEVICE_FATAL:
209 default:
210 dprintk("svcrdma: QP ERROR event %d received for QP=%p, "
211 "closing transport\n",
212 event->event, event->element.qp);
213 set_bit(XPT_CLOSE, &xprt->xpt_flags);
214 break;
219 * Data Transfer Operation Tasklet
221 * Walks a list of transports with I/O pending, removing entries as
222 * they are added to the server's I/O pending list. Two bits indicate
223 * if SQ, RQ, or both have I/O pending. The dto_lock is an irqsave
224 * spinlock that serializes access to the transport list with the RQ
225 * and SQ interrupt handlers.
227 static void dto_tasklet_func(unsigned long data)
229 struct svcxprt_rdma *xprt;
230 unsigned long flags;
232 spin_lock_irqsave(&dto_lock, flags);
233 while (!list_empty(&dto_xprt_q)) {
234 xprt = list_entry(dto_xprt_q.next,
235 struct svcxprt_rdma, sc_dto_q);
236 list_del_init(&xprt->sc_dto_q);
237 spin_unlock_irqrestore(&dto_lock, flags);
239 rq_cq_reap(xprt);
240 sq_cq_reap(xprt);
242 svc_xprt_put(&xprt->sc_xprt);
243 spin_lock_irqsave(&dto_lock, flags);
245 spin_unlock_irqrestore(&dto_lock, flags);
249 * Receive Queue Completion Handler
251 * Since an RQ completion handler is called on interrupt context, we
252 * need to defer the handling of the I/O to a tasklet
254 static void rq_comp_handler(struct ib_cq *cq, void *cq_context)
256 struct svcxprt_rdma *xprt = cq_context;
257 unsigned long flags;
259 /* Guard against unconditional flush call for destroyed QP */
260 if (atomic_read(&xprt->sc_xprt.xpt_ref.refcount)==0)
261 return;
264 * Set the bit regardless of whether or not it's on the list
265 * because it may be on the list already due to an SQ
266 * completion.
268 set_bit(RDMAXPRT_RQ_PENDING, &xprt->sc_flags);
271 * If this transport is not already on the DTO transport queue,
272 * add it
274 spin_lock_irqsave(&dto_lock, flags);
275 if (list_empty(&xprt->sc_dto_q)) {
276 svc_xprt_get(&xprt->sc_xprt);
277 list_add_tail(&xprt->sc_dto_q, &dto_xprt_q);
279 spin_unlock_irqrestore(&dto_lock, flags);
281 /* Tasklet does all the work to avoid irqsave locks. */
282 tasklet_schedule(&dto_tasklet);
286 * rq_cq_reap - Process the RQ CQ.
288 * Take all completing WC off the CQE and enqueue the associated DTO
289 * context on the dto_q for the transport.
291 * Note that caller must hold a transport reference.
293 static void rq_cq_reap(struct svcxprt_rdma *xprt)
295 int ret;
296 struct ib_wc wc;
297 struct svc_rdma_op_ctxt *ctxt = NULL;
299 if (!test_and_clear_bit(RDMAXPRT_RQ_PENDING, &xprt->sc_flags))
300 return;
302 ib_req_notify_cq(xprt->sc_rq_cq, IB_CQ_NEXT_COMP);
303 atomic_inc(&rdma_stat_rq_poll);
305 while ((ret = ib_poll_cq(xprt->sc_rq_cq, 1, &wc)) > 0) {
306 ctxt = (struct svc_rdma_op_ctxt *)(unsigned long)wc.wr_id;
307 ctxt->wc_status = wc.status;
308 ctxt->byte_len = wc.byte_len;
309 svc_rdma_unmap_dma(ctxt);
310 if (wc.status != IB_WC_SUCCESS) {
311 /* Close the transport */
312 dprintk("svcrdma: transport closing putting ctxt %p\n", ctxt);
313 set_bit(XPT_CLOSE, &xprt->sc_xprt.xpt_flags);
314 svc_rdma_put_context(ctxt, 1);
315 svc_xprt_put(&xprt->sc_xprt);
316 continue;
318 spin_lock_bh(&xprt->sc_rq_dto_lock);
319 list_add_tail(&ctxt->dto_q, &xprt->sc_rq_dto_q);
320 spin_unlock_bh(&xprt->sc_rq_dto_lock);
321 svc_xprt_put(&xprt->sc_xprt);
324 if (ctxt)
325 atomic_inc(&rdma_stat_rq_prod);
327 set_bit(XPT_DATA, &xprt->sc_xprt.xpt_flags);
329 * If data arrived before established event,
330 * don't enqueue. This defers RPC I/O until the
331 * RDMA connection is complete.
333 if (!test_bit(RDMAXPRT_CONN_PENDING, &xprt->sc_flags))
334 svc_xprt_enqueue(&xprt->sc_xprt);
338 * Process a completion context
340 static void process_context(struct svcxprt_rdma *xprt,
341 struct svc_rdma_op_ctxt *ctxt)
343 svc_rdma_unmap_dma(ctxt);
345 switch (ctxt->wr_op) {
346 case IB_WR_SEND:
347 if (test_bit(RDMACTXT_F_FAST_UNREG, &ctxt->flags))
348 svc_rdma_put_frmr(xprt, ctxt->frmr);
349 svc_rdma_put_context(ctxt, 1);
350 break;
352 case IB_WR_RDMA_WRITE:
353 svc_rdma_put_context(ctxt, 0);
354 break;
356 case IB_WR_RDMA_READ:
357 case IB_WR_RDMA_READ_WITH_INV:
358 if (test_bit(RDMACTXT_F_LAST_CTXT, &ctxt->flags)) {
359 struct svc_rdma_op_ctxt *read_hdr = ctxt->read_hdr;
360 BUG_ON(!read_hdr);
361 if (test_bit(RDMACTXT_F_FAST_UNREG, &ctxt->flags))
362 svc_rdma_put_frmr(xprt, ctxt->frmr);
363 spin_lock_bh(&xprt->sc_rq_dto_lock);
364 set_bit(XPT_DATA, &xprt->sc_xprt.xpt_flags);
365 list_add_tail(&read_hdr->dto_q,
366 &xprt->sc_read_complete_q);
367 spin_unlock_bh(&xprt->sc_rq_dto_lock);
368 svc_xprt_enqueue(&xprt->sc_xprt);
370 svc_rdma_put_context(ctxt, 0);
371 break;
373 default:
374 printk(KERN_ERR "svcrdma: unexpected completion type, "
375 "opcode=%d\n",
376 ctxt->wr_op);
377 break;
382 * Send Queue Completion Handler - potentially called on interrupt context.
384 * Note that caller must hold a transport reference.
386 static void sq_cq_reap(struct svcxprt_rdma *xprt)
388 struct svc_rdma_op_ctxt *ctxt = NULL;
389 struct ib_wc wc;
390 struct ib_cq *cq = xprt->sc_sq_cq;
391 int ret;
393 if (!test_and_clear_bit(RDMAXPRT_SQ_PENDING, &xprt->sc_flags))
394 return;
396 ib_req_notify_cq(xprt->sc_sq_cq, IB_CQ_NEXT_COMP);
397 atomic_inc(&rdma_stat_sq_poll);
398 while ((ret = ib_poll_cq(cq, 1, &wc)) > 0) {
399 if (wc.status != IB_WC_SUCCESS)
400 /* Close the transport */
401 set_bit(XPT_CLOSE, &xprt->sc_xprt.xpt_flags);
403 /* Decrement used SQ WR count */
404 atomic_dec(&xprt->sc_sq_count);
405 wake_up(&xprt->sc_send_wait);
407 ctxt = (struct svc_rdma_op_ctxt *)(unsigned long)wc.wr_id;
408 if (ctxt)
409 process_context(xprt, ctxt);
411 svc_xprt_put(&xprt->sc_xprt);
414 if (ctxt)
415 atomic_inc(&rdma_stat_sq_prod);
418 static void sq_comp_handler(struct ib_cq *cq, void *cq_context)
420 struct svcxprt_rdma *xprt = cq_context;
421 unsigned long flags;
423 /* Guard against unconditional flush call for destroyed QP */
424 if (atomic_read(&xprt->sc_xprt.xpt_ref.refcount)==0)
425 return;
428 * Set the bit regardless of whether or not it's on the list
429 * because it may be on the list already due to an RQ
430 * completion.
432 set_bit(RDMAXPRT_SQ_PENDING, &xprt->sc_flags);
435 * If this transport is not already on the DTO transport queue,
436 * add it
438 spin_lock_irqsave(&dto_lock, flags);
439 if (list_empty(&xprt->sc_dto_q)) {
440 svc_xprt_get(&xprt->sc_xprt);
441 list_add_tail(&xprt->sc_dto_q, &dto_xprt_q);
443 spin_unlock_irqrestore(&dto_lock, flags);
445 /* Tasklet does all the work to avoid irqsave locks. */
446 tasklet_schedule(&dto_tasklet);
449 static struct svcxprt_rdma *rdma_create_xprt(struct svc_serv *serv,
450 int listener)
452 struct svcxprt_rdma *cma_xprt = kzalloc(sizeof *cma_xprt, GFP_KERNEL);
454 if (!cma_xprt)
455 return NULL;
456 svc_xprt_init(&init_net, &svc_rdma_class, &cma_xprt->sc_xprt, serv);
457 INIT_LIST_HEAD(&cma_xprt->sc_accept_q);
458 INIT_LIST_HEAD(&cma_xprt->sc_dto_q);
459 INIT_LIST_HEAD(&cma_xprt->sc_rq_dto_q);
460 INIT_LIST_HEAD(&cma_xprt->sc_read_complete_q);
461 INIT_LIST_HEAD(&cma_xprt->sc_frmr_q);
462 init_waitqueue_head(&cma_xprt->sc_send_wait);
464 spin_lock_init(&cma_xprt->sc_lock);
465 spin_lock_init(&cma_xprt->sc_rq_dto_lock);
466 spin_lock_init(&cma_xprt->sc_frmr_q_lock);
468 cma_xprt->sc_ord = svcrdma_ord;
470 cma_xprt->sc_max_req_size = svcrdma_max_req_size;
471 cma_xprt->sc_max_requests = svcrdma_max_requests;
472 cma_xprt->sc_sq_depth = svcrdma_max_requests * RPCRDMA_SQ_DEPTH_MULT;
473 atomic_set(&cma_xprt->sc_sq_count, 0);
474 atomic_set(&cma_xprt->sc_ctxt_used, 0);
476 if (listener)
477 set_bit(XPT_LISTENER, &cma_xprt->sc_xprt.xpt_flags);
479 return cma_xprt;
482 struct page *svc_rdma_get_page(void)
484 struct page *page;
486 while ((page = alloc_page(GFP_KERNEL)) == NULL) {
487 /* If we can't get memory, wait a bit and try again */
488 printk(KERN_INFO "svcrdma: out of memory...retrying in 1000 "
489 "jiffies.\n");
490 schedule_timeout_uninterruptible(msecs_to_jiffies(1000));
492 return page;
495 int svc_rdma_post_recv(struct svcxprt_rdma *xprt)
497 struct ib_recv_wr recv_wr, *bad_recv_wr;
498 struct svc_rdma_op_ctxt *ctxt;
499 struct page *page;
500 dma_addr_t pa;
501 int sge_no;
502 int buflen;
503 int ret;
505 ctxt = svc_rdma_get_context(xprt);
506 buflen = 0;
507 ctxt->direction = DMA_FROM_DEVICE;
508 for (sge_no = 0; buflen < xprt->sc_max_req_size; sge_no++) {
509 BUG_ON(sge_no >= xprt->sc_max_sge);
510 page = svc_rdma_get_page();
511 ctxt->pages[sge_no] = page;
512 pa = ib_dma_map_page(xprt->sc_cm_id->device,
513 page, 0, PAGE_SIZE,
514 DMA_FROM_DEVICE);
515 if (ib_dma_mapping_error(xprt->sc_cm_id->device, pa))
516 goto err_put_ctxt;
517 atomic_inc(&xprt->sc_dma_used);
518 ctxt->sge[sge_no].addr = pa;
519 ctxt->sge[sge_no].length = PAGE_SIZE;
520 ctxt->sge[sge_no].lkey = xprt->sc_dma_lkey;
521 ctxt->count = sge_no + 1;
522 buflen += PAGE_SIZE;
524 recv_wr.next = NULL;
525 recv_wr.sg_list = &ctxt->sge[0];
526 recv_wr.num_sge = ctxt->count;
527 recv_wr.wr_id = (u64)(unsigned long)ctxt;
529 svc_xprt_get(&xprt->sc_xprt);
530 ret = ib_post_recv(xprt->sc_qp, &recv_wr, &bad_recv_wr);
531 if (ret) {
532 svc_rdma_unmap_dma(ctxt);
533 svc_rdma_put_context(ctxt, 1);
534 svc_xprt_put(&xprt->sc_xprt);
536 return ret;
538 err_put_ctxt:
539 svc_rdma_unmap_dma(ctxt);
540 svc_rdma_put_context(ctxt, 1);
541 return -ENOMEM;
545 * This function handles the CONNECT_REQUEST event on a listening
546 * endpoint. It is passed the cma_id for the _new_ connection. The context in
547 * this cma_id is inherited from the listening cma_id and is the svc_xprt
548 * structure for the listening endpoint.
550 * This function creates a new xprt for the new connection and enqueues it on
551 * the accept queue for the listent xprt. When the listen thread is kicked, it
552 * will call the recvfrom method on the listen xprt which will accept the new
553 * connection.
555 static void handle_connect_req(struct rdma_cm_id *new_cma_id, size_t client_ird)
557 struct svcxprt_rdma *listen_xprt = new_cma_id->context;
558 struct svcxprt_rdma *newxprt;
559 struct sockaddr *sa;
561 /* Create a new transport */
562 newxprt = rdma_create_xprt(listen_xprt->sc_xprt.xpt_server, 0);
563 if (!newxprt) {
564 dprintk("svcrdma: failed to create new transport\n");
565 return;
567 newxprt->sc_cm_id = new_cma_id;
568 new_cma_id->context = newxprt;
569 dprintk("svcrdma: Creating newxprt=%p, cm_id=%p, listenxprt=%p\n",
570 newxprt, newxprt->sc_cm_id, listen_xprt);
572 /* Save client advertised inbound read limit for use later in accept. */
573 newxprt->sc_ord = client_ird;
575 /* Set the local and remote addresses in the transport */
576 sa = (struct sockaddr *)&newxprt->sc_cm_id->route.addr.dst_addr;
577 svc_xprt_set_remote(&newxprt->sc_xprt, sa, svc_addr_len(sa));
578 sa = (struct sockaddr *)&newxprt->sc_cm_id->route.addr.src_addr;
579 svc_xprt_set_local(&newxprt->sc_xprt, sa, svc_addr_len(sa));
582 * Enqueue the new transport on the accept queue of the listening
583 * transport
585 spin_lock_bh(&listen_xprt->sc_lock);
586 list_add_tail(&newxprt->sc_accept_q, &listen_xprt->sc_accept_q);
587 spin_unlock_bh(&listen_xprt->sc_lock);
590 * Can't use svc_xprt_received here because we are not on a
591 * rqstp thread
593 set_bit(XPT_CONN, &listen_xprt->sc_xprt.xpt_flags);
594 svc_xprt_enqueue(&listen_xprt->sc_xprt);
598 * Handles events generated on the listening endpoint. These events will be
599 * either be incoming connect requests or adapter removal events.
601 static int rdma_listen_handler(struct rdma_cm_id *cma_id,
602 struct rdma_cm_event *event)
604 struct svcxprt_rdma *xprt = cma_id->context;
605 int ret = 0;
607 switch (event->event) {
608 case RDMA_CM_EVENT_CONNECT_REQUEST:
609 dprintk("svcrdma: Connect request on cma_id=%p, xprt = %p, "
610 "event=%d\n", cma_id, cma_id->context, event->event);
611 handle_connect_req(cma_id,
612 event->param.conn.initiator_depth);
613 break;
615 case RDMA_CM_EVENT_ESTABLISHED:
616 /* Accept complete */
617 dprintk("svcrdma: Connection completed on LISTEN xprt=%p, "
618 "cm_id=%p\n", xprt, cma_id);
619 break;
621 case RDMA_CM_EVENT_DEVICE_REMOVAL:
622 dprintk("svcrdma: Device removal xprt=%p, cm_id=%p\n",
623 xprt, cma_id);
624 if (xprt)
625 set_bit(XPT_CLOSE, &xprt->sc_xprt.xpt_flags);
626 break;
628 default:
629 dprintk("svcrdma: Unexpected event on listening endpoint %p, "
630 "event=%d\n", cma_id, event->event);
631 break;
634 return ret;
637 static int rdma_cma_handler(struct rdma_cm_id *cma_id,
638 struct rdma_cm_event *event)
640 struct svc_xprt *xprt = cma_id->context;
641 struct svcxprt_rdma *rdma =
642 container_of(xprt, struct svcxprt_rdma, sc_xprt);
643 switch (event->event) {
644 case RDMA_CM_EVENT_ESTABLISHED:
645 /* Accept complete */
646 svc_xprt_get(xprt);
647 dprintk("svcrdma: Connection completed on DTO xprt=%p, "
648 "cm_id=%p\n", xprt, cma_id);
649 clear_bit(RDMAXPRT_CONN_PENDING, &rdma->sc_flags);
650 svc_xprt_enqueue(xprt);
651 break;
652 case RDMA_CM_EVENT_DISCONNECTED:
653 dprintk("svcrdma: Disconnect on DTO xprt=%p, cm_id=%p\n",
654 xprt, cma_id);
655 if (xprt) {
656 set_bit(XPT_CLOSE, &xprt->xpt_flags);
657 svc_xprt_enqueue(xprt);
658 svc_xprt_put(xprt);
660 break;
661 case RDMA_CM_EVENT_DEVICE_REMOVAL:
662 dprintk("svcrdma: Device removal cma_id=%p, xprt = %p, "
663 "event=%d\n", cma_id, xprt, event->event);
664 if (xprt) {
665 set_bit(XPT_CLOSE, &xprt->xpt_flags);
666 svc_xprt_enqueue(xprt);
668 break;
669 default:
670 dprintk("svcrdma: Unexpected event on DTO endpoint %p, "
671 "event=%d\n", cma_id, event->event);
672 break;
674 return 0;
678 * Create a listening RDMA service endpoint.
680 static struct svc_xprt *svc_rdma_create(struct svc_serv *serv,
681 struct net *net,
682 struct sockaddr *sa, int salen,
683 int flags)
685 struct rdma_cm_id *listen_id;
686 struct svcxprt_rdma *cma_xprt;
687 struct svc_xprt *xprt;
688 int ret;
690 dprintk("svcrdma: Creating RDMA socket\n");
691 if (sa->sa_family != AF_INET) {
692 dprintk("svcrdma: Address family %d is not supported.\n", sa->sa_family);
693 return ERR_PTR(-EAFNOSUPPORT);
695 cma_xprt = rdma_create_xprt(serv, 1);
696 if (!cma_xprt)
697 return ERR_PTR(-ENOMEM);
698 xprt = &cma_xprt->sc_xprt;
700 listen_id = rdma_create_id(rdma_listen_handler, cma_xprt, RDMA_PS_TCP,
701 IB_QPT_RC);
702 if (IS_ERR(listen_id)) {
703 ret = PTR_ERR(listen_id);
704 dprintk("svcrdma: rdma_create_id failed = %d\n", ret);
705 goto err0;
708 ret = rdma_bind_addr(listen_id, sa);
709 if (ret) {
710 dprintk("svcrdma: rdma_bind_addr failed = %d\n", ret);
711 goto err1;
713 cma_xprt->sc_cm_id = listen_id;
715 ret = rdma_listen(listen_id, RPCRDMA_LISTEN_BACKLOG);
716 if (ret) {
717 dprintk("svcrdma: rdma_listen failed = %d\n", ret);
718 goto err1;
722 * We need to use the address from the cm_id in case the
723 * caller specified 0 for the port number.
725 sa = (struct sockaddr *)&cma_xprt->sc_cm_id->route.addr.src_addr;
726 svc_xprt_set_local(&cma_xprt->sc_xprt, sa, salen);
728 return &cma_xprt->sc_xprt;
730 err1:
731 rdma_destroy_id(listen_id);
732 err0:
733 kfree(cma_xprt);
734 return ERR_PTR(ret);
737 static struct svc_rdma_fastreg_mr *rdma_alloc_frmr(struct svcxprt_rdma *xprt)
739 struct ib_mr *mr;
740 struct ib_fast_reg_page_list *pl;
741 struct svc_rdma_fastreg_mr *frmr;
743 frmr = kmalloc(sizeof(*frmr), GFP_KERNEL);
744 if (!frmr)
745 goto err;
747 mr = ib_alloc_fast_reg_mr(xprt->sc_pd, RPCSVC_MAXPAGES);
748 if (IS_ERR(mr))
749 goto err_free_frmr;
751 pl = ib_alloc_fast_reg_page_list(xprt->sc_cm_id->device,
752 RPCSVC_MAXPAGES);
753 if (IS_ERR(pl))
754 goto err_free_mr;
756 frmr->mr = mr;
757 frmr->page_list = pl;
758 INIT_LIST_HEAD(&frmr->frmr_list);
759 return frmr;
761 err_free_mr:
762 ib_dereg_mr(mr);
763 err_free_frmr:
764 kfree(frmr);
765 err:
766 return ERR_PTR(-ENOMEM);
769 static void rdma_dealloc_frmr_q(struct svcxprt_rdma *xprt)
771 struct svc_rdma_fastreg_mr *frmr;
773 while (!list_empty(&xprt->sc_frmr_q)) {
774 frmr = list_entry(xprt->sc_frmr_q.next,
775 struct svc_rdma_fastreg_mr, frmr_list);
776 list_del_init(&frmr->frmr_list);
777 ib_dereg_mr(frmr->mr);
778 ib_free_fast_reg_page_list(frmr->page_list);
779 kfree(frmr);
783 struct svc_rdma_fastreg_mr *svc_rdma_get_frmr(struct svcxprt_rdma *rdma)
785 struct svc_rdma_fastreg_mr *frmr = NULL;
787 spin_lock_bh(&rdma->sc_frmr_q_lock);
788 if (!list_empty(&rdma->sc_frmr_q)) {
789 frmr = list_entry(rdma->sc_frmr_q.next,
790 struct svc_rdma_fastreg_mr, frmr_list);
791 list_del_init(&frmr->frmr_list);
792 frmr->map_len = 0;
793 frmr->page_list_len = 0;
795 spin_unlock_bh(&rdma->sc_frmr_q_lock);
796 if (frmr)
797 return frmr;
799 return rdma_alloc_frmr(rdma);
802 static void frmr_unmap_dma(struct svcxprt_rdma *xprt,
803 struct svc_rdma_fastreg_mr *frmr)
805 int page_no;
806 for (page_no = 0; page_no < frmr->page_list_len; page_no++) {
807 dma_addr_t addr = frmr->page_list->page_list[page_no];
808 if (ib_dma_mapping_error(frmr->mr->device, addr))
809 continue;
810 atomic_dec(&xprt->sc_dma_used);
811 ib_dma_unmap_page(frmr->mr->device, addr, PAGE_SIZE,
812 frmr->direction);
816 void svc_rdma_put_frmr(struct svcxprt_rdma *rdma,
817 struct svc_rdma_fastreg_mr *frmr)
819 if (frmr) {
820 frmr_unmap_dma(rdma, frmr);
821 spin_lock_bh(&rdma->sc_frmr_q_lock);
822 BUG_ON(!list_empty(&frmr->frmr_list));
823 list_add(&frmr->frmr_list, &rdma->sc_frmr_q);
824 spin_unlock_bh(&rdma->sc_frmr_q_lock);
829 * This is the xpo_recvfrom function for listening endpoints. Its
830 * purpose is to accept incoming connections. The CMA callback handler
831 * has already created a new transport and attached it to the new CMA
832 * ID.
834 * There is a queue of pending connections hung on the listening
835 * transport. This queue contains the new svc_xprt structure. This
836 * function takes svc_xprt structures off the accept_q and completes
837 * the connection.
839 static struct svc_xprt *svc_rdma_accept(struct svc_xprt *xprt)
841 struct svcxprt_rdma *listen_rdma;
842 struct svcxprt_rdma *newxprt = NULL;
843 struct rdma_conn_param conn_param;
844 struct ib_qp_init_attr qp_attr;
845 struct ib_device_attr devattr;
846 int uninitialized_var(dma_mr_acc);
847 int need_dma_mr;
848 int ret;
849 int i;
851 listen_rdma = container_of(xprt, struct svcxprt_rdma, sc_xprt);
852 clear_bit(XPT_CONN, &xprt->xpt_flags);
853 /* Get the next entry off the accept list */
854 spin_lock_bh(&listen_rdma->sc_lock);
855 if (!list_empty(&listen_rdma->sc_accept_q)) {
856 newxprt = list_entry(listen_rdma->sc_accept_q.next,
857 struct svcxprt_rdma, sc_accept_q);
858 list_del_init(&newxprt->sc_accept_q);
860 if (!list_empty(&listen_rdma->sc_accept_q))
861 set_bit(XPT_CONN, &listen_rdma->sc_xprt.xpt_flags);
862 spin_unlock_bh(&listen_rdma->sc_lock);
863 if (!newxprt)
864 return NULL;
866 dprintk("svcrdma: newxprt from accept queue = %p, cm_id=%p\n",
867 newxprt, newxprt->sc_cm_id);
869 ret = ib_query_device(newxprt->sc_cm_id->device, &devattr);
870 if (ret) {
871 dprintk("svcrdma: could not query device attributes on "
872 "device %p, rc=%d\n", newxprt->sc_cm_id->device, ret);
873 goto errout;
876 /* Qualify the transport resource defaults with the
877 * capabilities of this particular device */
878 newxprt->sc_max_sge = min((size_t)devattr.max_sge,
879 (size_t)RPCSVC_MAXPAGES);
880 newxprt->sc_max_requests = min((size_t)devattr.max_qp_wr,
881 (size_t)svcrdma_max_requests);
882 newxprt->sc_sq_depth = RPCRDMA_SQ_DEPTH_MULT * newxprt->sc_max_requests;
885 * Limit ORD based on client limit, local device limit, and
886 * configured svcrdma limit.
888 newxprt->sc_ord = min_t(size_t, devattr.max_qp_rd_atom, newxprt->sc_ord);
889 newxprt->sc_ord = min_t(size_t, svcrdma_ord, newxprt->sc_ord);
891 newxprt->sc_pd = ib_alloc_pd(newxprt->sc_cm_id->device);
892 if (IS_ERR(newxprt->sc_pd)) {
893 dprintk("svcrdma: error creating PD for connect request\n");
894 goto errout;
896 newxprt->sc_sq_cq = ib_create_cq(newxprt->sc_cm_id->device,
897 sq_comp_handler,
898 cq_event_handler,
899 newxprt,
900 newxprt->sc_sq_depth,
902 if (IS_ERR(newxprt->sc_sq_cq)) {
903 dprintk("svcrdma: error creating SQ CQ for connect request\n");
904 goto errout;
906 newxprt->sc_rq_cq = ib_create_cq(newxprt->sc_cm_id->device,
907 rq_comp_handler,
908 cq_event_handler,
909 newxprt,
910 newxprt->sc_max_requests,
912 if (IS_ERR(newxprt->sc_rq_cq)) {
913 dprintk("svcrdma: error creating RQ CQ for connect request\n");
914 goto errout;
917 memset(&qp_attr, 0, sizeof qp_attr);
918 qp_attr.event_handler = qp_event_handler;
919 qp_attr.qp_context = &newxprt->sc_xprt;
920 qp_attr.cap.max_send_wr = newxprt->sc_sq_depth;
921 qp_attr.cap.max_recv_wr = newxprt->sc_max_requests;
922 qp_attr.cap.max_send_sge = newxprt->sc_max_sge;
923 qp_attr.cap.max_recv_sge = newxprt->sc_max_sge;
924 qp_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
925 qp_attr.qp_type = IB_QPT_RC;
926 qp_attr.send_cq = newxprt->sc_sq_cq;
927 qp_attr.recv_cq = newxprt->sc_rq_cq;
928 dprintk("svcrdma: newxprt->sc_cm_id=%p, newxprt->sc_pd=%p\n"
929 " cm_id->device=%p, sc_pd->device=%p\n"
930 " cap.max_send_wr = %d\n"
931 " cap.max_recv_wr = %d\n"
932 " cap.max_send_sge = %d\n"
933 " cap.max_recv_sge = %d\n",
934 newxprt->sc_cm_id, newxprt->sc_pd,
935 newxprt->sc_cm_id->device, newxprt->sc_pd->device,
936 qp_attr.cap.max_send_wr,
937 qp_attr.cap.max_recv_wr,
938 qp_attr.cap.max_send_sge,
939 qp_attr.cap.max_recv_sge);
941 ret = rdma_create_qp(newxprt->sc_cm_id, newxprt->sc_pd, &qp_attr);
942 if (ret) {
944 * XXX: This is a hack. We need a xx_request_qp interface
945 * that will adjust the qp_attr's with a best-effort
946 * number
948 qp_attr.cap.max_send_sge -= 2;
949 qp_attr.cap.max_recv_sge -= 2;
950 ret = rdma_create_qp(newxprt->sc_cm_id, newxprt->sc_pd,
951 &qp_attr);
952 if (ret) {
953 dprintk("svcrdma: failed to create QP, ret=%d\n", ret);
954 goto errout;
956 newxprt->sc_max_sge = qp_attr.cap.max_send_sge;
957 newxprt->sc_max_sge = qp_attr.cap.max_recv_sge;
958 newxprt->sc_sq_depth = qp_attr.cap.max_send_wr;
959 newxprt->sc_max_requests = qp_attr.cap.max_recv_wr;
961 newxprt->sc_qp = newxprt->sc_cm_id->qp;
964 * Use the most secure set of MR resources based on the
965 * transport type and available memory management features in
966 * the device. Here's the table implemented below:
968 * Fast Global DMA Remote WR
969 * Reg LKEY MR Access
970 * Sup'd Sup'd Needed Needed
972 * IWARP N N Y Y
973 * N Y Y Y
974 * Y N Y N
975 * Y Y N -
977 * IB N N Y N
978 * N Y N -
979 * Y N Y N
980 * Y Y N -
982 * NB: iWARP requires remote write access for the data sink
983 * of an RDMA_READ. IB does not.
985 if (devattr.device_cap_flags & IB_DEVICE_MEM_MGT_EXTENSIONS) {
986 newxprt->sc_frmr_pg_list_len =
987 devattr.max_fast_reg_page_list_len;
988 newxprt->sc_dev_caps |= SVCRDMA_DEVCAP_FAST_REG;
992 * Determine if a DMA MR is required and if so, what privs are required
994 switch (rdma_node_get_transport(newxprt->sc_cm_id->device->node_type)) {
995 case RDMA_TRANSPORT_IWARP:
996 newxprt->sc_dev_caps |= SVCRDMA_DEVCAP_READ_W_INV;
997 if (!(newxprt->sc_dev_caps & SVCRDMA_DEVCAP_FAST_REG)) {
998 need_dma_mr = 1;
999 dma_mr_acc =
1000 (IB_ACCESS_LOCAL_WRITE |
1001 IB_ACCESS_REMOTE_WRITE);
1002 } else if (!(devattr.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY)) {
1003 need_dma_mr = 1;
1004 dma_mr_acc = IB_ACCESS_LOCAL_WRITE;
1005 } else
1006 need_dma_mr = 0;
1007 break;
1008 case RDMA_TRANSPORT_IB:
1009 if (!(devattr.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY)) {
1010 need_dma_mr = 1;
1011 dma_mr_acc = IB_ACCESS_LOCAL_WRITE;
1012 } else
1013 need_dma_mr = 0;
1014 break;
1015 default:
1016 goto errout;
1019 /* Create the DMA MR if needed, otherwise, use the DMA LKEY */
1020 if (need_dma_mr) {
1021 /* Register all of physical memory */
1022 newxprt->sc_phys_mr =
1023 ib_get_dma_mr(newxprt->sc_pd, dma_mr_acc);
1024 if (IS_ERR(newxprt->sc_phys_mr)) {
1025 dprintk("svcrdma: Failed to create DMA MR ret=%d\n",
1026 ret);
1027 goto errout;
1029 newxprt->sc_dma_lkey = newxprt->sc_phys_mr->lkey;
1030 } else
1031 newxprt->sc_dma_lkey =
1032 newxprt->sc_cm_id->device->local_dma_lkey;
1034 /* Post receive buffers */
1035 for (i = 0; i < newxprt->sc_max_requests; i++) {
1036 ret = svc_rdma_post_recv(newxprt);
1037 if (ret) {
1038 dprintk("svcrdma: failure posting receive buffers\n");
1039 goto errout;
1043 /* Swap out the handler */
1044 newxprt->sc_cm_id->event_handler = rdma_cma_handler;
1047 * Arm the CQs for the SQ and RQ before accepting so we can't
1048 * miss the first message
1050 ib_req_notify_cq(newxprt->sc_sq_cq, IB_CQ_NEXT_COMP);
1051 ib_req_notify_cq(newxprt->sc_rq_cq, IB_CQ_NEXT_COMP);
1053 /* Accept Connection */
1054 set_bit(RDMAXPRT_CONN_PENDING, &newxprt->sc_flags);
1055 memset(&conn_param, 0, sizeof conn_param);
1056 conn_param.responder_resources = 0;
1057 conn_param.initiator_depth = newxprt->sc_ord;
1058 ret = rdma_accept(newxprt->sc_cm_id, &conn_param);
1059 if (ret) {
1060 dprintk("svcrdma: failed to accept new connection, ret=%d\n",
1061 ret);
1062 goto errout;
1065 dprintk("svcrdma: new connection %p accepted with the following "
1066 "attributes:\n"
1067 " local_ip : %pI4\n"
1068 " local_port : %d\n"
1069 " remote_ip : %pI4\n"
1070 " remote_port : %d\n"
1071 " max_sge : %d\n"
1072 " sq_depth : %d\n"
1073 " max_requests : %d\n"
1074 " ord : %d\n",
1075 newxprt,
1076 &((struct sockaddr_in *)&newxprt->sc_cm_id->
1077 route.addr.src_addr)->sin_addr.s_addr,
1078 ntohs(((struct sockaddr_in *)&newxprt->sc_cm_id->
1079 route.addr.src_addr)->sin_port),
1080 &((struct sockaddr_in *)&newxprt->sc_cm_id->
1081 route.addr.dst_addr)->sin_addr.s_addr,
1082 ntohs(((struct sockaddr_in *)&newxprt->sc_cm_id->
1083 route.addr.dst_addr)->sin_port),
1084 newxprt->sc_max_sge,
1085 newxprt->sc_sq_depth,
1086 newxprt->sc_max_requests,
1087 newxprt->sc_ord);
1089 return &newxprt->sc_xprt;
1091 errout:
1092 dprintk("svcrdma: failure accepting new connection rc=%d.\n", ret);
1093 /* Take a reference in case the DTO handler runs */
1094 svc_xprt_get(&newxprt->sc_xprt);
1095 if (newxprt->sc_qp && !IS_ERR(newxprt->sc_qp))
1096 ib_destroy_qp(newxprt->sc_qp);
1097 rdma_destroy_id(newxprt->sc_cm_id);
1098 /* This call to put will destroy the transport */
1099 svc_xprt_put(&newxprt->sc_xprt);
1100 return NULL;
1103 static void svc_rdma_release_rqst(struct svc_rqst *rqstp)
1108 * When connected, an svc_xprt has at least two references:
1110 * - A reference held by the cm_id between the ESTABLISHED and
1111 * DISCONNECTED events. If the remote peer disconnected first, this
1112 * reference could be gone.
1114 * - A reference held by the svc_recv code that called this function
1115 * as part of close processing.
1117 * At a minimum one references should still be held.
1119 static void svc_rdma_detach(struct svc_xprt *xprt)
1121 struct svcxprt_rdma *rdma =
1122 container_of(xprt, struct svcxprt_rdma, sc_xprt);
1123 dprintk("svc: svc_rdma_detach(%p)\n", xprt);
1125 /* Disconnect and flush posted WQE */
1126 rdma_disconnect(rdma->sc_cm_id);
1129 static void __svc_rdma_free(struct work_struct *work)
1131 struct svcxprt_rdma *rdma =
1132 container_of(work, struct svcxprt_rdma, sc_work);
1133 dprintk("svcrdma: svc_rdma_free(%p)\n", rdma);
1135 /* We should only be called from kref_put */
1136 BUG_ON(atomic_read(&rdma->sc_xprt.xpt_ref.refcount) != 0);
1139 * Destroy queued, but not processed read completions. Note
1140 * that this cleanup has to be done before destroying the
1141 * cm_id because the device ptr is needed to unmap the dma in
1142 * svc_rdma_put_context.
1144 while (!list_empty(&rdma->sc_read_complete_q)) {
1145 struct svc_rdma_op_ctxt *ctxt;
1146 ctxt = list_entry(rdma->sc_read_complete_q.next,
1147 struct svc_rdma_op_ctxt,
1148 dto_q);
1149 list_del_init(&ctxt->dto_q);
1150 svc_rdma_put_context(ctxt, 1);
1153 /* Destroy queued, but not processed recv completions */
1154 while (!list_empty(&rdma->sc_rq_dto_q)) {
1155 struct svc_rdma_op_ctxt *ctxt;
1156 ctxt = list_entry(rdma->sc_rq_dto_q.next,
1157 struct svc_rdma_op_ctxt,
1158 dto_q);
1159 list_del_init(&ctxt->dto_q);
1160 svc_rdma_put_context(ctxt, 1);
1163 /* Warn if we leaked a resource or under-referenced */
1164 WARN_ON(atomic_read(&rdma->sc_ctxt_used) != 0);
1165 WARN_ON(atomic_read(&rdma->sc_dma_used) != 0);
1167 /* De-allocate fastreg mr */
1168 rdma_dealloc_frmr_q(rdma);
1170 /* Destroy the QP if present (not a listener) */
1171 if (rdma->sc_qp && !IS_ERR(rdma->sc_qp))
1172 ib_destroy_qp(rdma->sc_qp);
1174 if (rdma->sc_sq_cq && !IS_ERR(rdma->sc_sq_cq))
1175 ib_destroy_cq(rdma->sc_sq_cq);
1177 if (rdma->sc_rq_cq && !IS_ERR(rdma->sc_rq_cq))
1178 ib_destroy_cq(rdma->sc_rq_cq);
1180 if (rdma->sc_phys_mr && !IS_ERR(rdma->sc_phys_mr))
1181 ib_dereg_mr(rdma->sc_phys_mr);
1183 if (rdma->sc_pd && !IS_ERR(rdma->sc_pd))
1184 ib_dealloc_pd(rdma->sc_pd);
1186 /* Destroy the CM ID */
1187 rdma_destroy_id(rdma->sc_cm_id);
1189 kfree(rdma);
1192 static void svc_rdma_free(struct svc_xprt *xprt)
1194 struct svcxprt_rdma *rdma =
1195 container_of(xprt, struct svcxprt_rdma, sc_xprt);
1196 INIT_WORK(&rdma->sc_work, __svc_rdma_free);
1197 queue_work(svc_rdma_wq, &rdma->sc_work);
1200 static int svc_rdma_has_wspace(struct svc_xprt *xprt)
1202 struct svcxprt_rdma *rdma =
1203 container_of(xprt, struct svcxprt_rdma, sc_xprt);
1206 * If there are fewer SQ WR available than required to send a
1207 * simple response, return false.
1209 if ((rdma->sc_sq_depth - atomic_read(&rdma->sc_sq_count) < 3))
1210 return 0;
1213 * ...or there are already waiters on the SQ,
1214 * return false.
1216 if (waitqueue_active(&rdma->sc_send_wait))
1217 return 0;
1219 /* Otherwise return true. */
1220 return 1;
1224 * Attempt to register the kvec representing the RPC memory with the
1225 * device.
1227 * Returns:
1228 * NULL : The device does not support fastreg or there were no more
1229 * fastreg mr.
1230 * frmr : The kvec register request was successfully posted.
1231 * <0 : An error was encountered attempting to register the kvec.
1233 int svc_rdma_fastreg(struct svcxprt_rdma *xprt,
1234 struct svc_rdma_fastreg_mr *frmr)
1236 struct ib_send_wr fastreg_wr;
1237 u8 key;
1239 /* Bump the key */
1240 key = (u8)(frmr->mr->lkey & 0x000000FF);
1241 ib_update_fast_reg_key(frmr->mr, ++key);
1243 /* Prepare FASTREG WR */
1244 memset(&fastreg_wr, 0, sizeof fastreg_wr);
1245 fastreg_wr.opcode = IB_WR_FAST_REG_MR;
1246 fastreg_wr.send_flags = IB_SEND_SIGNALED;
1247 fastreg_wr.wr.fast_reg.iova_start = (unsigned long)frmr->kva;
1248 fastreg_wr.wr.fast_reg.page_list = frmr->page_list;
1249 fastreg_wr.wr.fast_reg.page_list_len = frmr->page_list_len;
1250 fastreg_wr.wr.fast_reg.page_shift = PAGE_SHIFT;
1251 fastreg_wr.wr.fast_reg.length = frmr->map_len;
1252 fastreg_wr.wr.fast_reg.access_flags = frmr->access_flags;
1253 fastreg_wr.wr.fast_reg.rkey = frmr->mr->lkey;
1254 return svc_rdma_send(xprt, &fastreg_wr);
1257 int svc_rdma_send(struct svcxprt_rdma *xprt, struct ib_send_wr *wr)
1259 struct ib_send_wr *bad_wr, *n_wr;
1260 int wr_count;
1261 int i;
1262 int ret;
1264 if (test_bit(XPT_CLOSE, &xprt->sc_xprt.xpt_flags))
1265 return -ENOTCONN;
1267 BUG_ON(wr->send_flags != IB_SEND_SIGNALED);
1268 wr_count = 1;
1269 for (n_wr = wr->next; n_wr; n_wr = n_wr->next)
1270 wr_count++;
1272 /* If the SQ is full, wait until an SQ entry is available */
1273 while (1) {
1274 spin_lock_bh(&xprt->sc_lock);
1275 if (xprt->sc_sq_depth < atomic_read(&xprt->sc_sq_count) + wr_count) {
1276 spin_unlock_bh(&xprt->sc_lock);
1277 atomic_inc(&rdma_stat_sq_starve);
1279 /* See if we can opportunistically reap SQ WR to make room */
1280 sq_cq_reap(xprt);
1282 /* Wait until SQ WR available if SQ still full */
1283 wait_event(xprt->sc_send_wait,
1284 atomic_read(&xprt->sc_sq_count) <
1285 xprt->sc_sq_depth);
1286 if (test_bit(XPT_CLOSE, &xprt->sc_xprt.xpt_flags))
1287 return -ENOTCONN;
1288 continue;
1290 /* Take a transport ref for each WR posted */
1291 for (i = 0; i < wr_count; i++)
1292 svc_xprt_get(&xprt->sc_xprt);
1294 /* Bump used SQ WR count and post */
1295 atomic_add(wr_count, &xprt->sc_sq_count);
1296 ret = ib_post_send(xprt->sc_qp, wr, &bad_wr);
1297 if (ret) {
1298 set_bit(XPT_CLOSE, &xprt->sc_xprt.xpt_flags);
1299 atomic_sub(wr_count, &xprt->sc_sq_count);
1300 for (i = 0; i < wr_count; i ++)
1301 svc_xprt_put(&xprt->sc_xprt);
1302 dprintk("svcrdma: failed to post SQ WR rc=%d, "
1303 "sc_sq_count=%d, sc_sq_depth=%d\n",
1304 ret, atomic_read(&xprt->sc_sq_count),
1305 xprt->sc_sq_depth);
1307 spin_unlock_bh(&xprt->sc_lock);
1308 if (ret)
1309 wake_up(&xprt->sc_send_wait);
1310 break;
1312 return ret;
1315 void svc_rdma_send_error(struct svcxprt_rdma *xprt, struct rpcrdma_msg *rmsgp,
1316 enum rpcrdma_errcode err)
1318 struct ib_send_wr err_wr;
1319 struct page *p;
1320 struct svc_rdma_op_ctxt *ctxt;
1321 u32 *va;
1322 int length;
1323 int ret;
1325 p = svc_rdma_get_page();
1326 va = page_address(p);
1328 /* XDR encode error */
1329 length = svc_rdma_xdr_encode_error(xprt, rmsgp, err, va);
1331 ctxt = svc_rdma_get_context(xprt);
1332 ctxt->direction = DMA_FROM_DEVICE;
1333 ctxt->count = 1;
1334 ctxt->pages[0] = p;
1336 /* Prepare SGE for local address */
1337 ctxt->sge[0].addr = ib_dma_map_page(xprt->sc_cm_id->device,
1338 p, 0, length, DMA_FROM_DEVICE);
1339 if (ib_dma_mapping_error(xprt->sc_cm_id->device, ctxt->sge[0].addr)) {
1340 put_page(p);
1341 svc_rdma_put_context(ctxt, 1);
1342 return;
1344 atomic_inc(&xprt->sc_dma_used);
1345 ctxt->sge[0].lkey = xprt->sc_dma_lkey;
1346 ctxt->sge[0].length = length;
1348 /* Prepare SEND WR */
1349 memset(&err_wr, 0, sizeof err_wr);
1350 ctxt->wr_op = IB_WR_SEND;
1351 err_wr.wr_id = (unsigned long)ctxt;
1352 err_wr.sg_list = ctxt->sge;
1353 err_wr.num_sge = 1;
1354 err_wr.opcode = IB_WR_SEND;
1355 err_wr.send_flags = IB_SEND_SIGNALED;
1357 /* Post It */
1358 ret = svc_rdma_send(xprt, &err_wr);
1359 if (ret) {
1360 dprintk("svcrdma: Error %d posting send for protocol error\n",
1361 ret);
1362 svc_rdma_unmap_dma(ctxt);
1363 svc_rdma_put_context(ctxt, 1);