Staging: remove drivers/char/scc.h as it should have gone a while ago
[zen-stable.git] / kernel / trace / ring_buffer.c
blob731201bf4acc6af1efd7617bdc533ca1efaacabf
1 /*
2 * Generic ring buffer
4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5 */
6 #include <linux/ring_buffer.h>
7 #include <linux/trace_clock.h>
8 #include <linux/spinlock.h>
9 #include <linux/debugfs.h>
10 #include <linux/uaccess.h>
11 #include <linux/hardirq.h>
12 #include <linux/kmemcheck.h>
13 #include <linux/module.h>
14 #include <linux/percpu.h>
15 #include <linux/mutex.h>
16 #include <linux/slab.h>
17 #include <linux/init.h>
18 #include <linux/hash.h>
19 #include <linux/list.h>
20 #include <linux/cpu.h>
21 #include <linux/fs.h>
23 #include <asm/local.h>
24 #include "trace.h"
27 * The ring buffer header is special. We must manually up keep it.
29 int ring_buffer_print_entry_header(struct trace_seq *s)
31 int ret;
33 ret = trace_seq_printf(s, "# compressed entry header\n");
34 ret = trace_seq_printf(s, "\ttype_len : 5 bits\n");
35 ret = trace_seq_printf(s, "\ttime_delta : 27 bits\n");
36 ret = trace_seq_printf(s, "\tarray : 32 bits\n");
37 ret = trace_seq_printf(s, "\n");
38 ret = trace_seq_printf(s, "\tpadding : type == %d\n",
39 RINGBUF_TYPE_PADDING);
40 ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
41 RINGBUF_TYPE_TIME_EXTEND);
42 ret = trace_seq_printf(s, "\tdata max type_len == %d\n",
43 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
45 return ret;
49 * The ring buffer is made up of a list of pages. A separate list of pages is
50 * allocated for each CPU. A writer may only write to a buffer that is
51 * associated with the CPU it is currently executing on. A reader may read
52 * from any per cpu buffer.
54 * The reader is special. For each per cpu buffer, the reader has its own
55 * reader page. When a reader has read the entire reader page, this reader
56 * page is swapped with another page in the ring buffer.
58 * Now, as long as the writer is off the reader page, the reader can do what
59 * ever it wants with that page. The writer will never write to that page
60 * again (as long as it is out of the ring buffer).
62 * Here's some silly ASCII art.
64 * +------+
65 * |reader| RING BUFFER
66 * |page |
67 * +------+ +---+ +---+ +---+
68 * | |-->| |-->| |
69 * +---+ +---+ +---+
70 * ^ |
71 * | |
72 * +---------------+
75 * +------+
76 * |reader| RING BUFFER
77 * |page |------------------v
78 * +------+ +---+ +---+ +---+
79 * | |-->| |-->| |
80 * +---+ +---+ +---+
81 * ^ |
82 * | |
83 * +---------------+
86 * +------+
87 * |reader| RING BUFFER
88 * |page |------------------v
89 * +------+ +---+ +---+ +---+
90 * ^ | |-->| |-->| |
91 * | +---+ +---+ +---+
92 * | |
93 * | |
94 * +------------------------------+
97 * +------+
98 * |buffer| RING BUFFER
99 * |page |------------------v
100 * +------+ +---+ +---+ +---+
101 * ^ | | | |-->| |
102 * | New +---+ +---+ +---+
103 * | Reader------^ |
104 * | page |
105 * +------------------------------+
108 * After we make this swap, the reader can hand this page off to the splice
109 * code and be done with it. It can even allocate a new page if it needs to
110 * and swap that into the ring buffer.
112 * We will be using cmpxchg soon to make all this lockless.
117 * A fast way to enable or disable all ring buffers is to
118 * call tracing_on or tracing_off. Turning off the ring buffers
119 * prevents all ring buffers from being recorded to.
120 * Turning this switch on, makes it OK to write to the
121 * ring buffer, if the ring buffer is enabled itself.
123 * There's three layers that must be on in order to write
124 * to the ring buffer.
126 * 1) This global flag must be set.
127 * 2) The ring buffer must be enabled for recording.
128 * 3) The per cpu buffer must be enabled for recording.
130 * In case of an anomaly, this global flag has a bit set that
131 * will permantly disable all ring buffers.
135 * Global flag to disable all recording to ring buffers
136 * This has two bits: ON, DISABLED
138 * ON DISABLED
139 * ---- ----------
140 * 0 0 : ring buffers are off
141 * 1 0 : ring buffers are on
142 * X 1 : ring buffers are permanently disabled
145 enum {
146 RB_BUFFERS_ON_BIT = 0,
147 RB_BUFFERS_DISABLED_BIT = 1,
150 enum {
151 RB_BUFFERS_ON = 1 << RB_BUFFERS_ON_BIT,
152 RB_BUFFERS_DISABLED = 1 << RB_BUFFERS_DISABLED_BIT,
155 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
157 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
160 * tracing_on - enable all tracing buffers
162 * This function enables all tracing buffers that may have been
163 * disabled with tracing_off.
165 void tracing_on(void)
167 set_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
169 EXPORT_SYMBOL_GPL(tracing_on);
172 * tracing_off - turn off all tracing buffers
174 * This function stops all tracing buffers from recording data.
175 * It does not disable any overhead the tracers themselves may
176 * be causing. This function simply causes all recording to
177 * the ring buffers to fail.
179 void tracing_off(void)
181 clear_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
183 EXPORT_SYMBOL_GPL(tracing_off);
186 * tracing_off_permanent - permanently disable ring buffers
188 * This function, once called, will disable all ring buffers
189 * permanently.
191 void tracing_off_permanent(void)
193 set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
197 * tracing_is_on - show state of ring buffers enabled
199 int tracing_is_on(void)
201 return ring_buffer_flags == RB_BUFFERS_ON;
203 EXPORT_SYMBOL_GPL(tracing_is_on);
205 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
206 #define RB_ALIGNMENT 4U
207 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
208 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
210 #if !defined(CONFIG_64BIT) || defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
211 # define RB_FORCE_8BYTE_ALIGNMENT 0
212 # define RB_ARCH_ALIGNMENT RB_ALIGNMENT
213 #else
214 # define RB_FORCE_8BYTE_ALIGNMENT 1
215 # define RB_ARCH_ALIGNMENT 8U
216 #endif
218 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
219 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
221 enum {
222 RB_LEN_TIME_EXTEND = 8,
223 RB_LEN_TIME_STAMP = 16,
226 #define skip_time_extend(event) \
227 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
229 static inline int rb_null_event(struct ring_buffer_event *event)
231 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
234 static void rb_event_set_padding(struct ring_buffer_event *event)
236 /* padding has a NULL time_delta */
237 event->type_len = RINGBUF_TYPE_PADDING;
238 event->time_delta = 0;
241 static unsigned
242 rb_event_data_length(struct ring_buffer_event *event)
244 unsigned length;
246 if (event->type_len)
247 length = event->type_len * RB_ALIGNMENT;
248 else
249 length = event->array[0];
250 return length + RB_EVNT_HDR_SIZE;
254 * Return the length of the given event. Will return
255 * the length of the time extend if the event is a
256 * time extend.
258 static inline unsigned
259 rb_event_length(struct ring_buffer_event *event)
261 switch (event->type_len) {
262 case RINGBUF_TYPE_PADDING:
263 if (rb_null_event(event))
264 /* undefined */
265 return -1;
266 return event->array[0] + RB_EVNT_HDR_SIZE;
268 case RINGBUF_TYPE_TIME_EXTEND:
269 return RB_LEN_TIME_EXTEND;
271 case RINGBUF_TYPE_TIME_STAMP:
272 return RB_LEN_TIME_STAMP;
274 case RINGBUF_TYPE_DATA:
275 return rb_event_data_length(event);
276 default:
277 BUG();
279 /* not hit */
280 return 0;
284 * Return total length of time extend and data,
285 * or just the event length for all other events.
287 static inline unsigned
288 rb_event_ts_length(struct ring_buffer_event *event)
290 unsigned len = 0;
292 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
293 /* time extends include the data event after it */
294 len = RB_LEN_TIME_EXTEND;
295 event = skip_time_extend(event);
297 return len + rb_event_length(event);
301 * ring_buffer_event_length - return the length of the event
302 * @event: the event to get the length of
304 * Returns the size of the data load of a data event.
305 * If the event is something other than a data event, it
306 * returns the size of the event itself. With the exception
307 * of a TIME EXTEND, where it still returns the size of the
308 * data load of the data event after it.
310 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
312 unsigned length;
314 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
315 event = skip_time_extend(event);
317 length = rb_event_length(event);
318 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
319 return length;
320 length -= RB_EVNT_HDR_SIZE;
321 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
322 length -= sizeof(event->array[0]);
323 return length;
325 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
327 /* inline for ring buffer fast paths */
328 static void *
329 rb_event_data(struct ring_buffer_event *event)
331 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
332 event = skip_time_extend(event);
333 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
334 /* If length is in len field, then array[0] has the data */
335 if (event->type_len)
336 return (void *)&event->array[0];
337 /* Otherwise length is in array[0] and array[1] has the data */
338 return (void *)&event->array[1];
342 * ring_buffer_event_data - return the data of the event
343 * @event: the event to get the data from
345 void *ring_buffer_event_data(struct ring_buffer_event *event)
347 return rb_event_data(event);
349 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
351 #define for_each_buffer_cpu(buffer, cpu) \
352 for_each_cpu(cpu, buffer->cpumask)
354 #define TS_SHIFT 27
355 #define TS_MASK ((1ULL << TS_SHIFT) - 1)
356 #define TS_DELTA_TEST (~TS_MASK)
358 /* Flag when events were overwritten */
359 #define RB_MISSED_EVENTS (1 << 31)
360 /* Missed count stored at end */
361 #define RB_MISSED_STORED (1 << 30)
363 struct buffer_data_page {
364 u64 time_stamp; /* page time stamp */
365 local_t commit; /* write committed index */
366 unsigned char data[]; /* data of buffer page */
370 * Note, the buffer_page list must be first. The buffer pages
371 * are allocated in cache lines, which means that each buffer
372 * page will be at the beginning of a cache line, and thus
373 * the least significant bits will be zero. We use this to
374 * add flags in the list struct pointers, to make the ring buffer
375 * lockless.
377 struct buffer_page {
378 struct list_head list; /* list of buffer pages */
379 local_t write; /* index for next write */
380 unsigned read; /* index for next read */
381 local_t entries; /* entries on this page */
382 unsigned long real_end; /* real end of data */
383 struct buffer_data_page *page; /* Actual data page */
387 * The buffer page counters, write and entries, must be reset
388 * atomically when crossing page boundaries. To synchronize this
389 * update, two counters are inserted into the number. One is
390 * the actual counter for the write position or count on the page.
392 * The other is a counter of updaters. Before an update happens
393 * the update partition of the counter is incremented. This will
394 * allow the updater to update the counter atomically.
396 * The counter is 20 bits, and the state data is 12.
398 #define RB_WRITE_MASK 0xfffff
399 #define RB_WRITE_INTCNT (1 << 20)
401 static void rb_init_page(struct buffer_data_page *bpage)
403 local_set(&bpage->commit, 0);
407 * ring_buffer_page_len - the size of data on the page.
408 * @page: The page to read
410 * Returns the amount of data on the page, including buffer page header.
412 size_t ring_buffer_page_len(void *page)
414 return local_read(&((struct buffer_data_page *)page)->commit)
415 + BUF_PAGE_HDR_SIZE;
419 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
420 * this issue out.
422 static void free_buffer_page(struct buffer_page *bpage)
424 free_page((unsigned long)bpage->page);
425 kfree(bpage);
429 * We need to fit the time_stamp delta into 27 bits.
431 static inline int test_time_stamp(u64 delta)
433 if (delta & TS_DELTA_TEST)
434 return 1;
435 return 0;
438 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
440 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
441 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
443 int ring_buffer_print_page_header(struct trace_seq *s)
445 struct buffer_data_page field;
446 int ret;
448 ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
449 "offset:0;\tsize:%u;\tsigned:%u;\n",
450 (unsigned int)sizeof(field.time_stamp),
451 (unsigned int)is_signed_type(u64));
453 ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
454 "offset:%u;\tsize:%u;\tsigned:%u;\n",
455 (unsigned int)offsetof(typeof(field), commit),
456 (unsigned int)sizeof(field.commit),
457 (unsigned int)is_signed_type(long));
459 ret = trace_seq_printf(s, "\tfield: int overwrite;\t"
460 "offset:%u;\tsize:%u;\tsigned:%u;\n",
461 (unsigned int)offsetof(typeof(field), commit),
463 (unsigned int)is_signed_type(long));
465 ret = trace_seq_printf(s, "\tfield: char data;\t"
466 "offset:%u;\tsize:%u;\tsigned:%u;\n",
467 (unsigned int)offsetof(typeof(field), data),
468 (unsigned int)BUF_PAGE_SIZE,
469 (unsigned int)is_signed_type(char));
471 return ret;
475 * head_page == tail_page && head == tail then buffer is empty.
477 struct ring_buffer_per_cpu {
478 int cpu;
479 atomic_t record_disabled;
480 struct ring_buffer *buffer;
481 spinlock_t reader_lock; /* serialize readers */
482 arch_spinlock_t lock;
483 struct lock_class_key lock_key;
484 struct list_head *pages;
485 struct buffer_page *head_page; /* read from head */
486 struct buffer_page *tail_page; /* write to tail */
487 struct buffer_page *commit_page; /* committed pages */
488 struct buffer_page *reader_page;
489 unsigned long lost_events;
490 unsigned long last_overrun;
491 local_t commit_overrun;
492 local_t overrun;
493 local_t entries;
494 local_t committing;
495 local_t commits;
496 unsigned long read;
497 u64 write_stamp;
498 u64 read_stamp;
501 struct ring_buffer {
502 unsigned pages;
503 unsigned flags;
504 int cpus;
505 atomic_t record_disabled;
506 cpumask_var_t cpumask;
508 struct lock_class_key *reader_lock_key;
510 struct mutex mutex;
512 struct ring_buffer_per_cpu **buffers;
514 #ifdef CONFIG_HOTPLUG_CPU
515 struct notifier_block cpu_notify;
516 #endif
517 u64 (*clock)(void);
520 struct ring_buffer_iter {
521 struct ring_buffer_per_cpu *cpu_buffer;
522 unsigned long head;
523 struct buffer_page *head_page;
524 struct buffer_page *cache_reader_page;
525 unsigned long cache_read;
526 u64 read_stamp;
529 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
530 #define RB_WARN_ON(b, cond) \
531 ({ \
532 int _____ret = unlikely(cond); \
533 if (_____ret) { \
534 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
535 struct ring_buffer_per_cpu *__b = \
536 (void *)b; \
537 atomic_inc(&__b->buffer->record_disabled); \
538 } else \
539 atomic_inc(&b->record_disabled); \
540 WARN_ON(1); \
542 _____ret; \
545 /* Up this if you want to test the TIME_EXTENTS and normalization */
546 #define DEBUG_SHIFT 0
548 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
550 /* shift to debug/test normalization and TIME_EXTENTS */
551 return buffer->clock() << DEBUG_SHIFT;
554 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
556 u64 time;
558 preempt_disable_notrace();
559 time = rb_time_stamp(buffer);
560 preempt_enable_no_resched_notrace();
562 return time;
564 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
566 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
567 int cpu, u64 *ts)
569 /* Just stupid testing the normalize function and deltas */
570 *ts >>= DEBUG_SHIFT;
572 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
575 * Making the ring buffer lockless makes things tricky.
576 * Although writes only happen on the CPU that they are on,
577 * and they only need to worry about interrupts. Reads can
578 * happen on any CPU.
580 * The reader page is always off the ring buffer, but when the
581 * reader finishes with a page, it needs to swap its page with
582 * a new one from the buffer. The reader needs to take from
583 * the head (writes go to the tail). But if a writer is in overwrite
584 * mode and wraps, it must push the head page forward.
586 * Here lies the problem.
588 * The reader must be careful to replace only the head page, and
589 * not another one. As described at the top of the file in the
590 * ASCII art, the reader sets its old page to point to the next
591 * page after head. It then sets the page after head to point to
592 * the old reader page. But if the writer moves the head page
593 * during this operation, the reader could end up with the tail.
595 * We use cmpxchg to help prevent this race. We also do something
596 * special with the page before head. We set the LSB to 1.
598 * When the writer must push the page forward, it will clear the
599 * bit that points to the head page, move the head, and then set
600 * the bit that points to the new head page.
602 * We also don't want an interrupt coming in and moving the head
603 * page on another writer. Thus we use the second LSB to catch
604 * that too. Thus:
606 * head->list->prev->next bit 1 bit 0
607 * ------- -------
608 * Normal page 0 0
609 * Points to head page 0 1
610 * New head page 1 0
612 * Note we can not trust the prev pointer of the head page, because:
614 * +----+ +-----+ +-----+
615 * | |------>| T |---X--->| N |
616 * | |<------| | | |
617 * +----+ +-----+ +-----+
618 * ^ ^ |
619 * | +-----+ | |
620 * +----------| R |----------+ |
621 * | |<-----------+
622 * +-----+
624 * Key: ---X--> HEAD flag set in pointer
625 * T Tail page
626 * R Reader page
627 * N Next page
629 * (see __rb_reserve_next() to see where this happens)
631 * What the above shows is that the reader just swapped out
632 * the reader page with a page in the buffer, but before it
633 * could make the new header point back to the new page added
634 * it was preempted by a writer. The writer moved forward onto
635 * the new page added by the reader and is about to move forward
636 * again.
638 * You can see, it is legitimate for the previous pointer of
639 * the head (or any page) not to point back to itself. But only
640 * temporarially.
643 #define RB_PAGE_NORMAL 0UL
644 #define RB_PAGE_HEAD 1UL
645 #define RB_PAGE_UPDATE 2UL
648 #define RB_FLAG_MASK 3UL
650 /* PAGE_MOVED is not part of the mask */
651 #define RB_PAGE_MOVED 4UL
654 * rb_list_head - remove any bit
656 static struct list_head *rb_list_head(struct list_head *list)
658 unsigned long val = (unsigned long)list;
660 return (struct list_head *)(val & ~RB_FLAG_MASK);
664 * rb_is_head_page - test if the given page is the head page
666 * Because the reader may move the head_page pointer, we can
667 * not trust what the head page is (it may be pointing to
668 * the reader page). But if the next page is a header page,
669 * its flags will be non zero.
671 static inline int
672 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
673 struct buffer_page *page, struct list_head *list)
675 unsigned long val;
677 val = (unsigned long)list->next;
679 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
680 return RB_PAGE_MOVED;
682 return val & RB_FLAG_MASK;
686 * rb_is_reader_page
688 * The unique thing about the reader page, is that, if the
689 * writer is ever on it, the previous pointer never points
690 * back to the reader page.
692 static int rb_is_reader_page(struct buffer_page *page)
694 struct list_head *list = page->list.prev;
696 return rb_list_head(list->next) != &page->list;
700 * rb_set_list_to_head - set a list_head to be pointing to head.
702 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
703 struct list_head *list)
705 unsigned long *ptr;
707 ptr = (unsigned long *)&list->next;
708 *ptr |= RB_PAGE_HEAD;
709 *ptr &= ~RB_PAGE_UPDATE;
713 * rb_head_page_activate - sets up head page
715 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
717 struct buffer_page *head;
719 head = cpu_buffer->head_page;
720 if (!head)
721 return;
724 * Set the previous list pointer to have the HEAD flag.
726 rb_set_list_to_head(cpu_buffer, head->list.prev);
729 static void rb_list_head_clear(struct list_head *list)
731 unsigned long *ptr = (unsigned long *)&list->next;
733 *ptr &= ~RB_FLAG_MASK;
737 * rb_head_page_dactivate - clears head page ptr (for free list)
739 static void
740 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
742 struct list_head *hd;
744 /* Go through the whole list and clear any pointers found. */
745 rb_list_head_clear(cpu_buffer->pages);
747 list_for_each(hd, cpu_buffer->pages)
748 rb_list_head_clear(hd);
751 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
752 struct buffer_page *head,
753 struct buffer_page *prev,
754 int old_flag, int new_flag)
756 struct list_head *list;
757 unsigned long val = (unsigned long)&head->list;
758 unsigned long ret;
760 list = &prev->list;
762 val &= ~RB_FLAG_MASK;
764 ret = cmpxchg((unsigned long *)&list->next,
765 val | old_flag, val | new_flag);
767 /* check if the reader took the page */
768 if ((ret & ~RB_FLAG_MASK) != val)
769 return RB_PAGE_MOVED;
771 return ret & RB_FLAG_MASK;
774 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
775 struct buffer_page *head,
776 struct buffer_page *prev,
777 int old_flag)
779 return rb_head_page_set(cpu_buffer, head, prev,
780 old_flag, RB_PAGE_UPDATE);
783 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
784 struct buffer_page *head,
785 struct buffer_page *prev,
786 int old_flag)
788 return rb_head_page_set(cpu_buffer, head, prev,
789 old_flag, RB_PAGE_HEAD);
792 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
793 struct buffer_page *head,
794 struct buffer_page *prev,
795 int old_flag)
797 return rb_head_page_set(cpu_buffer, head, prev,
798 old_flag, RB_PAGE_NORMAL);
801 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
802 struct buffer_page **bpage)
804 struct list_head *p = rb_list_head((*bpage)->list.next);
806 *bpage = list_entry(p, struct buffer_page, list);
809 static struct buffer_page *
810 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
812 struct buffer_page *head;
813 struct buffer_page *page;
814 struct list_head *list;
815 int i;
817 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
818 return NULL;
820 /* sanity check */
821 list = cpu_buffer->pages;
822 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
823 return NULL;
825 page = head = cpu_buffer->head_page;
827 * It is possible that the writer moves the header behind
828 * where we started, and we miss in one loop.
829 * A second loop should grab the header, but we'll do
830 * three loops just because I'm paranoid.
832 for (i = 0; i < 3; i++) {
833 do {
834 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
835 cpu_buffer->head_page = page;
836 return page;
838 rb_inc_page(cpu_buffer, &page);
839 } while (page != head);
842 RB_WARN_ON(cpu_buffer, 1);
844 return NULL;
847 static int rb_head_page_replace(struct buffer_page *old,
848 struct buffer_page *new)
850 unsigned long *ptr = (unsigned long *)&old->list.prev->next;
851 unsigned long val;
852 unsigned long ret;
854 val = *ptr & ~RB_FLAG_MASK;
855 val |= RB_PAGE_HEAD;
857 ret = cmpxchg(ptr, val, (unsigned long)&new->list);
859 return ret == val;
863 * rb_tail_page_update - move the tail page forward
865 * Returns 1 if moved tail page, 0 if someone else did.
867 static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
868 struct buffer_page *tail_page,
869 struct buffer_page *next_page)
871 struct buffer_page *old_tail;
872 unsigned long old_entries;
873 unsigned long old_write;
874 int ret = 0;
877 * The tail page now needs to be moved forward.
879 * We need to reset the tail page, but without messing
880 * with possible erasing of data brought in by interrupts
881 * that have moved the tail page and are currently on it.
883 * We add a counter to the write field to denote this.
885 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
886 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
889 * Just make sure we have seen our old_write and synchronize
890 * with any interrupts that come in.
892 barrier();
895 * If the tail page is still the same as what we think
896 * it is, then it is up to us to update the tail
897 * pointer.
899 if (tail_page == cpu_buffer->tail_page) {
900 /* Zero the write counter */
901 unsigned long val = old_write & ~RB_WRITE_MASK;
902 unsigned long eval = old_entries & ~RB_WRITE_MASK;
905 * This will only succeed if an interrupt did
906 * not come in and change it. In which case, we
907 * do not want to modify it.
909 * We add (void) to let the compiler know that we do not care
910 * about the return value of these functions. We use the
911 * cmpxchg to only update if an interrupt did not already
912 * do it for us. If the cmpxchg fails, we don't care.
914 (void)local_cmpxchg(&next_page->write, old_write, val);
915 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
918 * No need to worry about races with clearing out the commit.
919 * it only can increment when a commit takes place. But that
920 * only happens in the outer most nested commit.
922 local_set(&next_page->page->commit, 0);
924 old_tail = cmpxchg(&cpu_buffer->tail_page,
925 tail_page, next_page);
927 if (old_tail == tail_page)
928 ret = 1;
931 return ret;
934 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
935 struct buffer_page *bpage)
937 unsigned long val = (unsigned long)bpage;
939 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
940 return 1;
942 return 0;
946 * rb_check_list - make sure a pointer to a list has the last bits zero
948 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
949 struct list_head *list)
951 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
952 return 1;
953 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
954 return 1;
955 return 0;
959 * check_pages - integrity check of buffer pages
960 * @cpu_buffer: CPU buffer with pages to test
962 * As a safety measure we check to make sure the data pages have not
963 * been corrupted.
965 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
967 struct list_head *head = cpu_buffer->pages;
968 struct buffer_page *bpage, *tmp;
970 rb_head_page_deactivate(cpu_buffer);
972 if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
973 return -1;
974 if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
975 return -1;
977 if (rb_check_list(cpu_buffer, head))
978 return -1;
980 list_for_each_entry_safe(bpage, tmp, head, list) {
981 if (RB_WARN_ON(cpu_buffer,
982 bpage->list.next->prev != &bpage->list))
983 return -1;
984 if (RB_WARN_ON(cpu_buffer,
985 bpage->list.prev->next != &bpage->list))
986 return -1;
987 if (rb_check_list(cpu_buffer, &bpage->list))
988 return -1;
991 rb_head_page_activate(cpu_buffer);
993 return 0;
996 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
997 unsigned nr_pages)
999 struct buffer_page *bpage, *tmp;
1000 LIST_HEAD(pages);
1001 unsigned i;
1003 WARN_ON(!nr_pages);
1005 for (i = 0; i < nr_pages; i++) {
1006 struct page *page;
1008 * __GFP_NORETRY flag makes sure that the allocation fails
1009 * gracefully without invoking oom-killer and the system is
1010 * not destabilized.
1012 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1013 GFP_KERNEL | __GFP_NORETRY,
1014 cpu_to_node(cpu_buffer->cpu));
1015 if (!bpage)
1016 goto free_pages;
1018 rb_check_bpage(cpu_buffer, bpage);
1020 list_add(&bpage->list, &pages);
1022 page = alloc_pages_node(cpu_to_node(cpu_buffer->cpu),
1023 GFP_KERNEL | __GFP_NORETRY, 0);
1024 if (!page)
1025 goto free_pages;
1026 bpage->page = page_address(page);
1027 rb_init_page(bpage->page);
1031 * The ring buffer page list is a circular list that does not
1032 * start and end with a list head. All page list items point to
1033 * other pages.
1035 cpu_buffer->pages = pages.next;
1036 list_del(&pages);
1038 rb_check_pages(cpu_buffer);
1040 return 0;
1042 free_pages:
1043 list_for_each_entry_safe(bpage, tmp, &pages, list) {
1044 list_del_init(&bpage->list);
1045 free_buffer_page(bpage);
1047 return -ENOMEM;
1050 static struct ring_buffer_per_cpu *
1051 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
1053 struct ring_buffer_per_cpu *cpu_buffer;
1054 struct buffer_page *bpage;
1055 struct page *page;
1056 int ret;
1058 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1059 GFP_KERNEL, cpu_to_node(cpu));
1060 if (!cpu_buffer)
1061 return NULL;
1063 cpu_buffer->cpu = cpu;
1064 cpu_buffer->buffer = buffer;
1065 spin_lock_init(&cpu_buffer->reader_lock);
1066 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1067 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1069 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1070 GFP_KERNEL, cpu_to_node(cpu));
1071 if (!bpage)
1072 goto fail_free_buffer;
1074 rb_check_bpage(cpu_buffer, bpage);
1076 cpu_buffer->reader_page = bpage;
1077 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1078 if (!page)
1079 goto fail_free_reader;
1080 bpage->page = page_address(page);
1081 rb_init_page(bpage->page);
1083 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1085 ret = rb_allocate_pages(cpu_buffer, buffer->pages);
1086 if (ret < 0)
1087 goto fail_free_reader;
1089 cpu_buffer->head_page
1090 = list_entry(cpu_buffer->pages, struct buffer_page, list);
1091 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1093 rb_head_page_activate(cpu_buffer);
1095 return cpu_buffer;
1097 fail_free_reader:
1098 free_buffer_page(cpu_buffer->reader_page);
1100 fail_free_buffer:
1101 kfree(cpu_buffer);
1102 return NULL;
1105 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1107 struct list_head *head = cpu_buffer->pages;
1108 struct buffer_page *bpage, *tmp;
1110 free_buffer_page(cpu_buffer->reader_page);
1112 rb_head_page_deactivate(cpu_buffer);
1114 if (head) {
1115 list_for_each_entry_safe(bpage, tmp, head, list) {
1116 list_del_init(&bpage->list);
1117 free_buffer_page(bpage);
1119 bpage = list_entry(head, struct buffer_page, list);
1120 free_buffer_page(bpage);
1123 kfree(cpu_buffer);
1126 #ifdef CONFIG_HOTPLUG_CPU
1127 static int rb_cpu_notify(struct notifier_block *self,
1128 unsigned long action, void *hcpu);
1129 #endif
1132 * ring_buffer_alloc - allocate a new ring_buffer
1133 * @size: the size in bytes per cpu that is needed.
1134 * @flags: attributes to set for the ring buffer.
1136 * Currently the only flag that is available is the RB_FL_OVERWRITE
1137 * flag. This flag means that the buffer will overwrite old data
1138 * when the buffer wraps. If this flag is not set, the buffer will
1139 * drop data when the tail hits the head.
1141 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1142 struct lock_class_key *key)
1144 struct ring_buffer *buffer;
1145 int bsize;
1146 int cpu;
1148 /* keep it in its own cache line */
1149 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1150 GFP_KERNEL);
1151 if (!buffer)
1152 return NULL;
1154 if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1155 goto fail_free_buffer;
1157 buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1158 buffer->flags = flags;
1159 buffer->clock = trace_clock_local;
1160 buffer->reader_lock_key = key;
1162 /* need at least two pages */
1163 if (buffer->pages < 2)
1164 buffer->pages = 2;
1167 * In case of non-hotplug cpu, if the ring-buffer is allocated
1168 * in early initcall, it will not be notified of secondary cpus.
1169 * In that off case, we need to allocate for all possible cpus.
1171 #ifdef CONFIG_HOTPLUG_CPU
1172 get_online_cpus();
1173 cpumask_copy(buffer->cpumask, cpu_online_mask);
1174 #else
1175 cpumask_copy(buffer->cpumask, cpu_possible_mask);
1176 #endif
1177 buffer->cpus = nr_cpu_ids;
1179 bsize = sizeof(void *) * nr_cpu_ids;
1180 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1181 GFP_KERNEL);
1182 if (!buffer->buffers)
1183 goto fail_free_cpumask;
1185 for_each_buffer_cpu(buffer, cpu) {
1186 buffer->buffers[cpu] =
1187 rb_allocate_cpu_buffer(buffer, cpu);
1188 if (!buffer->buffers[cpu])
1189 goto fail_free_buffers;
1192 #ifdef CONFIG_HOTPLUG_CPU
1193 buffer->cpu_notify.notifier_call = rb_cpu_notify;
1194 buffer->cpu_notify.priority = 0;
1195 register_cpu_notifier(&buffer->cpu_notify);
1196 #endif
1198 put_online_cpus();
1199 mutex_init(&buffer->mutex);
1201 return buffer;
1203 fail_free_buffers:
1204 for_each_buffer_cpu(buffer, cpu) {
1205 if (buffer->buffers[cpu])
1206 rb_free_cpu_buffer(buffer->buffers[cpu]);
1208 kfree(buffer->buffers);
1210 fail_free_cpumask:
1211 free_cpumask_var(buffer->cpumask);
1212 put_online_cpus();
1214 fail_free_buffer:
1215 kfree(buffer);
1216 return NULL;
1218 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1221 * ring_buffer_free - free a ring buffer.
1222 * @buffer: the buffer to free.
1224 void
1225 ring_buffer_free(struct ring_buffer *buffer)
1227 int cpu;
1229 get_online_cpus();
1231 #ifdef CONFIG_HOTPLUG_CPU
1232 unregister_cpu_notifier(&buffer->cpu_notify);
1233 #endif
1235 for_each_buffer_cpu(buffer, cpu)
1236 rb_free_cpu_buffer(buffer->buffers[cpu]);
1238 put_online_cpus();
1240 kfree(buffer->buffers);
1241 free_cpumask_var(buffer->cpumask);
1243 kfree(buffer);
1245 EXPORT_SYMBOL_GPL(ring_buffer_free);
1247 void ring_buffer_set_clock(struct ring_buffer *buffer,
1248 u64 (*clock)(void))
1250 buffer->clock = clock;
1253 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1255 static void
1256 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
1258 struct buffer_page *bpage;
1259 struct list_head *p;
1260 unsigned i;
1262 spin_lock_irq(&cpu_buffer->reader_lock);
1263 rb_head_page_deactivate(cpu_buffer);
1265 for (i = 0; i < nr_pages; i++) {
1266 if (RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)))
1267 goto out;
1268 p = cpu_buffer->pages->next;
1269 bpage = list_entry(p, struct buffer_page, list);
1270 list_del_init(&bpage->list);
1271 free_buffer_page(bpage);
1273 if (RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)))
1274 goto out;
1276 rb_reset_cpu(cpu_buffer);
1277 rb_check_pages(cpu_buffer);
1279 out:
1280 spin_unlock_irq(&cpu_buffer->reader_lock);
1283 static void
1284 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
1285 struct list_head *pages, unsigned nr_pages)
1287 struct buffer_page *bpage;
1288 struct list_head *p;
1289 unsigned i;
1291 spin_lock_irq(&cpu_buffer->reader_lock);
1292 rb_head_page_deactivate(cpu_buffer);
1294 for (i = 0; i < nr_pages; i++) {
1295 if (RB_WARN_ON(cpu_buffer, list_empty(pages)))
1296 goto out;
1297 p = pages->next;
1298 bpage = list_entry(p, struct buffer_page, list);
1299 list_del_init(&bpage->list);
1300 list_add_tail(&bpage->list, cpu_buffer->pages);
1302 rb_reset_cpu(cpu_buffer);
1303 rb_check_pages(cpu_buffer);
1305 out:
1306 spin_unlock_irq(&cpu_buffer->reader_lock);
1310 * ring_buffer_resize - resize the ring buffer
1311 * @buffer: the buffer to resize.
1312 * @size: the new size.
1314 * Minimum size is 2 * BUF_PAGE_SIZE.
1316 * Returns -1 on failure.
1318 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size)
1320 struct ring_buffer_per_cpu *cpu_buffer;
1321 unsigned nr_pages, rm_pages, new_pages;
1322 struct buffer_page *bpage, *tmp;
1323 unsigned long buffer_size;
1324 LIST_HEAD(pages);
1325 int i, cpu;
1328 * Always succeed at resizing a non-existent buffer:
1330 if (!buffer)
1331 return size;
1333 size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1334 size *= BUF_PAGE_SIZE;
1335 buffer_size = buffer->pages * BUF_PAGE_SIZE;
1337 /* we need a minimum of two pages */
1338 if (size < BUF_PAGE_SIZE * 2)
1339 size = BUF_PAGE_SIZE * 2;
1341 if (size == buffer_size)
1342 return size;
1344 atomic_inc(&buffer->record_disabled);
1346 /* Make sure all writers are done with this buffer. */
1347 synchronize_sched();
1349 mutex_lock(&buffer->mutex);
1350 get_online_cpus();
1352 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1354 if (size < buffer_size) {
1356 /* easy case, just free pages */
1357 if (RB_WARN_ON(buffer, nr_pages >= buffer->pages))
1358 goto out_fail;
1360 rm_pages = buffer->pages - nr_pages;
1362 for_each_buffer_cpu(buffer, cpu) {
1363 cpu_buffer = buffer->buffers[cpu];
1364 rb_remove_pages(cpu_buffer, rm_pages);
1366 goto out;
1370 * This is a bit more difficult. We only want to add pages
1371 * when we can allocate enough for all CPUs. We do this
1372 * by allocating all the pages and storing them on a local
1373 * link list. If we succeed in our allocation, then we
1374 * add these pages to the cpu_buffers. Otherwise we just free
1375 * them all and return -ENOMEM;
1377 if (RB_WARN_ON(buffer, nr_pages <= buffer->pages))
1378 goto out_fail;
1380 new_pages = nr_pages - buffer->pages;
1382 for_each_buffer_cpu(buffer, cpu) {
1383 for (i = 0; i < new_pages; i++) {
1384 struct page *page;
1386 * __GFP_NORETRY flag makes sure that the allocation
1387 * fails gracefully without invoking oom-killer and
1388 * the system is not destabilized.
1390 bpage = kzalloc_node(ALIGN(sizeof(*bpage),
1391 cache_line_size()),
1392 GFP_KERNEL | __GFP_NORETRY,
1393 cpu_to_node(cpu));
1394 if (!bpage)
1395 goto free_pages;
1396 list_add(&bpage->list, &pages);
1397 page = alloc_pages_node(cpu_to_node(cpu),
1398 GFP_KERNEL | __GFP_NORETRY, 0);
1399 if (!page)
1400 goto free_pages;
1401 bpage->page = page_address(page);
1402 rb_init_page(bpage->page);
1406 for_each_buffer_cpu(buffer, cpu) {
1407 cpu_buffer = buffer->buffers[cpu];
1408 rb_insert_pages(cpu_buffer, &pages, new_pages);
1411 if (RB_WARN_ON(buffer, !list_empty(&pages)))
1412 goto out_fail;
1414 out:
1415 buffer->pages = nr_pages;
1416 put_online_cpus();
1417 mutex_unlock(&buffer->mutex);
1419 atomic_dec(&buffer->record_disabled);
1421 return size;
1423 free_pages:
1424 list_for_each_entry_safe(bpage, tmp, &pages, list) {
1425 list_del_init(&bpage->list);
1426 free_buffer_page(bpage);
1428 put_online_cpus();
1429 mutex_unlock(&buffer->mutex);
1430 atomic_dec(&buffer->record_disabled);
1431 return -ENOMEM;
1434 * Something went totally wrong, and we are too paranoid
1435 * to even clean up the mess.
1437 out_fail:
1438 put_online_cpus();
1439 mutex_unlock(&buffer->mutex);
1440 atomic_dec(&buffer->record_disabled);
1441 return -1;
1443 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1445 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1447 mutex_lock(&buffer->mutex);
1448 if (val)
1449 buffer->flags |= RB_FL_OVERWRITE;
1450 else
1451 buffer->flags &= ~RB_FL_OVERWRITE;
1452 mutex_unlock(&buffer->mutex);
1454 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1456 static inline void *
1457 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1459 return bpage->data + index;
1462 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1464 return bpage->page->data + index;
1467 static inline struct ring_buffer_event *
1468 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1470 return __rb_page_index(cpu_buffer->reader_page,
1471 cpu_buffer->reader_page->read);
1474 static inline struct ring_buffer_event *
1475 rb_iter_head_event(struct ring_buffer_iter *iter)
1477 return __rb_page_index(iter->head_page, iter->head);
1480 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1482 return local_read(&bpage->write) & RB_WRITE_MASK;
1485 static inline unsigned rb_page_commit(struct buffer_page *bpage)
1487 return local_read(&bpage->page->commit);
1490 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1492 return local_read(&bpage->entries) & RB_WRITE_MASK;
1495 /* Size is determined by what has been committed */
1496 static inline unsigned rb_page_size(struct buffer_page *bpage)
1498 return rb_page_commit(bpage);
1501 static inline unsigned
1502 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1504 return rb_page_commit(cpu_buffer->commit_page);
1507 static inline unsigned
1508 rb_event_index(struct ring_buffer_event *event)
1510 unsigned long addr = (unsigned long)event;
1512 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1515 static inline int
1516 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1517 struct ring_buffer_event *event)
1519 unsigned long addr = (unsigned long)event;
1520 unsigned long index;
1522 index = rb_event_index(event);
1523 addr &= PAGE_MASK;
1525 return cpu_buffer->commit_page->page == (void *)addr &&
1526 rb_commit_index(cpu_buffer) == index;
1529 static void
1530 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
1532 unsigned long max_count;
1535 * We only race with interrupts and NMIs on this CPU.
1536 * If we own the commit event, then we can commit
1537 * all others that interrupted us, since the interruptions
1538 * are in stack format (they finish before they come
1539 * back to us). This allows us to do a simple loop to
1540 * assign the commit to the tail.
1542 again:
1543 max_count = cpu_buffer->buffer->pages * 100;
1545 while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
1546 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1547 return;
1548 if (RB_WARN_ON(cpu_buffer,
1549 rb_is_reader_page(cpu_buffer->tail_page)))
1550 return;
1551 local_set(&cpu_buffer->commit_page->page->commit,
1552 rb_page_write(cpu_buffer->commit_page));
1553 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1554 cpu_buffer->write_stamp =
1555 cpu_buffer->commit_page->page->time_stamp;
1556 /* add barrier to keep gcc from optimizing too much */
1557 barrier();
1559 while (rb_commit_index(cpu_buffer) !=
1560 rb_page_write(cpu_buffer->commit_page)) {
1562 local_set(&cpu_buffer->commit_page->page->commit,
1563 rb_page_write(cpu_buffer->commit_page));
1564 RB_WARN_ON(cpu_buffer,
1565 local_read(&cpu_buffer->commit_page->page->commit) &
1566 ~RB_WRITE_MASK);
1567 barrier();
1570 /* again, keep gcc from optimizing */
1571 barrier();
1574 * If an interrupt came in just after the first while loop
1575 * and pushed the tail page forward, we will be left with
1576 * a dangling commit that will never go forward.
1578 if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1579 goto again;
1582 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1584 cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
1585 cpu_buffer->reader_page->read = 0;
1588 static void rb_inc_iter(struct ring_buffer_iter *iter)
1590 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1593 * The iterator could be on the reader page (it starts there).
1594 * But the head could have moved, since the reader was
1595 * found. Check for this case and assign the iterator
1596 * to the head page instead of next.
1598 if (iter->head_page == cpu_buffer->reader_page)
1599 iter->head_page = rb_set_head_page(cpu_buffer);
1600 else
1601 rb_inc_page(cpu_buffer, &iter->head_page);
1603 iter->read_stamp = iter->head_page->page->time_stamp;
1604 iter->head = 0;
1607 /* Slow path, do not inline */
1608 static noinline struct ring_buffer_event *
1609 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
1611 event->type_len = RINGBUF_TYPE_TIME_EXTEND;
1613 /* Not the first event on the page? */
1614 if (rb_event_index(event)) {
1615 event->time_delta = delta & TS_MASK;
1616 event->array[0] = delta >> TS_SHIFT;
1617 } else {
1618 /* nope, just zero it */
1619 event->time_delta = 0;
1620 event->array[0] = 0;
1623 return skip_time_extend(event);
1627 * ring_buffer_update_event - update event type and data
1628 * @event: the even to update
1629 * @type: the type of event
1630 * @length: the size of the event field in the ring buffer
1632 * Update the type and data fields of the event. The length
1633 * is the actual size that is written to the ring buffer,
1634 * and with this, we can determine what to place into the
1635 * data field.
1637 static void
1638 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
1639 struct ring_buffer_event *event, unsigned length,
1640 int add_timestamp, u64 delta)
1642 /* Only a commit updates the timestamp */
1643 if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
1644 delta = 0;
1647 * If we need to add a timestamp, then we
1648 * add it to the start of the resevered space.
1650 if (unlikely(add_timestamp)) {
1651 event = rb_add_time_stamp(event, delta);
1652 length -= RB_LEN_TIME_EXTEND;
1653 delta = 0;
1656 event->time_delta = delta;
1657 length -= RB_EVNT_HDR_SIZE;
1658 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
1659 event->type_len = 0;
1660 event->array[0] = length;
1661 } else
1662 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
1666 * rb_handle_head_page - writer hit the head page
1668 * Returns: +1 to retry page
1669 * 0 to continue
1670 * -1 on error
1672 static int
1673 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1674 struct buffer_page *tail_page,
1675 struct buffer_page *next_page)
1677 struct buffer_page *new_head;
1678 int entries;
1679 int type;
1680 int ret;
1682 entries = rb_page_entries(next_page);
1685 * The hard part is here. We need to move the head
1686 * forward, and protect against both readers on
1687 * other CPUs and writers coming in via interrupts.
1689 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1690 RB_PAGE_HEAD);
1693 * type can be one of four:
1694 * NORMAL - an interrupt already moved it for us
1695 * HEAD - we are the first to get here.
1696 * UPDATE - we are the interrupt interrupting
1697 * a current move.
1698 * MOVED - a reader on another CPU moved the next
1699 * pointer to its reader page. Give up
1700 * and try again.
1703 switch (type) {
1704 case RB_PAGE_HEAD:
1706 * We changed the head to UPDATE, thus
1707 * it is our responsibility to update
1708 * the counters.
1710 local_add(entries, &cpu_buffer->overrun);
1713 * The entries will be zeroed out when we move the
1714 * tail page.
1717 /* still more to do */
1718 break;
1720 case RB_PAGE_UPDATE:
1722 * This is an interrupt that interrupt the
1723 * previous update. Still more to do.
1725 break;
1726 case RB_PAGE_NORMAL:
1728 * An interrupt came in before the update
1729 * and processed this for us.
1730 * Nothing left to do.
1732 return 1;
1733 case RB_PAGE_MOVED:
1735 * The reader is on another CPU and just did
1736 * a swap with our next_page.
1737 * Try again.
1739 return 1;
1740 default:
1741 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
1742 return -1;
1746 * Now that we are here, the old head pointer is
1747 * set to UPDATE. This will keep the reader from
1748 * swapping the head page with the reader page.
1749 * The reader (on another CPU) will spin till
1750 * we are finished.
1752 * We just need to protect against interrupts
1753 * doing the job. We will set the next pointer
1754 * to HEAD. After that, we set the old pointer
1755 * to NORMAL, but only if it was HEAD before.
1756 * otherwise we are an interrupt, and only
1757 * want the outer most commit to reset it.
1759 new_head = next_page;
1760 rb_inc_page(cpu_buffer, &new_head);
1762 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
1763 RB_PAGE_NORMAL);
1766 * Valid returns are:
1767 * HEAD - an interrupt came in and already set it.
1768 * NORMAL - One of two things:
1769 * 1) We really set it.
1770 * 2) A bunch of interrupts came in and moved
1771 * the page forward again.
1773 switch (ret) {
1774 case RB_PAGE_HEAD:
1775 case RB_PAGE_NORMAL:
1776 /* OK */
1777 break;
1778 default:
1779 RB_WARN_ON(cpu_buffer, 1);
1780 return -1;
1784 * It is possible that an interrupt came in,
1785 * set the head up, then more interrupts came in
1786 * and moved it again. When we get back here,
1787 * the page would have been set to NORMAL but we
1788 * just set it back to HEAD.
1790 * How do you detect this? Well, if that happened
1791 * the tail page would have moved.
1793 if (ret == RB_PAGE_NORMAL) {
1795 * If the tail had moved passed next, then we need
1796 * to reset the pointer.
1798 if (cpu_buffer->tail_page != tail_page &&
1799 cpu_buffer->tail_page != next_page)
1800 rb_head_page_set_normal(cpu_buffer, new_head,
1801 next_page,
1802 RB_PAGE_HEAD);
1806 * If this was the outer most commit (the one that
1807 * changed the original pointer from HEAD to UPDATE),
1808 * then it is up to us to reset it to NORMAL.
1810 if (type == RB_PAGE_HEAD) {
1811 ret = rb_head_page_set_normal(cpu_buffer, next_page,
1812 tail_page,
1813 RB_PAGE_UPDATE);
1814 if (RB_WARN_ON(cpu_buffer,
1815 ret != RB_PAGE_UPDATE))
1816 return -1;
1819 return 0;
1822 static unsigned rb_calculate_event_length(unsigned length)
1824 struct ring_buffer_event event; /* Used only for sizeof array */
1826 /* zero length can cause confusions */
1827 if (!length)
1828 length = 1;
1830 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
1831 length += sizeof(event.array[0]);
1833 length += RB_EVNT_HDR_SIZE;
1834 length = ALIGN(length, RB_ARCH_ALIGNMENT);
1836 return length;
1839 static inline void
1840 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
1841 struct buffer_page *tail_page,
1842 unsigned long tail, unsigned long length)
1844 struct ring_buffer_event *event;
1847 * Only the event that crossed the page boundary
1848 * must fill the old tail_page with padding.
1850 if (tail >= BUF_PAGE_SIZE) {
1852 * If the page was filled, then we still need
1853 * to update the real_end. Reset it to zero
1854 * and the reader will ignore it.
1856 if (tail == BUF_PAGE_SIZE)
1857 tail_page->real_end = 0;
1859 local_sub(length, &tail_page->write);
1860 return;
1863 event = __rb_page_index(tail_page, tail);
1864 kmemcheck_annotate_bitfield(event, bitfield);
1867 * Save the original length to the meta data.
1868 * This will be used by the reader to add lost event
1869 * counter.
1871 tail_page->real_end = tail;
1874 * If this event is bigger than the minimum size, then
1875 * we need to be careful that we don't subtract the
1876 * write counter enough to allow another writer to slip
1877 * in on this page.
1878 * We put in a discarded commit instead, to make sure
1879 * that this space is not used again.
1881 * If we are less than the minimum size, we don't need to
1882 * worry about it.
1884 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
1885 /* No room for any events */
1887 /* Mark the rest of the page with padding */
1888 rb_event_set_padding(event);
1890 /* Set the write back to the previous setting */
1891 local_sub(length, &tail_page->write);
1892 return;
1895 /* Put in a discarded event */
1896 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
1897 event->type_len = RINGBUF_TYPE_PADDING;
1898 /* time delta must be non zero */
1899 event->time_delta = 1;
1901 /* Set write to end of buffer */
1902 length = (tail + length) - BUF_PAGE_SIZE;
1903 local_sub(length, &tail_page->write);
1907 * This is the slow path, force gcc not to inline it.
1909 static noinline struct ring_buffer_event *
1910 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
1911 unsigned long length, unsigned long tail,
1912 struct buffer_page *tail_page, u64 ts)
1914 struct buffer_page *commit_page = cpu_buffer->commit_page;
1915 struct ring_buffer *buffer = cpu_buffer->buffer;
1916 struct buffer_page *next_page;
1917 int ret;
1919 next_page = tail_page;
1921 rb_inc_page(cpu_buffer, &next_page);
1924 * If for some reason, we had an interrupt storm that made
1925 * it all the way around the buffer, bail, and warn
1926 * about it.
1928 if (unlikely(next_page == commit_page)) {
1929 local_inc(&cpu_buffer->commit_overrun);
1930 goto out_reset;
1934 * This is where the fun begins!
1936 * We are fighting against races between a reader that
1937 * could be on another CPU trying to swap its reader
1938 * page with the buffer head.
1940 * We are also fighting against interrupts coming in and
1941 * moving the head or tail on us as well.
1943 * If the next page is the head page then we have filled
1944 * the buffer, unless the commit page is still on the
1945 * reader page.
1947 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
1950 * If the commit is not on the reader page, then
1951 * move the header page.
1953 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
1955 * If we are not in overwrite mode,
1956 * this is easy, just stop here.
1958 if (!(buffer->flags & RB_FL_OVERWRITE))
1959 goto out_reset;
1961 ret = rb_handle_head_page(cpu_buffer,
1962 tail_page,
1963 next_page);
1964 if (ret < 0)
1965 goto out_reset;
1966 if (ret)
1967 goto out_again;
1968 } else {
1970 * We need to be careful here too. The
1971 * commit page could still be on the reader
1972 * page. We could have a small buffer, and
1973 * have filled up the buffer with events
1974 * from interrupts and such, and wrapped.
1976 * Note, if the tail page is also the on the
1977 * reader_page, we let it move out.
1979 if (unlikely((cpu_buffer->commit_page !=
1980 cpu_buffer->tail_page) &&
1981 (cpu_buffer->commit_page ==
1982 cpu_buffer->reader_page))) {
1983 local_inc(&cpu_buffer->commit_overrun);
1984 goto out_reset;
1989 ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
1990 if (ret) {
1992 * Nested commits always have zero deltas, so
1993 * just reread the time stamp
1995 ts = rb_time_stamp(buffer);
1996 next_page->page->time_stamp = ts;
1999 out_again:
2001 rb_reset_tail(cpu_buffer, tail_page, tail, length);
2003 /* fail and let the caller try again */
2004 return ERR_PTR(-EAGAIN);
2006 out_reset:
2007 /* reset write */
2008 rb_reset_tail(cpu_buffer, tail_page, tail, length);
2010 return NULL;
2013 static struct ring_buffer_event *
2014 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2015 unsigned long length, u64 ts,
2016 u64 delta, int add_timestamp)
2018 struct buffer_page *tail_page;
2019 struct ring_buffer_event *event;
2020 unsigned long tail, write;
2023 * If the time delta since the last event is too big to
2024 * hold in the time field of the event, then we append a
2025 * TIME EXTEND event ahead of the data event.
2027 if (unlikely(add_timestamp))
2028 length += RB_LEN_TIME_EXTEND;
2030 tail_page = cpu_buffer->tail_page;
2031 write = local_add_return(length, &tail_page->write);
2033 /* set write to only the index of the write */
2034 write &= RB_WRITE_MASK;
2035 tail = write - length;
2037 /* See if we shot pass the end of this buffer page */
2038 if (unlikely(write > BUF_PAGE_SIZE))
2039 return rb_move_tail(cpu_buffer, length, tail,
2040 tail_page, ts);
2042 /* We reserved something on the buffer */
2044 event = __rb_page_index(tail_page, tail);
2045 kmemcheck_annotate_bitfield(event, bitfield);
2046 rb_update_event(cpu_buffer, event, length, add_timestamp, delta);
2048 local_inc(&tail_page->entries);
2051 * If this is the first commit on the page, then update
2052 * its timestamp.
2054 if (!tail)
2055 tail_page->page->time_stamp = ts;
2057 return event;
2060 static inline int
2061 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2062 struct ring_buffer_event *event)
2064 unsigned long new_index, old_index;
2065 struct buffer_page *bpage;
2066 unsigned long index;
2067 unsigned long addr;
2069 new_index = rb_event_index(event);
2070 old_index = new_index + rb_event_ts_length(event);
2071 addr = (unsigned long)event;
2072 addr &= PAGE_MASK;
2074 bpage = cpu_buffer->tail_page;
2076 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2077 unsigned long write_mask =
2078 local_read(&bpage->write) & ~RB_WRITE_MASK;
2080 * This is on the tail page. It is possible that
2081 * a write could come in and move the tail page
2082 * and write to the next page. That is fine
2083 * because we just shorten what is on this page.
2085 old_index += write_mask;
2086 new_index += write_mask;
2087 index = local_cmpxchg(&bpage->write, old_index, new_index);
2088 if (index == old_index)
2089 return 1;
2092 /* could not discard */
2093 return 0;
2096 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2098 local_inc(&cpu_buffer->committing);
2099 local_inc(&cpu_buffer->commits);
2102 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2104 unsigned long commits;
2106 if (RB_WARN_ON(cpu_buffer,
2107 !local_read(&cpu_buffer->committing)))
2108 return;
2110 again:
2111 commits = local_read(&cpu_buffer->commits);
2112 /* synchronize with interrupts */
2113 barrier();
2114 if (local_read(&cpu_buffer->committing) == 1)
2115 rb_set_commit_to_write(cpu_buffer);
2117 local_dec(&cpu_buffer->committing);
2119 /* synchronize with interrupts */
2120 barrier();
2123 * Need to account for interrupts coming in between the
2124 * updating of the commit page and the clearing of the
2125 * committing counter.
2127 if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2128 !local_read(&cpu_buffer->committing)) {
2129 local_inc(&cpu_buffer->committing);
2130 goto again;
2134 static struct ring_buffer_event *
2135 rb_reserve_next_event(struct ring_buffer *buffer,
2136 struct ring_buffer_per_cpu *cpu_buffer,
2137 unsigned long length)
2139 struct ring_buffer_event *event;
2140 u64 ts, delta;
2141 int nr_loops = 0;
2142 int add_timestamp;
2143 u64 diff;
2145 rb_start_commit(cpu_buffer);
2147 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2149 * Due to the ability to swap a cpu buffer from a buffer
2150 * it is possible it was swapped before we committed.
2151 * (committing stops a swap). We check for it here and
2152 * if it happened, we have to fail the write.
2154 barrier();
2155 if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2156 local_dec(&cpu_buffer->committing);
2157 local_dec(&cpu_buffer->commits);
2158 return NULL;
2160 #endif
2162 length = rb_calculate_event_length(length);
2163 again:
2164 add_timestamp = 0;
2165 delta = 0;
2168 * We allow for interrupts to reenter here and do a trace.
2169 * If one does, it will cause this original code to loop
2170 * back here. Even with heavy interrupts happening, this
2171 * should only happen a few times in a row. If this happens
2172 * 1000 times in a row, there must be either an interrupt
2173 * storm or we have something buggy.
2174 * Bail!
2176 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2177 goto out_fail;
2179 ts = rb_time_stamp(cpu_buffer->buffer);
2180 diff = ts - cpu_buffer->write_stamp;
2182 /* make sure this diff is calculated here */
2183 barrier();
2185 /* Did the write stamp get updated already? */
2186 if (likely(ts >= cpu_buffer->write_stamp)) {
2187 delta = diff;
2188 if (unlikely(test_time_stamp(delta))) {
2189 int local_clock_stable = 1;
2190 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2191 local_clock_stable = sched_clock_stable;
2192 #endif
2193 WARN_ONCE(delta > (1ULL << 59),
2194 KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2195 (unsigned long long)delta,
2196 (unsigned long long)ts,
2197 (unsigned long long)cpu_buffer->write_stamp,
2198 local_clock_stable ? "" :
2199 "If you just came from a suspend/resume,\n"
2200 "please switch to the trace global clock:\n"
2201 " echo global > /sys/kernel/debug/tracing/trace_clock\n");
2202 add_timestamp = 1;
2206 event = __rb_reserve_next(cpu_buffer, length, ts,
2207 delta, add_timestamp);
2208 if (unlikely(PTR_ERR(event) == -EAGAIN))
2209 goto again;
2211 if (!event)
2212 goto out_fail;
2214 return event;
2216 out_fail:
2217 rb_end_commit(cpu_buffer);
2218 return NULL;
2221 #ifdef CONFIG_TRACING
2223 #define TRACE_RECURSIVE_DEPTH 16
2225 /* Keep this code out of the fast path cache */
2226 static noinline void trace_recursive_fail(void)
2228 /* Disable all tracing before we do anything else */
2229 tracing_off_permanent();
2231 printk_once(KERN_WARNING "Tracing recursion: depth[%ld]:"
2232 "HC[%lu]:SC[%lu]:NMI[%lu]\n",
2233 trace_recursion_buffer(),
2234 hardirq_count() >> HARDIRQ_SHIFT,
2235 softirq_count() >> SOFTIRQ_SHIFT,
2236 in_nmi());
2238 WARN_ON_ONCE(1);
2241 static inline int trace_recursive_lock(void)
2243 trace_recursion_inc();
2245 if (likely(trace_recursion_buffer() < TRACE_RECURSIVE_DEPTH))
2246 return 0;
2248 trace_recursive_fail();
2250 return -1;
2253 static inline void trace_recursive_unlock(void)
2255 WARN_ON_ONCE(!trace_recursion_buffer());
2257 trace_recursion_dec();
2260 #else
2262 #define trace_recursive_lock() (0)
2263 #define trace_recursive_unlock() do { } while (0)
2265 #endif
2268 * ring_buffer_lock_reserve - reserve a part of the buffer
2269 * @buffer: the ring buffer to reserve from
2270 * @length: the length of the data to reserve (excluding event header)
2272 * Returns a reseverd event on the ring buffer to copy directly to.
2273 * The user of this interface will need to get the body to write into
2274 * and can use the ring_buffer_event_data() interface.
2276 * The length is the length of the data needed, not the event length
2277 * which also includes the event header.
2279 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2280 * If NULL is returned, then nothing has been allocated or locked.
2282 struct ring_buffer_event *
2283 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2285 struct ring_buffer_per_cpu *cpu_buffer;
2286 struct ring_buffer_event *event;
2287 int cpu;
2289 if (ring_buffer_flags != RB_BUFFERS_ON)
2290 return NULL;
2292 /* If we are tracing schedule, we don't want to recurse */
2293 preempt_disable_notrace();
2295 if (atomic_read(&buffer->record_disabled))
2296 goto out_nocheck;
2298 if (trace_recursive_lock())
2299 goto out_nocheck;
2301 cpu = raw_smp_processor_id();
2303 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2304 goto out;
2306 cpu_buffer = buffer->buffers[cpu];
2308 if (atomic_read(&cpu_buffer->record_disabled))
2309 goto out;
2311 if (length > BUF_MAX_DATA_SIZE)
2312 goto out;
2314 event = rb_reserve_next_event(buffer, cpu_buffer, length);
2315 if (!event)
2316 goto out;
2318 return event;
2320 out:
2321 trace_recursive_unlock();
2323 out_nocheck:
2324 preempt_enable_notrace();
2325 return NULL;
2327 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2329 static void
2330 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2331 struct ring_buffer_event *event)
2333 u64 delta;
2336 * The event first in the commit queue updates the
2337 * time stamp.
2339 if (rb_event_is_commit(cpu_buffer, event)) {
2341 * A commit event that is first on a page
2342 * updates the write timestamp with the page stamp
2344 if (!rb_event_index(event))
2345 cpu_buffer->write_stamp =
2346 cpu_buffer->commit_page->page->time_stamp;
2347 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2348 delta = event->array[0];
2349 delta <<= TS_SHIFT;
2350 delta += event->time_delta;
2351 cpu_buffer->write_stamp += delta;
2352 } else
2353 cpu_buffer->write_stamp += event->time_delta;
2357 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2358 struct ring_buffer_event *event)
2360 local_inc(&cpu_buffer->entries);
2361 rb_update_write_stamp(cpu_buffer, event);
2362 rb_end_commit(cpu_buffer);
2366 * ring_buffer_unlock_commit - commit a reserved
2367 * @buffer: The buffer to commit to
2368 * @event: The event pointer to commit.
2370 * This commits the data to the ring buffer, and releases any locks held.
2372 * Must be paired with ring_buffer_lock_reserve.
2374 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2375 struct ring_buffer_event *event)
2377 struct ring_buffer_per_cpu *cpu_buffer;
2378 int cpu = raw_smp_processor_id();
2380 cpu_buffer = buffer->buffers[cpu];
2382 rb_commit(cpu_buffer, event);
2384 trace_recursive_unlock();
2386 preempt_enable_notrace();
2388 return 0;
2390 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2392 static inline void rb_event_discard(struct ring_buffer_event *event)
2394 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2395 event = skip_time_extend(event);
2397 /* array[0] holds the actual length for the discarded event */
2398 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2399 event->type_len = RINGBUF_TYPE_PADDING;
2400 /* time delta must be non zero */
2401 if (!event->time_delta)
2402 event->time_delta = 1;
2406 * Decrement the entries to the page that an event is on.
2407 * The event does not even need to exist, only the pointer
2408 * to the page it is on. This may only be called before the commit
2409 * takes place.
2411 static inline void
2412 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2413 struct ring_buffer_event *event)
2415 unsigned long addr = (unsigned long)event;
2416 struct buffer_page *bpage = cpu_buffer->commit_page;
2417 struct buffer_page *start;
2419 addr &= PAGE_MASK;
2421 /* Do the likely case first */
2422 if (likely(bpage->page == (void *)addr)) {
2423 local_dec(&bpage->entries);
2424 return;
2428 * Because the commit page may be on the reader page we
2429 * start with the next page and check the end loop there.
2431 rb_inc_page(cpu_buffer, &bpage);
2432 start = bpage;
2433 do {
2434 if (bpage->page == (void *)addr) {
2435 local_dec(&bpage->entries);
2436 return;
2438 rb_inc_page(cpu_buffer, &bpage);
2439 } while (bpage != start);
2441 /* commit not part of this buffer?? */
2442 RB_WARN_ON(cpu_buffer, 1);
2446 * ring_buffer_commit_discard - discard an event that has not been committed
2447 * @buffer: the ring buffer
2448 * @event: non committed event to discard
2450 * Sometimes an event that is in the ring buffer needs to be ignored.
2451 * This function lets the user discard an event in the ring buffer
2452 * and then that event will not be read later.
2454 * This function only works if it is called before the the item has been
2455 * committed. It will try to free the event from the ring buffer
2456 * if another event has not been added behind it.
2458 * If another event has been added behind it, it will set the event
2459 * up as discarded, and perform the commit.
2461 * If this function is called, do not call ring_buffer_unlock_commit on
2462 * the event.
2464 void ring_buffer_discard_commit(struct ring_buffer *buffer,
2465 struct ring_buffer_event *event)
2467 struct ring_buffer_per_cpu *cpu_buffer;
2468 int cpu;
2470 /* The event is discarded regardless */
2471 rb_event_discard(event);
2473 cpu = smp_processor_id();
2474 cpu_buffer = buffer->buffers[cpu];
2477 * This must only be called if the event has not been
2478 * committed yet. Thus we can assume that preemption
2479 * is still disabled.
2481 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2483 rb_decrement_entry(cpu_buffer, event);
2484 if (rb_try_to_discard(cpu_buffer, event))
2485 goto out;
2488 * The commit is still visible by the reader, so we
2489 * must still update the timestamp.
2491 rb_update_write_stamp(cpu_buffer, event);
2492 out:
2493 rb_end_commit(cpu_buffer);
2495 trace_recursive_unlock();
2497 preempt_enable_notrace();
2500 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2503 * ring_buffer_write - write data to the buffer without reserving
2504 * @buffer: The ring buffer to write to.
2505 * @length: The length of the data being written (excluding the event header)
2506 * @data: The data to write to the buffer.
2508 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2509 * one function. If you already have the data to write to the buffer, it
2510 * may be easier to simply call this function.
2512 * Note, like ring_buffer_lock_reserve, the length is the length of the data
2513 * and not the length of the event which would hold the header.
2515 int ring_buffer_write(struct ring_buffer *buffer,
2516 unsigned long length,
2517 void *data)
2519 struct ring_buffer_per_cpu *cpu_buffer;
2520 struct ring_buffer_event *event;
2521 void *body;
2522 int ret = -EBUSY;
2523 int cpu;
2525 if (ring_buffer_flags != RB_BUFFERS_ON)
2526 return -EBUSY;
2528 preempt_disable_notrace();
2530 if (atomic_read(&buffer->record_disabled))
2531 goto out;
2533 cpu = raw_smp_processor_id();
2535 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2536 goto out;
2538 cpu_buffer = buffer->buffers[cpu];
2540 if (atomic_read(&cpu_buffer->record_disabled))
2541 goto out;
2543 if (length > BUF_MAX_DATA_SIZE)
2544 goto out;
2546 event = rb_reserve_next_event(buffer, cpu_buffer, length);
2547 if (!event)
2548 goto out;
2550 body = rb_event_data(event);
2552 memcpy(body, data, length);
2554 rb_commit(cpu_buffer, event);
2556 ret = 0;
2557 out:
2558 preempt_enable_notrace();
2560 return ret;
2562 EXPORT_SYMBOL_GPL(ring_buffer_write);
2564 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
2566 struct buffer_page *reader = cpu_buffer->reader_page;
2567 struct buffer_page *head = rb_set_head_page(cpu_buffer);
2568 struct buffer_page *commit = cpu_buffer->commit_page;
2570 /* In case of error, head will be NULL */
2571 if (unlikely(!head))
2572 return 1;
2574 return reader->read == rb_page_commit(reader) &&
2575 (commit == reader ||
2576 (commit == head &&
2577 head->read == rb_page_commit(commit)));
2581 * ring_buffer_record_disable - stop all writes into the buffer
2582 * @buffer: The ring buffer to stop writes to.
2584 * This prevents all writes to the buffer. Any attempt to write
2585 * to the buffer after this will fail and return NULL.
2587 * The caller should call synchronize_sched() after this.
2589 void ring_buffer_record_disable(struct ring_buffer *buffer)
2591 atomic_inc(&buffer->record_disabled);
2593 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
2596 * ring_buffer_record_enable - enable writes to the buffer
2597 * @buffer: The ring buffer to enable writes
2599 * Note, multiple disables will need the same number of enables
2600 * to truly enable the writing (much like preempt_disable).
2602 void ring_buffer_record_enable(struct ring_buffer *buffer)
2604 atomic_dec(&buffer->record_disabled);
2606 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
2609 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
2610 * @buffer: The ring buffer to stop writes to.
2611 * @cpu: The CPU buffer to stop
2613 * This prevents all writes to the buffer. Any attempt to write
2614 * to the buffer after this will fail and return NULL.
2616 * The caller should call synchronize_sched() after this.
2618 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
2620 struct ring_buffer_per_cpu *cpu_buffer;
2622 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2623 return;
2625 cpu_buffer = buffer->buffers[cpu];
2626 atomic_inc(&cpu_buffer->record_disabled);
2628 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
2631 * ring_buffer_record_enable_cpu - enable writes to the buffer
2632 * @buffer: The ring buffer to enable writes
2633 * @cpu: The CPU to enable.
2635 * Note, multiple disables will need the same number of enables
2636 * to truly enable the writing (much like preempt_disable).
2638 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
2640 struct ring_buffer_per_cpu *cpu_buffer;
2642 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2643 return;
2645 cpu_buffer = buffer->buffers[cpu];
2646 atomic_dec(&cpu_buffer->record_disabled);
2648 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
2651 * The total entries in the ring buffer is the running counter
2652 * of entries entered into the ring buffer, minus the sum of
2653 * the entries read from the ring buffer and the number of
2654 * entries that were overwritten.
2656 static inline unsigned long
2657 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
2659 return local_read(&cpu_buffer->entries) -
2660 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
2664 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
2665 * @buffer: The ring buffer
2666 * @cpu: The per CPU buffer to get the entries from.
2668 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
2670 struct ring_buffer_per_cpu *cpu_buffer;
2672 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2673 return 0;
2675 cpu_buffer = buffer->buffers[cpu];
2677 return rb_num_of_entries(cpu_buffer);
2679 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
2682 * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
2683 * @buffer: The ring buffer
2684 * @cpu: The per CPU buffer to get the number of overruns from
2686 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
2688 struct ring_buffer_per_cpu *cpu_buffer;
2689 unsigned long ret;
2691 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2692 return 0;
2694 cpu_buffer = buffer->buffers[cpu];
2695 ret = local_read(&cpu_buffer->overrun);
2697 return ret;
2699 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
2702 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by commits
2703 * @buffer: The ring buffer
2704 * @cpu: The per CPU buffer to get the number of overruns from
2706 unsigned long
2707 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
2709 struct ring_buffer_per_cpu *cpu_buffer;
2710 unsigned long ret;
2712 if (!cpumask_test_cpu(cpu, buffer->cpumask))
2713 return 0;
2715 cpu_buffer = buffer->buffers[cpu];
2716 ret = local_read(&cpu_buffer->commit_overrun);
2718 return ret;
2720 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
2723 * ring_buffer_entries - get the number of entries in a buffer
2724 * @buffer: The ring buffer
2726 * Returns the total number of entries in the ring buffer
2727 * (all CPU entries)
2729 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
2731 struct ring_buffer_per_cpu *cpu_buffer;
2732 unsigned long entries = 0;
2733 int cpu;
2735 /* if you care about this being correct, lock the buffer */
2736 for_each_buffer_cpu(buffer, cpu) {
2737 cpu_buffer = buffer->buffers[cpu];
2738 entries += rb_num_of_entries(cpu_buffer);
2741 return entries;
2743 EXPORT_SYMBOL_GPL(ring_buffer_entries);
2746 * ring_buffer_overruns - get the number of overruns in buffer
2747 * @buffer: The ring buffer
2749 * Returns the total number of overruns in the ring buffer
2750 * (all CPU entries)
2752 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
2754 struct ring_buffer_per_cpu *cpu_buffer;
2755 unsigned long overruns = 0;
2756 int cpu;
2758 /* if you care about this being correct, lock the buffer */
2759 for_each_buffer_cpu(buffer, cpu) {
2760 cpu_buffer = buffer->buffers[cpu];
2761 overruns += local_read(&cpu_buffer->overrun);
2764 return overruns;
2766 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
2768 static void rb_iter_reset(struct ring_buffer_iter *iter)
2770 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2772 /* Iterator usage is expected to have record disabled */
2773 if (list_empty(&cpu_buffer->reader_page->list)) {
2774 iter->head_page = rb_set_head_page(cpu_buffer);
2775 if (unlikely(!iter->head_page))
2776 return;
2777 iter->head = iter->head_page->read;
2778 } else {
2779 iter->head_page = cpu_buffer->reader_page;
2780 iter->head = cpu_buffer->reader_page->read;
2782 if (iter->head)
2783 iter->read_stamp = cpu_buffer->read_stamp;
2784 else
2785 iter->read_stamp = iter->head_page->page->time_stamp;
2786 iter->cache_reader_page = cpu_buffer->reader_page;
2787 iter->cache_read = cpu_buffer->read;
2791 * ring_buffer_iter_reset - reset an iterator
2792 * @iter: The iterator to reset
2794 * Resets the iterator, so that it will start from the beginning
2795 * again.
2797 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
2799 struct ring_buffer_per_cpu *cpu_buffer;
2800 unsigned long flags;
2802 if (!iter)
2803 return;
2805 cpu_buffer = iter->cpu_buffer;
2807 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2808 rb_iter_reset(iter);
2809 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2811 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
2814 * ring_buffer_iter_empty - check if an iterator has no more to read
2815 * @iter: The iterator to check
2817 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
2819 struct ring_buffer_per_cpu *cpu_buffer;
2821 cpu_buffer = iter->cpu_buffer;
2823 return iter->head_page == cpu_buffer->commit_page &&
2824 iter->head == rb_commit_index(cpu_buffer);
2826 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
2828 static void
2829 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2830 struct ring_buffer_event *event)
2832 u64 delta;
2834 switch (event->type_len) {
2835 case RINGBUF_TYPE_PADDING:
2836 return;
2838 case RINGBUF_TYPE_TIME_EXTEND:
2839 delta = event->array[0];
2840 delta <<= TS_SHIFT;
2841 delta += event->time_delta;
2842 cpu_buffer->read_stamp += delta;
2843 return;
2845 case RINGBUF_TYPE_TIME_STAMP:
2846 /* FIXME: not implemented */
2847 return;
2849 case RINGBUF_TYPE_DATA:
2850 cpu_buffer->read_stamp += event->time_delta;
2851 return;
2853 default:
2854 BUG();
2856 return;
2859 static void
2860 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
2861 struct ring_buffer_event *event)
2863 u64 delta;
2865 switch (event->type_len) {
2866 case RINGBUF_TYPE_PADDING:
2867 return;
2869 case RINGBUF_TYPE_TIME_EXTEND:
2870 delta = event->array[0];
2871 delta <<= TS_SHIFT;
2872 delta += event->time_delta;
2873 iter->read_stamp += delta;
2874 return;
2876 case RINGBUF_TYPE_TIME_STAMP:
2877 /* FIXME: not implemented */
2878 return;
2880 case RINGBUF_TYPE_DATA:
2881 iter->read_stamp += event->time_delta;
2882 return;
2884 default:
2885 BUG();
2887 return;
2890 static struct buffer_page *
2891 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
2893 struct buffer_page *reader = NULL;
2894 unsigned long overwrite;
2895 unsigned long flags;
2896 int nr_loops = 0;
2897 int ret;
2899 local_irq_save(flags);
2900 arch_spin_lock(&cpu_buffer->lock);
2902 again:
2904 * This should normally only loop twice. But because the
2905 * start of the reader inserts an empty page, it causes
2906 * a case where we will loop three times. There should be no
2907 * reason to loop four times (that I know of).
2909 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
2910 reader = NULL;
2911 goto out;
2914 reader = cpu_buffer->reader_page;
2916 /* If there's more to read, return this page */
2917 if (cpu_buffer->reader_page->read < rb_page_size(reader))
2918 goto out;
2920 /* Never should we have an index greater than the size */
2921 if (RB_WARN_ON(cpu_buffer,
2922 cpu_buffer->reader_page->read > rb_page_size(reader)))
2923 goto out;
2925 /* check if we caught up to the tail */
2926 reader = NULL;
2927 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
2928 goto out;
2931 * Reset the reader page to size zero.
2933 local_set(&cpu_buffer->reader_page->write, 0);
2934 local_set(&cpu_buffer->reader_page->entries, 0);
2935 local_set(&cpu_buffer->reader_page->page->commit, 0);
2936 cpu_buffer->reader_page->real_end = 0;
2938 spin:
2940 * Splice the empty reader page into the list around the head.
2942 reader = rb_set_head_page(cpu_buffer);
2943 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
2944 cpu_buffer->reader_page->list.prev = reader->list.prev;
2947 * cpu_buffer->pages just needs to point to the buffer, it
2948 * has no specific buffer page to point to. Lets move it out
2949 * of our way so we don't accidentally swap it.
2951 cpu_buffer->pages = reader->list.prev;
2953 /* The reader page will be pointing to the new head */
2954 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
2957 * We want to make sure we read the overruns after we set up our
2958 * pointers to the next object. The writer side does a
2959 * cmpxchg to cross pages which acts as the mb on the writer
2960 * side. Note, the reader will constantly fail the swap
2961 * while the writer is updating the pointers, so this
2962 * guarantees that the overwrite recorded here is the one we
2963 * want to compare with the last_overrun.
2965 smp_mb();
2966 overwrite = local_read(&(cpu_buffer->overrun));
2969 * Here's the tricky part.
2971 * We need to move the pointer past the header page.
2972 * But we can only do that if a writer is not currently
2973 * moving it. The page before the header page has the
2974 * flag bit '1' set if it is pointing to the page we want.
2975 * but if the writer is in the process of moving it
2976 * than it will be '2' or already moved '0'.
2979 ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
2982 * If we did not convert it, then we must try again.
2984 if (!ret)
2985 goto spin;
2988 * Yeah! We succeeded in replacing the page.
2990 * Now make the new head point back to the reader page.
2992 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
2993 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
2995 /* Finally update the reader page to the new head */
2996 cpu_buffer->reader_page = reader;
2997 rb_reset_reader_page(cpu_buffer);
2999 if (overwrite != cpu_buffer->last_overrun) {
3000 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3001 cpu_buffer->last_overrun = overwrite;
3004 goto again;
3006 out:
3007 arch_spin_unlock(&cpu_buffer->lock);
3008 local_irq_restore(flags);
3010 return reader;
3013 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3015 struct ring_buffer_event *event;
3016 struct buffer_page *reader;
3017 unsigned length;
3019 reader = rb_get_reader_page(cpu_buffer);
3021 /* This function should not be called when buffer is empty */
3022 if (RB_WARN_ON(cpu_buffer, !reader))
3023 return;
3025 event = rb_reader_event(cpu_buffer);
3027 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3028 cpu_buffer->read++;
3030 rb_update_read_stamp(cpu_buffer, event);
3032 length = rb_event_length(event);
3033 cpu_buffer->reader_page->read += length;
3036 static void rb_advance_iter(struct ring_buffer_iter *iter)
3038 struct ring_buffer_per_cpu *cpu_buffer;
3039 struct ring_buffer_event *event;
3040 unsigned length;
3042 cpu_buffer = iter->cpu_buffer;
3045 * Check if we are at the end of the buffer.
3047 if (iter->head >= rb_page_size(iter->head_page)) {
3048 /* discarded commits can make the page empty */
3049 if (iter->head_page == cpu_buffer->commit_page)
3050 return;
3051 rb_inc_iter(iter);
3052 return;
3055 event = rb_iter_head_event(iter);
3057 length = rb_event_length(event);
3060 * This should not be called to advance the header if we are
3061 * at the tail of the buffer.
3063 if (RB_WARN_ON(cpu_buffer,
3064 (iter->head_page == cpu_buffer->commit_page) &&
3065 (iter->head + length > rb_commit_index(cpu_buffer))))
3066 return;
3068 rb_update_iter_read_stamp(iter, event);
3070 iter->head += length;
3072 /* check for end of page padding */
3073 if ((iter->head >= rb_page_size(iter->head_page)) &&
3074 (iter->head_page != cpu_buffer->commit_page))
3075 rb_advance_iter(iter);
3078 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3080 return cpu_buffer->lost_events;
3083 static struct ring_buffer_event *
3084 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3085 unsigned long *lost_events)
3087 struct ring_buffer_event *event;
3088 struct buffer_page *reader;
3089 int nr_loops = 0;
3091 again:
3093 * We repeat when a time extend is encountered.
3094 * Since the time extend is always attached to a data event,
3095 * we should never loop more than once.
3096 * (We never hit the following condition more than twice).
3098 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3099 return NULL;
3101 reader = rb_get_reader_page(cpu_buffer);
3102 if (!reader)
3103 return NULL;
3105 event = rb_reader_event(cpu_buffer);
3107 switch (event->type_len) {
3108 case RINGBUF_TYPE_PADDING:
3109 if (rb_null_event(event))
3110 RB_WARN_ON(cpu_buffer, 1);
3112 * Because the writer could be discarding every
3113 * event it creates (which would probably be bad)
3114 * if we were to go back to "again" then we may never
3115 * catch up, and will trigger the warn on, or lock
3116 * the box. Return the padding, and we will release
3117 * the current locks, and try again.
3119 return event;
3121 case RINGBUF_TYPE_TIME_EXTEND:
3122 /* Internal data, OK to advance */
3123 rb_advance_reader(cpu_buffer);
3124 goto again;
3126 case RINGBUF_TYPE_TIME_STAMP:
3127 /* FIXME: not implemented */
3128 rb_advance_reader(cpu_buffer);
3129 goto again;
3131 case RINGBUF_TYPE_DATA:
3132 if (ts) {
3133 *ts = cpu_buffer->read_stamp + event->time_delta;
3134 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3135 cpu_buffer->cpu, ts);
3137 if (lost_events)
3138 *lost_events = rb_lost_events(cpu_buffer);
3139 return event;
3141 default:
3142 BUG();
3145 return NULL;
3147 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3149 static struct ring_buffer_event *
3150 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3152 struct ring_buffer *buffer;
3153 struct ring_buffer_per_cpu *cpu_buffer;
3154 struct ring_buffer_event *event;
3155 int nr_loops = 0;
3157 cpu_buffer = iter->cpu_buffer;
3158 buffer = cpu_buffer->buffer;
3161 * Check if someone performed a consuming read to
3162 * the buffer. A consuming read invalidates the iterator
3163 * and we need to reset the iterator in this case.
3165 if (unlikely(iter->cache_read != cpu_buffer->read ||
3166 iter->cache_reader_page != cpu_buffer->reader_page))
3167 rb_iter_reset(iter);
3169 again:
3170 if (ring_buffer_iter_empty(iter))
3171 return NULL;
3174 * We repeat when a time extend is encountered.
3175 * Since the time extend is always attached to a data event,
3176 * we should never loop more than once.
3177 * (We never hit the following condition more than twice).
3179 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3180 return NULL;
3182 if (rb_per_cpu_empty(cpu_buffer))
3183 return NULL;
3185 if (iter->head >= local_read(&iter->head_page->page->commit)) {
3186 rb_inc_iter(iter);
3187 goto again;
3190 event = rb_iter_head_event(iter);
3192 switch (event->type_len) {
3193 case RINGBUF_TYPE_PADDING:
3194 if (rb_null_event(event)) {
3195 rb_inc_iter(iter);
3196 goto again;
3198 rb_advance_iter(iter);
3199 return event;
3201 case RINGBUF_TYPE_TIME_EXTEND:
3202 /* Internal data, OK to advance */
3203 rb_advance_iter(iter);
3204 goto again;
3206 case RINGBUF_TYPE_TIME_STAMP:
3207 /* FIXME: not implemented */
3208 rb_advance_iter(iter);
3209 goto again;
3211 case RINGBUF_TYPE_DATA:
3212 if (ts) {
3213 *ts = iter->read_stamp + event->time_delta;
3214 ring_buffer_normalize_time_stamp(buffer,
3215 cpu_buffer->cpu, ts);
3217 return event;
3219 default:
3220 BUG();
3223 return NULL;
3225 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3227 static inline int rb_ok_to_lock(void)
3230 * If an NMI die dumps out the content of the ring buffer
3231 * do not grab locks. We also permanently disable the ring
3232 * buffer too. A one time deal is all you get from reading
3233 * the ring buffer from an NMI.
3235 if (likely(!in_nmi()))
3236 return 1;
3238 tracing_off_permanent();
3239 return 0;
3243 * ring_buffer_peek - peek at the next event to be read
3244 * @buffer: The ring buffer to read
3245 * @cpu: The cpu to peak at
3246 * @ts: The timestamp counter of this event.
3247 * @lost_events: a variable to store if events were lost (may be NULL)
3249 * This will return the event that will be read next, but does
3250 * not consume the data.
3252 struct ring_buffer_event *
3253 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3254 unsigned long *lost_events)
3256 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3257 struct ring_buffer_event *event;
3258 unsigned long flags;
3259 int dolock;
3261 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3262 return NULL;
3264 dolock = rb_ok_to_lock();
3265 again:
3266 local_irq_save(flags);
3267 if (dolock)
3268 spin_lock(&cpu_buffer->reader_lock);
3269 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3270 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3271 rb_advance_reader(cpu_buffer);
3272 if (dolock)
3273 spin_unlock(&cpu_buffer->reader_lock);
3274 local_irq_restore(flags);
3276 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3277 goto again;
3279 return event;
3283 * ring_buffer_iter_peek - peek at the next event to be read
3284 * @iter: The ring buffer iterator
3285 * @ts: The timestamp counter of this event.
3287 * This will return the event that will be read next, but does
3288 * not increment the iterator.
3290 struct ring_buffer_event *
3291 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3293 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3294 struct ring_buffer_event *event;
3295 unsigned long flags;
3297 again:
3298 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3299 event = rb_iter_peek(iter, ts);
3300 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3302 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3303 goto again;
3305 return event;
3309 * ring_buffer_consume - return an event and consume it
3310 * @buffer: The ring buffer to get the next event from
3311 * @cpu: the cpu to read the buffer from
3312 * @ts: a variable to store the timestamp (may be NULL)
3313 * @lost_events: a variable to store if events were lost (may be NULL)
3315 * Returns the next event in the ring buffer, and that event is consumed.
3316 * Meaning, that sequential reads will keep returning a different event,
3317 * and eventually empty the ring buffer if the producer is slower.
3319 struct ring_buffer_event *
3320 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3321 unsigned long *lost_events)
3323 struct ring_buffer_per_cpu *cpu_buffer;
3324 struct ring_buffer_event *event = NULL;
3325 unsigned long flags;
3326 int dolock;
3328 dolock = rb_ok_to_lock();
3330 again:
3331 /* might be called in atomic */
3332 preempt_disable();
3334 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3335 goto out;
3337 cpu_buffer = buffer->buffers[cpu];
3338 local_irq_save(flags);
3339 if (dolock)
3340 spin_lock(&cpu_buffer->reader_lock);
3342 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3343 if (event) {
3344 cpu_buffer->lost_events = 0;
3345 rb_advance_reader(cpu_buffer);
3348 if (dolock)
3349 spin_unlock(&cpu_buffer->reader_lock);
3350 local_irq_restore(flags);
3352 out:
3353 preempt_enable();
3355 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3356 goto again;
3358 return event;
3360 EXPORT_SYMBOL_GPL(ring_buffer_consume);
3363 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
3364 * @buffer: The ring buffer to read from
3365 * @cpu: The cpu buffer to iterate over
3367 * This performs the initial preparations necessary to iterate
3368 * through the buffer. Memory is allocated, buffer recording
3369 * is disabled, and the iterator pointer is returned to the caller.
3371 * Disabling buffer recordng prevents the reading from being
3372 * corrupted. This is not a consuming read, so a producer is not
3373 * expected.
3375 * After a sequence of ring_buffer_read_prepare calls, the user is
3376 * expected to make at least one call to ring_buffer_prepare_sync.
3377 * Afterwards, ring_buffer_read_start is invoked to get things going
3378 * for real.
3380 * This overall must be paired with ring_buffer_finish.
3382 struct ring_buffer_iter *
3383 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
3385 struct ring_buffer_per_cpu *cpu_buffer;
3386 struct ring_buffer_iter *iter;
3388 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3389 return NULL;
3391 iter = kmalloc(sizeof(*iter), GFP_KERNEL);
3392 if (!iter)
3393 return NULL;
3395 cpu_buffer = buffer->buffers[cpu];
3397 iter->cpu_buffer = cpu_buffer;
3399 atomic_inc(&cpu_buffer->record_disabled);
3401 return iter;
3403 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
3406 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
3408 * All previously invoked ring_buffer_read_prepare calls to prepare
3409 * iterators will be synchronized. Afterwards, read_buffer_read_start
3410 * calls on those iterators are allowed.
3412 void
3413 ring_buffer_read_prepare_sync(void)
3415 synchronize_sched();
3417 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
3420 * ring_buffer_read_start - start a non consuming read of the buffer
3421 * @iter: The iterator returned by ring_buffer_read_prepare
3423 * This finalizes the startup of an iteration through the buffer.
3424 * The iterator comes from a call to ring_buffer_read_prepare and
3425 * an intervening ring_buffer_read_prepare_sync must have been
3426 * performed.
3428 * Must be paired with ring_buffer_finish.
3430 void
3431 ring_buffer_read_start(struct ring_buffer_iter *iter)
3433 struct ring_buffer_per_cpu *cpu_buffer;
3434 unsigned long flags;
3436 if (!iter)
3437 return;
3439 cpu_buffer = iter->cpu_buffer;
3441 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3442 arch_spin_lock(&cpu_buffer->lock);
3443 rb_iter_reset(iter);
3444 arch_spin_unlock(&cpu_buffer->lock);
3445 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3447 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
3450 * ring_buffer_finish - finish reading the iterator of the buffer
3451 * @iter: The iterator retrieved by ring_buffer_start
3453 * This re-enables the recording to the buffer, and frees the
3454 * iterator.
3456 void
3457 ring_buffer_read_finish(struct ring_buffer_iter *iter)
3459 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3461 atomic_dec(&cpu_buffer->record_disabled);
3462 kfree(iter);
3464 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
3467 * ring_buffer_read - read the next item in the ring buffer by the iterator
3468 * @iter: The ring buffer iterator
3469 * @ts: The time stamp of the event read.
3471 * This reads the next event in the ring buffer and increments the iterator.
3473 struct ring_buffer_event *
3474 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
3476 struct ring_buffer_event *event;
3477 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3478 unsigned long flags;
3480 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3481 again:
3482 event = rb_iter_peek(iter, ts);
3483 if (!event)
3484 goto out;
3486 if (event->type_len == RINGBUF_TYPE_PADDING)
3487 goto again;
3489 rb_advance_iter(iter);
3490 out:
3491 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3493 return event;
3495 EXPORT_SYMBOL_GPL(ring_buffer_read);
3498 * ring_buffer_size - return the size of the ring buffer (in bytes)
3499 * @buffer: The ring buffer.
3501 unsigned long ring_buffer_size(struct ring_buffer *buffer)
3503 return BUF_PAGE_SIZE * buffer->pages;
3505 EXPORT_SYMBOL_GPL(ring_buffer_size);
3507 static void
3508 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
3510 rb_head_page_deactivate(cpu_buffer);
3512 cpu_buffer->head_page
3513 = list_entry(cpu_buffer->pages, struct buffer_page, list);
3514 local_set(&cpu_buffer->head_page->write, 0);
3515 local_set(&cpu_buffer->head_page->entries, 0);
3516 local_set(&cpu_buffer->head_page->page->commit, 0);
3518 cpu_buffer->head_page->read = 0;
3520 cpu_buffer->tail_page = cpu_buffer->head_page;
3521 cpu_buffer->commit_page = cpu_buffer->head_page;
3523 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
3524 local_set(&cpu_buffer->reader_page->write, 0);
3525 local_set(&cpu_buffer->reader_page->entries, 0);
3526 local_set(&cpu_buffer->reader_page->page->commit, 0);
3527 cpu_buffer->reader_page->read = 0;
3529 local_set(&cpu_buffer->commit_overrun, 0);
3530 local_set(&cpu_buffer->overrun, 0);
3531 local_set(&cpu_buffer->entries, 0);
3532 local_set(&cpu_buffer->committing, 0);
3533 local_set(&cpu_buffer->commits, 0);
3534 cpu_buffer->read = 0;
3536 cpu_buffer->write_stamp = 0;
3537 cpu_buffer->read_stamp = 0;
3539 cpu_buffer->lost_events = 0;
3540 cpu_buffer->last_overrun = 0;
3542 rb_head_page_activate(cpu_buffer);
3546 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
3547 * @buffer: The ring buffer to reset a per cpu buffer of
3548 * @cpu: The CPU buffer to be reset
3550 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
3552 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3553 unsigned long flags;
3555 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3556 return;
3558 atomic_inc(&cpu_buffer->record_disabled);
3560 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3562 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
3563 goto out;
3565 arch_spin_lock(&cpu_buffer->lock);
3567 rb_reset_cpu(cpu_buffer);
3569 arch_spin_unlock(&cpu_buffer->lock);
3571 out:
3572 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3574 atomic_dec(&cpu_buffer->record_disabled);
3576 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
3579 * ring_buffer_reset - reset a ring buffer
3580 * @buffer: The ring buffer to reset all cpu buffers
3582 void ring_buffer_reset(struct ring_buffer *buffer)
3584 int cpu;
3586 for_each_buffer_cpu(buffer, cpu)
3587 ring_buffer_reset_cpu(buffer, cpu);
3589 EXPORT_SYMBOL_GPL(ring_buffer_reset);
3592 * rind_buffer_empty - is the ring buffer empty?
3593 * @buffer: The ring buffer to test
3595 int ring_buffer_empty(struct ring_buffer *buffer)
3597 struct ring_buffer_per_cpu *cpu_buffer;
3598 unsigned long flags;
3599 int dolock;
3600 int cpu;
3601 int ret;
3603 dolock = rb_ok_to_lock();
3605 /* yes this is racy, but if you don't like the race, lock the buffer */
3606 for_each_buffer_cpu(buffer, cpu) {
3607 cpu_buffer = buffer->buffers[cpu];
3608 local_irq_save(flags);
3609 if (dolock)
3610 spin_lock(&cpu_buffer->reader_lock);
3611 ret = rb_per_cpu_empty(cpu_buffer);
3612 if (dolock)
3613 spin_unlock(&cpu_buffer->reader_lock);
3614 local_irq_restore(flags);
3616 if (!ret)
3617 return 0;
3620 return 1;
3622 EXPORT_SYMBOL_GPL(ring_buffer_empty);
3625 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
3626 * @buffer: The ring buffer
3627 * @cpu: The CPU buffer to test
3629 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
3631 struct ring_buffer_per_cpu *cpu_buffer;
3632 unsigned long flags;
3633 int dolock;
3634 int ret;
3636 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3637 return 1;
3639 dolock = rb_ok_to_lock();
3641 cpu_buffer = buffer->buffers[cpu];
3642 local_irq_save(flags);
3643 if (dolock)
3644 spin_lock(&cpu_buffer->reader_lock);
3645 ret = rb_per_cpu_empty(cpu_buffer);
3646 if (dolock)
3647 spin_unlock(&cpu_buffer->reader_lock);
3648 local_irq_restore(flags);
3650 return ret;
3652 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
3654 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
3656 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
3657 * @buffer_a: One buffer to swap with
3658 * @buffer_b: The other buffer to swap with
3660 * This function is useful for tracers that want to take a "snapshot"
3661 * of a CPU buffer and has another back up buffer lying around.
3662 * it is expected that the tracer handles the cpu buffer not being
3663 * used at the moment.
3665 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
3666 struct ring_buffer *buffer_b, int cpu)
3668 struct ring_buffer_per_cpu *cpu_buffer_a;
3669 struct ring_buffer_per_cpu *cpu_buffer_b;
3670 int ret = -EINVAL;
3672 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
3673 !cpumask_test_cpu(cpu, buffer_b->cpumask))
3674 goto out;
3676 /* At least make sure the two buffers are somewhat the same */
3677 if (buffer_a->pages != buffer_b->pages)
3678 goto out;
3680 ret = -EAGAIN;
3682 if (ring_buffer_flags != RB_BUFFERS_ON)
3683 goto out;
3685 if (atomic_read(&buffer_a->record_disabled))
3686 goto out;
3688 if (atomic_read(&buffer_b->record_disabled))
3689 goto out;
3691 cpu_buffer_a = buffer_a->buffers[cpu];
3692 cpu_buffer_b = buffer_b->buffers[cpu];
3694 if (atomic_read(&cpu_buffer_a->record_disabled))
3695 goto out;
3697 if (atomic_read(&cpu_buffer_b->record_disabled))
3698 goto out;
3701 * We can't do a synchronize_sched here because this
3702 * function can be called in atomic context.
3703 * Normally this will be called from the same CPU as cpu.
3704 * If not it's up to the caller to protect this.
3706 atomic_inc(&cpu_buffer_a->record_disabled);
3707 atomic_inc(&cpu_buffer_b->record_disabled);
3709 ret = -EBUSY;
3710 if (local_read(&cpu_buffer_a->committing))
3711 goto out_dec;
3712 if (local_read(&cpu_buffer_b->committing))
3713 goto out_dec;
3715 buffer_a->buffers[cpu] = cpu_buffer_b;
3716 buffer_b->buffers[cpu] = cpu_buffer_a;
3718 cpu_buffer_b->buffer = buffer_a;
3719 cpu_buffer_a->buffer = buffer_b;
3721 ret = 0;
3723 out_dec:
3724 atomic_dec(&cpu_buffer_a->record_disabled);
3725 atomic_dec(&cpu_buffer_b->record_disabled);
3726 out:
3727 return ret;
3729 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
3730 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
3733 * ring_buffer_alloc_read_page - allocate a page to read from buffer
3734 * @buffer: the buffer to allocate for.
3736 * This function is used in conjunction with ring_buffer_read_page.
3737 * When reading a full page from the ring buffer, these functions
3738 * can be used to speed up the process. The calling function should
3739 * allocate a few pages first with this function. Then when it
3740 * needs to get pages from the ring buffer, it passes the result
3741 * of this function into ring_buffer_read_page, which will swap
3742 * the page that was allocated, with the read page of the buffer.
3744 * Returns:
3745 * The page allocated, or NULL on error.
3747 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
3749 struct buffer_data_page *bpage;
3750 struct page *page;
3752 page = alloc_pages_node(cpu_to_node(cpu),
3753 GFP_KERNEL | __GFP_NORETRY, 0);
3754 if (!page)
3755 return NULL;
3757 bpage = page_address(page);
3759 rb_init_page(bpage);
3761 return bpage;
3763 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
3766 * ring_buffer_free_read_page - free an allocated read page
3767 * @buffer: the buffer the page was allocate for
3768 * @data: the page to free
3770 * Free a page allocated from ring_buffer_alloc_read_page.
3772 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
3774 free_page((unsigned long)data);
3776 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
3779 * ring_buffer_read_page - extract a page from the ring buffer
3780 * @buffer: buffer to extract from
3781 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
3782 * @len: amount to extract
3783 * @cpu: the cpu of the buffer to extract
3784 * @full: should the extraction only happen when the page is full.
3786 * This function will pull out a page from the ring buffer and consume it.
3787 * @data_page must be the address of the variable that was returned
3788 * from ring_buffer_alloc_read_page. This is because the page might be used
3789 * to swap with a page in the ring buffer.
3791 * for example:
3792 * rpage = ring_buffer_alloc_read_page(buffer);
3793 * if (!rpage)
3794 * return error;
3795 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
3796 * if (ret >= 0)
3797 * process_page(rpage, ret);
3799 * When @full is set, the function will not return true unless
3800 * the writer is off the reader page.
3802 * Note: it is up to the calling functions to handle sleeps and wakeups.
3803 * The ring buffer can be used anywhere in the kernel and can not
3804 * blindly call wake_up. The layer that uses the ring buffer must be
3805 * responsible for that.
3807 * Returns:
3808 * >=0 if data has been transferred, returns the offset of consumed data.
3809 * <0 if no data has been transferred.
3811 int ring_buffer_read_page(struct ring_buffer *buffer,
3812 void **data_page, size_t len, int cpu, int full)
3814 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3815 struct ring_buffer_event *event;
3816 struct buffer_data_page *bpage;
3817 struct buffer_page *reader;
3818 unsigned long missed_events;
3819 unsigned long flags;
3820 unsigned int commit;
3821 unsigned int read;
3822 u64 save_timestamp;
3823 int ret = -1;
3825 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3826 goto out;
3829 * If len is not big enough to hold the page header, then
3830 * we can not copy anything.
3832 if (len <= BUF_PAGE_HDR_SIZE)
3833 goto out;
3835 len -= BUF_PAGE_HDR_SIZE;
3837 if (!data_page)
3838 goto out;
3840 bpage = *data_page;
3841 if (!bpage)
3842 goto out;
3844 spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3846 reader = rb_get_reader_page(cpu_buffer);
3847 if (!reader)
3848 goto out_unlock;
3850 event = rb_reader_event(cpu_buffer);
3852 read = reader->read;
3853 commit = rb_page_commit(reader);
3855 /* Check if any events were dropped */
3856 missed_events = cpu_buffer->lost_events;
3859 * If this page has been partially read or
3860 * if len is not big enough to read the rest of the page or
3861 * a writer is still on the page, then
3862 * we must copy the data from the page to the buffer.
3863 * Otherwise, we can simply swap the page with the one passed in.
3865 if (read || (len < (commit - read)) ||
3866 cpu_buffer->reader_page == cpu_buffer->commit_page) {
3867 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
3868 unsigned int rpos = read;
3869 unsigned int pos = 0;
3870 unsigned int size;
3872 if (full)
3873 goto out_unlock;
3875 if (len > (commit - read))
3876 len = (commit - read);
3878 /* Always keep the time extend and data together */
3879 size = rb_event_ts_length(event);
3881 if (len < size)
3882 goto out_unlock;
3884 /* save the current timestamp, since the user will need it */
3885 save_timestamp = cpu_buffer->read_stamp;
3887 /* Need to copy one event at a time */
3888 do {
3889 /* We need the size of one event, because
3890 * rb_advance_reader only advances by one event,
3891 * whereas rb_event_ts_length may include the size of
3892 * one or two events.
3893 * We have already ensured there's enough space if this
3894 * is a time extend. */
3895 size = rb_event_length(event);
3896 memcpy(bpage->data + pos, rpage->data + rpos, size);
3898 len -= size;
3900 rb_advance_reader(cpu_buffer);
3901 rpos = reader->read;
3902 pos += size;
3904 if (rpos >= commit)
3905 break;
3907 event = rb_reader_event(cpu_buffer);
3908 /* Always keep the time extend and data together */
3909 size = rb_event_ts_length(event);
3910 } while (len >= size);
3912 /* update bpage */
3913 local_set(&bpage->commit, pos);
3914 bpage->time_stamp = save_timestamp;
3916 /* we copied everything to the beginning */
3917 read = 0;
3918 } else {
3919 /* update the entry counter */
3920 cpu_buffer->read += rb_page_entries(reader);
3922 /* swap the pages */
3923 rb_init_page(bpage);
3924 bpage = reader->page;
3925 reader->page = *data_page;
3926 local_set(&reader->write, 0);
3927 local_set(&reader->entries, 0);
3928 reader->read = 0;
3929 *data_page = bpage;
3932 * Use the real_end for the data size,
3933 * This gives us a chance to store the lost events
3934 * on the page.
3936 if (reader->real_end)
3937 local_set(&bpage->commit, reader->real_end);
3939 ret = read;
3941 cpu_buffer->lost_events = 0;
3943 commit = local_read(&bpage->commit);
3945 * Set a flag in the commit field if we lost events
3947 if (missed_events) {
3948 /* If there is room at the end of the page to save the
3949 * missed events, then record it there.
3951 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
3952 memcpy(&bpage->data[commit], &missed_events,
3953 sizeof(missed_events));
3954 local_add(RB_MISSED_STORED, &bpage->commit);
3955 commit += sizeof(missed_events);
3957 local_add(RB_MISSED_EVENTS, &bpage->commit);
3961 * This page may be off to user land. Zero it out here.
3963 if (commit < BUF_PAGE_SIZE)
3964 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
3966 out_unlock:
3967 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3969 out:
3970 return ret;
3972 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
3974 #ifdef CONFIG_TRACING
3975 static ssize_t
3976 rb_simple_read(struct file *filp, char __user *ubuf,
3977 size_t cnt, loff_t *ppos)
3979 unsigned long *p = filp->private_data;
3980 char buf[64];
3981 int r;
3983 if (test_bit(RB_BUFFERS_DISABLED_BIT, p))
3984 r = sprintf(buf, "permanently disabled\n");
3985 else
3986 r = sprintf(buf, "%d\n", test_bit(RB_BUFFERS_ON_BIT, p));
3988 return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
3991 static ssize_t
3992 rb_simple_write(struct file *filp, const char __user *ubuf,
3993 size_t cnt, loff_t *ppos)
3995 unsigned long *p = filp->private_data;
3996 unsigned long val;
3997 int ret;
3999 ret = kstrtoul_from_user(ubuf, cnt, 10, &val);
4000 if (ret)
4001 return ret;
4003 if (val)
4004 set_bit(RB_BUFFERS_ON_BIT, p);
4005 else
4006 clear_bit(RB_BUFFERS_ON_BIT, p);
4008 (*ppos)++;
4010 return cnt;
4013 static const struct file_operations rb_simple_fops = {
4014 .open = tracing_open_generic,
4015 .read = rb_simple_read,
4016 .write = rb_simple_write,
4017 .llseek = default_llseek,
4021 static __init int rb_init_debugfs(void)
4023 struct dentry *d_tracer;
4025 d_tracer = tracing_init_dentry();
4027 trace_create_file("tracing_on", 0644, d_tracer,
4028 &ring_buffer_flags, &rb_simple_fops);
4030 return 0;
4033 fs_initcall(rb_init_debugfs);
4034 #endif
4036 #ifdef CONFIG_HOTPLUG_CPU
4037 static int rb_cpu_notify(struct notifier_block *self,
4038 unsigned long action, void *hcpu)
4040 struct ring_buffer *buffer =
4041 container_of(self, struct ring_buffer, cpu_notify);
4042 long cpu = (long)hcpu;
4044 switch (action) {
4045 case CPU_UP_PREPARE:
4046 case CPU_UP_PREPARE_FROZEN:
4047 if (cpumask_test_cpu(cpu, buffer->cpumask))
4048 return NOTIFY_OK;
4050 buffer->buffers[cpu] =
4051 rb_allocate_cpu_buffer(buffer, cpu);
4052 if (!buffer->buffers[cpu]) {
4053 WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4054 cpu);
4055 return NOTIFY_OK;
4057 smp_wmb();
4058 cpumask_set_cpu(cpu, buffer->cpumask);
4059 break;
4060 case CPU_DOWN_PREPARE:
4061 case CPU_DOWN_PREPARE_FROZEN:
4063 * Do nothing.
4064 * If we were to free the buffer, then the user would
4065 * lose any trace that was in the buffer.
4067 break;
4068 default:
4069 break;
4071 return NOTIFY_OK;
4073 #endif