Merge tag 'tytso-for-linus-20111214' of git://git.kernel.org/pub/scm/linux/kernel...
[zen-stable.git] / mm / mlock.c
blob4f4f53bdc65de30d11c637b2bc745aa1333a16bd
1 /*
2 * linux/mm/mlock.c
4 * (C) Copyright 1995 Linus Torvalds
5 * (C) Copyright 2002 Christoph Hellwig
6 */
8 #include <linux/capability.h>
9 #include <linux/mman.h>
10 #include <linux/mm.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/syscalls.h>
16 #include <linux/sched.h>
17 #include <linux/export.h>
18 #include <linux/rmap.h>
19 #include <linux/mmzone.h>
20 #include <linux/hugetlb.h>
22 #include "internal.h"
24 int can_do_mlock(void)
26 if (capable(CAP_IPC_LOCK))
27 return 1;
28 if (rlimit(RLIMIT_MEMLOCK) != 0)
29 return 1;
30 return 0;
32 EXPORT_SYMBOL(can_do_mlock);
35 * Mlocked pages are marked with PageMlocked() flag for efficient testing
36 * in vmscan and, possibly, the fault path; and to support semi-accurate
37 * statistics.
39 * An mlocked page [PageMlocked(page)] is unevictable. As such, it will
40 * be placed on the LRU "unevictable" list, rather than the [in]active lists.
41 * The unevictable list is an LRU sibling list to the [in]active lists.
42 * PageUnevictable is set to indicate the unevictable state.
44 * When lazy mlocking via vmscan, it is important to ensure that the
45 * vma's VM_LOCKED status is not concurrently being modified, otherwise we
46 * may have mlocked a page that is being munlocked. So lazy mlock must take
47 * the mmap_sem for read, and verify that the vma really is locked
48 * (see mm/rmap.c).
52 * LRU accounting for clear_page_mlock()
54 void __clear_page_mlock(struct page *page)
56 VM_BUG_ON(!PageLocked(page));
58 if (!page->mapping) { /* truncated ? */
59 return;
62 dec_zone_page_state(page, NR_MLOCK);
63 count_vm_event(UNEVICTABLE_PGCLEARED);
64 if (!isolate_lru_page(page)) {
65 putback_lru_page(page);
66 } else {
68 * We lost the race. the page already moved to evictable list.
70 if (PageUnevictable(page))
71 count_vm_event(UNEVICTABLE_PGSTRANDED);
76 * Mark page as mlocked if not already.
77 * If page on LRU, isolate and putback to move to unevictable list.
79 void mlock_vma_page(struct page *page)
81 BUG_ON(!PageLocked(page));
83 if (!TestSetPageMlocked(page)) {
84 inc_zone_page_state(page, NR_MLOCK);
85 count_vm_event(UNEVICTABLE_PGMLOCKED);
86 if (!isolate_lru_page(page))
87 putback_lru_page(page);
91 /**
92 * munlock_vma_page - munlock a vma page
93 * @page - page to be unlocked
95 * called from munlock()/munmap() path with page supposedly on the LRU.
96 * When we munlock a page, because the vma where we found the page is being
97 * munlock()ed or munmap()ed, we want to check whether other vmas hold the
98 * page locked so that we can leave it on the unevictable lru list and not
99 * bother vmscan with it. However, to walk the page's rmap list in
100 * try_to_munlock() we must isolate the page from the LRU. If some other
101 * task has removed the page from the LRU, we won't be able to do that.
102 * So we clear the PageMlocked as we might not get another chance. If we
103 * can't isolate the page, we leave it for putback_lru_page() and vmscan
104 * [page_referenced()/try_to_unmap()] to deal with.
106 void munlock_vma_page(struct page *page)
108 BUG_ON(!PageLocked(page));
110 if (TestClearPageMlocked(page)) {
111 dec_zone_page_state(page, NR_MLOCK);
112 if (!isolate_lru_page(page)) {
113 int ret = SWAP_AGAIN;
116 * Optimization: if the page was mapped just once,
117 * that's our mapping and we don't need to check all the
118 * other vmas.
120 if (page_mapcount(page) > 1)
121 ret = try_to_munlock(page);
123 * did try_to_unlock() succeed or punt?
125 if (ret != SWAP_MLOCK)
126 count_vm_event(UNEVICTABLE_PGMUNLOCKED);
128 putback_lru_page(page);
129 } else {
131 * Some other task has removed the page from the LRU.
132 * putback_lru_page() will take care of removing the
133 * page from the unevictable list, if necessary.
134 * vmscan [page_referenced()] will move the page back
135 * to the unevictable list if some other vma has it
136 * mlocked.
138 if (PageUnevictable(page))
139 count_vm_event(UNEVICTABLE_PGSTRANDED);
140 else
141 count_vm_event(UNEVICTABLE_PGMUNLOCKED);
147 * __mlock_vma_pages_range() - mlock a range of pages in the vma.
148 * @vma: target vma
149 * @start: start address
150 * @end: end address
152 * This takes care of making the pages present too.
154 * return 0 on success, negative error code on error.
156 * vma->vm_mm->mmap_sem must be held for at least read.
158 static long __mlock_vma_pages_range(struct vm_area_struct *vma,
159 unsigned long start, unsigned long end,
160 int *nonblocking)
162 struct mm_struct *mm = vma->vm_mm;
163 unsigned long addr = start;
164 int nr_pages = (end - start) / PAGE_SIZE;
165 int gup_flags;
167 VM_BUG_ON(start & ~PAGE_MASK);
168 VM_BUG_ON(end & ~PAGE_MASK);
169 VM_BUG_ON(start < vma->vm_start);
170 VM_BUG_ON(end > vma->vm_end);
171 VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
173 gup_flags = FOLL_TOUCH | FOLL_MLOCK;
175 * We want to touch writable mappings with a write fault in order
176 * to break COW, except for shared mappings because these don't COW
177 * and we would not want to dirty them for nothing.
179 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
180 gup_flags |= FOLL_WRITE;
183 * We want mlock to succeed for regions that have any permissions
184 * other than PROT_NONE.
186 if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC))
187 gup_flags |= FOLL_FORCE;
189 return __get_user_pages(current, mm, addr, nr_pages, gup_flags,
190 NULL, NULL, nonblocking);
194 * convert get_user_pages() return value to posix mlock() error
196 static int __mlock_posix_error_return(long retval)
198 if (retval == -EFAULT)
199 retval = -ENOMEM;
200 else if (retval == -ENOMEM)
201 retval = -EAGAIN;
202 return retval;
206 * mlock_vma_pages_range() - mlock pages in specified vma range.
207 * @vma - the vma containing the specfied address range
208 * @start - starting address in @vma to mlock
209 * @end - end address [+1] in @vma to mlock
211 * For mmap()/mremap()/expansion of mlocked vma.
213 * return 0 on success for "normal" vmas.
215 * return number of pages [> 0] to be removed from locked_vm on success
216 * of "special" vmas.
218 long mlock_vma_pages_range(struct vm_area_struct *vma,
219 unsigned long start, unsigned long end)
221 int nr_pages = (end - start) / PAGE_SIZE;
222 BUG_ON(!(vma->vm_flags & VM_LOCKED));
225 * filter unlockable vmas
227 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
228 goto no_mlock;
230 if (!((vma->vm_flags & (VM_DONTEXPAND | VM_RESERVED)) ||
231 is_vm_hugetlb_page(vma) ||
232 vma == get_gate_vma(current->mm))) {
234 __mlock_vma_pages_range(vma, start, end, NULL);
236 /* Hide errors from mmap() and other callers */
237 return 0;
241 * User mapped kernel pages or huge pages:
242 * make these pages present to populate the ptes, but
243 * fall thru' to reset VM_LOCKED--no need to unlock, and
244 * return nr_pages so these don't get counted against task's
245 * locked limit. huge pages are already counted against
246 * locked vm limit.
248 make_pages_present(start, end);
250 no_mlock:
251 vma->vm_flags &= ~VM_LOCKED; /* and don't come back! */
252 return nr_pages; /* error or pages NOT mlocked */
256 * munlock_vma_pages_range() - munlock all pages in the vma range.'
257 * @vma - vma containing range to be munlock()ed.
258 * @start - start address in @vma of the range
259 * @end - end of range in @vma.
261 * For mremap(), munmap() and exit().
263 * Called with @vma VM_LOCKED.
265 * Returns with VM_LOCKED cleared. Callers must be prepared to
266 * deal with this.
268 * We don't save and restore VM_LOCKED here because pages are
269 * still on lru. In unmap path, pages might be scanned by reclaim
270 * and re-mlocked by try_to_{munlock|unmap} before we unmap and
271 * free them. This will result in freeing mlocked pages.
273 void munlock_vma_pages_range(struct vm_area_struct *vma,
274 unsigned long start, unsigned long end)
276 unsigned long addr;
278 lru_add_drain();
279 vma->vm_flags &= ~VM_LOCKED;
281 for (addr = start; addr < end; addr += PAGE_SIZE) {
282 struct page *page;
284 * Although FOLL_DUMP is intended for get_dump_page(),
285 * it just so happens that its special treatment of the
286 * ZERO_PAGE (returning an error instead of doing get_page)
287 * suits munlock very well (and if somehow an abnormal page
288 * has sneaked into the range, we won't oops here: great).
290 page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
291 if (page && !IS_ERR(page)) {
292 lock_page(page);
294 * Like in __mlock_vma_pages_range(),
295 * because we lock page here and migration is
296 * blocked by the elevated reference, we need
297 * only check for file-cache page truncation.
299 if (page->mapping)
300 munlock_vma_page(page);
301 unlock_page(page);
302 put_page(page);
304 cond_resched();
309 * mlock_fixup - handle mlock[all]/munlock[all] requests.
311 * Filters out "special" vmas -- VM_LOCKED never gets set for these, and
312 * munlock is a no-op. However, for some special vmas, we go ahead and
313 * populate the ptes via make_pages_present().
315 * For vmas that pass the filters, merge/split as appropriate.
317 static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev,
318 unsigned long start, unsigned long end, vm_flags_t newflags)
320 struct mm_struct *mm = vma->vm_mm;
321 pgoff_t pgoff;
322 int nr_pages;
323 int ret = 0;
324 int lock = !!(newflags & VM_LOCKED);
326 if (newflags == vma->vm_flags || (vma->vm_flags & VM_SPECIAL) ||
327 is_vm_hugetlb_page(vma) || vma == get_gate_vma(current->mm))
328 goto out; /* don't set VM_LOCKED, don't count */
330 pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
331 *prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma,
332 vma->vm_file, pgoff, vma_policy(vma));
333 if (*prev) {
334 vma = *prev;
335 goto success;
338 if (start != vma->vm_start) {
339 ret = split_vma(mm, vma, start, 1);
340 if (ret)
341 goto out;
344 if (end != vma->vm_end) {
345 ret = split_vma(mm, vma, end, 0);
346 if (ret)
347 goto out;
350 success:
352 * Keep track of amount of locked VM.
354 nr_pages = (end - start) >> PAGE_SHIFT;
355 if (!lock)
356 nr_pages = -nr_pages;
357 mm->locked_vm += nr_pages;
360 * vm_flags is protected by the mmap_sem held in write mode.
361 * It's okay if try_to_unmap_one unmaps a page just after we
362 * set VM_LOCKED, __mlock_vma_pages_range will bring it back.
365 if (lock)
366 vma->vm_flags = newflags;
367 else
368 munlock_vma_pages_range(vma, start, end);
370 out:
371 *prev = vma;
372 return ret;
375 static int do_mlock(unsigned long start, size_t len, int on)
377 unsigned long nstart, end, tmp;
378 struct vm_area_struct * vma, * prev;
379 int error;
381 VM_BUG_ON(start & ~PAGE_MASK);
382 VM_BUG_ON(len != PAGE_ALIGN(len));
383 end = start + len;
384 if (end < start)
385 return -EINVAL;
386 if (end == start)
387 return 0;
388 vma = find_vma_prev(current->mm, start, &prev);
389 if (!vma || vma->vm_start > start)
390 return -ENOMEM;
392 if (start > vma->vm_start)
393 prev = vma;
395 for (nstart = start ; ; ) {
396 vm_flags_t newflags;
398 /* Here we know that vma->vm_start <= nstart < vma->vm_end. */
400 newflags = vma->vm_flags | VM_LOCKED;
401 if (!on)
402 newflags &= ~VM_LOCKED;
404 tmp = vma->vm_end;
405 if (tmp > end)
406 tmp = end;
407 error = mlock_fixup(vma, &prev, nstart, tmp, newflags);
408 if (error)
409 break;
410 nstart = tmp;
411 if (nstart < prev->vm_end)
412 nstart = prev->vm_end;
413 if (nstart >= end)
414 break;
416 vma = prev->vm_next;
417 if (!vma || vma->vm_start != nstart) {
418 error = -ENOMEM;
419 break;
422 return error;
425 static int do_mlock_pages(unsigned long start, size_t len, int ignore_errors)
427 struct mm_struct *mm = current->mm;
428 unsigned long end, nstart, nend;
429 struct vm_area_struct *vma = NULL;
430 int locked = 0;
431 int ret = 0;
433 VM_BUG_ON(start & ~PAGE_MASK);
434 VM_BUG_ON(len != PAGE_ALIGN(len));
435 end = start + len;
437 for (nstart = start; nstart < end; nstart = nend) {
439 * We want to fault in pages for [nstart; end) address range.
440 * Find first corresponding VMA.
442 if (!locked) {
443 locked = 1;
444 down_read(&mm->mmap_sem);
445 vma = find_vma(mm, nstart);
446 } else if (nstart >= vma->vm_end)
447 vma = vma->vm_next;
448 if (!vma || vma->vm_start >= end)
449 break;
451 * Set [nstart; nend) to intersection of desired address
452 * range with the first VMA. Also, skip undesirable VMA types.
454 nend = min(end, vma->vm_end);
455 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
456 continue;
457 if (nstart < vma->vm_start)
458 nstart = vma->vm_start;
460 * Now fault in a range of pages. __mlock_vma_pages_range()
461 * double checks the vma flags, so that it won't mlock pages
462 * if the vma was already munlocked.
464 ret = __mlock_vma_pages_range(vma, nstart, nend, &locked);
465 if (ret < 0) {
466 if (ignore_errors) {
467 ret = 0;
468 continue; /* continue at next VMA */
470 ret = __mlock_posix_error_return(ret);
471 break;
473 nend = nstart + ret * PAGE_SIZE;
474 ret = 0;
476 if (locked)
477 up_read(&mm->mmap_sem);
478 return ret; /* 0 or negative error code */
481 SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len)
483 unsigned long locked;
484 unsigned long lock_limit;
485 int error = -ENOMEM;
487 if (!can_do_mlock())
488 return -EPERM;
490 lru_add_drain_all(); /* flush pagevec */
492 down_write(&current->mm->mmap_sem);
493 len = PAGE_ALIGN(len + (start & ~PAGE_MASK));
494 start &= PAGE_MASK;
496 locked = len >> PAGE_SHIFT;
497 locked += current->mm->locked_vm;
499 lock_limit = rlimit(RLIMIT_MEMLOCK);
500 lock_limit >>= PAGE_SHIFT;
502 /* check against resource limits */
503 if ((locked <= lock_limit) || capable(CAP_IPC_LOCK))
504 error = do_mlock(start, len, 1);
505 up_write(&current->mm->mmap_sem);
506 if (!error)
507 error = do_mlock_pages(start, len, 0);
508 return error;
511 SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len)
513 int ret;
515 down_write(&current->mm->mmap_sem);
516 len = PAGE_ALIGN(len + (start & ~PAGE_MASK));
517 start &= PAGE_MASK;
518 ret = do_mlock(start, len, 0);
519 up_write(&current->mm->mmap_sem);
520 return ret;
523 static int do_mlockall(int flags)
525 struct vm_area_struct * vma, * prev = NULL;
526 unsigned int def_flags = 0;
528 if (flags & MCL_FUTURE)
529 def_flags = VM_LOCKED;
530 current->mm->def_flags = def_flags;
531 if (flags == MCL_FUTURE)
532 goto out;
534 for (vma = current->mm->mmap; vma ; vma = prev->vm_next) {
535 vm_flags_t newflags;
537 newflags = vma->vm_flags | VM_LOCKED;
538 if (!(flags & MCL_CURRENT))
539 newflags &= ~VM_LOCKED;
541 /* Ignore errors */
542 mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags);
544 out:
545 return 0;
548 SYSCALL_DEFINE1(mlockall, int, flags)
550 unsigned long lock_limit;
551 int ret = -EINVAL;
553 if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE)))
554 goto out;
556 ret = -EPERM;
557 if (!can_do_mlock())
558 goto out;
560 if (flags & MCL_CURRENT)
561 lru_add_drain_all(); /* flush pagevec */
563 down_write(&current->mm->mmap_sem);
565 lock_limit = rlimit(RLIMIT_MEMLOCK);
566 lock_limit >>= PAGE_SHIFT;
568 ret = -ENOMEM;
569 if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) ||
570 capable(CAP_IPC_LOCK))
571 ret = do_mlockall(flags);
572 up_write(&current->mm->mmap_sem);
573 if (!ret && (flags & MCL_CURRENT)) {
574 /* Ignore errors */
575 do_mlock_pages(0, TASK_SIZE, 1);
577 out:
578 return ret;
581 SYSCALL_DEFINE0(munlockall)
583 int ret;
585 down_write(&current->mm->mmap_sem);
586 ret = do_mlockall(0);
587 up_write(&current->mm->mmap_sem);
588 return ret;
592 * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB
593 * shm segments) get accounted against the user_struct instead.
595 static DEFINE_SPINLOCK(shmlock_user_lock);
597 int user_shm_lock(size_t size, struct user_struct *user)
599 unsigned long lock_limit, locked;
600 int allowed = 0;
602 locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
603 lock_limit = rlimit(RLIMIT_MEMLOCK);
604 if (lock_limit == RLIM_INFINITY)
605 allowed = 1;
606 lock_limit >>= PAGE_SHIFT;
607 spin_lock(&shmlock_user_lock);
608 if (!allowed &&
609 locked + user->locked_shm > lock_limit && !capable(CAP_IPC_LOCK))
610 goto out;
611 get_uid(user);
612 user->locked_shm += locked;
613 allowed = 1;
614 out:
615 spin_unlock(&shmlock_user_lock);
616 return allowed;
619 void user_shm_unlock(size_t size, struct user_struct *user)
621 spin_lock(&shmlock_user_lock);
622 user->locked_shm -= (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
623 spin_unlock(&shmlock_user_lock);
624 free_uid(user);