compat: Fix RT signal mask corruption via sigprocmask
[zen-stable.git] / tools / perf / builtin-sched.c
blobfb8b5f83b4a0ae77736fbffe6a6736d56813eed6
1 #include "builtin.h"
2 #include "perf.h"
4 #include "util/util.h"
5 #include "util/evlist.h"
6 #include "util/cache.h"
7 #include "util/evsel.h"
8 #include "util/symbol.h"
9 #include "util/thread.h"
10 #include "util/header.h"
11 #include "util/session.h"
12 #include "util/tool.h"
14 #include "util/parse-options.h"
15 #include "util/trace-event.h"
17 #include "util/debug.h"
19 #include <sys/prctl.h>
21 #include <semaphore.h>
22 #include <pthread.h>
23 #include <math.h>
25 static const char *input_name;
27 static char default_sort_order[] = "avg, max, switch, runtime";
28 static const char *sort_order = default_sort_order;
30 static int profile_cpu = -1;
32 #define PR_SET_NAME 15 /* Set process name */
33 #define MAX_CPUS 4096
35 static u64 run_measurement_overhead;
36 static u64 sleep_measurement_overhead;
38 #define COMM_LEN 20
39 #define SYM_LEN 129
41 #define MAX_PID 65536
43 static unsigned long nr_tasks;
45 struct sched_atom;
47 struct task_desc {
48 unsigned long nr;
49 unsigned long pid;
50 char comm[COMM_LEN];
52 unsigned long nr_events;
53 unsigned long curr_event;
54 struct sched_atom **atoms;
56 pthread_t thread;
57 sem_t sleep_sem;
59 sem_t ready_for_work;
60 sem_t work_done_sem;
62 u64 cpu_usage;
65 enum sched_event_type {
66 SCHED_EVENT_RUN,
67 SCHED_EVENT_SLEEP,
68 SCHED_EVENT_WAKEUP,
69 SCHED_EVENT_MIGRATION,
72 struct sched_atom {
73 enum sched_event_type type;
74 int specific_wait;
75 u64 timestamp;
76 u64 duration;
77 unsigned long nr;
78 sem_t *wait_sem;
79 struct task_desc *wakee;
82 static struct task_desc *pid_to_task[MAX_PID];
84 static struct task_desc **tasks;
86 static pthread_mutex_t start_work_mutex = PTHREAD_MUTEX_INITIALIZER;
87 static u64 start_time;
89 static pthread_mutex_t work_done_wait_mutex = PTHREAD_MUTEX_INITIALIZER;
91 static unsigned long nr_run_events;
92 static unsigned long nr_sleep_events;
93 static unsigned long nr_wakeup_events;
95 static unsigned long nr_sleep_corrections;
96 static unsigned long nr_run_events_optimized;
98 static unsigned long targetless_wakeups;
99 static unsigned long multitarget_wakeups;
101 static u64 cpu_usage;
102 static u64 runavg_cpu_usage;
103 static u64 parent_cpu_usage;
104 static u64 runavg_parent_cpu_usage;
106 static unsigned long nr_runs;
107 static u64 sum_runtime;
108 static u64 sum_fluct;
109 static u64 run_avg;
111 static unsigned int replay_repeat = 10;
112 static unsigned long nr_timestamps;
113 static unsigned long nr_unordered_timestamps;
114 static unsigned long nr_state_machine_bugs;
115 static unsigned long nr_context_switch_bugs;
116 static unsigned long nr_events;
117 static unsigned long nr_lost_chunks;
118 static unsigned long nr_lost_events;
120 #define TASK_STATE_TO_CHAR_STR "RSDTtZX"
122 enum thread_state {
123 THREAD_SLEEPING = 0,
124 THREAD_WAIT_CPU,
125 THREAD_SCHED_IN,
126 THREAD_IGNORE
129 struct work_atom {
130 struct list_head list;
131 enum thread_state state;
132 u64 sched_out_time;
133 u64 wake_up_time;
134 u64 sched_in_time;
135 u64 runtime;
138 struct work_atoms {
139 struct list_head work_list;
140 struct thread *thread;
141 struct rb_node node;
142 u64 max_lat;
143 u64 max_lat_at;
144 u64 total_lat;
145 u64 nb_atoms;
146 u64 total_runtime;
149 typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *);
151 static struct rb_root atom_root, sorted_atom_root;
153 static u64 all_runtime;
154 static u64 all_count;
157 static u64 get_nsecs(void)
159 struct timespec ts;
161 clock_gettime(CLOCK_MONOTONIC, &ts);
163 return ts.tv_sec * 1000000000ULL + ts.tv_nsec;
166 static void burn_nsecs(u64 nsecs)
168 u64 T0 = get_nsecs(), T1;
170 do {
171 T1 = get_nsecs();
172 } while (T1 + run_measurement_overhead < T0 + nsecs);
175 static void sleep_nsecs(u64 nsecs)
177 struct timespec ts;
179 ts.tv_nsec = nsecs % 999999999;
180 ts.tv_sec = nsecs / 999999999;
182 nanosleep(&ts, NULL);
185 static void calibrate_run_measurement_overhead(void)
187 u64 T0, T1, delta, min_delta = 1000000000ULL;
188 int i;
190 for (i = 0; i < 10; i++) {
191 T0 = get_nsecs();
192 burn_nsecs(0);
193 T1 = get_nsecs();
194 delta = T1-T0;
195 min_delta = min(min_delta, delta);
197 run_measurement_overhead = min_delta;
199 printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta);
202 static void calibrate_sleep_measurement_overhead(void)
204 u64 T0, T1, delta, min_delta = 1000000000ULL;
205 int i;
207 for (i = 0; i < 10; i++) {
208 T0 = get_nsecs();
209 sleep_nsecs(10000);
210 T1 = get_nsecs();
211 delta = T1-T0;
212 min_delta = min(min_delta, delta);
214 min_delta -= 10000;
215 sleep_measurement_overhead = min_delta;
217 printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta);
220 static struct sched_atom *
221 get_new_event(struct task_desc *task, u64 timestamp)
223 struct sched_atom *event = zalloc(sizeof(*event));
224 unsigned long idx = task->nr_events;
225 size_t size;
227 event->timestamp = timestamp;
228 event->nr = idx;
230 task->nr_events++;
231 size = sizeof(struct sched_atom *) * task->nr_events;
232 task->atoms = realloc(task->atoms, size);
233 BUG_ON(!task->atoms);
235 task->atoms[idx] = event;
237 return event;
240 static struct sched_atom *last_event(struct task_desc *task)
242 if (!task->nr_events)
243 return NULL;
245 return task->atoms[task->nr_events - 1];
248 static void
249 add_sched_event_run(struct task_desc *task, u64 timestamp, u64 duration)
251 struct sched_atom *event, *curr_event = last_event(task);
254 * optimize an existing RUN event by merging this one
255 * to it:
257 if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
258 nr_run_events_optimized++;
259 curr_event->duration += duration;
260 return;
263 event = get_new_event(task, timestamp);
265 event->type = SCHED_EVENT_RUN;
266 event->duration = duration;
268 nr_run_events++;
271 static void
272 add_sched_event_wakeup(struct task_desc *task, u64 timestamp,
273 struct task_desc *wakee)
275 struct sched_atom *event, *wakee_event;
277 event = get_new_event(task, timestamp);
278 event->type = SCHED_EVENT_WAKEUP;
279 event->wakee = wakee;
281 wakee_event = last_event(wakee);
282 if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
283 targetless_wakeups++;
284 return;
286 if (wakee_event->wait_sem) {
287 multitarget_wakeups++;
288 return;
291 wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem));
292 sem_init(wakee_event->wait_sem, 0, 0);
293 wakee_event->specific_wait = 1;
294 event->wait_sem = wakee_event->wait_sem;
296 nr_wakeup_events++;
299 static void
300 add_sched_event_sleep(struct task_desc *task, u64 timestamp,
301 u64 task_state __used)
303 struct sched_atom *event = get_new_event(task, timestamp);
305 event->type = SCHED_EVENT_SLEEP;
307 nr_sleep_events++;
310 static struct task_desc *register_pid(unsigned long pid, const char *comm)
312 struct task_desc *task;
314 BUG_ON(pid >= MAX_PID);
316 task = pid_to_task[pid];
318 if (task)
319 return task;
321 task = zalloc(sizeof(*task));
322 task->pid = pid;
323 task->nr = nr_tasks;
324 strcpy(task->comm, comm);
326 * every task starts in sleeping state - this gets ignored
327 * if there's no wakeup pointing to this sleep state:
329 add_sched_event_sleep(task, 0, 0);
331 pid_to_task[pid] = task;
332 nr_tasks++;
333 tasks = realloc(tasks, nr_tasks*sizeof(struct task_task *));
334 BUG_ON(!tasks);
335 tasks[task->nr] = task;
337 if (verbose)
338 printf("registered task #%ld, PID %ld (%s)\n", nr_tasks, pid, comm);
340 return task;
344 static void print_task_traces(void)
346 struct task_desc *task;
347 unsigned long i;
349 for (i = 0; i < nr_tasks; i++) {
350 task = tasks[i];
351 printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
352 task->nr, task->comm, task->pid, task->nr_events);
356 static void add_cross_task_wakeups(void)
358 struct task_desc *task1, *task2;
359 unsigned long i, j;
361 for (i = 0; i < nr_tasks; i++) {
362 task1 = tasks[i];
363 j = i + 1;
364 if (j == nr_tasks)
365 j = 0;
366 task2 = tasks[j];
367 add_sched_event_wakeup(task1, 0, task2);
371 static void
372 process_sched_event(struct task_desc *this_task __used, struct sched_atom *atom)
374 int ret = 0;
376 switch (atom->type) {
377 case SCHED_EVENT_RUN:
378 burn_nsecs(atom->duration);
379 break;
380 case SCHED_EVENT_SLEEP:
381 if (atom->wait_sem)
382 ret = sem_wait(atom->wait_sem);
383 BUG_ON(ret);
384 break;
385 case SCHED_EVENT_WAKEUP:
386 if (atom->wait_sem)
387 ret = sem_post(atom->wait_sem);
388 BUG_ON(ret);
389 break;
390 case SCHED_EVENT_MIGRATION:
391 break;
392 default:
393 BUG_ON(1);
397 static u64 get_cpu_usage_nsec_parent(void)
399 struct rusage ru;
400 u64 sum;
401 int err;
403 err = getrusage(RUSAGE_SELF, &ru);
404 BUG_ON(err);
406 sum = ru.ru_utime.tv_sec*1e9 + ru.ru_utime.tv_usec*1e3;
407 sum += ru.ru_stime.tv_sec*1e9 + ru.ru_stime.tv_usec*1e3;
409 return sum;
412 static int self_open_counters(void)
414 struct perf_event_attr attr;
415 int fd;
417 memset(&attr, 0, sizeof(attr));
419 attr.type = PERF_TYPE_SOFTWARE;
420 attr.config = PERF_COUNT_SW_TASK_CLOCK;
422 fd = sys_perf_event_open(&attr, 0, -1, -1, 0);
424 if (fd < 0)
425 die("Error: sys_perf_event_open() syscall returned"
426 "with %d (%s)\n", fd, strerror(errno));
427 return fd;
430 static u64 get_cpu_usage_nsec_self(int fd)
432 u64 runtime;
433 int ret;
435 ret = read(fd, &runtime, sizeof(runtime));
436 BUG_ON(ret != sizeof(runtime));
438 return runtime;
441 static void *thread_func(void *ctx)
443 struct task_desc *this_task = ctx;
444 u64 cpu_usage_0, cpu_usage_1;
445 unsigned long i, ret;
446 char comm2[22];
447 int fd;
449 sprintf(comm2, ":%s", this_task->comm);
450 prctl(PR_SET_NAME, comm2);
451 fd = self_open_counters();
453 again:
454 ret = sem_post(&this_task->ready_for_work);
455 BUG_ON(ret);
456 ret = pthread_mutex_lock(&start_work_mutex);
457 BUG_ON(ret);
458 ret = pthread_mutex_unlock(&start_work_mutex);
459 BUG_ON(ret);
461 cpu_usage_0 = get_cpu_usage_nsec_self(fd);
463 for (i = 0; i < this_task->nr_events; i++) {
464 this_task->curr_event = i;
465 process_sched_event(this_task, this_task->atoms[i]);
468 cpu_usage_1 = get_cpu_usage_nsec_self(fd);
469 this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
470 ret = sem_post(&this_task->work_done_sem);
471 BUG_ON(ret);
473 ret = pthread_mutex_lock(&work_done_wait_mutex);
474 BUG_ON(ret);
475 ret = pthread_mutex_unlock(&work_done_wait_mutex);
476 BUG_ON(ret);
478 goto again;
481 static void create_tasks(void)
483 struct task_desc *task;
484 pthread_attr_t attr;
485 unsigned long i;
486 int err;
488 err = pthread_attr_init(&attr);
489 BUG_ON(err);
490 err = pthread_attr_setstacksize(&attr,
491 (size_t) max(16 * 1024, PTHREAD_STACK_MIN));
492 BUG_ON(err);
493 err = pthread_mutex_lock(&start_work_mutex);
494 BUG_ON(err);
495 err = pthread_mutex_lock(&work_done_wait_mutex);
496 BUG_ON(err);
497 for (i = 0; i < nr_tasks; i++) {
498 task = tasks[i];
499 sem_init(&task->sleep_sem, 0, 0);
500 sem_init(&task->ready_for_work, 0, 0);
501 sem_init(&task->work_done_sem, 0, 0);
502 task->curr_event = 0;
503 err = pthread_create(&task->thread, &attr, thread_func, task);
504 BUG_ON(err);
508 static void wait_for_tasks(void)
510 u64 cpu_usage_0, cpu_usage_1;
511 struct task_desc *task;
512 unsigned long i, ret;
514 start_time = get_nsecs();
515 cpu_usage = 0;
516 pthread_mutex_unlock(&work_done_wait_mutex);
518 for (i = 0; i < nr_tasks; i++) {
519 task = tasks[i];
520 ret = sem_wait(&task->ready_for_work);
521 BUG_ON(ret);
522 sem_init(&task->ready_for_work, 0, 0);
524 ret = pthread_mutex_lock(&work_done_wait_mutex);
525 BUG_ON(ret);
527 cpu_usage_0 = get_cpu_usage_nsec_parent();
529 pthread_mutex_unlock(&start_work_mutex);
531 for (i = 0; i < nr_tasks; i++) {
532 task = tasks[i];
533 ret = sem_wait(&task->work_done_sem);
534 BUG_ON(ret);
535 sem_init(&task->work_done_sem, 0, 0);
536 cpu_usage += task->cpu_usage;
537 task->cpu_usage = 0;
540 cpu_usage_1 = get_cpu_usage_nsec_parent();
541 if (!runavg_cpu_usage)
542 runavg_cpu_usage = cpu_usage;
543 runavg_cpu_usage = (runavg_cpu_usage*9 + cpu_usage)/10;
545 parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
546 if (!runavg_parent_cpu_usage)
547 runavg_parent_cpu_usage = parent_cpu_usage;
548 runavg_parent_cpu_usage = (runavg_parent_cpu_usage*9 +
549 parent_cpu_usage)/10;
551 ret = pthread_mutex_lock(&start_work_mutex);
552 BUG_ON(ret);
554 for (i = 0; i < nr_tasks; i++) {
555 task = tasks[i];
556 sem_init(&task->sleep_sem, 0, 0);
557 task->curr_event = 0;
561 static void run_one_test(void)
563 u64 T0, T1, delta, avg_delta, fluct;
565 T0 = get_nsecs();
566 wait_for_tasks();
567 T1 = get_nsecs();
569 delta = T1 - T0;
570 sum_runtime += delta;
571 nr_runs++;
573 avg_delta = sum_runtime / nr_runs;
574 if (delta < avg_delta)
575 fluct = avg_delta - delta;
576 else
577 fluct = delta - avg_delta;
578 sum_fluct += fluct;
579 if (!run_avg)
580 run_avg = delta;
581 run_avg = (run_avg*9 + delta)/10;
583 printf("#%-3ld: %0.3f, ",
584 nr_runs, (double)delta/1000000.0);
586 printf("ravg: %0.2f, ",
587 (double)run_avg/1e6);
589 printf("cpu: %0.2f / %0.2f",
590 (double)cpu_usage/1e6, (double)runavg_cpu_usage/1e6);
592 #if 0
594 * rusage statistics done by the parent, these are less
595 * accurate than the sum_exec_runtime based statistics:
597 printf(" [%0.2f / %0.2f]",
598 (double)parent_cpu_usage/1e6,
599 (double)runavg_parent_cpu_usage/1e6);
600 #endif
602 printf("\n");
604 if (nr_sleep_corrections)
605 printf(" (%ld sleep corrections)\n", nr_sleep_corrections);
606 nr_sleep_corrections = 0;
609 static void test_calibrations(void)
611 u64 T0, T1;
613 T0 = get_nsecs();
614 burn_nsecs(1e6);
615 T1 = get_nsecs();
617 printf("the run test took %" PRIu64 " nsecs\n", T1 - T0);
619 T0 = get_nsecs();
620 sleep_nsecs(1e6);
621 T1 = get_nsecs();
623 printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0);
626 #define FILL_FIELD(ptr, field, event, data) \
627 ptr.field = (typeof(ptr.field)) raw_field_value(event, #field, data)
629 #define FILL_ARRAY(ptr, array, event, data) \
630 do { \
631 void *__array = raw_field_ptr(event, #array, data); \
632 memcpy(ptr.array, __array, sizeof(ptr.array)); \
633 } while(0)
635 #define FILL_COMMON_FIELDS(ptr, event, data) \
636 do { \
637 FILL_FIELD(ptr, common_type, event, data); \
638 FILL_FIELD(ptr, common_flags, event, data); \
639 FILL_FIELD(ptr, common_preempt_count, event, data); \
640 FILL_FIELD(ptr, common_pid, event, data); \
641 FILL_FIELD(ptr, common_tgid, event, data); \
642 } while (0)
646 struct trace_switch_event {
647 u32 size;
649 u16 common_type;
650 u8 common_flags;
651 u8 common_preempt_count;
652 u32 common_pid;
653 u32 common_tgid;
655 char prev_comm[16];
656 u32 prev_pid;
657 u32 prev_prio;
658 u64 prev_state;
659 char next_comm[16];
660 u32 next_pid;
661 u32 next_prio;
664 struct trace_runtime_event {
665 u32 size;
667 u16 common_type;
668 u8 common_flags;
669 u8 common_preempt_count;
670 u32 common_pid;
671 u32 common_tgid;
673 char comm[16];
674 u32 pid;
675 u64 runtime;
676 u64 vruntime;
679 struct trace_wakeup_event {
680 u32 size;
682 u16 common_type;
683 u8 common_flags;
684 u8 common_preempt_count;
685 u32 common_pid;
686 u32 common_tgid;
688 char comm[16];
689 u32 pid;
691 u32 prio;
692 u32 success;
693 u32 cpu;
696 struct trace_fork_event {
697 u32 size;
699 u16 common_type;
700 u8 common_flags;
701 u8 common_preempt_count;
702 u32 common_pid;
703 u32 common_tgid;
705 char parent_comm[16];
706 u32 parent_pid;
707 char child_comm[16];
708 u32 child_pid;
711 struct trace_migrate_task_event {
712 u32 size;
714 u16 common_type;
715 u8 common_flags;
716 u8 common_preempt_count;
717 u32 common_pid;
718 u32 common_tgid;
720 char comm[16];
721 u32 pid;
723 u32 prio;
724 u32 cpu;
727 struct trace_sched_handler {
728 void (*switch_event)(struct trace_switch_event *,
729 struct machine *,
730 struct event *,
731 int cpu,
732 u64 timestamp,
733 struct thread *thread);
735 void (*runtime_event)(struct trace_runtime_event *,
736 struct machine *,
737 struct event *,
738 int cpu,
739 u64 timestamp,
740 struct thread *thread);
742 void (*wakeup_event)(struct trace_wakeup_event *,
743 struct machine *,
744 struct event *,
745 int cpu,
746 u64 timestamp,
747 struct thread *thread);
749 void (*fork_event)(struct trace_fork_event *,
750 struct event *,
751 int cpu,
752 u64 timestamp,
753 struct thread *thread);
755 void (*migrate_task_event)(struct trace_migrate_task_event *,
756 struct machine *machine,
757 struct event *,
758 int cpu,
759 u64 timestamp,
760 struct thread *thread);
764 static void
765 replay_wakeup_event(struct trace_wakeup_event *wakeup_event,
766 struct machine *machine __used,
767 struct event *event,
768 int cpu __used,
769 u64 timestamp __used,
770 struct thread *thread __used)
772 struct task_desc *waker, *wakee;
774 if (verbose) {
775 printf("sched_wakeup event %p\n", event);
777 printf(" ... pid %d woke up %s/%d\n",
778 wakeup_event->common_pid,
779 wakeup_event->comm,
780 wakeup_event->pid);
783 waker = register_pid(wakeup_event->common_pid, "<unknown>");
784 wakee = register_pid(wakeup_event->pid, wakeup_event->comm);
786 add_sched_event_wakeup(waker, timestamp, wakee);
789 static u64 cpu_last_switched[MAX_CPUS];
791 static void
792 replay_switch_event(struct trace_switch_event *switch_event,
793 struct machine *machine __used,
794 struct event *event,
795 int cpu,
796 u64 timestamp,
797 struct thread *thread __used)
799 struct task_desc *prev, __used *next;
800 u64 timestamp0;
801 s64 delta;
803 if (verbose)
804 printf("sched_switch event %p\n", event);
806 if (cpu >= MAX_CPUS || cpu < 0)
807 return;
809 timestamp0 = cpu_last_switched[cpu];
810 if (timestamp0)
811 delta = timestamp - timestamp0;
812 else
813 delta = 0;
815 if (delta < 0)
816 die("hm, delta: %" PRIu64 " < 0 ?\n", delta);
818 if (verbose) {
819 printf(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n",
820 switch_event->prev_comm, switch_event->prev_pid,
821 switch_event->next_comm, switch_event->next_pid,
822 delta);
825 prev = register_pid(switch_event->prev_pid, switch_event->prev_comm);
826 next = register_pid(switch_event->next_pid, switch_event->next_comm);
828 cpu_last_switched[cpu] = timestamp;
830 add_sched_event_run(prev, timestamp, delta);
831 add_sched_event_sleep(prev, timestamp, switch_event->prev_state);
835 static void
836 replay_fork_event(struct trace_fork_event *fork_event,
837 struct event *event,
838 int cpu __used,
839 u64 timestamp __used,
840 struct thread *thread __used)
842 if (verbose) {
843 printf("sched_fork event %p\n", event);
844 printf("... parent: %s/%d\n", fork_event->parent_comm, fork_event->parent_pid);
845 printf("... child: %s/%d\n", fork_event->child_comm, fork_event->child_pid);
847 register_pid(fork_event->parent_pid, fork_event->parent_comm);
848 register_pid(fork_event->child_pid, fork_event->child_comm);
851 static struct trace_sched_handler replay_ops = {
852 .wakeup_event = replay_wakeup_event,
853 .switch_event = replay_switch_event,
854 .fork_event = replay_fork_event,
857 struct sort_dimension {
858 const char *name;
859 sort_fn_t cmp;
860 struct list_head list;
863 static LIST_HEAD(cmp_pid);
865 static int
866 thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r)
868 struct sort_dimension *sort;
869 int ret = 0;
871 BUG_ON(list_empty(list));
873 list_for_each_entry(sort, list, list) {
874 ret = sort->cmp(l, r);
875 if (ret)
876 return ret;
879 return ret;
882 static struct work_atoms *
883 thread_atoms_search(struct rb_root *root, struct thread *thread,
884 struct list_head *sort_list)
886 struct rb_node *node = root->rb_node;
887 struct work_atoms key = { .thread = thread };
889 while (node) {
890 struct work_atoms *atoms;
891 int cmp;
893 atoms = container_of(node, struct work_atoms, node);
895 cmp = thread_lat_cmp(sort_list, &key, atoms);
896 if (cmp > 0)
897 node = node->rb_left;
898 else if (cmp < 0)
899 node = node->rb_right;
900 else {
901 BUG_ON(thread != atoms->thread);
902 return atoms;
905 return NULL;
908 static void
909 __thread_latency_insert(struct rb_root *root, struct work_atoms *data,
910 struct list_head *sort_list)
912 struct rb_node **new = &(root->rb_node), *parent = NULL;
914 while (*new) {
915 struct work_atoms *this;
916 int cmp;
918 this = container_of(*new, struct work_atoms, node);
919 parent = *new;
921 cmp = thread_lat_cmp(sort_list, data, this);
923 if (cmp > 0)
924 new = &((*new)->rb_left);
925 else
926 new = &((*new)->rb_right);
929 rb_link_node(&data->node, parent, new);
930 rb_insert_color(&data->node, root);
933 static void thread_atoms_insert(struct thread *thread)
935 struct work_atoms *atoms = zalloc(sizeof(*atoms));
936 if (!atoms)
937 die("No memory");
939 atoms->thread = thread;
940 INIT_LIST_HEAD(&atoms->work_list);
941 __thread_latency_insert(&atom_root, atoms, &cmp_pid);
944 static void
945 latency_fork_event(struct trace_fork_event *fork_event __used,
946 struct event *event __used,
947 int cpu __used,
948 u64 timestamp __used,
949 struct thread *thread __used)
951 /* should insert the newcomer */
954 __used
955 static char sched_out_state(struct trace_switch_event *switch_event)
957 const char *str = TASK_STATE_TO_CHAR_STR;
959 return str[switch_event->prev_state];
962 static void
963 add_sched_out_event(struct work_atoms *atoms,
964 char run_state,
965 u64 timestamp)
967 struct work_atom *atom = zalloc(sizeof(*atom));
968 if (!atom)
969 die("Non memory");
971 atom->sched_out_time = timestamp;
973 if (run_state == 'R') {
974 atom->state = THREAD_WAIT_CPU;
975 atom->wake_up_time = atom->sched_out_time;
978 list_add_tail(&atom->list, &atoms->work_list);
981 static void
982 add_runtime_event(struct work_atoms *atoms, u64 delta, u64 timestamp __used)
984 struct work_atom *atom;
986 BUG_ON(list_empty(&atoms->work_list));
988 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
990 atom->runtime += delta;
991 atoms->total_runtime += delta;
994 static void
995 add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
997 struct work_atom *atom;
998 u64 delta;
1000 if (list_empty(&atoms->work_list))
1001 return;
1003 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1005 if (atom->state != THREAD_WAIT_CPU)
1006 return;
1008 if (timestamp < atom->wake_up_time) {
1009 atom->state = THREAD_IGNORE;
1010 return;
1013 atom->state = THREAD_SCHED_IN;
1014 atom->sched_in_time = timestamp;
1016 delta = atom->sched_in_time - atom->wake_up_time;
1017 atoms->total_lat += delta;
1018 if (delta > atoms->max_lat) {
1019 atoms->max_lat = delta;
1020 atoms->max_lat_at = timestamp;
1022 atoms->nb_atoms++;
1025 static void
1026 latency_switch_event(struct trace_switch_event *switch_event,
1027 struct machine *machine,
1028 struct event *event __used,
1029 int cpu,
1030 u64 timestamp,
1031 struct thread *thread __used)
1033 struct work_atoms *out_events, *in_events;
1034 struct thread *sched_out, *sched_in;
1035 u64 timestamp0;
1036 s64 delta;
1038 BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1040 timestamp0 = cpu_last_switched[cpu];
1041 cpu_last_switched[cpu] = timestamp;
1042 if (timestamp0)
1043 delta = timestamp - timestamp0;
1044 else
1045 delta = 0;
1047 if (delta < 0)
1048 die("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1051 sched_out = machine__findnew_thread(machine, switch_event->prev_pid);
1052 sched_in = machine__findnew_thread(machine, switch_event->next_pid);
1054 out_events = thread_atoms_search(&atom_root, sched_out, &cmp_pid);
1055 if (!out_events) {
1056 thread_atoms_insert(sched_out);
1057 out_events = thread_atoms_search(&atom_root, sched_out, &cmp_pid);
1058 if (!out_events)
1059 die("out-event: Internal tree error");
1061 add_sched_out_event(out_events, sched_out_state(switch_event), timestamp);
1063 in_events = thread_atoms_search(&atom_root, sched_in, &cmp_pid);
1064 if (!in_events) {
1065 thread_atoms_insert(sched_in);
1066 in_events = thread_atoms_search(&atom_root, sched_in, &cmp_pid);
1067 if (!in_events)
1068 die("in-event: Internal tree error");
1070 * Take came in we have not heard about yet,
1071 * add in an initial atom in runnable state:
1073 add_sched_out_event(in_events, 'R', timestamp);
1075 add_sched_in_event(in_events, timestamp);
1078 static void
1079 latency_runtime_event(struct trace_runtime_event *runtime_event,
1080 struct machine *machine,
1081 struct event *event __used,
1082 int cpu,
1083 u64 timestamp,
1084 struct thread *this_thread __used)
1086 struct thread *thread = machine__findnew_thread(machine, runtime_event->pid);
1087 struct work_atoms *atoms = thread_atoms_search(&atom_root, thread, &cmp_pid);
1089 BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1090 if (!atoms) {
1091 thread_atoms_insert(thread);
1092 atoms = thread_atoms_search(&atom_root, thread, &cmp_pid);
1093 if (!atoms)
1094 die("in-event: Internal tree error");
1095 add_sched_out_event(atoms, 'R', timestamp);
1098 add_runtime_event(atoms, runtime_event->runtime, timestamp);
1101 static void
1102 latency_wakeup_event(struct trace_wakeup_event *wakeup_event,
1103 struct machine *machine,
1104 struct event *__event __used,
1105 int cpu __used,
1106 u64 timestamp,
1107 struct thread *thread __used)
1109 struct work_atoms *atoms;
1110 struct work_atom *atom;
1111 struct thread *wakee;
1113 /* Note for later, it may be interesting to observe the failing cases */
1114 if (!wakeup_event->success)
1115 return;
1117 wakee = machine__findnew_thread(machine, wakeup_event->pid);
1118 atoms = thread_atoms_search(&atom_root, wakee, &cmp_pid);
1119 if (!atoms) {
1120 thread_atoms_insert(wakee);
1121 atoms = thread_atoms_search(&atom_root, wakee, &cmp_pid);
1122 if (!atoms)
1123 die("wakeup-event: Internal tree error");
1124 add_sched_out_event(atoms, 'S', timestamp);
1127 BUG_ON(list_empty(&atoms->work_list));
1129 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1132 * You WILL be missing events if you've recorded only
1133 * one CPU, or are only looking at only one, so don't
1134 * make useless noise.
1136 if (profile_cpu == -1 && atom->state != THREAD_SLEEPING)
1137 nr_state_machine_bugs++;
1139 nr_timestamps++;
1140 if (atom->sched_out_time > timestamp) {
1141 nr_unordered_timestamps++;
1142 return;
1145 atom->state = THREAD_WAIT_CPU;
1146 atom->wake_up_time = timestamp;
1149 static void
1150 latency_migrate_task_event(struct trace_migrate_task_event *migrate_task_event,
1151 struct machine *machine,
1152 struct event *__event __used,
1153 int cpu __used,
1154 u64 timestamp,
1155 struct thread *thread __used)
1157 struct work_atoms *atoms;
1158 struct work_atom *atom;
1159 struct thread *migrant;
1162 * Only need to worry about migration when profiling one CPU.
1164 if (profile_cpu == -1)
1165 return;
1167 migrant = machine__findnew_thread(machine, migrate_task_event->pid);
1168 atoms = thread_atoms_search(&atom_root, migrant, &cmp_pid);
1169 if (!atoms) {
1170 thread_atoms_insert(migrant);
1171 register_pid(migrant->pid, migrant->comm);
1172 atoms = thread_atoms_search(&atom_root, migrant, &cmp_pid);
1173 if (!atoms)
1174 die("migration-event: Internal tree error");
1175 add_sched_out_event(atoms, 'R', timestamp);
1178 BUG_ON(list_empty(&atoms->work_list));
1180 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1181 atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp;
1183 nr_timestamps++;
1185 if (atom->sched_out_time > timestamp)
1186 nr_unordered_timestamps++;
1189 static struct trace_sched_handler lat_ops = {
1190 .wakeup_event = latency_wakeup_event,
1191 .switch_event = latency_switch_event,
1192 .runtime_event = latency_runtime_event,
1193 .fork_event = latency_fork_event,
1194 .migrate_task_event = latency_migrate_task_event,
1197 static void output_lat_thread(struct work_atoms *work_list)
1199 int i;
1200 int ret;
1201 u64 avg;
1203 if (!work_list->nb_atoms)
1204 return;
1206 * Ignore idle threads:
1208 if (!strcmp(work_list->thread->comm, "swapper"))
1209 return;
1211 all_runtime += work_list->total_runtime;
1212 all_count += work_list->nb_atoms;
1214 ret = printf(" %s:%d ", work_list->thread->comm, work_list->thread->pid);
1216 for (i = 0; i < 24 - ret; i++)
1217 printf(" ");
1219 avg = work_list->total_lat / work_list->nb_atoms;
1221 printf("|%11.3f ms |%9" PRIu64 " | avg:%9.3f ms | max:%9.3f ms | max at: %9.6f s\n",
1222 (double)work_list->total_runtime / 1e6,
1223 work_list->nb_atoms, (double)avg / 1e6,
1224 (double)work_list->max_lat / 1e6,
1225 (double)work_list->max_lat_at / 1e9);
1228 static int pid_cmp(struct work_atoms *l, struct work_atoms *r)
1230 if (l->thread->pid < r->thread->pid)
1231 return -1;
1232 if (l->thread->pid > r->thread->pid)
1233 return 1;
1235 return 0;
1238 static struct sort_dimension pid_sort_dimension = {
1239 .name = "pid",
1240 .cmp = pid_cmp,
1243 static int avg_cmp(struct work_atoms *l, struct work_atoms *r)
1245 u64 avgl, avgr;
1247 if (!l->nb_atoms)
1248 return -1;
1250 if (!r->nb_atoms)
1251 return 1;
1253 avgl = l->total_lat / l->nb_atoms;
1254 avgr = r->total_lat / r->nb_atoms;
1256 if (avgl < avgr)
1257 return -1;
1258 if (avgl > avgr)
1259 return 1;
1261 return 0;
1264 static struct sort_dimension avg_sort_dimension = {
1265 .name = "avg",
1266 .cmp = avg_cmp,
1269 static int max_cmp(struct work_atoms *l, struct work_atoms *r)
1271 if (l->max_lat < r->max_lat)
1272 return -1;
1273 if (l->max_lat > r->max_lat)
1274 return 1;
1276 return 0;
1279 static struct sort_dimension max_sort_dimension = {
1280 .name = "max",
1281 .cmp = max_cmp,
1284 static int switch_cmp(struct work_atoms *l, struct work_atoms *r)
1286 if (l->nb_atoms < r->nb_atoms)
1287 return -1;
1288 if (l->nb_atoms > r->nb_atoms)
1289 return 1;
1291 return 0;
1294 static struct sort_dimension switch_sort_dimension = {
1295 .name = "switch",
1296 .cmp = switch_cmp,
1299 static int runtime_cmp(struct work_atoms *l, struct work_atoms *r)
1301 if (l->total_runtime < r->total_runtime)
1302 return -1;
1303 if (l->total_runtime > r->total_runtime)
1304 return 1;
1306 return 0;
1309 static struct sort_dimension runtime_sort_dimension = {
1310 .name = "runtime",
1311 .cmp = runtime_cmp,
1314 static struct sort_dimension *available_sorts[] = {
1315 &pid_sort_dimension,
1316 &avg_sort_dimension,
1317 &max_sort_dimension,
1318 &switch_sort_dimension,
1319 &runtime_sort_dimension,
1322 #define NB_AVAILABLE_SORTS (int)(sizeof(available_sorts) / sizeof(struct sort_dimension *))
1324 static LIST_HEAD(sort_list);
1326 static int sort_dimension__add(const char *tok, struct list_head *list)
1328 int i;
1330 for (i = 0; i < NB_AVAILABLE_SORTS; i++) {
1331 if (!strcmp(available_sorts[i]->name, tok)) {
1332 list_add_tail(&available_sorts[i]->list, list);
1334 return 0;
1338 return -1;
1341 static void setup_sorting(void);
1343 static void sort_lat(void)
1345 struct rb_node *node;
1347 for (;;) {
1348 struct work_atoms *data;
1349 node = rb_first(&atom_root);
1350 if (!node)
1351 break;
1353 rb_erase(node, &atom_root);
1354 data = rb_entry(node, struct work_atoms, node);
1355 __thread_latency_insert(&sorted_atom_root, data, &sort_list);
1359 static struct trace_sched_handler *trace_handler;
1361 static void
1362 process_sched_wakeup_event(struct perf_tool *tool __used,
1363 struct event *event,
1364 struct perf_sample *sample,
1365 struct machine *machine,
1366 struct thread *thread)
1368 void *data = sample->raw_data;
1369 struct trace_wakeup_event wakeup_event;
1371 FILL_COMMON_FIELDS(wakeup_event, event, data);
1373 FILL_ARRAY(wakeup_event, comm, event, data);
1374 FILL_FIELD(wakeup_event, pid, event, data);
1375 FILL_FIELD(wakeup_event, prio, event, data);
1376 FILL_FIELD(wakeup_event, success, event, data);
1377 FILL_FIELD(wakeup_event, cpu, event, data);
1379 if (trace_handler->wakeup_event)
1380 trace_handler->wakeup_event(&wakeup_event, machine, event,
1381 sample->cpu, sample->time, thread);
1385 * Track the current task - that way we can know whether there's any
1386 * weird events, such as a task being switched away that is not current.
1388 static int max_cpu;
1390 static u32 curr_pid[MAX_CPUS] = { [0 ... MAX_CPUS-1] = -1 };
1392 static struct thread *curr_thread[MAX_CPUS];
1394 static char next_shortname1 = 'A';
1395 static char next_shortname2 = '0';
1397 static void
1398 map_switch_event(struct trace_switch_event *switch_event,
1399 struct machine *machine,
1400 struct event *event __used,
1401 int this_cpu,
1402 u64 timestamp,
1403 struct thread *thread __used)
1405 struct thread *sched_out __used, *sched_in;
1406 int new_shortname;
1407 u64 timestamp0;
1408 s64 delta;
1409 int cpu;
1411 BUG_ON(this_cpu >= MAX_CPUS || this_cpu < 0);
1413 if (this_cpu > max_cpu)
1414 max_cpu = this_cpu;
1416 timestamp0 = cpu_last_switched[this_cpu];
1417 cpu_last_switched[this_cpu] = timestamp;
1418 if (timestamp0)
1419 delta = timestamp - timestamp0;
1420 else
1421 delta = 0;
1423 if (delta < 0)
1424 die("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1427 sched_out = machine__findnew_thread(machine, switch_event->prev_pid);
1428 sched_in = machine__findnew_thread(machine, switch_event->next_pid);
1430 curr_thread[this_cpu] = sched_in;
1432 printf(" ");
1434 new_shortname = 0;
1435 if (!sched_in->shortname[0]) {
1436 sched_in->shortname[0] = next_shortname1;
1437 sched_in->shortname[1] = next_shortname2;
1439 if (next_shortname1 < 'Z') {
1440 next_shortname1++;
1441 } else {
1442 next_shortname1='A';
1443 if (next_shortname2 < '9') {
1444 next_shortname2++;
1445 } else {
1446 next_shortname2='0';
1449 new_shortname = 1;
1452 for (cpu = 0; cpu <= max_cpu; cpu++) {
1453 if (cpu != this_cpu)
1454 printf(" ");
1455 else
1456 printf("*");
1458 if (curr_thread[cpu]) {
1459 if (curr_thread[cpu]->pid)
1460 printf("%2s ", curr_thread[cpu]->shortname);
1461 else
1462 printf(". ");
1463 } else
1464 printf(" ");
1467 printf(" %12.6f secs ", (double)timestamp/1e9);
1468 if (new_shortname) {
1469 printf("%s => %s:%d\n",
1470 sched_in->shortname, sched_in->comm, sched_in->pid);
1471 } else {
1472 printf("\n");
1476 static void
1477 process_sched_switch_event(struct perf_tool *tool __used,
1478 struct event *event,
1479 struct perf_sample *sample,
1480 struct machine *machine,
1481 struct thread *thread)
1483 int this_cpu = sample->cpu;
1484 void *data = sample->raw_data;
1485 struct trace_switch_event switch_event;
1487 FILL_COMMON_FIELDS(switch_event, event, data);
1489 FILL_ARRAY(switch_event, prev_comm, event, data);
1490 FILL_FIELD(switch_event, prev_pid, event, data);
1491 FILL_FIELD(switch_event, prev_prio, event, data);
1492 FILL_FIELD(switch_event, prev_state, event, data);
1493 FILL_ARRAY(switch_event, next_comm, event, data);
1494 FILL_FIELD(switch_event, next_pid, event, data);
1495 FILL_FIELD(switch_event, next_prio, event, data);
1497 if (curr_pid[this_cpu] != (u32)-1) {
1499 * Are we trying to switch away a PID that is
1500 * not current?
1502 if (curr_pid[this_cpu] != switch_event.prev_pid)
1503 nr_context_switch_bugs++;
1505 if (trace_handler->switch_event)
1506 trace_handler->switch_event(&switch_event, machine, event,
1507 this_cpu, sample->time, thread);
1509 curr_pid[this_cpu] = switch_event.next_pid;
1512 static void
1513 process_sched_runtime_event(struct perf_tool *tool __used,
1514 struct event *event,
1515 struct perf_sample *sample,
1516 struct machine *machine,
1517 struct thread *thread)
1519 void *data = sample->raw_data;
1520 struct trace_runtime_event runtime_event;
1522 FILL_ARRAY(runtime_event, comm, event, data);
1523 FILL_FIELD(runtime_event, pid, event, data);
1524 FILL_FIELD(runtime_event, runtime, event, data);
1525 FILL_FIELD(runtime_event, vruntime, event, data);
1527 if (trace_handler->runtime_event)
1528 trace_handler->runtime_event(&runtime_event, machine, event,
1529 sample->cpu, sample->time, thread);
1532 static void
1533 process_sched_fork_event(struct perf_tool *tool __used,
1534 struct event *event,
1535 struct perf_sample *sample,
1536 struct machine *machine __used,
1537 struct thread *thread)
1539 void *data = sample->raw_data;
1540 struct trace_fork_event fork_event;
1542 FILL_COMMON_FIELDS(fork_event, event, data);
1544 FILL_ARRAY(fork_event, parent_comm, event, data);
1545 FILL_FIELD(fork_event, parent_pid, event, data);
1546 FILL_ARRAY(fork_event, child_comm, event, data);
1547 FILL_FIELD(fork_event, child_pid, event, data);
1549 if (trace_handler->fork_event)
1550 trace_handler->fork_event(&fork_event, event,
1551 sample->cpu, sample->time, thread);
1554 static void
1555 process_sched_exit_event(struct perf_tool *tool __used,
1556 struct event *event,
1557 struct perf_sample *sample __used,
1558 struct machine *machine __used,
1559 struct thread *thread __used)
1561 if (verbose)
1562 printf("sched_exit event %p\n", event);
1565 static void
1566 process_sched_migrate_task_event(struct perf_tool *tool __used,
1567 struct event *event,
1568 struct perf_sample *sample,
1569 struct machine *machine,
1570 struct thread *thread)
1572 void *data = sample->raw_data;
1573 struct trace_migrate_task_event migrate_task_event;
1575 FILL_COMMON_FIELDS(migrate_task_event, event, data);
1577 FILL_ARRAY(migrate_task_event, comm, event, data);
1578 FILL_FIELD(migrate_task_event, pid, event, data);
1579 FILL_FIELD(migrate_task_event, prio, event, data);
1580 FILL_FIELD(migrate_task_event, cpu, event, data);
1582 if (trace_handler->migrate_task_event)
1583 trace_handler->migrate_task_event(&migrate_task_event, machine,
1584 event, sample->cpu,
1585 sample->time, thread);
1588 typedef void (*tracepoint_handler)(struct perf_tool *tool, struct event *event,
1589 struct perf_sample *sample,
1590 struct machine *machine,
1591 struct thread *thread);
1593 static int perf_sched__process_tracepoint_sample(struct perf_tool *tool,
1594 union perf_event *event __used,
1595 struct perf_sample *sample,
1596 struct perf_evsel *evsel,
1597 struct machine *machine)
1599 struct thread *thread = machine__findnew_thread(machine, sample->pid);
1601 if (thread == NULL) {
1602 pr_debug("problem processing %s event, skipping it.\n",
1603 evsel->name);
1604 return -1;
1607 evsel->hists.stats.total_period += sample->period;
1608 hists__inc_nr_events(&evsel->hists, PERF_RECORD_SAMPLE);
1610 if (evsel->handler.func != NULL) {
1611 tracepoint_handler f = evsel->handler.func;
1613 if (evsel->handler.data == NULL)
1614 evsel->handler.data = trace_find_event(evsel->attr.config);
1616 f(tool, evsel->handler.data, sample, machine, thread);
1619 return 0;
1622 static struct perf_tool perf_sched = {
1623 .sample = perf_sched__process_tracepoint_sample,
1624 .comm = perf_event__process_comm,
1625 .lost = perf_event__process_lost,
1626 .fork = perf_event__process_task,
1627 .ordered_samples = true,
1630 static void read_events(bool destroy, struct perf_session **psession)
1632 int err = -EINVAL;
1633 const struct perf_evsel_str_handler handlers[] = {
1634 { "sched:sched_switch", process_sched_switch_event, },
1635 { "sched:sched_stat_runtime", process_sched_runtime_event, },
1636 { "sched:sched_wakeup", process_sched_wakeup_event, },
1637 { "sched:sched_wakeup_new", process_sched_wakeup_event, },
1638 { "sched:sched_process_fork", process_sched_fork_event, },
1639 { "sched:sched_process_exit", process_sched_exit_event, },
1640 { "sched:sched_migrate_task", process_sched_migrate_task_event, },
1642 struct perf_session *session = perf_session__new(input_name, O_RDONLY,
1643 0, false, &perf_sched);
1644 if (session == NULL)
1645 die("No Memory");
1647 err = perf_evlist__set_tracepoints_handlers_array(session->evlist, handlers);
1648 assert(err == 0);
1650 if (perf_session__has_traces(session, "record -R")) {
1651 err = perf_session__process_events(session, &perf_sched);
1652 if (err)
1653 die("Failed to process events, error %d", err);
1655 nr_events = session->hists.stats.nr_events[0];
1656 nr_lost_events = session->hists.stats.total_lost;
1657 nr_lost_chunks = session->hists.stats.nr_events[PERF_RECORD_LOST];
1660 if (destroy)
1661 perf_session__delete(session);
1663 if (psession)
1664 *psession = session;
1667 static void print_bad_events(void)
1669 if (nr_unordered_timestamps && nr_timestamps) {
1670 printf(" INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
1671 (double)nr_unordered_timestamps/(double)nr_timestamps*100.0,
1672 nr_unordered_timestamps, nr_timestamps);
1674 if (nr_lost_events && nr_events) {
1675 printf(" INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
1676 (double)nr_lost_events/(double)nr_events*100.0,
1677 nr_lost_events, nr_events, nr_lost_chunks);
1679 if (nr_state_machine_bugs && nr_timestamps) {
1680 printf(" INFO: %.3f%% state machine bugs (%ld out of %ld)",
1681 (double)nr_state_machine_bugs/(double)nr_timestamps*100.0,
1682 nr_state_machine_bugs, nr_timestamps);
1683 if (nr_lost_events)
1684 printf(" (due to lost events?)");
1685 printf("\n");
1687 if (nr_context_switch_bugs && nr_timestamps) {
1688 printf(" INFO: %.3f%% context switch bugs (%ld out of %ld)",
1689 (double)nr_context_switch_bugs/(double)nr_timestamps*100.0,
1690 nr_context_switch_bugs, nr_timestamps);
1691 if (nr_lost_events)
1692 printf(" (due to lost events?)");
1693 printf("\n");
1697 static void __cmd_lat(void)
1699 struct rb_node *next;
1700 struct perf_session *session;
1702 setup_pager();
1703 read_events(false, &session);
1704 sort_lat();
1706 printf("\n ---------------------------------------------------------------------------------------------------------------\n");
1707 printf(" Task | Runtime ms | Switches | Average delay ms | Maximum delay ms | Maximum delay at |\n");
1708 printf(" ---------------------------------------------------------------------------------------------------------------\n");
1710 next = rb_first(&sorted_atom_root);
1712 while (next) {
1713 struct work_atoms *work_list;
1715 work_list = rb_entry(next, struct work_atoms, node);
1716 output_lat_thread(work_list);
1717 next = rb_next(next);
1720 printf(" -----------------------------------------------------------------------------------------\n");
1721 printf(" TOTAL: |%11.3f ms |%9" PRIu64 " |\n",
1722 (double)all_runtime/1e6, all_count);
1724 printf(" ---------------------------------------------------\n");
1726 print_bad_events();
1727 printf("\n");
1729 perf_session__delete(session);
1732 static struct trace_sched_handler map_ops = {
1733 .wakeup_event = NULL,
1734 .switch_event = map_switch_event,
1735 .runtime_event = NULL,
1736 .fork_event = NULL,
1739 static void __cmd_map(void)
1741 max_cpu = sysconf(_SC_NPROCESSORS_CONF);
1743 setup_pager();
1744 read_events(true, NULL);
1745 print_bad_events();
1748 static void __cmd_replay(void)
1750 unsigned long i;
1752 calibrate_run_measurement_overhead();
1753 calibrate_sleep_measurement_overhead();
1755 test_calibrations();
1757 read_events(true, NULL);
1759 printf("nr_run_events: %ld\n", nr_run_events);
1760 printf("nr_sleep_events: %ld\n", nr_sleep_events);
1761 printf("nr_wakeup_events: %ld\n", nr_wakeup_events);
1763 if (targetless_wakeups)
1764 printf("target-less wakeups: %ld\n", targetless_wakeups);
1765 if (multitarget_wakeups)
1766 printf("multi-target wakeups: %ld\n", multitarget_wakeups);
1767 if (nr_run_events_optimized)
1768 printf("run atoms optimized: %ld\n",
1769 nr_run_events_optimized);
1771 print_task_traces();
1772 add_cross_task_wakeups();
1774 create_tasks();
1775 printf("------------------------------------------------------------\n");
1776 for (i = 0; i < replay_repeat; i++)
1777 run_one_test();
1781 static const char * const sched_usage[] = {
1782 "perf sched [<options>] {record|latency|map|replay|script}",
1783 NULL
1786 static const struct option sched_options[] = {
1787 OPT_STRING('i', "input", &input_name, "file",
1788 "input file name"),
1789 OPT_INCR('v', "verbose", &verbose,
1790 "be more verbose (show symbol address, etc)"),
1791 OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1792 "dump raw trace in ASCII"),
1793 OPT_END()
1796 static const char * const latency_usage[] = {
1797 "perf sched latency [<options>]",
1798 NULL
1801 static const struct option latency_options[] = {
1802 OPT_STRING('s', "sort", &sort_order, "key[,key2...]",
1803 "sort by key(s): runtime, switch, avg, max"),
1804 OPT_INCR('v', "verbose", &verbose,
1805 "be more verbose (show symbol address, etc)"),
1806 OPT_INTEGER('C', "CPU", &profile_cpu,
1807 "CPU to profile on"),
1808 OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1809 "dump raw trace in ASCII"),
1810 OPT_END()
1813 static const char * const replay_usage[] = {
1814 "perf sched replay [<options>]",
1815 NULL
1818 static const struct option replay_options[] = {
1819 OPT_UINTEGER('r', "repeat", &replay_repeat,
1820 "repeat the workload replay N times (-1: infinite)"),
1821 OPT_INCR('v', "verbose", &verbose,
1822 "be more verbose (show symbol address, etc)"),
1823 OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1824 "dump raw trace in ASCII"),
1825 OPT_END()
1828 static void setup_sorting(void)
1830 char *tmp, *tok, *str = strdup(sort_order);
1832 for (tok = strtok_r(str, ", ", &tmp);
1833 tok; tok = strtok_r(NULL, ", ", &tmp)) {
1834 if (sort_dimension__add(tok, &sort_list) < 0) {
1835 error("Unknown --sort key: `%s'", tok);
1836 usage_with_options(latency_usage, latency_options);
1840 free(str);
1842 sort_dimension__add("pid", &cmp_pid);
1845 static const char *record_args[] = {
1846 "record",
1847 "-a",
1848 "-R",
1849 "-f",
1850 "-m", "1024",
1851 "-c", "1",
1852 "-e", "sched:sched_switch",
1853 "-e", "sched:sched_stat_wait",
1854 "-e", "sched:sched_stat_sleep",
1855 "-e", "sched:sched_stat_iowait",
1856 "-e", "sched:sched_stat_runtime",
1857 "-e", "sched:sched_process_exit",
1858 "-e", "sched:sched_process_fork",
1859 "-e", "sched:sched_wakeup",
1860 "-e", "sched:sched_migrate_task",
1863 static int __cmd_record(int argc, const char **argv)
1865 unsigned int rec_argc, i, j;
1866 const char **rec_argv;
1868 rec_argc = ARRAY_SIZE(record_args) + argc - 1;
1869 rec_argv = calloc(rec_argc + 1, sizeof(char *));
1871 if (rec_argv == NULL)
1872 return -ENOMEM;
1874 for (i = 0; i < ARRAY_SIZE(record_args); i++)
1875 rec_argv[i] = strdup(record_args[i]);
1877 for (j = 1; j < (unsigned int)argc; j++, i++)
1878 rec_argv[i] = argv[j];
1880 BUG_ON(i != rec_argc);
1882 return cmd_record(i, rec_argv, NULL);
1885 int cmd_sched(int argc, const char **argv, const char *prefix __used)
1887 argc = parse_options(argc, argv, sched_options, sched_usage,
1888 PARSE_OPT_STOP_AT_NON_OPTION);
1889 if (!argc)
1890 usage_with_options(sched_usage, sched_options);
1893 * Aliased to 'perf script' for now:
1895 if (!strcmp(argv[0], "script"))
1896 return cmd_script(argc, argv, prefix);
1898 symbol__init();
1899 if (!strncmp(argv[0], "rec", 3)) {
1900 return __cmd_record(argc, argv);
1901 } else if (!strncmp(argv[0], "lat", 3)) {
1902 trace_handler = &lat_ops;
1903 if (argc > 1) {
1904 argc = parse_options(argc, argv, latency_options, latency_usage, 0);
1905 if (argc)
1906 usage_with_options(latency_usage, latency_options);
1908 setup_sorting();
1909 __cmd_lat();
1910 } else if (!strcmp(argv[0], "map")) {
1911 trace_handler = &map_ops;
1912 setup_sorting();
1913 __cmd_map();
1914 } else if (!strncmp(argv[0], "rep", 3)) {
1915 trace_handler = &replay_ops;
1916 if (argc) {
1917 argc = parse_options(argc, argv, replay_options, replay_usage, 0);
1918 if (argc)
1919 usage_with_options(replay_usage, replay_options);
1921 __cmd_replay();
1922 } else {
1923 usage_with_options(sched_usage, sched_options);
1926 return 0;