2 * Intel Wireless WiMAX Connection 2400m
6 * Copyright (C) 2007-2008 Intel Corporation. All rights reserved.
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
12 * * Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * * Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in
16 * the documentation and/or other materials provided with the
18 * * Neither the name of Intel Corporation nor the names of its
19 * contributors may be used to endorse or promote products derived
20 * from this software without specific prior written permission.
22 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
25 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
26 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
27 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
28 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
32 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35 * Intel Corporation <linux-wimax@intel.com>
36 * Yanir Lubetkin <yanirx.lubetkin@intel.com>
37 * Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
38 * - Initial implementation
43 * The 2400m and derived devices work in two modes: boot-mode or
44 * normal mode. In boot mode we can execute only a handful of commands
45 * targeted at uploading the firmware and launching it.
47 * The 2400m enters boot mode when it is first connected to the
48 * system, when it crashes and when you ask it to reboot. There are
49 * two submodes of the boot mode: signed and non-signed. Signed takes
50 * firmwares signed with a certain private key, non-signed takes any
51 * firmware. Normal hardware takes only signed firmware.
53 * On boot mode, in USB, we write to the device using the bulk out
54 * endpoint and read from it in the notification endpoint. In SDIO we
55 * talk to it via the write address and read from the read address.
57 * Upon entrance to boot mode, the device sends (preceded with a few
58 * zero length packets (ZLPs) on the notification endpoint in USB) a
59 * reboot barker (4 le32 words with the same value). We ack it by
60 * sending the same barker to the device. The device acks with a
61 * reboot ack barker (4 le32 words with value I2400M_ACK_BARKER) and
62 * then is fully booted. At this point we can upload the firmware.
64 * Note that different iterations of the device and EEPROM
65 * configurations will send different [re]boot barkers; these are
66 * collected in i2400m_barker_db along with the firmware
67 * characteristics they require.
69 * This process is accomplished by the i2400m_bootrom_init()
70 * function. All the device interaction happens through the
71 * i2400m_bm_cmd() [boot mode command]. Special return values will
72 * indicate if the device did reset during the process.
74 * After this, we read the MAC address and then (if needed)
75 * reinitialize the device. We need to read it ahead of time because
76 * in the future, we might not upload the firmware until userspace
77 * 'ifconfig up's the device.
79 * We can then upload the firmware file. The file is composed of a BCF
80 * header (basic data, keys and signatures) and a list of write
81 * commands and payloads. Optionally more BCF headers might follow the
82 * main payload. We first upload the header [i2400m_dnload_init()] and
83 * then pass the commands and payloads verbatim to the i2400m_bm_cmd()
84 * function [i2400m_dnload_bcf()]. Then we tell the device to jump to
85 * the new firmware [i2400m_dnload_finalize()].
87 * Once firmware is uploaded, we are good to go :)
89 * When we don't know in which mode we are, we first try by sending a
90 * warm reset request that will take us to boot-mode. If we time out
91 * waiting for a reboot barker, that means maybe we are already in
92 * boot mode, so we send a reboot barker.
96 * This code (and process) is single threaded; for executing commands,
97 * we post a URB to the notification endpoint, post the command, wait
98 * for data on the notification buffer. We don't need to worry about
99 * others as we know we are the only ones in there.
101 * BACKEND IMPLEMENTATION
103 * This code is bus-generic; the bus-specific driver provides back end
104 * implementations to send a boot mode command to the device and to
105 * read an acknolwedgement from it (or an asynchronous notification)
110 * Note that in some cases, we can't just load a firmware file (for
111 * example, when resuming). For that, we might cache the firmware
112 * file. Thus, when doing the bootstrap, if there is a cache firmware
113 * file, it is used; if not, loading from disk is attempted.
117 * i2400m_barker_db_init Called by i2400m_driver_init()
118 * i2400m_barker_db_add
120 * i2400m_barker_db_exit Called by i2400m_driver_exit()
122 * i2400m_dev_bootstrap Called by __i2400m_dev_start()
124 * i2400m_fw_bootstrap
126 * i2400m_fw_hdr_check
131 * i2400m_bootrom_init
135 * i2400m_dnload_init_signed
136 * i2400m_dnload_init_nonsigned
137 * i2400m_download_chunk
141 * i2400m_dnload_finalize
145 * i2400m->bus_bm_cmd_send()
146 * i2400m->bus_bm_wait_for_ack
147 * __i2400m_bm_ack_verify
148 * i2400m_is_boot_barker
150 * i2400m_bm_cmd_prepare Used by bus-drivers to prep
151 * commands before sending
153 * i2400m_pm_notifier Called on Power Management events
157 #include <linux/firmware.h>
158 #include <linux/sched.h>
159 #include <linux/slab.h>
160 #include <linux/usb.h>
161 #include <linux/export.h>
165 #define D_SUBMODULE fw
166 #include "debug-levels.h"
169 static const __le32 i2400m_ACK_BARKER
[4] = {
170 cpu_to_le32(I2400M_ACK_BARKER
),
171 cpu_to_le32(I2400M_ACK_BARKER
),
172 cpu_to_le32(I2400M_ACK_BARKER
),
173 cpu_to_le32(I2400M_ACK_BARKER
)
178 * Prepare a boot-mode command for delivery
180 * @cmd: pointer to bootrom header to prepare
182 * Computes checksum if so needed. After calling this function, DO NOT
183 * modify the command or header as the checksum won't work anymore.
185 * We do it from here because some times we cannot do it in the
186 * original context the command was sent (it is a const), so when we
187 * copy it to our staging buffer, we add the checksum there.
189 void i2400m_bm_cmd_prepare(struct i2400m_bootrom_header
*cmd
)
191 if (i2400m_brh_get_use_checksum(cmd
)) {
194 const u32
*checksum_ptr
= (void *) cmd
->payload
;
195 for (i
= 0; i
< cmd
->data_size
/ 4; i
++)
196 checksum
+= cpu_to_le32(*checksum_ptr
++);
197 checksum
+= cmd
->command
+ cmd
->target_addr
+ cmd
->data_size
;
198 cmd
->block_checksum
= cpu_to_le32(checksum
);
201 EXPORT_SYMBOL_GPL(i2400m_bm_cmd_prepare
);
205 * Database of known barkers.
207 * A barker is what the device sends indicating he is ready to be
208 * bootloaded. Different versions of the device will send different
209 * barkers. Depending on the barker, it might mean the device wants
210 * some kind of firmware or the other.
212 static struct i2400m_barker_db
{
215 static size_t i2400m_barker_db_used
, i2400m_barker_db_size
;
219 int i2400m_zrealloc_2x(void **ptr
, size_t *_count
, size_t el_size
,
222 size_t old_count
= *_count
,
223 new_count
= old_count
? 2 * old_count
: 2,
224 old_size
= el_size
* old_count
,
225 new_size
= el_size
* new_count
;
226 void *nptr
= krealloc(*ptr
, new_size
, gfp_flags
);
228 /* zero the other half or the whole thing if old_count
231 memset(nptr
, 0, new_size
);
233 memset(nptr
+ old_size
, 0, old_size
);
243 * Add a barker to the database
245 * This cannot used outside of this module and only at at module_init
246 * time. This is to avoid the need to do locking.
249 int i2400m_barker_db_add(u32 barker_id
)
253 struct i2400m_barker_db
*barker
;
254 if (i2400m_barker_db_used
>= i2400m_barker_db_size
) {
255 result
= i2400m_zrealloc_2x(
256 (void **) &i2400m_barker_db
, &i2400m_barker_db_size
,
257 sizeof(i2400m_barker_db
[0]), GFP_KERNEL
);
261 barker
= i2400m_barker_db
+ i2400m_barker_db_used
++;
262 barker
->data
[0] = le32_to_cpu(barker_id
);
263 barker
->data
[1] = le32_to_cpu(barker_id
);
264 barker
->data
[2] = le32_to_cpu(barker_id
);
265 barker
->data
[3] = le32_to_cpu(barker_id
);
270 void i2400m_barker_db_exit(void)
272 kfree(i2400m_barker_db
);
273 i2400m_barker_db
= NULL
;
274 i2400m_barker_db_size
= 0;
275 i2400m_barker_db_used
= 0;
280 * Helper function to add all the known stable barkers to the barker
284 int i2400m_barker_db_known_barkers(void)
288 result
= i2400m_barker_db_add(I2400M_NBOOT_BARKER
);
291 result
= i2400m_barker_db_add(I2400M_SBOOT_BARKER
);
294 result
= i2400m_barker_db_add(I2400M_SBOOT_BARKER_6050
);
303 * Initialize the barker database
305 * This can only be used from the module_init function for this
306 * module; this is to avoid the need to do locking.
308 * @options: command line argument with extra barkers to
309 * recognize. This is a comma-separated list of 32-bit hex
310 * numbers. They are appended to the existing list. Setting 0
311 * cleans the existing list and starts a new one.
313 int i2400m_barker_db_init(const char *_options
)
316 char *options
= NULL
, *options_orig
, *token
;
318 i2400m_barker_db
= NULL
;
319 i2400m_barker_db_size
= 0;
320 i2400m_barker_db_used
= 0;
322 result
= i2400m_barker_db_known_barkers();
325 /* parse command line options from i2400m.barkers */
326 if (_options
!= NULL
) {
329 options_orig
= kstrdup(_options
, GFP_KERNEL
);
330 if (options_orig
== NULL
)
332 options
= options_orig
;
334 while ((token
= strsep(&options
, ",")) != NULL
) {
335 if (*token
== '\0') /* eat joint commas */
337 if (sscanf(token
, "%x", &barker
) != 1
338 || barker
> 0xffffffff) {
339 printk(KERN_ERR
"%s: can't recognize "
340 "i2400m.barkers value '%s' as "
347 /* clean list and start new */
348 i2400m_barker_db_exit();
351 result
= i2400m_barker_db_add(barker
);
361 kfree(i2400m_barker_db
);
367 * Recognize a boot barker
369 * @buf: buffer where the boot barker.
370 * @buf_size: size of the buffer (has to be 16 bytes). It is passed
371 * here so the function can check it for the caller.
373 * Note that as a side effect, upon identifying the obtained boot
374 * barker, this function will set i2400m->barker to point to the right
375 * barker database entry. Subsequent calls to the function will result
376 * in verifying that the same type of boot barker is returned when the
377 * device [re]boots (as long as the same device instance is used).
379 * Return: 0 if @buf matches a known boot barker. -ENOENT if the
380 * buffer in @buf doesn't match any boot barker in the database or
381 * -EILSEQ if the buffer doesn't have the right size.
383 int i2400m_is_boot_barker(struct i2400m
*i2400m
,
384 const void *buf
, size_t buf_size
)
387 struct device
*dev
= i2400m_dev(i2400m
);
388 struct i2400m_barker_db
*barker
;
392 if (buf_size
!= sizeof(i2400m_barker_db
[i
].data
))
395 /* Short circuit if we have already discovered the barker
396 * associated with the device. */
398 && !memcmp(buf
, i2400m
->barker
, sizeof(i2400m
->barker
->data
))) {
399 unsigned index
= (i2400m
->barker
- i2400m_barker_db
)
400 / sizeof(*i2400m
->barker
);
401 d_printf(2, dev
, "boot barker cache-confirmed #%u/%08x\n",
402 index
, le32_to_cpu(i2400m
->barker
->data
[0]));
406 for (i
= 0; i
< i2400m_barker_db_used
; i
++) {
407 barker
= &i2400m_barker_db
[i
];
408 BUILD_BUG_ON(sizeof(barker
->data
) != 16);
409 if (memcmp(buf
, barker
->data
, sizeof(barker
->data
)))
412 if (i2400m
->barker
== NULL
) {
413 i2400m
->barker
= barker
;
414 d_printf(1, dev
, "boot barker set to #%u/%08x\n",
415 i
, le32_to_cpu(barker
->data
[0]));
416 if (barker
->data
[0] == le32_to_cpu(I2400M_NBOOT_BARKER
))
420 } else if (i2400m
->barker
!= barker
) {
421 dev_err(dev
, "HW inconsistency: device "
422 "reports a different boot barker "
423 "than set (from %08x to %08x)\n",
424 le32_to_cpu(i2400m
->barker
->data
[0]),
425 le32_to_cpu(barker
->data
[0]));
428 d_printf(2, dev
, "boot barker confirmed #%u/%08x\n",
429 i
, le32_to_cpu(barker
->data
[0]));
435 EXPORT_SYMBOL_GPL(i2400m_is_boot_barker
);
439 * Verify the ack data received
441 * Given a reply to a boot mode command, chew it and verify everything
444 * @opcode: opcode which generated this ack. For error messages.
445 * @ack: pointer to ack data we received
446 * @ack_size: size of that data buffer
447 * @flags: I2400M_BM_CMD_* flags we called the command with.
449 * Way too long function -- maybe it should be further split
452 ssize_t
__i2400m_bm_ack_verify(struct i2400m
*i2400m
, int opcode
,
453 struct i2400m_bootrom_header
*ack
,
454 size_t ack_size
, int flags
)
456 ssize_t result
= -ENOMEM
;
457 struct device
*dev
= i2400m_dev(i2400m
);
459 d_fnstart(8, dev
, "(i2400m %p opcode %d ack %p size %zu)\n",
460 i2400m
, opcode
, ack
, ack_size
);
461 if (ack_size
< sizeof(*ack
)) {
463 dev_err(dev
, "boot-mode cmd %d: HW BUG? notification didn't "
464 "return enough data (%zu bytes vs %zu expected)\n",
465 opcode
, ack_size
, sizeof(*ack
));
466 goto error_ack_short
;
468 result
= i2400m_is_boot_barker(i2400m
, ack
, ack_size
);
470 result
= -ERESTARTSYS
;
471 d_printf(6, dev
, "boot-mode cmd %d: HW boot barker\n", opcode
);
474 if (ack_size
== sizeof(i2400m_ACK_BARKER
)
475 && memcmp(ack
, i2400m_ACK_BARKER
, sizeof(*ack
)) == 0) {
477 d_printf(3, dev
, "boot-mode cmd %d: HW reboot ack barker\n",
479 goto error_reboot_ack
;
482 if (flags
& I2400M_BM_CMD_RAW
)
484 ack
->data_size
= le32_to_cpu(ack
->data_size
);
485 ack
->target_addr
= le32_to_cpu(ack
->target_addr
);
486 ack
->block_checksum
= le32_to_cpu(ack
->block_checksum
);
487 d_printf(5, dev
, "boot-mode cmd %d: notification for opcode %u "
488 "response %u csum %u rr %u da %u\n",
489 opcode
, i2400m_brh_get_opcode(ack
),
490 i2400m_brh_get_response(ack
),
491 i2400m_brh_get_use_checksum(ack
),
492 i2400m_brh_get_response_required(ack
),
493 i2400m_brh_get_direct_access(ack
));
495 if (i2400m_brh_get_signature(ack
) != 0xcbbc) {
496 dev_err(dev
, "boot-mode cmd %d: HW BUG? wrong signature "
497 "0x%04x\n", opcode
, i2400m_brh_get_signature(ack
));
498 goto error_ack_signature
;
500 if (opcode
!= -1 && opcode
!= i2400m_brh_get_opcode(ack
)) {
501 dev_err(dev
, "boot-mode cmd %d: HW BUG? "
502 "received response for opcode %u, expected %u\n",
503 opcode
, i2400m_brh_get_opcode(ack
), opcode
);
504 goto error_ack_opcode
;
506 if (i2400m_brh_get_response(ack
) != 0) { /* failed? */
507 dev_err(dev
, "boot-mode cmd %d: error; hw response %u\n",
508 opcode
, i2400m_brh_get_response(ack
));
509 goto error_ack_failed
;
511 if (ack_size
< ack
->data_size
+ sizeof(*ack
)) {
512 dev_err(dev
, "boot-mode cmd %d: SW BUG "
513 "driver provided only %zu bytes for %zu bytes "
514 "of data\n", opcode
, ack_size
,
515 (size_t) le32_to_cpu(ack
->data_size
) + sizeof(*ack
));
516 goto error_ack_short_buffer
;
519 /* Don't you love this stack of empty targets? Well, I don't
520 * either, but it helps track exactly who comes in here and
522 error_ack_short_buffer
:
530 d_fnend(8, dev
, "(i2400m %p opcode %d ack %p size %zu) = %d\n",
531 i2400m
, opcode
, ack
, ack_size
, (int) result
);
537 * i2400m_bm_cmd - Execute a boot mode command
539 * @cmd: buffer containing the command data (pointing at the header).
540 * This data can be ANYWHERE (for USB, we will copy it to an
541 * specific buffer). Make sure everything is in proper little
544 * A raw buffer can be also sent, just cast it and set flags to
547 * This function will generate a checksum for you if the
548 * checksum bit in the command is set (unless I2400M_BM_CMD_RAW
551 * You can use the i2400m->bm_cmd_buf to stage your commands and
554 * If NULL, no command is sent (we just wait for an ack).
556 * @cmd_size: size of the command. Will be auto padded to the
557 * bus-specific drivers padding requirements.
559 * @ack: buffer where to place the acknowledgement. If it is a regular
560 * command response, all fields will be returned with the right,
563 * You *cannot* use i2400m->bm_ack_buf for this buffer.
565 * @ack_size: size of @ack, 16 aligned; you need to provide at least
566 * sizeof(*ack) bytes and then enough to contain the return data
569 * @flags: see I2400M_BM_CMD_* above.
571 * @returns: bytes received by the notification; if < 0, an errno code
572 * denoting an error or:
574 * -ERESTARTSYS The device has rebooted
576 * Executes a boot-mode command and waits for a response, doing basic
577 * validation on it; if a zero length response is received, it retries
578 * waiting for a response until a non-zero one is received (timing out
579 * after %I2400M_BOOT_RETRIES retries).
582 ssize_t
i2400m_bm_cmd(struct i2400m
*i2400m
,
583 const struct i2400m_bootrom_header
*cmd
, size_t cmd_size
,
584 struct i2400m_bootrom_header
*ack
, size_t ack_size
,
587 ssize_t result
= -ENOMEM
, rx_bytes
;
588 struct device
*dev
= i2400m_dev(i2400m
);
589 int opcode
= cmd
== NULL
? -1 : i2400m_brh_get_opcode(cmd
);
591 d_fnstart(6, dev
, "(i2400m %p cmd %p size %zu ack %p size %zu)\n",
592 i2400m
, cmd
, cmd_size
, ack
, ack_size
);
593 BUG_ON(ack_size
< sizeof(*ack
));
594 BUG_ON(i2400m
->boot_mode
== 0);
596 if (cmd
!= NULL
) { /* send the command */
597 result
= i2400m
->bus_bm_cmd_send(i2400m
, cmd
, cmd_size
, flags
);
600 if ((flags
& I2400M_BM_CMD_RAW
) == 0)
602 "boot-mode cmd %d csum %u rr %u da %u: "
603 "addr 0x%04x size %u block csum 0x%04x\n",
604 opcode
, i2400m_brh_get_use_checksum(cmd
),
605 i2400m_brh_get_response_required(cmd
),
606 i2400m_brh_get_direct_access(cmd
),
607 cmd
->target_addr
, cmd
->data_size
,
608 cmd
->block_checksum
);
610 result
= i2400m
->bus_bm_wait_for_ack(i2400m
, ack
, ack_size
);
612 dev_err(dev
, "boot-mode cmd %d: error waiting for an ack: %d\n",
613 opcode
, (int) result
); /* bah, %zd doesn't work */
614 goto error_wait_for_ack
;
617 /* verify the ack and read more if necessary [result is the
618 * final amount of bytes we get in the ack] */
619 result
= __i2400m_bm_ack_verify(i2400m
, opcode
, ack
, ack_size
, flags
);
622 /* Don't you love this stack of empty targets? Well, I don't
623 * either, but it helps track exactly who comes in here and
629 d_fnend(6, dev
, "(i2400m %p cmd %p size %zu ack %p size %zu) = %d\n",
630 i2400m
, cmd
, cmd_size
, ack
, ack_size
, (int) result
);
636 * i2400m_download_chunk - write a single chunk of data to the device's memory
638 * @i2400m: device descriptor
639 * @buf: the buffer to write
640 * @buf_len: length of the buffer to write
641 * @addr: address in the device memory space
642 * @direct: bootrom write mode
643 * @do_csum: should a checksum validation be performed
645 static int i2400m_download_chunk(struct i2400m
*i2400m
, const void *chunk
,
646 size_t __chunk_len
, unsigned long addr
,
647 unsigned int direct
, unsigned int do_csum
)
650 size_t chunk_len
= ALIGN(__chunk_len
, I2400M_PL_ALIGN
);
651 struct device
*dev
= i2400m_dev(i2400m
);
653 struct i2400m_bootrom_header cmd
;
654 u8 cmd_payload
[chunk_len
];
656 struct i2400m_bootrom_header ack
;
658 d_fnstart(5, dev
, "(i2400m %p chunk %p __chunk_len %zu addr 0x%08lx "
659 "direct %u do_csum %u)\n", i2400m
, chunk
, __chunk_len
,
660 addr
, direct
, do_csum
);
661 buf
= i2400m
->bm_cmd_buf
;
662 memcpy(buf
->cmd_payload
, chunk
, __chunk_len
);
663 memset(buf
->cmd_payload
+ __chunk_len
, 0xad, chunk_len
- __chunk_len
);
665 buf
->cmd
.command
= i2400m_brh_command(I2400M_BRH_WRITE
,
666 __chunk_len
& 0x3 ? 0 : do_csum
,
667 __chunk_len
& 0xf ? 0 : direct
);
668 buf
->cmd
.target_addr
= cpu_to_le32(addr
);
669 buf
->cmd
.data_size
= cpu_to_le32(__chunk_len
);
670 ret
= i2400m_bm_cmd(i2400m
, &buf
->cmd
, sizeof(buf
->cmd
) + chunk_len
,
671 &ack
, sizeof(ack
), 0);
674 d_fnend(5, dev
, "(i2400m %p chunk %p __chunk_len %zu addr 0x%08lx "
675 "direct %u do_csum %u) = %d\n", i2400m
, chunk
, __chunk_len
,
676 addr
, direct
, do_csum
, ret
);
682 * Download a BCF file's sections to the device
684 * @i2400m: device descriptor
685 * @bcf: pointer to firmware data (first header followed by the
686 * payloads). Assumed verified and consistent.
687 * @bcf_len: length (in bytes) of the @bcf buffer.
689 * Returns: < 0 errno code on error or the offset to the jump instruction.
691 * Given a BCF file, downloads each section (a command and a payload)
692 * to the device's address space. Actually, it just executes each
693 * command i the BCF file.
695 * The section size has to be aligned to 4 bytes AND the padding has
696 * to be taken from the firmware file, as the signature takes it into
700 ssize_t
i2400m_dnload_bcf(struct i2400m
*i2400m
,
701 const struct i2400m_bcf_hdr
*bcf
, size_t bcf_len
)
704 struct device
*dev
= i2400m_dev(i2400m
);
705 size_t offset
, /* iterator offset */
706 data_size
, /* Size of the data payload */
707 section_size
, /* Size of the whole section (cmd + payload) */
709 const struct i2400m_bootrom_header
*bh
;
710 struct i2400m_bootrom_header ack
;
712 d_fnstart(3, dev
, "(i2400m %p bcf %p bcf_len %zu)\n",
713 i2400m
, bcf
, bcf_len
);
714 /* Iterate over the command blocks in the BCF file that start
715 * after the header */
716 offset
= le32_to_cpu(bcf
->header_len
) * sizeof(u32
);
717 while (1) { /* start sending the file */
718 bh
= (void *) bcf
+ offset
;
719 data_size
= le32_to_cpu(bh
->data_size
);
720 section_size
= ALIGN(sizeof(*bh
) + data_size
, 4);
722 "downloading section #%zu (@%zu %zu B) to 0x%08x\n",
723 section
, offset
, sizeof(*bh
) + data_size
,
724 le32_to_cpu(bh
->target_addr
));
726 * We look for JUMP cmd from the bootmode header,
727 * either I2400M_BRH_SIGNED_JUMP for secure boot
728 * or I2400M_BRH_JUMP for unsecure boot, the last chunk
729 * should be the bootmode header with JUMP cmd.
731 if (i2400m_brh_get_opcode(bh
) == I2400M_BRH_SIGNED_JUMP
||
732 i2400m_brh_get_opcode(bh
) == I2400M_BRH_JUMP
) {
733 d_printf(5, dev
, "jump found @%zu\n", offset
);
736 if (offset
+ section_size
> bcf_len
) {
737 dev_err(dev
, "fw %s: bad section #%zu, "
738 "end (@%zu) beyond EOF (@%zu)\n",
739 i2400m
->fw_name
, section
,
740 offset
+ section_size
, bcf_len
);
742 goto error_section_beyond_eof
;
745 ret
= i2400m_bm_cmd(i2400m
, bh
, section_size
,
746 &ack
, sizeof(ack
), I2400M_BM_CMD_RAW
);
748 dev_err(dev
, "fw %s: section #%zu (@%zu %zu B) "
749 "failed %d\n", i2400m
->fw_name
, section
,
750 offset
, sizeof(*bh
) + data_size
, (int) ret
);
753 offset
+= section_size
;
757 error_section_beyond_eof
:
759 d_fnend(3, dev
, "(i2400m %p bcf %p bcf_len %zu) = %d\n",
760 i2400m
, bcf
, bcf_len
, (int) ret
);
766 * Indicate if the device emitted a reboot barker that indicates
770 unsigned i2400m_boot_is_signed(struct i2400m
*i2400m
)
772 return likely(i2400m
->sboot
);
777 * Do the final steps of uploading firmware
779 * @bcf_hdr: BCF header we are actually using
780 * @bcf: pointer to the firmware image (which matches the first header
781 * that is followed by the actual payloads).
782 * @offset: [byte] offset into @bcf for the command we need to send.
784 * Depending on the boot mode (signed vs non-signed), different
785 * actions need to be taken.
788 int i2400m_dnload_finalize(struct i2400m
*i2400m
,
789 const struct i2400m_bcf_hdr
*bcf_hdr
,
790 const struct i2400m_bcf_hdr
*bcf
, size_t offset
)
793 struct device
*dev
= i2400m_dev(i2400m
);
794 struct i2400m_bootrom_header
*cmd
, ack
;
796 struct i2400m_bootrom_header cmd
;
799 size_t signature_block_offset
, signature_block_size
;
801 d_fnstart(3, dev
, "offset %zu\n", offset
);
802 cmd
= (void *) bcf
+ offset
;
803 if (i2400m_boot_is_signed(i2400m
) == 0) {
804 struct i2400m_bootrom_header jump_ack
;
805 d_printf(1, dev
, "unsecure boot, jumping to 0x%08x\n",
806 le32_to_cpu(cmd
->target_addr
));
807 cmd_buf
= i2400m
->bm_cmd_buf
;
808 memcpy(&cmd_buf
->cmd
, cmd
, sizeof(*cmd
));
810 /* now cmd points to the actual bootrom_header in cmd_buf */
811 i2400m_brh_set_opcode(cmd
, I2400M_BRH_JUMP
);
813 ret
= i2400m_bm_cmd(i2400m
, cmd
, sizeof(*cmd
),
814 &jump_ack
, sizeof(jump_ack
), 0);
816 d_printf(1, dev
, "secure boot, jumping to 0x%08x\n",
817 le32_to_cpu(cmd
->target_addr
));
818 cmd_buf
= i2400m
->bm_cmd_buf
;
819 memcpy(&cmd_buf
->cmd
, cmd
, sizeof(*cmd
));
820 signature_block_offset
=
822 + le32_to_cpu(bcf_hdr
->key_size
) * sizeof(u32
)
823 + le32_to_cpu(bcf_hdr
->exponent_size
) * sizeof(u32
);
824 signature_block_size
=
825 le32_to_cpu(bcf_hdr
->modulus_size
) * sizeof(u32
);
826 memcpy(cmd_buf
->cmd_pl
,
827 (void *) bcf_hdr
+ signature_block_offset
,
828 signature_block_size
);
829 ret
= i2400m_bm_cmd(i2400m
, &cmd_buf
->cmd
,
830 sizeof(cmd_buf
->cmd
) + signature_block_size
,
831 &ack
, sizeof(ack
), I2400M_BM_CMD_RAW
);
833 d_fnend(3, dev
, "returning %d\n", ret
);
839 * i2400m_bootrom_init - Reboots a powered device into boot mode
841 * @i2400m: device descriptor
843 * I2400M_BRI_SOFT: a reboot barker has been seen
844 * already, so don't wait for it.
846 * I2400M_BRI_NO_REBOOT: Don't send a reboot command, but wait
847 * for a reboot barker notification. This is a one shot; if
848 * the state machine needs to send a reboot command it will.
852 * < 0 errno code on error, 0 if ok.
856 * Tries hard enough to put the device in boot-mode. There are two
857 * main phases to this:
859 * a. (1) send a reboot command and (2) get a reboot barker
861 * b. (1) echo/ack the reboot sending the reboot barker back and (2)
862 * getting an ack barker in return
864 * We want to skip (a) in some cases [soft]. The state machine is
865 * horrible, but it is basically: on each phase, send what has to be
866 * sent (if any), wait for the answer and act on the answer. We might
867 * have to backtrack and retry, so we keep a max tries counter for
870 * It sucks because we don't know ahead of time which is going to be
871 * the reboot barker (the device might send different ones depending
872 * on its EEPROM config) and once the device reboots and waits for the
873 * echo/ack reboot barker being sent back, it doesn't understand
874 * anything else. So we can be left at the point where we don't know
875 * what to send to it -- cold reset and bus reset seem to have little
876 * effect. So the function iterates (in this case) through all the
877 * known barkers and tries them all until an ACK is
878 * received. Otherwise, it gives up.
880 * If we get a timeout after sending a warm reset, we do it again.
882 int i2400m_bootrom_init(struct i2400m
*i2400m
, enum i2400m_bri flags
)
885 struct device
*dev
= i2400m_dev(i2400m
);
886 struct i2400m_bootrom_header
*cmd
;
887 struct i2400m_bootrom_header ack
;
888 int count
= i2400m
->bus_bm_retries
;
889 int ack_timeout_cnt
= 1;
892 BUILD_BUG_ON(sizeof(*cmd
) != sizeof(i2400m_barker_db
[0].data
));
893 BUILD_BUG_ON(sizeof(ack
) != sizeof(i2400m_ACK_BARKER
));
895 d_fnstart(4, dev
, "(i2400m %p flags 0x%08x)\n", i2400m
, flags
);
897 cmd
= i2400m
->bm_cmd_buf
;
898 if (flags
& I2400M_BRI_SOFT
)
904 d_printf(4, dev
, "device reboot: reboot command [%d # left]\n",
906 if ((flags
& I2400M_BRI_NO_REBOOT
) == 0)
907 i2400m_reset(i2400m
, I2400M_RT_WARM
);
908 result
= i2400m_bm_cmd(i2400m
, NULL
, 0, &ack
, sizeof(ack
),
910 flags
&= ~I2400M_BRI_NO_REBOOT
;
914 * at this point, i2400m_bm_cmd(), through
915 * __i2400m_bm_ack_process(), has updated
916 * i2400m->barker and we are good to go.
918 d_printf(4, dev
, "device reboot: got reboot barker\n");
920 case -EISCONN
: /* we don't know how it got here...but we follow it */
921 d_printf(4, dev
, "device reboot: got ack barker - whatever\n");
925 * Device has timed out, we might be in boot mode
926 * already and expecting an ack; if we don't know what
927 * the barker is, we just send them all. Cold reset
928 * and bus reset don't work. Beats me.
930 if (i2400m
->barker
!= NULL
) {
931 dev_err(dev
, "device boot: reboot barker timed out, "
932 "trying (set) %08x echo/ack\n",
933 le32_to_cpu(i2400m
->barker
->data
[0]));
936 for (i
= 0; i
< i2400m_barker_db_used
; i
++) {
937 struct i2400m_barker_db
*barker
= &i2400m_barker_db
[i
];
938 memcpy(cmd
, barker
->data
, sizeof(barker
->data
));
939 result
= i2400m_bm_cmd(i2400m
, cmd
, sizeof(*cmd
),
942 if (result
== -EISCONN
) {
943 dev_warn(dev
, "device boot: got ack barker "
944 "after sending echo/ack barker "
945 "#%d/%08x; rebooting j.i.c.\n",
946 i
, le32_to_cpu(barker
->data
[0]));
947 flags
&= ~I2400M_BRI_NO_REBOOT
;
951 dev_err(dev
, "device boot: tried all the echo/acks, could "
952 "not get device to respond; giving up");
955 case -ESHUTDOWN
: /* dev is gone */
956 case -EINTR
: /* user cancelled */
959 dev_err(dev
, "device reboot: error %d while waiting "
960 "for reboot barker - rebooting\n", result
);
961 d_dump(1, dev
, &ack
, result
);
964 /* At this point we ack back with 4 REBOOT barkers and expect
965 * 4 ACK barkers. This is ugly, as we send a raw command --
966 * hence the cast. _bm_cmd() will catch the reboot ack
967 * notification and report it as -EISCONN. */
969 d_printf(4, dev
, "device reboot ack: sending ack [%d # left]\n", count
);
970 memcpy(cmd
, i2400m
->barker
->data
, sizeof(i2400m
->barker
->data
));
971 result
= i2400m_bm_cmd(i2400m
, cmd
, sizeof(*cmd
),
972 &ack
, sizeof(ack
), I2400M_BM_CMD_RAW
);
975 d_printf(4, dev
, "reboot ack: got reboot barker - retrying\n");
980 d_printf(4, dev
, "reboot ack: got ack barker - good\n");
982 case -ETIMEDOUT
: /* no response, maybe it is the other type? */
983 if (ack_timeout_cnt
-- < 0) {
984 d_printf(4, dev
, "reboot ack timedout: retrying\n");
987 dev_err(dev
, "reboot ack timedout too long: "
993 case -ESHUTDOWN
: /* dev is gone */
996 dev_err(dev
, "device reboot ack: error %d while waiting for "
997 "reboot ack barker - rebooting\n", result
);
1000 d_printf(2, dev
, "device reboot ack: got ack barker - boot done\n");
1004 d_fnend(4, dev
, "(i2400m %p flags 0x%08x) = %d\n",
1005 i2400m
, flags
, result
);
1009 dev_err(dev
, "Timed out waiting for reboot ack\n");
1010 result
= -ETIMEDOUT
;
1018 * The position this function reads is fixed in device memory and
1019 * always available, even without firmware.
1021 * Note we specify we want to read only six bytes, but provide space
1022 * for 16, as we always get it rounded up.
1024 int i2400m_read_mac_addr(struct i2400m
*i2400m
)
1027 struct device
*dev
= i2400m_dev(i2400m
);
1028 struct net_device
*net_dev
= i2400m
->wimax_dev
.net_dev
;
1029 struct i2400m_bootrom_header
*cmd
;
1031 struct i2400m_bootrom_header ack
;
1035 d_fnstart(5, dev
, "(i2400m %p)\n", i2400m
);
1036 cmd
= i2400m
->bm_cmd_buf
;
1037 cmd
->command
= i2400m_brh_command(I2400M_BRH_READ
, 0, 1);
1038 cmd
->target_addr
= cpu_to_le32(0x00203fe8);
1039 cmd
->data_size
= cpu_to_le32(6);
1040 result
= i2400m_bm_cmd(i2400m
, cmd
, sizeof(*cmd
),
1041 &ack_buf
.ack
, sizeof(ack_buf
), 0);
1043 dev_err(dev
, "BM: read mac addr failed: %d\n", result
);
1044 goto error_read_mac
;
1046 d_printf(2, dev
, "mac addr is %pM\n", ack_buf
.ack_pl
);
1047 if (i2400m
->bus_bm_mac_addr_impaired
== 1) {
1048 ack_buf
.ack_pl
[0] = 0x00;
1049 ack_buf
.ack_pl
[1] = 0x16;
1050 ack_buf
.ack_pl
[2] = 0xd3;
1051 get_random_bytes(&ack_buf
.ack_pl
[3], 3);
1052 dev_err(dev
, "BM is MAC addr impaired, faking MAC addr to "
1053 "mac addr is %pM\n", ack_buf
.ack_pl
);
1056 net_dev
->addr_len
= ETH_ALEN
;
1057 memcpy(net_dev
->perm_addr
, ack_buf
.ack_pl
, ETH_ALEN
);
1058 memcpy(net_dev
->dev_addr
, ack_buf
.ack_pl
, ETH_ALEN
);
1060 d_fnend(5, dev
, "(i2400m %p) = %d\n", i2400m
, result
);
1066 * Initialize a non signed boot
1068 * This implies sending some magic values to the device's memory. Note
1069 * we convert the values to little endian in the same array
1073 int i2400m_dnload_init_nonsigned(struct i2400m
*i2400m
)
1077 struct device
*dev
= i2400m_dev(i2400m
);
1078 d_fnstart(5, dev
, "(i2400m %p)\n", i2400m
);
1079 if (i2400m
->bus_bm_pokes_table
) {
1080 while (i2400m
->bus_bm_pokes_table
[i
].address
) {
1081 ret
= i2400m_download_chunk(
1083 &i2400m
->bus_bm_pokes_table
[i
].data
,
1084 sizeof(i2400m
->bus_bm_pokes_table
[i
].data
),
1085 i2400m
->bus_bm_pokes_table
[i
].address
, 1, 1);
1091 d_fnend(5, dev
, "(i2400m %p) = %d\n", i2400m
, ret
);
1097 * Initialize the signed boot process
1099 * @i2400m: device descriptor
1101 * @bcf_hdr: pointer to the firmware header; assumes it is fully in
1102 * memory (it has gone through basic validation).
1104 * Returns: 0 if ok, < 0 errno code on error, -ERESTARTSYS if the hw
1107 * This writes the firmware BCF header to the device using the
1108 * HASH_PAYLOAD_ONLY command.
1111 int i2400m_dnload_init_signed(struct i2400m
*i2400m
,
1112 const struct i2400m_bcf_hdr
*bcf_hdr
)
1115 struct device
*dev
= i2400m_dev(i2400m
);
1117 struct i2400m_bootrom_header cmd
;
1118 struct i2400m_bcf_hdr cmd_pl
;
1119 } __packed
*cmd_buf
;
1120 struct i2400m_bootrom_header ack
;
1122 d_fnstart(5, dev
, "(i2400m %p bcf_hdr %p)\n", i2400m
, bcf_hdr
);
1123 cmd_buf
= i2400m
->bm_cmd_buf
;
1124 cmd_buf
->cmd
.command
=
1125 i2400m_brh_command(I2400M_BRH_HASH_PAYLOAD_ONLY
, 0, 0);
1126 cmd_buf
->cmd
.target_addr
= 0;
1127 cmd_buf
->cmd
.data_size
= cpu_to_le32(sizeof(cmd_buf
->cmd_pl
));
1128 memcpy(&cmd_buf
->cmd_pl
, bcf_hdr
, sizeof(*bcf_hdr
));
1129 ret
= i2400m_bm_cmd(i2400m
, &cmd_buf
->cmd
, sizeof(*cmd_buf
),
1130 &ack
, sizeof(ack
), 0);
1133 d_fnend(5, dev
, "(i2400m %p bcf_hdr %p) = %d\n", i2400m
, bcf_hdr
, ret
);
1139 * Initialize the firmware download at the device size
1141 * Multiplex to the one that matters based on the device's mode
1142 * (signed or non-signed).
1145 int i2400m_dnload_init(struct i2400m
*i2400m
,
1146 const struct i2400m_bcf_hdr
*bcf_hdr
)
1149 struct device
*dev
= i2400m_dev(i2400m
);
1151 if (i2400m_boot_is_signed(i2400m
)) {
1152 d_printf(1, dev
, "signed boot\n");
1153 result
= i2400m_dnload_init_signed(i2400m
, bcf_hdr
);
1154 if (result
== -ERESTARTSYS
)
1157 dev_err(dev
, "firmware %s: signed boot download "
1158 "initialization failed: %d\n",
1159 i2400m
->fw_name
, result
);
1161 /* non-signed boot process without pokes */
1162 d_printf(1, dev
, "non-signed boot\n");
1163 result
= i2400m_dnload_init_nonsigned(i2400m
);
1164 if (result
== -ERESTARTSYS
)
1167 dev_err(dev
, "firmware %s: non-signed download "
1168 "initialization failed: %d\n",
1169 i2400m
->fw_name
, result
);
1176 * Run consistency tests on the firmware file and load up headers
1178 * Check for the firmware being made for the i2400m device,
1179 * etc...These checks are mostly informative, as the device will make
1180 * them too; but the driver's response is more informative on what
1183 * This will also look at all the headers present on the firmware
1184 * file, and update i2400m->fw_bcf_hdr to point to them.
1187 int i2400m_fw_hdr_check(struct i2400m
*i2400m
,
1188 const struct i2400m_bcf_hdr
*bcf_hdr
,
1189 size_t index
, size_t offset
)
1191 struct device
*dev
= i2400m_dev(i2400m
);
1193 unsigned module_type
, header_len
, major_version
, minor_version
,
1194 module_id
, module_vendor
, date
, size
;
1196 module_type
= le32_to_cpu(bcf_hdr
->module_type
);
1197 header_len
= sizeof(u32
) * le32_to_cpu(bcf_hdr
->header_len
);
1198 major_version
= (le32_to_cpu(bcf_hdr
->header_version
) & 0xffff0000)
1200 minor_version
= le32_to_cpu(bcf_hdr
->header_version
) & 0x0000ffff;
1201 module_id
= le32_to_cpu(bcf_hdr
->module_id
);
1202 module_vendor
= le32_to_cpu(bcf_hdr
->module_vendor
);
1203 date
= le32_to_cpu(bcf_hdr
->date
);
1204 size
= sizeof(u32
) * le32_to_cpu(bcf_hdr
->size
);
1206 d_printf(1, dev
, "firmware %s #%zd@%08zx: BCF header "
1207 "type:vendor:id 0x%x:%x:%x v%u.%u (%u/%u B) built %08x\n",
1208 i2400m
->fw_name
, index
, offset
,
1209 module_type
, module_vendor
, module_id
,
1210 major_version
, minor_version
, header_len
, size
, date
);
1213 if (major_version
!= 1) {
1214 dev_err(dev
, "firmware %s #%zd@%08zx: major header version "
1215 "v%u.%u not supported\n",
1216 i2400m
->fw_name
, index
, offset
,
1217 major_version
, minor_version
);
1221 if (module_type
!= 6) { /* built for the right hardware? */
1222 dev_err(dev
, "firmware %s #%zd@%08zx: unexpected module "
1223 "type 0x%x; aborting\n",
1224 i2400m
->fw_name
, index
, offset
,
1229 if (module_vendor
!= 0x8086) {
1230 dev_err(dev
, "firmware %s #%zd@%08zx: unexpected module "
1231 "vendor 0x%x; aborting\n",
1232 i2400m
->fw_name
, index
, offset
, module_vendor
);
1236 if (date
< 0x20080300)
1237 dev_warn(dev
, "firmware %s #%zd@%08zx: build date %08x "
1238 "too old; unsupported\n",
1239 i2400m
->fw_name
, index
, offset
, date
);
1245 * Run consistency tests on the firmware file and load up headers
1247 * Check for the firmware being made for the i2400m device,
1248 * etc...These checks are mostly informative, as the device will make
1249 * them too; but the driver's response is more informative on what
1252 * This will also look at all the headers present on the firmware
1253 * file, and update i2400m->fw_hdrs to point to them.
1256 int i2400m_fw_check(struct i2400m
*i2400m
, const void *bcf
, size_t bcf_size
)
1259 struct device
*dev
= i2400m_dev(i2400m
);
1261 const struct i2400m_bcf_hdr
*bcf_hdr
;
1262 const void *itr
, *next
, *top
;
1263 size_t slots
= 0, used_slots
= 0;
1265 for (itr
= bcf
, top
= itr
+ bcf_size
;
1267 headers
++, itr
= next
) {
1268 size_t leftover
, offset
, header_len
, size
;
1270 leftover
= top
- itr
;
1271 offset
= itr
- (const void *) bcf
;
1272 if (leftover
<= sizeof(*bcf_hdr
)) {
1273 dev_err(dev
, "firmware %s: %zu B left at @%zx, "
1274 "not enough for BCF header\n",
1275 i2400m
->fw_name
, leftover
, offset
);
1279 /* Only the first header is supposed to be followed by
1281 header_len
= sizeof(u32
) * le32_to_cpu(bcf_hdr
->header_len
);
1282 size
= sizeof(u32
) * le32_to_cpu(bcf_hdr
->size
);
1286 next
= itr
+ header_len
;
1288 result
= i2400m_fw_hdr_check(i2400m
, bcf_hdr
, headers
, offset
);
1291 if (used_slots
+ 1 >= slots
) {
1292 /* +1 -> we need to account for the one we'll
1293 * occupy and at least an extra one for
1294 * always being NULL */
1295 result
= i2400m_zrealloc_2x(
1296 (void **) &i2400m
->fw_hdrs
, &slots
,
1297 sizeof(i2400m
->fw_hdrs
[0]),
1300 goto error_zrealloc
;
1302 i2400m
->fw_hdrs
[used_slots
] = bcf_hdr
;
1306 dev_err(dev
, "firmware %s: no usable headers found\n",
1317 * Match a barker to a BCF header module ID
1319 * The device sends a barker which tells the firmware loader which
1320 * header in the BCF file has to be used. This does the matching.
1323 unsigned i2400m_bcf_hdr_match(struct i2400m
*i2400m
,
1324 const struct i2400m_bcf_hdr
*bcf_hdr
)
1326 u32 barker
= le32_to_cpu(i2400m
->barker
->data
[0])
1328 u32 module_id
= le32_to_cpu(bcf_hdr
->module_id
)
1329 & 0x7fffffff; /* high bit used for something else */
1331 /* special case for 5x50 */
1332 if (barker
== I2400M_SBOOT_BARKER
&& module_id
== 0)
1334 if (module_id
== barker
)
1340 const struct i2400m_bcf_hdr
*i2400m_bcf_hdr_find(struct i2400m
*i2400m
)
1342 struct device
*dev
= i2400m_dev(i2400m
);
1343 const struct i2400m_bcf_hdr
**bcf_itr
, *bcf_hdr
;
1345 u32 barker
= le32_to_cpu(i2400m
->barker
->data
[0]);
1347 d_printf(2, dev
, "finding BCF header for barker %08x\n", barker
);
1348 if (barker
== I2400M_NBOOT_BARKER
) {
1349 bcf_hdr
= i2400m
->fw_hdrs
[0];
1350 d_printf(1, dev
, "using BCF header #%u/%08x for non-signed "
1351 "barker\n", 0, le32_to_cpu(bcf_hdr
->module_id
));
1354 for (bcf_itr
= i2400m
->fw_hdrs
; *bcf_itr
!= NULL
; bcf_itr
++, i
++) {
1356 if (i2400m_bcf_hdr_match(i2400m
, bcf_hdr
)) {
1357 d_printf(1, dev
, "hit on BCF hdr #%u/%08x\n",
1358 i
, le32_to_cpu(bcf_hdr
->module_id
));
1361 d_printf(1, dev
, "miss on BCF hdr #%u/%08x\n",
1362 i
, le32_to_cpu(bcf_hdr
->module_id
));
1364 dev_err(dev
, "cannot find a matching BCF header for barker %08x\n",
1371 * Download the firmware to the device
1373 * @i2400m: device descriptor
1374 * @bcf: pointer to loaded (and minimally verified for consistency)
1376 * @bcf_size: size of the @bcf buffer (header plus payloads)
1378 * The process for doing this is described in this file's header.
1380 * Note we only reinitialize boot-mode if the flags say so. Some hw
1381 * iterations need it, some don't. In any case, if we loop, we always
1382 * need to reinitialize the boot room, hence the flags modification.
1385 int i2400m_fw_dnload(struct i2400m
*i2400m
, const struct i2400m_bcf_hdr
*bcf
,
1386 size_t fw_size
, enum i2400m_bri flags
)
1389 struct device
*dev
= i2400m_dev(i2400m
);
1390 int count
= i2400m
->bus_bm_retries
;
1391 const struct i2400m_bcf_hdr
*bcf_hdr
;
1394 d_fnstart(5, dev
, "(i2400m %p bcf %p fw size %zu)\n",
1395 i2400m
, bcf
, fw_size
);
1396 i2400m
->boot_mode
= 1;
1397 wmb(); /* Make sure other readers see it */
1401 dev_err(dev
, "device rebooted too many times, aborting\n");
1402 goto error_too_many_reboots
;
1404 if (flags
& I2400M_BRI_MAC_REINIT
) {
1405 ret
= i2400m_bootrom_init(i2400m
, flags
);
1407 dev_err(dev
, "bootrom init failed: %d\n", ret
);
1408 goto error_bootrom_init
;
1411 flags
|= I2400M_BRI_MAC_REINIT
;
1414 * Initialize the download, push the bytes to the device and
1415 * then jump to the new firmware. Note @ret is passed with the
1416 * offset of the jump instruction to _dnload_finalize()
1418 * Note we need to use the BCF header in the firmware image
1419 * that matches the barker that the device sent when it
1420 * rebooted, so it has to be passed along.
1423 bcf_hdr
= i2400m_bcf_hdr_find(i2400m
);
1424 if (bcf_hdr
== NULL
)
1425 goto error_bcf_hdr_find
;
1427 ret
= i2400m_dnload_init(i2400m
, bcf_hdr
);
1428 if (ret
== -ERESTARTSYS
)
1429 goto error_dev_rebooted
;
1431 goto error_dnload_init
;
1434 * bcf_size refers to one header size plus the fw sections size
1435 * indicated by the header,ie. if there are other extended headers
1436 * at the tail, they are not counted
1438 bcf_size
= sizeof(u32
) * le32_to_cpu(bcf_hdr
->size
);
1439 ret
= i2400m_dnload_bcf(i2400m
, bcf
, bcf_size
);
1440 if (ret
== -ERESTARTSYS
)
1441 goto error_dev_rebooted
;
1443 dev_err(dev
, "fw %s: download failed: %d\n",
1444 i2400m
->fw_name
, ret
);
1445 goto error_dnload_bcf
;
1448 ret
= i2400m_dnload_finalize(i2400m
, bcf_hdr
, bcf
, ret
);
1449 if (ret
== -ERESTARTSYS
)
1450 goto error_dev_rebooted
;
1452 dev_err(dev
, "fw %s: "
1453 "download finalization failed: %d\n",
1454 i2400m
->fw_name
, ret
);
1455 goto error_dnload_finalize
;
1458 d_printf(2, dev
, "fw %s successfully uploaded\n",
1460 i2400m
->boot_mode
= 0;
1461 wmb(); /* Make sure i2400m_msg_to_dev() sees boot_mode */
1462 error_dnload_finalize
:
1467 error_too_many_reboots
:
1468 d_fnend(5, dev
, "(i2400m %p bcf %p size %zu) = %d\n",
1469 i2400m
, bcf
, fw_size
, ret
);
1473 dev_err(dev
, "device rebooted, %d tries left\n", count
);
1474 /* we got the notification already, no need to wait for it again */
1475 flags
|= I2400M_BRI_SOFT
;
1480 int i2400m_fw_bootstrap(struct i2400m
*i2400m
, const struct firmware
*fw
,
1481 enum i2400m_bri flags
)
1484 struct device
*dev
= i2400m_dev(i2400m
);
1485 const struct i2400m_bcf_hdr
*bcf
; /* Firmware data */
1487 d_fnstart(5, dev
, "(i2400m %p)\n", i2400m
);
1488 bcf
= (void *) fw
->data
;
1489 ret
= i2400m_fw_check(i2400m
, bcf
, fw
->size
);
1491 ret
= i2400m_fw_dnload(i2400m
, bcf
, fw
->size
, flags
);
1493 dev_err(dev
, "%s: cannot use: %d, skipping\n",
1494 i2400m
->fw_name
, ret
);
1495 kfree(i2400m
->fw_hdrs
);
1496 i2400m
->fw_hdrs
= NULL
;
1497 d_fnend(5, dev
, "(i2400m %p) = %d\n", i2400m
, ret
);
1502 /* Refcounted container for firmware data */
1505 const struct firmware
*fw
;
1510 void i2400m_fw_destroy(struct kref
*kref
)
1512 struct i2400m_fw
*i2400m_fw
=
1513 container_of(kref
, struct i2400m_fw
, kref
);
1514 release_firmware(i2400m_fw
->fw
);
1520 struct i2400m_fw
*i2400m_fw_get(struct i2400m_fw
*i2400m_fw
)
1522 if (i2400m_fw
!= NULL
&& i2400m_fw
!= (void *) ~0)
1523 kref_get(&i2400m_fw
->kref
);
1529 void i2400m_fw_put(struct i2400m_fw
*i2400m_fw
)
1531 kref_put(&i2400m_fw
->kref
, i2400m_fw_destroy
);
1536 * i2400m_dev_bootstrap - Bring the device to a known state and upload firmware
1538 * @i2400m: device descriptor
1540 * Returns: >= 0 if ok, < 0 errno code on error.
1542 * This sets up the firmware upload environment, loads the firmware
1543 * file from disk, verifies and then calls the firmware upload process
1546 * Can be called either from probe, or after a warm reset. Can not be
1547 * called from within an interrupt. All the flow in this code is
1548 * single-threade; all I/Os are synchronous.
1550 int i2400m_dev_bootstrap(struct i2400m
*i2400m
, enum i2400m_bri flags
)
1553 struct device
*dev
= i2400m_dev(i2400m
);
1554 struct i2400m_fw
*i2400m_fw
;
1555 const struct i2400m_bcf_hdr
*bcf
; /* Firmware data */
1556 const struct firmware
*fw
;
1557 const char *fw_name
;
1559 d_fnstart(5, dev
, "(i2400m %p)\n", i2400m
);
1562 spin_lock(&i2400m
->rx_lock
);
1563 i2400m_fw
= i2400m_fw_get(i2400m
->fw_cached
);
1564 spin_unlock(&i2400m
->rx_lock
);
1565 if (i2400m_fw
== (void *) ~0) {
1566 dev_err(dev
, "can't load firmware now!");
1568 } else if (i2400m_fw
!= NULL
) {
1569 dev_info(dev
, "firmware %s: loading from cache\n",
1571 ret
= i2400m_fw_bootstrap(i2400m
, i2400m_fw
->fw
, flags
);
1572 i2400m_fw_put(i2400m_fw
);
1576 /* Load firmware files to memory. */
1577 for (itr
= 0, bcf
= NULL
, ret
= -ENOENT
; ; itr
++) {
1578 fw_name
= i2400m
->bus_fw_names
[itr
];
1579 if (fw_name
== NULL
) {
1580 dev_err(dev
, "Could not find a usable firmware image\n");
1583 d_printf(1, dev
, "trying firmware %s (%d)\n", fw_name
, itr
);
1584 ret
= request_firmware(&fw
, fw_name
, dev
);
1586 dev_err(dev
, "fw %s: cannot load file: %d\n",
1590 i2400m
->fw_name
= fw_name
;
1591 ret
= i2400m_fw_bootstrap(i2400m
, fw
, flags
);
1592 release_firmware(fw
);
1593 if (ret
>= 0) /* firmware loaded successfully */
1595 i2400m
->fw_name
= NULL
;
1598 d_fnend(5, dev
, "(i2400m %p) = %d\n", i2400m
, ret
);
1601 EXPORT_SYMBOL_GPL(i2400m_dev_bootstrap
);
1604 void i2400m_fw_cache(struct i2400m
*i2400m
)
1607 struct i2400m_fw
*i2400m_fw
;
1608 struct device
*dev
= i2400m_dev(i2400m
);
1610 /* if there is anything there, free it -- now, this'd be weird */
1611 spin_lock(&i2400m
->rx_lock
);
1612 i2400m_fw
= i2400m
->fw_cached
;
1613 spin_unlock(&i2400m
->rx_lock
);
1614 if (i2400m_fw
!= NULL
&& i2400m_fw
!= (void *) ~0) {
1615 i2400m_fw_put(i2400m_fw
);
1616 WARN(1, "%s:%u: still cached fw still present?\n",
1617 __func__
, __LINE__
);
1620 if (i2400m
->fw_name
== NULL
) {
1621 dev_err(dev
, "firmware n/a: can't cache\n");
1622 i2400m_fw
= (void *) ~0;
1626 i2400m_fw
= kzalloc(sizeof(*i2400m_fw
), GFP_ATOMIC
);
1627 if (i2400m_fw
== NULL
)
1629 kref_init(&i2400m_fw
->kref
);
1630 result
= request_firmware(&i2400m_fw
->fw
, i2400m
->fw_name
, dev
);
1632 dev_err(dev
, "firmware %s: failed to cache: %d\n",
1633 i2400m
->fw_name
, result
);
1635 i2400m_fw
= (void *) ~0;
1637 dev_info(dev
, "firmware %s: cached\n", i2400m
->fw_name
);
1639 spin_lock(&i2400m
->rx_lock
);
1640 i2400m
->fw_cached
= i2400m_fw
;
1641 spin_unlock(&i2400m
->rx_lock
);
1645 void i2400m_fw_uncache(struct i2400m
*i2400m
)
1647 struct i2400m_fw
*i2400m_fw
;
1649 spin_lock(&i2400m
->rx_lock
);
1650 i2400m_fw
= i2400m
->fw_cached
;
1651 i2400m
->fw_cached
= NULL
;
1652 spin_unlock(&i2400m
->rx_lock
);
1654 if (i2400m_fw
!= NULL
&& i2400m_fw
!= (void *) ~0)
1655 i2400m_fw_put(i2400m_fw
);