Avoid reading past buffer when calling GETACL
[zen-stable.git] / drivers / net / ethernet / icplus / ipg.c
blob075451d0207d8d8e6c7af10272a6df61785aa540
1 /*
2 * ipg.c: Device Driver for the IP1000 Gigabit Ethernet Adapter
4 * Copyright (C) 2003, 2007 IC Plus Corp
6 * Original Author:
8 * Craig Rich
9 * Sundance Technology, Inc.
10 * www.sundanceti.com
11 * craig_rich@sundanceti.com
13 * Current Maintainer:
15 * Sorbica Shieh.
16 * http://www.icplus.com.tw
17 * sorbica@icplus.com.tw
19 * Jesse Huang
20 * http://www.icplus.com.tw
21 * jesse@icplus.com.tw
24 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
26 #include <linux/crc32.h>
27 #include <linux/ethtool.h>
28 #include <linux/interrupt.h>
29 #include <linux/gfp.h>
30 #include <linux/mii.h>
31 #include <linux/mutex.h>
33 #include <asm/div64.h>
35 #define IPG_RX_RING_BYTES (sizeof(struct ipg_rx) * IPG_RFDLIST_LENGTH)
36 #define IPG_TX_RING_BYTES (sizeof(struct ipg_tx) * IPG_TFDLIST_LENGTH)
37 #define IPG_RESET_MASK \
38 (IPG_AC_GLOBAL_RESET | IPG_AC_RX_RESET | IPG_AC_TX_RESET | \
39 IPG_AC_DMA | IPG_AC_FIFO | IPG_AC_NETWORK | IPG_AC_HOST | \
40 IPG_AC_AUTO_INIT)
42 #define ipg_w32(val32, reg) iowrite32((val32), ioaddr + (reg))
43 #define ipg_w16(val16, reg) iowrite16((val16), ioaddr + (reg))
44 #define ipg_w8(val8, reg) iowrite8((val8), ioaddr + (reg))
46 #define ipg_r32(reg) ioread32(ioaddr + (reg))
47 #define ipg_r16(reg) ioread16(ioaddr + (reg))
48 #define ipg_r8(reg) ioread8(ioaddr + (reg))
50 enum {
51 netdev_io_size = 128
54 #include "ipg.h"
55 #define DRV_NAME "ipg"
57 MODULE_AUTHOR("IC Plus Corp. 2003");
58 MODULE_DESCRIPTION("IC Plus IP1000 Gigabit Ethernet Adapter Linux Driver");
59 MODULE_LICENSE("GPL");
62 * Defaults
64 #define IPG_MAX_RXFRAME_SIZE 0x0600
65 #define IPG_RXFRAG_SIZE 0x0600
66 #define IPG_RXSUPPORT_SIZE 0x0600
67 #define IPG_IS_JUMBO false
70 * Variable record -- index by leading revision/length
71 * Revision/Length(=N*4), Address1, Data1, Address2, Data2,...,AddressN,DataN
73 static const unsigned short DefaultPhyParam[] = {
74 /* 11/12/03 IP1000A v1-3 rev=0x40 */
75 /*--------------------------------------------------------------------------
76 (0x4000|(15*4)), 31, 0x0001, 27, 0x01e0, 31, 0x0002, 22, 0x85bd, 24, 0xfff2,
77 27, 0x0c10, 28, 0x0c10, 29, 0x2c10, 31, 0x0003, 23, 0x92f6,
78 31, 0x0000, 23, 0x003d, 30, 0x00de, 20, 0x20e7, 9, 0x0700,
79 --------------------------------------------------------------------------*/
80 /* 12/17/03 IP1000A v1-4 rev=0x40 */
81 (0x4000 | (07 * 4)), 31, 0x0001, 27, 0x01e0, 31, 0x0002, 27, 0xeb8e, 31,
82 0x0000,
83 30, 0x005e, 9, 0x0700,
84 /* 01/09/04 IP1000A v1-5 rev=0x41 */
85 (0x4100 | (07 * 4)), 31, 0x0001, 27, 0x01e0, 31, 0x0002, 27, 0xeb8e, 31,
86 0x0000,
87 30, 0x005e, 9, 0x0700,
88 0x0000
91 static const char * const ipg_brand_name[] = {
92 "IC PLUS IP1000 1000/100/10 based NIC",
93 "Sundance Technology ST2021 based NIC",
94 "Tamarack Microelectronics TC9020/9021 based NIC",
95 "D-Link NIC IP1000A"
98 static DEFINE_PCI_DEVICE_TABLE(ipg_pci_tbl) = {
99 { PCI_VDEVICE(SUNDANCE, 0x1023), 0 },
100 { PCI_VDEVICE(SUNDANCE, 0x2021), 1 },
101 { PCI_VDEVICE(DLINK, 0x9021), 2 },
102 { PCI_VDEVICE(DLINK, 0x4020), 3 },
103 { 0, }
106 MODULE_DEVICE_TABLE(pci, ipg_pci_tbl);
108 static inline void __iomem *ipg_ioaddr(struct net_device *dev)
110 struct ipg_nic_private *sp = netdev_priv(dev);
111 return sp->ioaddr;
114 #ifdef IPG_DEBUG
115 static void ipg_dump_rfdlist(struct net_device *dev)
117 struct ipg_nic_private *sp = netdev_priv(dev);
118 void __iomem *ioaddr = sp->ioaddr;
119 unsigned int i;
120 u32 offset;
122 IPG_DEBUG_MSG("_dump_rfdlist\n");
124 netdev_info(dev, "rx_current = %02x\n", sp->rx_current);
125 netdev_info(dev, "rx_dirty = %02x\n", sp->rx_dirty);
126 netdev_info(dev, "RFDList start address = %016lx\n",
127 (unsigned long)sp->rxd_map);
128 netdev_info(dev, "RFDListPtr register = %08x%08x\n",
129 ipg_r32(IPG_RFDLISTPTR1), ipg_r32(IPG_RFDLISTPTR0));
131 for (i = 0; i < IPG_RFDLIST_LENGTH; i++) {
132 offset = (u32) &sp->rxd[i].next_desc - (u32) sp->rxd;
133 netdev_info(dev, "%02x %04x RFDNextPtr = %016lx\n",
134 i, offset, (unsigned long)sp->rxd[i].next_desc);
135 offset = (u32) &sp->rxd[i].rfs - (u32) sp->rxd;
136 netdev_info(dev, "%02x %04x RFS = %016lx\n",
137 i, offset, (unsigned long)sp->rxd[i].rfs);
138 offset = (u32) &sp->rxd[i].frag_info - (u32) sp->rxd;
139 netdev_info(dev, "%02x %04x frag_info = %016lx\n",
140 i, offset, (unsigned long)sp->rxd[i].frag_info);
144 static void ipg_dump_tfdlist(struct net_device *dev)
146 struct ipg_nic_private *sp = netdev_priv(dev);
147 void __iomem *ioaddr = sp->ioaddr;
148 unsigned int i;
149 u32 offset;
151 IPG_DEBUG_MSG("_dump_tfdlist\n");
153 netdev_info(dev, "tx_current = %02x\n", sp->tx_current);
154 netdev_info(dev, "tx_dirty = %02x\n", sp->tx_dirty);
155 netdev_info(dev, "TFDList start address = %016lx\n",
156 (unsigned long) sp->txd_map);
157 netdev_info(dev, "TFDListPtr register = %08x%08x\n",
158 ipg_r32(IPG_TFDLISTPTR1), ipg_r32(IPG_TFDLISTPTR0));
160 for (i = 0; i < IPG_TFDLIST_LENGTH; i++) {
161 offset = (u32) &sp->txd[i].next_desc - (u32) sp->txd;
162 netdev_info(dev, "%02x %04x TFDNextPtr = %016lx\n",
163 i, offset, (unsigned long)sp->txd[i].next_desc);
165 offset = (u32) &sp->txd[i].tfc - (u32) sp->txd;
166 netdev_info(dev, "%02x %04x TFC = %016lx\n",
167 i, offset, (unsigned long) sp->txd[i].tfc);
168 offset = (u32) &sp->txd[i].frag_info - (u32) sp->txd;
169 netdev_info(dev, "%02x %04x frag_info = %016lx\n",
170 i, offset, (unsigned long) sp->txd[i].frag_info);
173 #endif
175 static void ipg_write_phy_ctl(void __iomem *ioaddr, u8 data)
177 ipg_w8(IPG_PC_RSVD_MASK & data, PHY_CTRL);
178 ndelay(IPG_PC_PHYCTRLWAIT_NS);
181 static void ipg_drive_phy_ctl_low_high(void __iomem *ioaddr, u8 data)
183 ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_LO | data);
184 ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_HI | data);
187 static void send_three_state(void __iomem *ioaddr, u8 phyctrlpolarity)
189 phyctrlpolarity |= (IPG_PC_MGMTDATA & 0) | IPG_PC_MGMTDIR;
191 ipg_drive_phy_ctl_low_high(ioaddr, phyctrlpolarity);
194 static void send_end(void __iomem *ioaddr, u8 phyctrlpolarity)
196 ipg_w8((IPG_PC_MGMTCLK_LO | (IPG_PC_MGMTDATA & 0) | IPG_PC_MGMTDIR |
197 phyctrlpolarity) & IPG_PC_RSVD_MASK, PHY_CTRL);
200 static u16 read_phy_bit(void __iomem *ioaddr, u8 phyctrlpolarity)
202 u16 bit_data;
204 ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_LO | phyctrlpolarity);
206 bit_data = ((ipg_r8(PHY_CTRL) & IPG_PC_MGMTDATA) >> 1) & 1;
208 ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_HI | phyctrlpolarity);
210 return bit_data;
214 * Read a register from the Physical Layer device located
215 * on the IPG NIC, using the IPG PHYCTRL register.
217 static int mdio_read(struct net_device *dev, int phy_id, int phy_reg)
219 void __iomem *ioaddr = ipg_ioaddr(dev);
221 * The GMII mangement frame structure for a read is as follows:
223 * |Preamble|st|op|phyad|regad|ta| data |idle|
224 * |< 32 1s>|01|10|AAAAA|RRRRR|z0|DDDDDDDDDDDDDDDD|z |
226 * <32 1s> = 32 consecutive logic 1 values
227 * A = bit of Physical Layer device address (MSB first)
228 * R = bit of register address (MSB first)
229 * z = High impedance state
230 * D = bit of read data (MSB first)
232 * Transmission order is 'Preamble' field first, bits transmitted
233 * left to right (first to last).
235 struct {
236 u32 field;
237 unsigned int len;
238 } p[] = {
239 { GMII_PREAMBLE, 32 }, /* Preamble */
240 { GMII_ST, 2 }, /* ST */
241 { GMII_READ, 2 }, /* OP */
242 { phy_id, 5 }, /* PHYAD */
243 { phy_reg, 5 }, /* REGAD */
244 { 0x0000, 2 }, /* TA */
245 { 0x0000, 16 }, /* DATA */
246 { 0x0000, 1 } /* IDLE */
248 unsigned int i, j;
249 u8 polarity, data;
251 polarity = ipg_r8(PHY_CTRL);
252 polarity &= (IPG_PC_DUPLEX_POLARITY | IPG_PC_LINK_POLARITY);
254 /* Create the Preamble, ST, OP, PHYAD, and REGAD field. */
255 for (j = 0; j < 5; j++) {
256 for (i = 0; i < p[j].len; i++) {
257 /* For each variable length field, the MSB must be
258 * transmitted first. Rotate through the field bits,
259 * starting with the MSB, and move each bit into the
260 * the 1st (2^1) bit position (this is the bit position
261 * corresponding to the MgmtData bit of the PhyCtrl
262 * register for the IPG).
264 * Example: ST = 01;
266 * First write a '0' to bit 1 of the PhyCtrl
267 * register, then write a '1' to bit 1 of the
268 * PhyCtrl register.
270 * To do this, right shift the MSB of ST by the value:
271 * [field length - 1 - #ST bits already written]
272 * then left shift this result by 1.
274 data = (p[j].field >> (p[j].len - 1 - i)) << 1;
275 data &= IPG_PC_MGMTDATA;
276 data |= polarity | IPG_PC_MGMTDIR;
278 ipg_drive_phy_ctl_low_high(ioaddr, data);
282 send_three_state(ioaddr, polarity);
284 read_phy_bit(ioaddr, polarity);
287 * For a read cycle, the bits for the next two fields (TA and
288 * DATA) are driven by the PHY (the IPG reads these bits).
290 for (i = 0; i < p[6].len; i++) {
291 p[6].field |=
292 (read_phy_bit(ioaddr, polarity) << (p[6].len - 1 - i));
295 send_three_state(ioaddr, polarity);
296 send_three_state(ioaddr, polarity);
297 send_three_state(ioaddr, polarity);
298 send_end(ioaddr, polarity);
300 /* Return the value of the DATA field. */
301 return p[6].field;
305 * Write to a register from the Physical Layer device located
306 * on the IPG NIC, using the IPG PHYCTRL register.
308 static void mdio_write(struct net_device *dev, int phy_id, int phy_reg, int val)
310 void __iomem *ioaddr = ipg_ioaddr(dev);
312 * The GMII mangement frame structure for a read is as follows:
314 * |Preamble|st|op|phyad|regad|ta| data |idle|
315 * |< 32 1s>|01|10|AAAAA|RRRRR|z0|DDDDDDDDDDDDDDDD|z |
317 * <32 1s> = 32 consecutive logic 1 values
318 * A = bit of Physical Layer device address (MSB first)
319 * R = bit of register address (MSB first)
320 * z = High impedance state
321 * D = bit of write data (MSB first)
323 * Transmission order is 'Preamble' field first, bits transmitted
324 * left to right (first to last).
326 struct {
327 u32 field;
328 unsigned int len;
329 } p[] = {
330 { GMII_PREAMBLE, 32 }, /* Preamble */
331 { GMII_ST, 2 }, /* ST */
332 { GMII_WRITE, 2 }, /* OP */
333 { phy_id, 5 }, /* PHYAD */
334 { phy_reg, 5 }, /* REGAD */
335 { 0x0002, 2 }, /* TA */
336 { val & 0xffff, 16 }, /* DATA */
337 { 0x0000, 1 } /* IDLE */
339 unsigned int i, j;
340 u8 polarity, data;
342 polarity = ipg_r8(PHY_CTRL);
343 polarity &= (IPG_PC_DUPLEX_POLARITY | IPG_PC_LINK_POLARITY);
345 /* Create the Preamble, ST, OP, PHYAD, and REGAD field. */
346 for (j = 0; j < 7; j++) {
347 for (i = 0; i < p[j].len; i++) {
348 /* For each variable length field, the MSB must be
349 * transmitted first. Rotate through the field bits,
350 * starting with the MSB, and move each bit into the
351 * the 1st (2^1) bit position (this is the bit position
352 * corresponding to the MgmtData bit of the PhyCtrl
353 * register for the IPG).
355 * Example: ST = 01;
357 * First write a '0' to bit 1 of the PhyCtrl
358 * register, then write a '1' to bit 1 of the
359 * PhyCtrl register.
361 * To do this, right shift the MSB of ST by the value:
362 * [field length - 1 - #ST bits already written]
363 * then left shift this result by 1.
365 data = (p[j].field >> (p[j].len - 1 - i)) << 1;
366 data &= IPG_PC_MGMTDATA;
367 data |= polarity | IPG_PC_MGMTDIR;
369 ipg_drive_phy_ctl_low_high(ioaddr, data);
373 /* The last cycle is a tri-state, so read from the PHY. */
374 ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_LO | polarity);
375 ipg_r8(PHY_CTRL);
376 ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_HI | polarity);
379 static void ipg_set_led_mode(struct net_device *dev)
381 struct ipg_nic_private *sp = netdev_priv(dev);
382 void __iomem *ioaddr = sp->ioaddr;
383 u32 mode;
385 mode = ipg_r32(ASIC_CTRL);
386 mode &= ~(IPG_AC_LED_MODE_BIT_1 | IPG_AC_LED_MODE | IPG_AC_LED_SPEED);
388 if ((sp->led_mode & 0x03) > 1)
389 mode |= IPG_AC_LED_MODE_BIT_1; /* Write Asic Control Bit 29 */
391 if ((sp->led_mode & 0x01) == 1)
392 mode |= IPG_AC_LED_MODE; /* Write Asic Control Bit 14 */
394 if ((sp->led_mode & 0x08) == 8)
395 mode |= IPG_AC_LED_SPEED; /* Write Asic Control Bit 27 */
397 ipg_w32(mode, ASIC_CTRL);
400 static void ipg_set_phy_set(struct net_device *dev)
402 struct ipg_nic_private *sp = netdev_priv(dev);
403 void __iomem *ioaddr = sp->ioaddr;
404 int physet;
406 physet = ipg_r8(PHY_SET);
407 physet &= ~(IPG_PS_MEM_LENB9B | IPG_PS_MEM_LEN9 | IPG_PS_NON_COMPDET);
408 physet |= ((sp->led_mode & 0x70) >> 4);
409 ipg_w8(physet, PHY_SET);
412 static int ipg_reset(struct net_device *dev, u32 resetflags)
414 /* Assert functional resets via the IPG AsicCtrl
415 * register as specified by the 'resetflags' input
416 * parameter.
418 void __iomem *ioaddr = ipg_ioaddr(dev);
419 unsigned int timeout_count = 0;
421 IPG_DEBUG_MSG("_reset\n");
423 ipg_w32(ipg_r32(ASIC_CTRL) | resetflags, ASIC_CTRL);
425 /* Delay added to account for problem with 10Mbps reset. */
426 mdelay(IPG_AC_RESETWAIT);
428 while (IPG_AC_RESET_BUSY & ipg_r32(ASIC_CTRL)) {
429 mdelay(IPG_AC_RESETWAIT);
430 if (++timeout_count > IPG_AC_RESET_TIMEOUT)
431 return -ETIME;
433 /* Set LED Mode in Asic Control */
434 ipg_set_led_mode(dev);
436 /* Set PHYSet Register Value */
437 ipg_set_phy_set(dev);
438 return 0;
441 /* Find the GMII PHY address. */
442 static int ipg_find_phyaddr(struct net_device *dev)
444 unsigned int phyaddr, i;
446 for (i = 0; i < 32; i++) {
447 u32 status;
449 /* Search for the correct PHY address among 32 possible. */
450 phyaddr = (IPG_NIC_PHY_ADDRESS + i) % 32;
452 /* 10/22/03 Grace change verify from GMII_PHY_STATUS to
453 GMII_PHY_ID1
456 status = mdio_read(dev, phyaddr, MII_BMSR);
458 if ((status != 0xFFFF) && (status != 0))
459 return phyaddr;
462 return 0x1f;
466 * Configure IPG based on result of IEEE 802.3 PHY
467 * auto-negotiation.
469 static int ipg_config_autoneg(struct net_device *dev)
471 struct ipg_nic_private *sp = netdev_priv(dev);
472 void __iomem *ioaddr = sp->ioaddr;
473 unsigned int txflowcontrol;
474 unsigned int rxflowcontrol;
475 unsigned int fullduplex;
476 u32 mac_ctrl_val;
477 u32 asicctrl;
478 u8 phyctrl;
479 const char *speed;
480 const char *duplex;
481 const char *tx_desc;
482 const char *rx_desc;
484 IPG_DEBUG_MSG("_config_autoneg\n");
486 asicctrl = ipg_r32(ASIC_CTRL);
487 phyctrl = ipg_r8(PHY_CTRL);
488 mac_ctrl_val = ipg_r32(MAC_CTRL);
490 /* Set flags for use in resolving auto-negotiation, assuming
491 * non-1000Mbps, half duplex, no flow control.
493 fullduplex = 0;
494 txflowcontrol = 0;
495 rxflowcontrol = 0;
497 /* To accommodate a problem in 10Mbps operation,
498 * set a global flag if PHY running in 10Mbps mode.
500 sp->tenmbpsmode = 0;
502 /* Determine actual speed of operation. */
503 switch (phyctrl & IPG_PC_LINK_SPEED) {
504 case IPG_PC_LINK_SPEED_10MBPS:
505 speed = "10Mbps";
506 sp->tenmbpsmode = 1;
507 break;
508 case IPG_PC_LINK_SPEED_100MBPS:
509 speed = "100Mbps";
510 break;
511 case IPG_PC_LINK_SPEED_1000MBPS:
512 speed = "1000Mbps";
513 break;
514 default:
515 speed = "undefined!";
516 return 0;
519 netdev_info(dev, "Link speed = %s\n", speed);
520 if (sp->tenmbpsmode == 1)
521 netdev_info(dev, "10Mbps operational mode enabled\n");
523 if (phyctrl & IPG_PC_DUPLEX_STATUS) {
524 fullduplex = 1;
525 txflowcontrol = 1;
526 rxflowcontrol = 1;
529 /* Configure full duplex, and flow control. */
530 if (fullduplex == 1) {
532 /* Configure IPG for full duplex operation. */
534 duplex = "full";
536 mac_ctrl_val |= IPG_MC_DUPLEX_SELECT_FD;
538 if (txflowcontrol == 1) {
539 tx_desc = "";
540 mac_ctrl_val |= IPG_MC_TX_FLOW_CONTROL_ENABLE;
541 } else {
542 tx_desc = "no ";
543 mac_ctrl_val &= ~IPG_MC_TX_FLOW_CONTROL_ENABLE;
546 if (rxflowcontrol == 1) {
547 rx_desc = "";
548 mac_ctrl_val |= IPG_MC_RX_FLOW_CONTROL_ENABLE;
549 } else {
550 rx_desc = "no ";
551 mac_ctrl_val &= ~IPG_MC_RX_FLOW_CONTROL_ENABLE;
553 } else {
554 duplex = "half";
555 tx_desc = "no ";
556 rx_desc = "no ";
557 mac_ctrl_val &= (~IPG_MC_DUPLEX_SELECT_FD &
558 ~IPG_MC_TX_FLOW_CONTROL_ENABLE &
559 ~IPG_MC_RX_FLOW_CONTROL_ENABLE);
562 netdev_info(dev, "setting %s duplex, %sTX, %sRX flow control\n",
563 duplex, tx_desc, rx_desc);
564 ipg_w32(mac_ctrl_val, MAC_CTRL);
566 return 0;
569 /* Determine and configure multicast operation and set
570 * receive mode for IPG.
572 static void ipg_nic_set_multicast_list(struct net_device *dev)
574 void __iomem *ioaddr = ipg_ioaddr(dev);
575 struct netdev_hw_addr *ha;
576 unsigned int hashindex;
577 u32 hashtable[2];
578 u8 receivemode;
580 IPG_DEBUG_MSG("_nic_set_multicast_list\n");
582 receivemode = IPG_RM_RECEIVEUNICAST | IPG_RM_RECEIVEBROADCAST;
584 if (dev->flags & IFF_PROMISC) {
585 /* NIC to be configured in promiscuous mode. */
586 receivemode = IPG_RM_RECEIVEALLFRAMES;
587 } else if ((dev->flags & IFF_ALLMULTI) ||
588 ((dev->flags & IFF_MULTICAST) &&
589 (netdev_mc_count(dev) > IPG_MULTICAST_HASHTABLE_SIZE))) {
590 /* NIC to be configured to receive all multicast
591 * frames. */
592 receivemode |= IPG_RM_RECEIVEMULTICAST;
593 } else if ((dev->flags & IFF_MULTICAST) && !netdev_mc_empty(dev)) {
594 /* NIC to be configured to receive selected
595 * multicast addresses. */
596 receivemode |= IPG_RM_RECEIVEMULTICASTHASH;
599 /* Calculate the bits to set for the 64 bit, IPG HASHTABLE.
600 * The IPG applies a cyclic-redundancy-check (the same CRC
601 * used to calculate the frame data FCS) to the destination
602 * address all incoming multicast frames whose destination
603 * address has the multicast bit set. The least significant
604 * 6 bits of the CRC result are used as an addressing index
605 * into the hash table. If the value of the bit addressed by
606 * this index is a 1, the frame is passed to the host system.
609 /* Clear hashtable. */
610 hashtable[0] = 0x00000000;
611 hashtable[1] = 0x00000000;
613 /* Cycle through all multicast addresses to filter. */
614 netdev_for_each_mc_addr(ha, dev) {
615 /* Calculate CRC result for each multicast address. */
616 hashindex = crc32_le(0xffffffff, ha->addr,
617 ETH_ALEN);
619 /* Use only the least significant 6 bits. */
620 hashindex = hashindex & 0x3F;
622 /* Within "hashtable", set bit number "hashindex"
623 * to a logic 1.
625 set_bit(hashindex, (void *)hashtable);
628 /* Write the value of the hashtable, to the 4, 16 bit
629 * HASHTABLE IPG registers.
631 ipg_w32(hashtable[0], HASHTABLE_0);
632 ipg_w32(hashtable[1], HASHTABLE_1);
634 ipg_w8(IPG_RM_RSVD_MASK & receivemode, RECEIVE_MODE);
636 IPG_DEBUG_MSG("ReceiveMode = %x\n", ipg_r8(RECEIVE_MODE));
639 static int ipg_io_config(struct net_device *dev)
641 struct ipg_nic_private *sp = netdev_priv(dev);
642 void __iomem *ioaddr = ipg_ioaddr(dev);
643 u32 origmacctrl;
644 u32 restoremacctrl;
646 IPG_DEBUG_MSG("_io_config\n");
648 origmacctrl = ipg_r32(MAC_CTRL);
650 restoremacctrl = origmacctrl | IPG_MC_STATISTICS_ENABLE;
652 /* Based on compilation option, determine if FCS is to be
653 * stripped on receive frames by IPG.
655 if (!IPG_STRIP_FCS_ON_RX)
656 restoremacctrl |= IPG_MC_RCV_FCS;
658 /* Determine if transmitter and/or receiver are
659 * enabled so we may restore MACCTRL correctly.
661 if (origmacctrl & IPG_MC_TX_ENABLED)
662 restoremacctrl |= IPG_MC_TX_ENABLE;
664 if (origmacctrl & IPG_MC_RX_ENABLED)
665 restoremacctrl |= IPG_MC_RX_ENABLE;
667 /* Transmitter and receiver must be disabled before setting
668 * IFSSelect.
670 ipg_w32((origmacctrl & (IPG_MC_RX_DISABLE | IPG_MC_TX_DISABLE)) &
671 IPG_MC_RSVD_MASK, MAC_CTRL);
673 /* Now that transmitter and receiver are disabled, write
674 * to IFSSelect.
676 ipg_w32((origmacctrl & IPG_MC_IFS_96BIT) & IPG_MC_RSVD_MASK, MAC_CTRL);
678 /* Set RECEIVEMODE register. */
679 ipg_nic_set_multicast_list(dev);
681 ipg_w16(sp->max_rxframe_size, MAX_FRAME_SIZE);
683 ipg_w8(IPG_RXDMAPOLLPERIOD_VALUE, RX_DMA_POLL_PERIOD);
684 ipg_w8(IPG_RXDMAURGENTTHRESH_VALUE, RX_DMA_URGENT_THRESH);
685 ipg_w8(IPG_RXDMABURSTTHRESH_VALUE, RX_DMA_BURST_THRESH);
686 ipg_w8(IPG_TXDMAPOLLPERIOD_VALUE, TX_DMA_POLL_PERIOD);
687 ipg_w8(IPG_TXDMAURGENTTHRESH_VALUE, TX_DMA_URGENT_THRESH);
688 ipg_w8(IPG_TXDMABURSTTHRESH_VALUE, TX_DMA_BURST_THRESH);
689 ipg_w16((IPG_IE_HOST_ERROR | IPG_IE_TX_DMA_COMPLETE |
690 IPG_IE_TX_COMPLETE | IPG_IE_INT_REQUESTED |
691 IPG_IE_UPDATE_STATS | IPG_IE_LINK_EVENT |
692 IPG_IE_RX_DMA_COMPLETE | IPG_IE_RX_DMA_PRIORITY), INT_ENABLE);
693 ipg_w16(IPG_FLOWONTHRESH_VALUE, FLOW_ON_THRESH);
694 ipg_w16(IPG_FLOWOFFTHRESH_VALUE, FLOW_OFF_THRESH);
696 /* IPG multi-frag frame bug workaround.
697 * Per silicon revision B3 eratta.
699 ipg_w16(ipg_r16(DEBUG_CTRL) | 0x0200, DEBUG_CTRL);
701 /* IPG TX poll now bug workaround.
702 * Per silicon revision B3 eratta.
704 ipg_w16(ipg_r16(DEBUG_CTRL) | 0x0010, DEBUG_CTRL);
706 /* IPG RX poll now bug workaround.
707 * Per silicon revision B3 eratta.
709 ipg_w16(ipg_r16(DEBUG_CTRL) | 0x0020, DEBUG_CTRL);
711 /* Now restore MACCTRL to original setting. */
712 ipg_w32(IPG_MC_RSVD_MASK & restoremacctrl, MAC_CTRL);
714 /* Disable unused RMON statistics. */
715 ipg_w32(IPG_RZ_ALL, RMON_STATISTICS_MASK);
717 /* Disable unused MIB statistics. */
718 ipg_w32(IPG_SM_MACCONTROLFRAMESXMTD | IPG_SM_MACCONTROLFRAMESRCVD |
719 IPG_SM_BCSTOCTETXMTOK_BCSTFRAMESXMTDOK | IPG_SM_TXJUMBOFRAMES |
720 IPG_SM_MCSTOCTETXMTOK_MCSTFRAMESXMTDOK | IPG_SM_RXJUMBOFRAMES |
721 IPG_SM_BCSTOCTETRCVDOK_BCSTFRAMESRCVDOK |
722 IPG_SM_UDPCHECKSUMERRORS | IPG_SM_TCPCHECKSUMERRORS |
723 IPG_SM_IPCHECKSUMERRORS, STATISTICS_MASK);
725 return 0;
729 * Create a receive buffer within system memory and update
730 * NIC private structure appropriately.
732 static int ipg_get_rxbuff(struct net_device *dev, int entry)
734 struct ipg_nic_private *sp = netdev_priv(dev);
735 struct ipg_rx *rxfd = sp->rxd + entry;
736 struct sk_buff *skb;
737 u64 rxfragsize;
739 IPG_DEBUG_MSG("_get_rxbuff\n");
741 skb = netdev_alloc_skb_ip_align(dev, sp->rxsupport_size);
742 if (!skb) {
743 sp->rx_buff[entry] = NULL;
744 return -ENOMEM;
747 /* Associate the receive buffer with the IPG NIC. */
748 skb->dev = dev;
750 /* Save the address of the sk_buff structure. */
751 sp->rx_buff[entry] = skb;
753 rxfd->frag_info = cpu_to_le64(pci_map_single(sp->pdev, skb->data,
754 sp->rx_buf_sz, PCI_DMA_FROMDEVICE));
756 /* Set the RFD fragment length. */
757 rxfragsize = sp->rxfrag_size;
758 rxfd->frag_info |= cpu_to_le64((rxfragsize << 48) & IPG_RFI_FRAGLEN);
760 return 0;
763 static int init_rfdlist(struct net_device *dev)
765 struct ipg_nic_private *sp = netdev_priv(dev);
766 void __iomem *ioaddr = sp->ioaddr;
767 unsigned int i;
769 IPG_DEBUG_MSG("_init_rfdlist\n");
771 for (i = 0; i < IPG_RFDLIST_LENGTH; i++) {
772 struct ipg_rx *rxfd = sp->rxd + i;
774 if (sp->rx_buff[i]) {
775 pci_unmap_single(sp->pdev,
776 le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN,
777 sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
778 dev_kfree_skb_irq(sp->rx_buff[i]);
779 sp->rx_buff[i] = NULL;
782 /* Clear out the RFS field. */
783 rxfd->rfs = 0x0000000000000000;
785 if (ipg_get_rxbuff(dev, i) < 0) {
787 * A receive buffer was not ready, break the
788 * RFD list here.
790 IPG_DEBUG_MSG("Cannot allocate Rx buffer\n");
792 /* Just in case we cannot allocate a single RFD.
793 * Should not occur.
795 if (i == 0) {
796 netdev_err(dev, "No memory available for RFD list\n");
797 return -ENOMEM;
801 rxfd->next_desc = cpu_to_le64(sp->rxd_map +
802 sizeof(struct ipg_rx)*(i + 1));
804 sp->rxd[i - 1].next_desc = cpu_to_le64(sp->rxd_map);
806 sp->rx_current = 0;
807 sp->rx_dirty = 0;
809 /* Write the location of the RFDList to the IPG. */
810 ipg_w32((u32) sp->rxd_map, RFD_LIST_PTR_0);
811 ipg_w32(0x00000000, RFD_LIST_PTR_1);
813 return 0;
816 static void init_tfdlist(struct net_device *dev)
818 struct ipg_nic_private *sp = netdev_priv(dev);
819 void __iomem *ioaddr = sp->ioaddr;
820 unsigned int i;
822 IPG_DEBUG_MSG("_init_tfdlist\n");
824 for (i = 0; i < IPG_TFDLIST_LENGTH; i++) {
825 struct ipg_tx *txfd = sp->txd + i;
827 txfd->tfc = cpu_to_le64(IPG_TFC_TFDDONE);
829 if (sp->tx_buff[i]) {
830 dev_kfree_skb_irq(sp->tx_buff[i]);
831 sp->tx_buff[i] = NULL;
834 txfd->next_desc = cpu_to_le64(sp->txd_map +
835 sizeof(struct ipg_tx)*(i + 1));
837 sp->txd[i - 1].next_desc = cpu_to_le64(sp->txd_map);
839 sp->tx_current = 0;
840 sp->tx_dirty = 0;
842 /* Write the location of the TFDList to the IPG. */
843 IPG_DDEBUG_MSG("Starting TFDListPtr = %08x\n",
844 (u32) sp->txd_map);
845 ipg_w32((u32) sp->txd_map, TFD_LIST_PTR_0);
846 ipg_w32(0x00000000, TFD_LIST_PTR_1);
848 sp->reset_current_tfd = 1;
852 * Free all transmit buffers which have already been transferred
853 * via DMA to the IPG.
855 static void ipg_nic_txfree(struct net_device *dev)
857 struct ipg_nic_private *sp = netdev_priv(dev);
858 unsigned int released, pending, dirty;
860 IPG_DEBUG_MSG("_nic_txfree\n");
862 pending = sp->tx_current - sp->tx_dirty;
863 dirty = sp->tx_dirty % IPG_TFDLIST_LENGTH;
865 for (released = 0; released < pending; released++) {
866 struct sk_buff *skb = sp->tx_buff[dirty];
867 struct ipg_tx *txfd = sp->txd + dirty;
869 IPG_DEBUG_MSG("TFC = %016lx\n", (unsigned long) txfd->tfc);
871 /* Look at each TFD's TFC field beginning
872 * at the last freed TFD up to the current TFD.
873 * If the TFDDone bit is set, free the associated
874 * buffer.
876 if (!(txfd->tfc & cpu_to_le64(IPG_TFC_TFDDONE)))
877 break;
879 /* Free the transmit buffer. */
880 if (skb) {
881 pci_unmap_single(sp->pdev,
882 le64_to_cpu(txfd->frag_info) & ~IPG_TFI_FRAGLEN,
883 skb->len, PCI_DMA_TODEVICE);
885 dev_kfree_skb_irq(skb);
887 sp->tx_buff[dirty] = NULL;
889 dirty = (dirty + 1) % IPG_TFDLIST_LENGTH;
892 sp->tx_dirty += released;
894 if (netif_queue_stopped(dev) &&
895 (sp->tx_current != (sp->tx_dirty + IPG_TFDLIST_LENGTH))) {
896 netif_wake_queue(dev);
900 static void ipg_tx_timeout(struct net_device *dev)
902 struct ipg_nic_private *sp = netdev_priv(dev);
903 void __iomem *ioaddr = sp->ioaddr;
905 ipg_reset(dev, IPG_AC_TX_RESET | IPG_AC_DMA | IPG_AC_NETWORK |
906 IPG_AC_FIFO);
908 spin_lock_irq(&sp->lock);
910 /* Re-configure after DMA reset. */
911 if (ipg_io_config(dev) < 0)
912 netdev_info(dev, "Error during re-configuration\n");
914 init_tfdlist(dev);
916 spin_unlock_irq(&sp->lock);
918 ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) & IPG_MC_RSVD_MASK,
919 MAC_CTRL);
923 * For TxComplete interrupts, free all transmit
924 * buffers which have already been transferred via DMA
925 * to the IPG.
927 static void ipg_nic_txcleanup(struct net_device *dev)
929 struct ipg_nic_private *sp = netdev_priv(dev);
930 void __iomem *ioaddr = sp->ioaddr;
931 unsigned int i;
933 IPG_DEBUG_MSG("_nic_txcleanup\n");
935 for (i = 0; i < IPG_TFDLIST_LENGTH; i++) {
936 /* Reading the TXSTATUS register clears the
937 * TX_COMPLETE interrupt.
939 u32 txstatusdword = ipg_r32(TX_STATUS);
941 IPG_DEBUG_MSG("TxStatus = %08x\n", txstatusdword);
943 /* Check for Transmit errors. Error bits only valid if
944 * TX_COMPLETE bit in the TXSTATUS register is a 1.
946 if (!(txstatusdword & IPG_TS_TX_COMPLETE))
947 break;
949 /* If in 10Mbps mode, indicate transmit is ready. */
950 if (sp->tenmbpsmode) {
951 netif_wake_queue(dev);
954 /* Transmit error, increment stat counters. */
955 if (txstatusdword & IPG_TS_TX_ERROR) {
956 IPG_DEBUG_MSG("Transmit error\n");
957 sp->stats.tx_errors++;
960 /* Late collision, re-enable transmitter. */
961 if (txstatusdword & IPG_TS_LATE_COLLISION) {
962 IPG_DEBUG_MSG("Late collision on transmit\n");
963 ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) &
964 IPG_MC_RSVD_MASK, MAC_CTRL);
967 /* Maximum collisions, re-enable transmitter. */
968 if (txstatusdword & IPG_TS_TX_MAX_COLL) {
969 IPG_DEBUG_MSG("Maximum collisions on transmit\n");
970 ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) &
971 IPG_MC_RSVD_MASK, MAC_CTRL);
974 /* Transmit underrun, reset and re-enable
975 * transmitter.
977 if (txstatusdword & IPG_TS_TX_UNDERRUN) {
978 IPG_DEBUG_MSG("Transmitter underrun\n");
979 sp->stats.tx_fifo_errors++;
980 ipg_reset(dev, IPG_AC_TX_RESET | IPG_AC_DMA |
981 IPG_AC_NETWORK | IPG_AC_FIFO);
983 /* Re-configure after DMA reset. */
984 if (ipg_io_config(dev) < 0) {
985 netdev_info(dev, "Error during re-configuration\n");
987 init_tfdlist(dev);
989 ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) &
990 IPG_MC_RSVD_MASK, MAC_CTRL);
994 ipg_nic_txfree(dev);
997 /* Provides statistical information about the IPG NIC. */
998 static struct net_device_stats *ipg_nic_get_stats(struct net_device *dev)
1000 struct ipg_nic_private *sp = netdev_priv(dev);
1001 void __iomem *ioaddr = sp->ioaddr;
1002 u16 temp1;
1003 u16 temp2;
1005 IPG_DEBUG_MSG("_nic_get_stats\n");
1007 /* Check to see if the NIC has been initialized via nic_open,
1008 * before trying to read statistic registers.
1010 if (!test_bit(__LINK_STATE_START, &dev->state))
1011 return &sp->stats;
1013 sp->stats.rx_packets += ipg_r32(IPG_FRAMESRCVDOK);
1014 sp->stats.tx_packets += ipg_r32(IPG_FRAMESXMTDOK);
1015 sp->stats.rx_bytes += ipg_r32(IPG_OCTETRCVOK);
1016 sp->stats.tx_bytes += ipg_r32(IPG_OCTETXMTOK);
1017 temp1 = ipg_r16(IPG_FRAMESLOSTRXERRORS);
1018 sp->stats.rx_errors += temp1;
1019 sp->stats.rx_missed_errors += temp1;
1020 temp1 = ipg_r32(IPG_SINGLECOLFRAMES) + ipg_r32(IPG_MULTICOLFRAMES) +
1021 ipg_r32(IPG_LATECOLLISIONS);
1022 temp2 = ipg_r16(IPG_CARRIERSENSEERRORS);
1023 sp->stats.collisions += temp1;
1024 sp->stats.tx_dropped += ipg_r16(IPG_FRAMESABORTXSCOLLS);
1025 sp->stats.tx_errors += ipg_r16(IPG_FRAMESWEXDEFERRAL) +
1026 ipg_r32(IPG_FRAMESWDEFERREDXMT) + temp1 + temp2;
1027 sp->stats.multicast += ipg_r32(IPG_MCSTOCTETRCVDOK);
1029 /* detailed tx_errors */
1030 sp->stats.tx_carrier_errors += temp2;
1032 /* detailed rx_errors */
1033 sp->stats.rx_length_errors += ipg_r16(IPG_INRANGELENGTHERRORS) +
1034 ipg_r16(IPG_FRAMETOOLONGERRRORS);
1035 sp->stats.rx_crc_errors += ipg_r16(IPG_FRAMECHECKSEQERRORS);
1037 /* Unutilized IPG statistic registers. */
1038 ipg_r32(IPG_MCSTFRAMESRCVDOK);
1040 return &sp->stats;
1043 /* Restore used receive buffers. */
1044 static int ipg_nic_rxrestore(struct net_device *dev)
1046 struct ipg_nic_private *sp = netdev_priv(dev);
1047 const unsigned int curr = sp->rx_current;
1048 unsigned int dirty = sp->rx_dirty;
1050 IPG_DEBUG_MSG("_nic_rxrestore\n");
1052 for (dirty = sp->rx_dirty; curr - dirty > 0; dirty++) {
1053 unsigned int entry = dirty % IPG_RFDLIST_LENGTH;
1055 /* rx_copybreak may poke hole here and there. */
1056 if (sp->rx_buff[entry])
1057 continue;
1059 /* Generate a new receive buffer to replace the
1060 * current buffer (which will be released by the
1061 * Linux system).
1063 if (ipg_get_rxbuff(dev, entry) < 0) {
1064 IPG_DEBUG_MSG("Cannot allocate new Rx buffer\n");
1066 break;
1069 /* Reset the RFS field. */
1070 sp->rxd[entry].rfs = 0x0000000000000000;
1072 sp->rx_dirty = dirty;
1074 return 0;
1077 /* use jumboindex and jumbosize to control jumbo frame status
1078 * initial status is jumboindex=-1 and jumbosize=0
1079 * 1. jumboindex = -1 and jumbosize=0 : previous jumbo frame has been done.
1080 * 2. jumboindex != -1 and jumbosize != 0 : jumbo frame is not over size and receiving
1081 * 3. jumboindex = -1 and jumbosize != 0 : jumbo frame is over size, already dump
1082 * previous receiving and need to continue dumping the current one
1084 enum {
1085 NORMAL_PACKET,
1086 ERROR_PACKET
1089 enum {
1090 FRAME_NO_START_NO_END = 0,
1091 FRAME_WITH_START = 1,
1092 FRAME_WITH_END = 10,
1093 FRAME_WITH_START_WITH_END = 11
1096 static void ipg_nic_rx_free_skb(struct net_device *dev)
1098 struct ipg_nic_private *sp = netdev_priv(dev);
1099 unsigned int entry = sp->rx_current % IPG_RFDLIST_LENGTH;
1101 if (sp->rx_buff[entry]) {
1102 struct ipg_rx *rxfd = sp->rxd + entry;
1104 pci_unmap_single(sp->pdev,
1105 le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN,
1106 sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1107 dev_kfree_skb_irq(sp->rx_buff[entry]);
1108 sp->rx_buff[entry] = NULL;
1112 static int ipg_nic_rx_check_frame_type(struct net_device *dev)
1114 struct ipg_nic_private *sp = netdev_priv(dev);
1115 struct ipg_rx *rxfd = sp->rxd + (sp->rx_current % IPG_RFDLIST_LENGTH);
1116 int type = FRAME_NO_START_NO_END;
1118 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMESTART)
1119 type += FRAME_WITH_START;
1120 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMEEND)
1121 type += FRAME_WITH_END;
1122 return type;
1125 static int ipg_nic_rx_check_error(struct net_device *dev)
1127 struct ipg_nic_private *sp = netdev_priv(dev);
1128 unsigned int entry = sp->rx_current % IPG_RFDLIST_LENGTH;
1129 struct ipg_rx *rxfd = sp->rxd + entry;
1131 if (IPG_DROP_ON_RX_ETH_ERRORS && (le64_to_cpu(rxfd->rfs) &
1132 (IPG_RFS_RXFIFOOVERRUN | IPG_RFS_RXRUNTFRAME |
1133 IPG_RFS_RXALIGNMENTERROR | IPG_RFS_RXFCSERROR |
1134 IPG_RFS_RXOVERSIZEDFRAME | IPG_RFS_RXLENGTHERROR))) {
1135 IPG_DEBUG_MSG("Rx error, RFS = %016lx\n",
1136 (unsigned long) rxfd->rfs);
1138 /* Increment general receive error statistic. */
1139 sp->stats.rx_errors++;
1141 /* Increment detailed receive error statistics. */
1142 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFIFOOVERRUN) {
1143 IPG_DEBUG_MSG("RX FIFO overrun occurred\n");
1145 sp->stats.rx_fifo_errors++;
1148 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXRUNTFRAME) {
1149 IPG_DEBUG_MSG("RX runt occurred\n");
1150 sp->stats.rx_length_errors++;
1153 /* Do nothing for IPG_RFS_RXOVERSIZEDFRAME,
1154 * error count handled by a IPG statistic register.
1157 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXALIGNMENTERROR) {
1158 IPG_DEBUG_MSG("RX alignment error occurred\n");
1159 sp->stats.rx_frame_errors++;
1162 /* Do nothing for IPG_RFS_RXFCSERROR, error count
1163 * handled by a IPG statistic register.
1166 /* Free the memory associated with the RX
1167 * buffer since it is erroneous and we will
1168 * not pass it to higher layer processes.
1170 if (sp->rx_buff[entry]) {
1171 pci_unmap_single(sp->pdev,
1172 le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN,
1173 sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1175 dev_kfree_skb_irq(sp->rx_buff[entry]);
1176 sp->rx_buff[entry] = NULL;
1178 return ERROR_PACKET;
1180 return NORMAL_PACKET;
1183 static void ipg_nic_rx_with_start_and_end(struct net_device *dev,
1184 struct ipg_nic_private *sp,
1185 struct ipg_rx *rxfd, unsigned entry)
1187 struct ipg_jumbo *jumbo = &sp->jumbo;
1188 struct sk_buff *skb;
1189 int framelen;
1191 if (jumbo->found_start) {
1192 dev_kfree_skb_irq(jumbo->skb);
1193 jumbo->found_start = 0;
1194 jumbo->current_size = 0;
1195 jumbo->skb = NULL;
1198 /* 1: found error, 0 no error */
1199 if (ipg_nic_rx_check_error(dev) != NORMAL_PACKET)
1200 return;
1202 skb = sp->rx_buff[entry];
1203 if (!skb)
1204 return;
1206 /* accept this frame and send to upper layer */
1207 framelen = le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFRAMELEN;
1208 if (framelen > sp->rxfrag_size)
1209 framelen = sp->rxfrag_size;
1211 skb_put(skb, framelen);
1212 skb->protocol = eth_type_trans(skb, dev);
1213 skb_checksum_none_assert(skb);
1214 netif_rx(skb);
1215 sp->rx_buff[entry] = NULL;
1218 static void ipg_nic_rx_with_start(struct net_device *dev,
1219 struct ipg_nic_private *sp,
1220 struct ipg_rx *rxfd, unsigned entry)
1222 struct ipg_jumbo *jumbo = &sp->jumbo;
1223 struct pci_dev *pdev = sp->pdev;
1224 struct sk_buff *skb;
1226 /* 1: found error, 0 no error */
1227 if (ipg_nic_rx_check_error(dev) != NORMAL_PACKET)
1228 return;
1230 /* accept this frame and send to upper layer */
1231 skb = sp->rx_buff[entry];
1232 if (!skb)
1233 return;
1235 if (jumbo->found_start)
1236 dev_kfree_skb_irq(jumbo->skb);
1238 pci_unmap_single(pdev, le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN,
1239 sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1241 skb_put(skb, sp->rxfrag_size);
1243 jumbo->found_start = 1;
1244 jumbo->current_size = sp->rxfrag_size;
1245 jumbo->skb = skb;
1247 sp->rx_buff[entry] = NULL;
1250 static void ipg_nic_rx_with_end(struct net_device *dev,
1251 struct ipg_nic_private *sp,
1252 struct ipg_rx *rxfd, unsigned entry)
1254 struct ipg_jumbo *jumbo = &sp->jumbo;
1256 /* 1: found error, 0 no error */
1257 if (ipg_nic_rx_check_error(dev) == NORMAL_PACKET) {
1258 struct sk_buff *skb = sp->rx_buff[entry];
1260 if (!skb)
1261 return;
1263 if (jumbo->found_start) {
1264 int framelen, endframelen;
1266 framelen = le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFRAMELEN;
1268 endframelen = framelen - jumbo->current_size;
1269 if (framelen > sp->rxsupport_size)
1270 dev_kfree_skb_irq(jumbo->skb);
1271 else {
1272 memcpy(skb_put(jumbo->skb, endframelen),
1273 skb->data, endframelen);
1275 jumbo->skb->protocol =
1276 eth_type_trans(jumbo->skb, dev);
1278 skb_checksum_none_assert(jumbo->skb);
1279 netif_rx(jumbo->skb);
1283 jumbo->found_start = 0;
1284 jumbo->current_size = 0;
1285 jumbo->skb = NULL;
1287 ipg_nic_rx_free_skb(dev);
1288 } else {
1289 dev_kfree_skb_irq(jumbo->skb);
1290 jumbo->found_start = 0;
1291 jumbo->current_size = 0;
1292 jumbo->skb = NULL;
1296 static void ipg_nic_rx_no_start_no_end(struct net_device *dev,
1297 struct ipg_nic_private *sp,
1298 struct ipg_rx *rxfd, unsigned entry)
1300 struct ipg_jumbo *jumbo = &sp->jumbo;
1302 /* 1: found error, 0 no error */
1303 if (ipg_nic_rx_check_error(dev) == NORMAL_PACKET) {
1304 struct sk_buff *skb = sp->rx_buff[entry];
1306 if (skb) {
1307 if (jumbo->found_start) {
1308 jumbo->current_size += sp->rxfrag_size;
1309 if (jumbo->current_size <= sp->rxsupport_size) {
1310 memcpy(skb_put(jumbo->skb,
1311 sp->rxfrag_size),
1312 skb->data, sp->rxfrag_size);
1315 ipg_nic_rx_free_skb(dev);
1317 } else {
1318 dev_kfree_skb_irq(jumbo->skb);
1319 jumbo->found_start = 0;
1320 jumbo->current_size = 0;
1321 jumbo->skb = NULL;
1325 static int ipg_nic_rx_jumbo(struct net_device *dev)
1327 struct ipg_nic_private *sp = netdev_priv(dev);
1328 unsigned int curr = sp->rx_current;
1329 void __iomem *ioaddr = sp->ioaddr;
1330 unsigned int i;
1332 IPG_DEBUG_MSG("_nic_rx\n");
1334 for (i = 0; i < IPG_MAXRFDPROCESS_COUNT; i++, curr++) {
1335 unsigned int entry = curr % IPG_RFDLIST_LENGTH;
1336 struct ipg_rx *rxfd = sp->rxd + entry;
1338 if (!(rxfd->rfs & cpu_to_le64(IPG_RFS_RFDDONE)))
1339 break;
1341 switch (ipg_nic_rx_check_frame_type(dev)) {
1342 case FRAME_WITH_START_WITH_END:
1343 ipg_nic_rx_with_start_and_end(dev, sp, rxfd, entry);
1344 break;
1345 case FRAME_WITH_START:
1346 ipg_nic_rx_with_start(dev, sp, rxfd, entry);
1347 break;
1348 case FRAME_WITH_END:
1349 ipg_nic_rx_with_end(dev, sp, rxfd, entry);
1350 break;
1351 case FRAME_NO_START_NO_END:
1352 ipg_nic_rx_no_start_no_end(dev, sp, rxfd, entry);
1353 break;
1357 sp->rx_current = curr;
1359 if (i == IPG_MAXRFDPROCESS_COUNT) {
1360 /* There are more RFDs to process, however the
1361 * allocated amount of RFD processing time has
1362 * expired. Assert Interrupt Requested to make
1363 * sure we come back to process the remaining RFDs.
1365 ipg_w32(ipg_r32(ASIC_CTRL) | IPG_AC_INT_REQUEST, ASIC_CTRL);
1368 ipg_nic_rxrestore(dev);
1370 return 0;
1373 static int ipg_nic_rx(struct net_device *dev)
1375 /* Transfer received Ethernet frames to higher network layers. */
1376 struct ipg_nic_private *sp = netdev_priv(dev);
1377 unsigned int curr = sp->rx_current;
1378 void __iomem *ioaddr = sp->ioaddr;
1379 struct ipg_rx *rxfd;
1380 unsigned int i;
1382 IPG_DEBUG_MSG("_nic_rx\n");
1384 #define __RFS_MASK \
1385 cpu_to_le64(IPG_RFS_RFDDONE | IPG_RFS_FRAMESTART | IPG_RFS_FRAMEEND)
1387 for (i = 0; i < IPG_MAXRFDPROCESS_COUNT; i++, curr++) {
1388 unsigned int entry = curr % IPG_RFDLIST_LENGTH;
1389 struct sk_buff *skb = sp->rx_buff[entry];
1390 unsigned int framelen;
1392 rxfd = sp->rxd + entry;
1394 if (((rxfd->rfs & __RFS_MASK) != __RFS_MASK) || !skb)
1395 break;
1397 /* Get received frame length. */
1398 framelen = le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFRAMELEN;
1400 /* Check for jumbo frame arrival with too small
1401 * RXFRAG_SIZE.
1403 if (framelen > sp->rxfrag_size) {
1404 IPG_DEBUG_MSG
1405 ("RFS FrameLen > allocated fragment size\n");
1407 framelen = sp->rxfrag_size;
1410 if ((IPG_DROP_ON_RX_ETH_ERRORS && (le64_to_cpu(rxfd->rfs) &
1411 (IPG_RFS_RXFIFOOVERRUN | IPG_RFS_RXRUNTFRAME |
1412 IPG_RFS_RXALIGNMENTERROR | IPG_RFS_RXFCSERROR |
1413 IPG_RFS_RXOVERSIZEDFRAME | IPG_RFS_RXLENGTHERROR)))) {
1415 IPG_DEBUG_MSG("Rx error, RFS = %016lx\n",
1416 (unsigned long int) rxfd->rfs);
1418 /* Increment general receive error statistic. */
1419 sp->stats.rx_errors++;
1421 /* Increment detailed receive error statistics. */
1422 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFIFOOVERRUN) {
1423 IPG_DEBUG_MSG("RX FIFO overrun occurred\n");
1424 sp->stats.rx_fifo_errors++;
1427 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXRUNTFRAME) {
1428 IPG_DEBUG_MSG("RX runt occurred\n");
1429 sp->stats.rx_length_errors++;
1432 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXOVERSIZEDFRAME) ;
1433 /* Do nothing, error count handled by a IPG
1434 * statistic register.
1437 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXALIGNMENTERROR) {
1438 IPG_DEBUG_MSG("RX alignment error occurred\n");
1439 sp->stats.rx_frame_errors++;
1442 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFCSERROR) ;
1443 /* Do nothing, error count handled by a IPG
1444 * statistic register.
1447 /* Free the memory associated with the RX
1448 * buffer since it is erroneous and we will
1449 * not pass it to higher layer processes.
1451 if (skb) {
1452 __le64 info = rxfd->frag_info;
1454 pci_unmap_single(sp->pdev,
1455 le64_to_cpu(info) & ~IPG_RFI_FRAGLEN,
1456 sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1458 dev_kfree_skb_irq(skb);
1460 } else {
1462 /* Adjust the new buffer length to accommodate the size
1463 * of the received frame.
1465 skb_put(skb, framelen);
1467 /* Set the buffer's protocol field to Ethernet. */
1468 skb->protocol = eth_type_trans(skb, dev);
1470 /* The IPG encountered an error with (or
1471 * there were no) IP/TCP/UDP checksums.
1472 * This may or may not indicate an invalid
1473 * IP/TCP/UDP frame was received. Let the
1474 * upper layer decide.
1476 skb_checksum_none_assert(skb);
1478 /* Hand off frame for higher layer processing.
1479 * The function netif_rx() releases the sk_buff
1480 * when processing completes.
1482 netif_rx(skb);
1485 /* Assure RX buffer is not reused by IPG. */
1486 sp->rx_buff[entry] = NULL;
1490 * If there are more RFDs to process and the allocated amount of RFD
1491 * processing time has expired, assert Interrupt Requested to make
1492 * sure we come back to process the remaining RFDs.
1494 if (i == IPG_MAXRFDPROCESS_COUNT)
1495 ipg_w32(ipg_r32(ASIC_CTRL) | IPG_AC_INT_REQUEST, ASIC_CTRL);
1497 #ifdef IPG_DEBUG
1498 /* Check if the RFD list contained no receive frame data. */
1499 if (!i)
1500 sp->EmptyRFDListCount++;
1501 #endif
1502 while ((le64_to_cpu(rxfd->rfs) & IPG_RFS_RFDDONE) &&
1503 !((le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMESTART) &&
1504 (le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMEEND))) {
1505 unsigned int entry = curr++ % IPG_RFDLIST_LENGTH;
1507 rxfd = sp->rxd + entry;
1509 IPG_DEBUG_MSG("Frame requires multiple RFDs\n");
1511 /* An unexpected event, additional code needed to handle
1512 * properly. So for the time being, just disregard the
1513 * frame.
1516 /* Free the memory associated with the RX
1517 * buffer since it is erroneous and we will
1518 * not pass it to higher layer processes.
1520 if (sp->rx_buff[entry]) {
1521 pci_unmap_single(sp->pdev,
1522 le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN,
1523 sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1524 dev_kfree_skb_irq(sp->rx_buff[entry]);
1527 /* Assure RX buffer is not reused by IPG. */
1528 sp->rx_buff[entry] = NULL;
1531 sp->rx_current = curr;
1533 /* Check to see if there are a minimum number of used
1534 * RFDs before restoring any (should improve performance.)
1536 if ((curr - sp->rx_dirty) >= IPG_MINUSEDRFDSTOFREE)
1537 ipg_nic_rxrestore(dev);
1539 return 0;
1542 static void ipg_reset_after_host_error(struct work_struct *work)
1544 struct ipg_nic_private *sp =
1545 container_of(work, struct ipg_nic_private, task.work);
1546 struct net_device *dev = sp->dev;
1549 * Acknowledge HostError interrupt by resetting
1550 * IPG DMA and HOST.
1552 ipg_reset(dev, IPG_AC_GLOBAL_RESET | IPG_AC_HOST | IPG_AC_DMA);
1554 init_rfdlist(dev);
1555 init_tfdlist(dev);
1557 if (ipg_io_config(dev) < 0) {
1558 netdev_info(dev, "Cannot recover from PCI error\n");
1559 schedule_delayed_work(&sp->task, HZ);
1563 static irqreturn_t ipg_interrupt_handler(int irq, void *dev_inst)
1565 struct net_device *dev = dev_inst;
1566 struct ipg_nic_private *sp = netdev_priv(dev);
1567 void __iomem *ioaddr = sp->ioaddr;
1568 unsigned int handled = 0;
1569 u16 status;
1571 IPG_DEBUG_MSG("_interrupt_handler\n");
1573 if (sp->is_jumbo)
1574 ipg_nic_rxrestore(dev);
1576 spin_lock(&sp->lock);
1578 /* Get interrupt source information, and acknowledge
1579 * some (i.e. TxDMAComplete, RxDMAComplete, RxEarly,
1580 * IntRequested, MacControlFrame, LinkEvent) interrupts
1581 * if issued. Also, all IPG interrupts are disabled by
1582 * reading IntStatusAck.
1584 status = ipg_r16(INT_STATUS_ACK);
1586 IPG_DEBUG_MSG("IntStatusAck = %04x\n", status);
1588 /* Shared IRQ of remove event. */
1589 if (!(status & IPG_IS_RSVD_MASK))
1590 goto out_enable;
1592 handled = 1;
1594 if (unlikely(!netif_running(dev)))
1595 goto out_unlock;
1597 /* If RFDListEnd interrupt, restore all used RFDs. */
1598 if (status & IPG_IS_RFD_LIST_END) {
1599 IPG_DEBUG_MSG("RFDListEnd Interrupt\n");
1601 /* The RFD list end indicates an RFD was encountered
1602 * with a 0 NextPtr, or with an RFDDone bit set to 1
1603 * (indicating the RFD is not read for use by the
1604 * IPG.) Try to restore all RFDs.
1606 ipg_nic_rxrestore(dev);
1608 #ifdef IPG_DEBUG
1609 /* Increment the RFDlistendCount counter. */
1610 sp->RFDlistendCount++;
1611 #endif
1614 /* If RFDListEnd, RxDMAPriority, RxDMAComplete, or
1615 * IntRequested interrupt, process received frames. */
1616 if ((status & IPG_IS_RX_DMA_PRIORITY) ||
1617 (status & IPG_IS_RFD_LIST_END) ||
1618 (status & IPG_IS_RX_DMA_COMPLETE) ||
1619 (status & IPG_IS_INT_REQUESTED)) {
1620 #ifdef IPG_DEBUG
1621 /* Increment the RFD list checked counter if interrupted
1622 * only to check the RFD list. */
1623 if (status & (~(IPG_IS_RX_DMA_PRIORITY | IPG_IS_RFD_LIST_END |
1624 IPG_IS_RX_DMA_COMPLETE | IPG_IS_INT_REQUESTED) &
1625 (IPG_IS_HOST_ERROR | IPG_IS_TX_DMA_COMPLETE |
1626 IPG_IS_LINK_EVENT | IPG_IS_TX_COMPLETE |
1627 IPG_IS_UPDATE_STATS)))
1628 sp->RFDListCheckedCount++;
1629 #endif
1631 if (sp->is_jumbo)
1632 ipg_nic_rx_jumbo(dev);
1633 else
1634 ipg_nic_rx(dev);
1637 /* If TxDMAComplete interrupt, free used TFDs. */
1638 if (status & IPG_IS_TX_DMA_COMPLETE)
1639 ipg_nic_txfree(dev);
1641 /* TxComplete interrupts indicate one of numerous actions.
1642 * Determine what action to take based on TXSTATUS register.
1644 if (status & IPG_IS_TX_COMPLETE)
1645 ipg_nic_txcleanup(dev);
1647 /* If UpdateStats interrupt, update Linux Ethernet statistics */
1648 if (status & IPG_IS_UPDATE_STATS)
1649 ipg_nic_get_stats(dev);
1651 /* If HostError interrupt, reset IPG. */
1652 if (status & IPG_IS_HOST_ERROR) {
1653 IPG_DDEBUG_MSG("HostError Interrupt\n");
1655 schedule_delayed_work(&sp->task, 0);
1658 /* If LinkEvent interrupt, resolve autonegotiation. */
1659 if (status & IPG_IS_LINK_EVENT) {
1660 if (ipg_config_autoneg(dev) < 0)
1661 netdev_info(dev, "Auto-negotiation error\n");
1664 /* If MACCtrlFrame interrupt, do nothing. */
1665 if (status & IPG_IS_MAC_CTRL_FRAME)
1666 IPG_DEBUG_MSG("MACCtrlFrame interrupt\n");
1668 /* If RxComplete interrupt, do nothing. */
1669 if (status & IPG_IS_RX_COMPLETE)
1670 IPG_DEBUG_MSG("RxComplete interrupt\n");
1672 /* If RxEarly interrupt, do nothing. */
1673 if (status & IPG_IS_RX_EARLY)
1674 IPG_DEBUG_MSG("RxEarly interrupt\n");
1676 out_enable:
1677 /* Re-enable IPG interrupts. */
1678 ipg_w16(IPG_IE_TX_DMA_COMPLETE | IPG_IE_RX_DMA_COMPLETE |
1679 IPG_IE_HOST_ERROR | IPG_IE_INT_REQUESTED | IPG_IE_TX_COMPLETE |
1680 IPG_IE_LINK_EVENT | IPG_IE_UPDATE_STATS, INT_ENABLE);
1681 out_unlock:
1682 spin_unlock(&sp->lock);
1684 return IRQ_RETVAL(handled);
1687 static void ipg_rx_clear(struct ipg_nic_private *sp)
1689 unsigned int i;
1691 for (i = 0; i < IPG_RFDLIST_LENGTH; i++) {
1692 if (sp->rx_buff[i]) {
1693 struct ipg_rx *rxfd = sp->rxd + i;
1695 dev_kfree_skb_irq(sp->rx_buff[i]);
1696 sp->rx_buff[i] = NULL;
1697 pci_unmap_single(sp->pdev,
1698 le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN,
1699 sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1704 static void ipg_tx_clear(struct ipg_nic_private *sp)
1706 unsigned int i;
1708 for (i = 0; i < IPG_TFDLIST_LENGTH; i++) {
1709 if (sp->tx_buff[i]) {
1710 struct ipg_tx *txfd = sp->txd + i;
1712 pci_unmap_single(sp->pdev,
1713 le64_to_cpu(txfd->frag_info) & ~IPG_TFI_FRAGLEN,
1714 sp->tx_buff[i]->len, PCI_DMA_TODEVICE);
1716 dev_kfree_skb_irq(sp->tx_buff[i]);
1718 sp->tx_buff[i] = NULL;
1723 static int ipg_nic_open(struct net_device *dev)
1725 struct ipg_nic_private *sp = netdev_priv(dev);
1726 void __iomem *ioaddr = sp->ioaddr;
1727 struct pci_dev *pdev = sp->pdev;
1728 int rc;
1730 IPG_DEBUG_MSG("_nic_open\n");
1732 sp->rx_buf_sz = sp->rxsupport_size;
1734 /* Check for interrupt line conflicts, and request interrupt
1735 * line for IPG.
1737 * IMPORTANT: Disable IPG interrupts prior to registering
1738 * IRQ.
1740 ipg_w16(0x0000, INT_ENABLE);
1742 /* Register the interrupt line to be used by the IPG within
1743 * the Linux system.
1745 rc = request_irq(pdev->irq, ipg_interrupt_handler, IRQF_SHARED,
1746 dev->name, dev);
1747 if (rc < 0) {
1748 netdev_info(dev, "Error when requesting interrupt\n");
1749 goto out;
1752 dev->irq = pdev->irq;
1754 rc = -ENOMEM;
1756 sp->rxd = dma_alloc_coherent(&pdev->dev, IPG_RX_RING_BYTES,
1757 &sp->rxd_map, GFP_KERNEL);
1758 if (!sp->rxd)
1759 goto err_free_irq_0;
1761 sp->txd = dma_alloc_coherent(&pdev->dev, IPG_TX_RING_BYTES,
1762 &sp->txd_map, GFP_KERNEL);
1763 if (!sp->txd)
1764 goto err_free_rx_1;
1766 rc = init_rfdlist(dev);
1767 if (rc < 0) {
1768 netdev_info(dev, "Error during configuration\n");
1769 goto err_free_tx_2;
1772 init_tfdlist(dev);
1774 rc = ipg_io_config(dev);
1775 if (rc < 0) {
1776 netdev_info(dev, "Error during configuration\n");
1777 goto err_release_tfdlist_3;
1780 /* Resolve autonegotiation. */
1781 if (ipg_config_autoneg(dev) < 0)
1782 netdev_info(dev, "Auto-negotiation error\n");
1784 /* initialize JUMBO Frame control variable */
1785 sp->jumbo.found_start = 0;
1786 sp->jumbo.current_size = 0;
1787 sp->jumbo.skb = NULL;
1789 /* Enable transmit and receive operation of the IPG. */
1790 ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_RX_ENABLE | IPG_MC_TX_ENABLE) &
1791 IPG_MC_RSVD_MASK, MAC_CTRL);
1793 netif_start_queue(dev);
1794 out:
1795 return rc;
1797 err_release_tfdlist_3:
1798 ipg_tx_clear(sp);
1799 ipg_rx_clear(sp);
1800 err_free_tx_2:
1801 dma_free_coherent(&pdev->dev, IPG_TX_RING_BYTES, sp->txd, sp->txd_map);
1802 err_free_rx_1:
1803 dma_free_coherent(&pdev->dev, IPG_RX_RING_BYTES, sp->rxd, sp->rxd_map);
1804 err_free_irq_0:
1805 free_irq(pdev->irq, dev);
1806 goto out;
1809 static int ipg_nic_stop(struct net_device *dev)
1811 struct ipg_nic_private *sp = netdev_priv(dev);
1812 void __iomem *ioaddr = sp->ioaddr;
1813 struct pci_dev *pdev = sp->pdev;
1815 IPG_DEBUG_MSG("_nic_stop\n");
1817 netif_stop_queue(dev);
1819 IPG_DUMPTFDLIST(dev);
1821 do {
1822 (void) ipg_r16(INT_STATUS_ACK);
1824 ipg_reset(dev, IPG_AC_GLOBAL_RESET | IPG_AC_HOST | IPG_AC_DMA);
1826 synchronize_irq(pdev->irq);
1827 } while (ipg_r16(INT_ENABLE) & IPG_IE_RSVD_MASK);
1829 ipg_rx_clear(sp);
1831 ipg_tx_clear(sp);
1833 pci_free_consistent(pdev, IPG_RX_RING_BYTES, sp->rxd, sp->rxd_map);
1834 pci_free_consistent(pdev, IPG_TX_RING_BYTES, sp->txd, sp->txd_map);
1836 free_irq(pdev->irq, dev);
1838 return 0;
1841 static netdev_tx_t ipg_nic_hard_start_xmit(struct sk_buff *skb,
1842 struct net_device *dev)
1844 struct ipg_nic_private *sp = netdev_priv(dev);
1845 void __iomem *ioaddr = sp->ioaddr;
1846 unsigned int entry = sp->tx_current % IPG_TFDLIST_LENGTH;
1847 unsigned long flags;
1848 struct ipg_tx *txfd;
1850 IPG_DDEBUG_MSG("_nic_hard_start_xmit\n");
1852 /* If in 10Mbps mode, stop the transmit queue so
1853 * no more transmit frames are accepted.
1855 if (sp->tenmbpsmode)
1856 netif_stop_queue(dev);
1858 if (sp->reset_current_tfd) {
1859 sp->reset_current_tfd = 0;
1860 entry = 0;
1863 txfd = sp->txd + entry;
1865 sp->tx_buff[entry] = skb;
1867 /* Clear all TFC fields, except TFDDONE. */
1868 txfd->tfc = cpu_to_le64(IPG_TFC_TFDDONE);
1870 /* Specify the TFC field within the TFD. */
1871 txfd->tfc |= cpu_to_le64(IPG_TFC_WORDALIGNDISABLED |
1872 (IPG_TFC_FRAMEID & sp->tx_current) |
1873 (IPG_TFC_FRAGCOUNT & (1 << 24)));
1875 * 16--17 (WordAlign) <- 3 (disable),
1876 * 0--15 (FrameId) <- sp->tx_current,
1877 * 24--27 (FragCount) <- 1
1880 /* Request TxComplete interrupts at an interval defined
1881 * by the constant IPG_FRAMESBETWEENTXCOMPLETES.
1882 * Request TxComplete interrupt for every frame
1883 * if in 10Mbps mode to accommodate problem with 10Mbps
1884 * processing.
1886 if (sp->tenmbpsmode)
1887 txfd->tfc |= cpu_to_le64(IPG_TFC_TXINDICATE);
1888 txfd->tfc |= cpu_to_le64(IPG_TFC_TXDMAINDICATE);
1889 /* Based on compilation option, determine if FCS is to be
1890 * appended to transmit frame by IPG.
1892 if (!(IPG_APPEND_FCS_ON_TX))
1893 txfd->tfc |= cpu_to_le64(IPG_TFC_FCSAPPENDDISABLE);
1895 /* Based on compilation option, determine if IP, TCP and/or
1896 * UDP checksums are to be added to transmit frame by IPG.
1898 if (IPG_ADD_IPCHECKSUM_ON_TX)
1899 txfd->tfc |= cpu_to_le64(IPG_TFC_IPCHECKSUMENABLE);
1901 if (IPG_ADD_TCPCHECKSUM_ON_TX)
1902 txfd->tfc |= cpu_to_le64(IPG_TFC_TCPCHECKSUMENABLE);
1904 if (IPG_ADD_UDPCHECKSUM_ON_TX)
1905 txfd->tfc |= cpu_to_le64(IPG_TFC_UDPCHECKSUMENABLE);
1907 /* Based on compilation option, determine if VLAN tag info is to be
1908 * inserted into transmit frame by IPG.
1910 if (IPG_INSERT_MANUAL_VLAN_TAG) {
1911 txfd->tfc |= cpu_to_le64(IPG_TFC_VLANTAGINSERT |
1912 ((u64) IPG_MANUAL_VLAN_VID << 32) |
1913 ((u64) IPG_MANUAL_VLAN_CFI << 44) |
1914 ((u64) IPG_MANUAL_VLAN_USERPRIORITY << 45));
1917 /* The fragment start location within system memory is defined
1918 * by the sk_buff structure's data field. The physical address
1919 * of this location within the system's virtual memory space
1920 * is determined using the IPG_HOST2BUS_MAP function.
1922 txfd->frag_info = cpu_to_le64(pci_map_single(sp->pdev, skb->data,
1923 skb->len, PCI_DMA_TODEVICE));
1925 /* The length of the fragment within system memory is defined by
1926 * the sk_buff structure's len field.
1928 txfd->frag_info |= cpu_to_le64(IPG_TFI_FRAGLEN &
1929 ((u64) (skb->len & 0xffff) << 48));
1931 /* Clear the TFDDone bit last to indicate the TFD is ready
1932 * for transfer to the IPG.
1934 txfd->tfc &= cpu_to_le64(~IPG_TFC_TFDDONE);
1936 spin_lock_irqsave(&sp->lock, flags);
1938 sp->tx_current++;
1940 mmiowb();
1942 ipg_w32(IPG_DC_TX_DMA_POLL_NOW, DMA_CTRL);
1944 if (sp->tx_current == (sp->tx_dirty + IPG_TFDLIST_LENGTH))
1945 netif_stop_queue(dev);
1947 spin_unlock_irqrestore(&sp->lock, flags);
1949 return NETDEV_TX_OK;
1952 static void ipg_set_phy_default_param(unsigned char rev,
1953 struct net_device *dev, int phy_address)
1955 unsigned short length;
1956 unsigned char revision;
1957 const unsigned short *phy_param;
1958 unsigned short address, value;
1960 phy_param = &DefaultPhyParam[0];
1961 length = *phy_param & 0x00FF;
1962 revision = (unsigned char)((*phy_param) >> 8);
1963 phy_param++;
1964 while (length != 0) {
1965 if (rev == revision) {
1966 while (length > 1) {
1967 address = *phy_param;
1968 value = *(phy_param + 1);
1969 phy_param += 2;
1970 mdio_write(dev, phy_address, address, value);
1971 length -= 4;
1973 break;
1974 } else {
1975 phy_param += length / 2;
1976 length = *phy_param & 0x00FF;
1977 revision = (unsigned char)((*phy_param) >> 8);
1978 phy_param++;
1983 static int read_eeprom(struct net_device *dev, int eep_addr)
1985 void __iomem *ioaddr = ipg_ioaddr(dev);
1986 unsigned int i;
1987 int ret = 0;
1988 u16 value;
1990 value = IPG_EC_EEPROM_READOPCODE | (eep_addr & 0xff);
1991 ipg_w16(value, EEPROM_CTRL);
1993 for (i = 0; i < 1000; i++) {
1994 u16 data;
1996 mdelay(10);
1997 data = ipg_r16(EEPROM_CTRL);
1998 if (!(data & IPG_EC_EEPROM_BUSY)) {
1999 ret = ipg_r16(EEPROM_DATA);
2000 break;
2003 return ret;
2006 static void ipg_init_mii(struct net_device *dev)
2008 struct ipg_nic_private *sp = netdev_priv(dev);
2009 struct mii_if_info *mii_if = &sp->mii_if;
2010 int phyaddr;
2012 mii_if->dev = dev;
2013 mii_if->mdio_read = mdio_read;
2014 mii_if->mdio_write = mdio_write;
2015 mii_if->phy_id_mask = 0x1f;
2016 mii_if->reg_num_mask = 0x1f;
2018 mii_if->phy_id = phyaddr = ipg_find_phyaddr(dev);
2020 if (phyaddr != 0x1f) {
2021 u16 mii_phyctrl, mii_1000cr;
2023 mii_1000cr = mdio_read(dev, phyaddr, MII_CTRL1000);
2024 mii_1000cr |= ADVERTISE_1000FULL | ADVERTISE_1000HALF |
2025 GMII_PHY_1000BASETCONTROL_PreferMaster;
2026 mdio_write(dev, phyaddr, MII_CTRL1000, mii_1000cr);
2028 mii_phyctrl = mdio_read(dev, phyaddr, MII_BMCR);
2030 /* Set default phyparam */
2031 ipg_set_phy_default_param(sp->pdev->revision, dev, phyaddr);
2033 /* Reset PHY */
2034 mii_phyctrl |= BMCR_RESET | BMCR_ANRESTART;
2035 mdio_write(dev, phyaddr, MII_BMCR, mii_phyctrl);
2040 static int ipg_hw_init(struct net_device *dev)
2042 struct ipg_nic_private *sp = netdev_priv(dev);
2043 void __iomem *ioaddr = sp->ioaddr;
2044 unsigned int i;
2045 int rc;
2047 /* Read/Write and Reset EEPROM Value */
2048 /* Read LED Mode Configuration from EEPROM */
2049 sp->led_mode = read_eeprom(dev, 6);
2051 /* Reset all functions within the IPG. Do not assert
2052 * RST_OUT as not compatible with some PHYs.
2054 rc = ipg_reset(dev, IPG_RESET_MASK);
2055 if (rc < 0)
2056 goto out;
2058 ipg_init_mii(dev);
2060 /* Read MAC Address from EEPROM */
2061 for (i = 0; i < 3; i++)
2062 sp->station_addr[i] = read_eeprom(dev, 16 + i);
2064 for (i = 0; i < 3; i++)
2065 ipg_w16(sp->station_addr[i], STATION_ADDRESS_0 + 2*i);
2067 /* Set station address in ethernet_device structure. */
2068 dev->dev_addr[0] = ipg_r16(STATION_ADDRESS_0) & 0x00ff;
2069 dev->dev_addr[1] = (ipg_r16(STATION_ADDRESS_0) & 0xff00) >> 8;
2070 dev->dev_addr[2] = ipg_r16(STATION_ADDRESS_1) & 0x00ff;
2071 dev->dev_addr[3] = (ipg_r16(STATION_ADDRESS_1) & 0xff00) >> 8;
2072 dev->dev_addr[4] = ipg_r16(STATION_ADDRESS_2) & 0x00ff;
2073 dev->dev_addr[5] = (ipg_r16(STATION_ADDRESS_2) & 0xff00) >> 8;
2074 out:
2075 return rc;
2078 static int ipg_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2080 struct ipg_nic_private *sp = netdev_priv(dev);
2081 int rc;
2083 mutex_lock(&sp->mii_mutex);
2084 rc = generic_mii_ioctl(&sp->mii_if, if_mii(ifr), cmd, NULL);
2085 mutex_unlock(&sp->mii_mutex);
2087 return rc;
2090 static int ipg_nic_change_mtu(struct net_device *dev, int new_mtu)
2092 struct ipg_nic_private *sp = netdev_priv(dev);
2093 int err;
2095 /* Function to accommodate changes to Maximum Transfer Unit
2096 * (or MTU) of IPG NIC. Cannot use default function since
2097 * the default will not allow for MTU > 1500 bytes.
2100 IPG_DEBUG_MSG("_nic_change_mtu\n");
2103 * Check that the new MTU value is between 68 (14 byte header, 46 byte
2104 * payload, 4 byte FCS) and 10 KB, which is the largest supported MTU.
2106 if (new_mtu < 68 || new_mtu > 10240)
2107 return -EINVAL;
2109 err = ipg_nic_stop(dev);
2110 if (err)
2111 return err;
2113 dev->mtu = new_mtu;
2115 sp->max_rxframe_size = new_mtu;
2117 sp->rxfrag_size = new_mtu;
2118 if (sp->rxfrag_size > 4088)
2119 sp->rxfrag_size = 4088;
2121 sp->rxsupport_size = sp->max_rxframe_size;
2123 if (new_mtu > 0x0600)
2124 sp->is_jumbo = true;
2125 else
2126 sp->is_jumbo = false;
2128 return ipg_nic_open(dev);
2131 static int ipg_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2133 struct ipg_nic_private *sp = netdev_priv(dev);
2134 int rc;
2136 mutex_lock(&sp->mii_mutex);
2137 rc = mii_ethtool_gset(&sp->mii_if, cmd);
2138 mutex_unlock(&sp->mii_mutex);
2140 return rc;
2143 static int ipg_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2145 struct ipg_nic_private *sp = netdev_priv(dev);
2146 int rc;
2148 mutex_lock(&sp->mii_mutex);
2149 rc = mii_ethtool_sset(&sp->mii_if, cmd);
2150 mutex_unlock(&sp->mii_mutex);
2152 return rc;
2155 static int ipg_nway_reset(struct net_device *dev)
2157 struct ipg_nic_private *sp = netdev_priv(dev);
2158 int rc;
2160 mutex_lock(&sp->mii_mutex);
2161 rc = mii_nway_restart(&sp->mii_if);
2162 mutex_unlock(&sp->mii_mutex);
2164 return rc;
2167 static const struct ethtool_ops ipg_ethtool_ops = {
2168 .get_settings = ipg_get_settings,
2169 .set_settings = ipg_set_settings,
2170 .nway_reset = ipg_nway_reset,
2173 static void __devexit ipg_remove(struct pci_dev *pdev)
2175 struct net_device *dev = pci_get_drvdata(pdev);
2176 struct ipg_nic_private *sp = netdev_priv(dev);
2178 IPG_DEBUG_MSG("_remove\n");
2180 /* Un-register Ethernet device. */
2181 unregister_netdev(dev);
2183 pci_iounmap(pdev, sp->ioaddr);
2185 pci_release_regions(pdev);
2187 free_netdev(dev);
2188 pci_disable_device(pdev);
2189 pci_set_drvdata(pdev, NULL);
2192 static const struct net_device_ops ipg_netdev_ops = {
2193 .ndo_open = ipg_nic_open,
2194 .ndo_stop = ipg_nic_stop,
2195 .ndo_start_xmit = ipg_nic_hard_start_xmit,
2196 .ndo_get_stats = ipg_nic_get_stats,
2197 .ndo_set_rx_mode = ipg_nic_set_multicast_list,
2198 .ndo_do_ioctl = ipg_ioctl,
2199 .ndo_tx_timeout = ipg_tx_timeout,
2200 .ndo_change_mtu = ipg_nic_change_mtu,
2201 .ndo_set_mac_address = eth_mac_addr,
2202 .ndo_validate_addr = eth_validate_addr,
2205 static int __devinit ipg_probe(struct pci_dev *pdev,
2206 const struct pci_device_id *id)
2208 unsigned int i = id->driver_data;
2209 struct ipg_nic_private *sp;
2210 struct net_device *dev;
2211 void __iomem *ioaddr;
2212 int rc;
2214 rc = pci_enable_device(pdev);
2215 if (rc < 0)
2216 goto out;
2218 pr_info("%s: %s\n", pci_name(pdev), ipg_brand_name[i]);
2220 pci_set_master(pdev);
2222 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(40));
2223 if (rc < 0) {
2224 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
2225 if (rc < 0) {
2226 pr_err("%s: DMA config failed\n", pci_name(pdev));
2227 goto err_disable_0;
2232 * Initialize net device.
2234 dev = alloc_etherdev(sizeof(struct ipg_nic_private));
2235 if (!dev) {
2236 pr_err("%s: alloc_etherdev failed\n", pci_name(pdev));
2237 rc = -ENOMEM;
2238 goto err_disable_0;
2241 sp = netdev_priv(dev);
2242 spin_lock_init(&sp->lock);
2243 mutex_init(&sp->mii_mutex);
2245 sp->is_jumbo = IPG_IS_JUMBO;
2246 sp->rxfrag_size = IPG_RXFRAG_SIZE;
2247 sp->rxsupport_size = IPG_RXSUPPORT_SIZE;
2248 sp->max_rxframe_size = IPG_MAX_RXFRAME_SIZE;
2250 /* Declare IPG NIC functions for Ethernet device methods.
2252 dev->netdev_ops = &ipg_netdev_ops;
2253 SET_NETDEV_DEV(dev, &pdev->dev);
2254 SET_ETHTOOL_OPS(dev, &ipg_ethtool_ops);
2256 rc = pci_request_regions(pdev, DRV_NAME);
2257 if (rc)
2258 goto err_free_dev_1;
2260 ioaddr = pci_iomap(pdev, 1, pci_resource_len(pdev, 1));
2261 if (!ioaddr) {
2262 pr_err("%s: cannot map MMIO\n", pci_name(pdev));
2263 rc = -EIO;
2264 goto err_release_regions_2;
2267 /* Save the pointer to the PCI device information. */
2268 sp->ioaddr = ioaddr;
2269 sp->pdev = pdev;
2270 sp->dev = dev;
2272 INIT_DELAYED_WORK(&sp->task, ipg_reset_after_host_error);
2274 pci_set_drvdata(pdev, dev);
2276 rc = ipg_hw_init(dev);
2277 if (rc < 0)
2278 goto err_unmap_3;
2280 rc = register_netdev(dev);
2281 if (rc < 0)
2282 goto err_unmap_3;
2284 netdev_info(dev, "Ethernet device registered\n");
2285 out:
2286 return rc;
2288 err_unmap_3:
2289 pci_iounmap(pdev, ioaddr);
2290 err_release_regions_2:
2291 pci_release_regions(pdev);
2292 err_free_dev_1:
2293 free_netdev(dev);
2294 err_disable_0:
2295 pci_disable_device(pdev);
2296 goto out;
2299 static struct pci_driver ipg_pci_driver = {
2300 .name = IPG_DRIVER_NAME,
2301 .id_table = ipg_pci_tbl,
2302 .probe = ipg_probe,
2303 .remove = __devexit_p(ipg_remove),
2306 static int __init ipg_init_module(void)
2308 return pci_register_driver(&ipg_pci_driver);
2311 static void __exit ipg_exit_module(void)
2313 pci_unregister_driver(&ipg_pci_driver);
2316 module_init(ipg_init_module);
2317 module_exit(ipg_exit_module);