Avoid reading past buffer when calling GETACL
[zen-stable.git] / fs / udf / inode.c
blob7699df7b3198e40e02d84a1c444e1bf360140f06
1 /*
2 * inode.c
4 * PURPOSE
5 * Inode handling routines for the OSTA-UDF(tm) filesystem.
7 * COPYRIGHT
8 * This file is distributed under the terms of the GNU General Public
9 * License (GPL). Copies of the GPL can be obtained from:
10 * ftp://prep.ai.mit.edu/pub/gnu/GPL
11 * Each contributing author retains all rights to their own work.
13 * (C) 1998 Dave Boynton
14 * (C) 1998-2004 Ben Fennema
15 * (C) 1999-2000 Stelias Computing Inc
17 * HISTORY
19 * 10/04/98 dgb Added rudimentary directory functions
20 * 10/07/98 Fully working udf_block_map! It works!
21 * 11/25/98 bmap altered to better support extents
22 * 12/06/98 blf partition support in udf_iget, udf_block_map
23 * and udf_read_inode
24 * 12/12/98 rewrote udf_block_map to handle next extents and descs across
25 * block boundaries (which is not actually allowed)
26 * 12/20/98 added support for strategy 4096
27 * 03/07/99 rewrote udf_block_map (again)
28 * New funcs, inode_bmap, udf_next_aext
29 * 04/19/99 Support for writing device EA's for major/minor #
32 #include "udfdecl.h"
33 #include <linux/mm.h>
34 #include <linux/module.h>
35 #include <linux/pagemap.h>
36 #include <linux/buffer_head.h>
37 #include <linux/writeback.h>
38 #include <linux/slab.h>
39 #include <linux/crc-itu-t.h>
40 #include <linux/mpage.h>
42 #include "udf_i.h"
43 #include "udf_sb.h"
45 MODULE_AUTHOR("Ben Fennema");
46 MODULE_DESCRIPTION("Universal Disk Format Filesystem");
47 MODULE_LICENSE("GPL");
49 #define EXTENT_MERGE_SIZE 5
51 static umode_t udf_convert_permissions(struct fileEntry *);
52 static int udf_update_inode(struct inode *, int);
53 static void udf_fill_inode(struct inode *, struct buffer_head *);
54 static int udf_sync_inode(struct inode *inode);
55 static int udf_alloc_i_data(struct inode *inode, size_t size);
56 static sector_t inode_getblk(struct inode *, sector_t, int *, int *);
57 static int8_t udf_insert_aext(struct inode *, struct extent_position,
58 struct kernel_lb_addr, uint32_t);
59 static void udf_split_extents(struct inode *, int *, int, int,
60 struct kernel_long_ad[EXTENT_MERGE_SIZE], int *);
61 static void udf_prealloc_extents(struct inode *, int, int,
62 struct kernel_long_ad[EXTENT_MERGE_SIZE], int *);
63 static void udf_merge_extents(struct inode *,
64 struct kernel_long_ad[EXTENT_MERGE_SIZE], int *);
65 static void udf_update_extents(struct inode *,
66 struct kernel_long_ad[EXTENT_MERGE_SIZE], int, int,
67 struct extent_position *);
68 static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int);
71 void udf_evict_inode(struct inode *inode)
73 struct udf_inode_info *iinfo = UDF_I(inode);
74 int want_delete = 0;
76 if (!inode->i_nlink && !is_bad_inode(inode)) {
77 want_delete = 1;
78 udf_setsize(inode, 0);
79 udf_update_inode(inode, IS_SYNC(inode));
80 } else
81 truncate_inode_pages(&inode->i_data, 0);
82 invalidate_inode_buffers(inode);
83 end_writeback(inode);
84 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB &&
85 inode->i_size != iinfo->i_lenExtents) {
86 udf_warn(inode->i_sb, "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n",
87 inode->i_ino, inode->i_mode,
88 (unsigned long long)inode->i_size,
89 (unsigned long long)iinfo->i_lenExtents);
91 kfree(iinfo->i_ext.i_data);
92 iinfo->i_ext.i_data = NULL;
93 if (want_delete) {
94 udf_free_inode(inode);
98 static int udf_writepage(struct page *page, struct writeback_control *wbc)
100 return block_write_full_page(page, udf_get_block, wbc);
103 static int udf_readpage(struct file *file, struct page *page)
105 return mpage_readpage(page, udf_get_block);
108 static int udf_readpages(struct file *file, struct address_space *mapping,
109 struct list_head *pages, unsigned nr_pages)
111 return mpage_readpages(mapping, pages, nr_pages, udf_get_block);
114 static int udf_write_begin(struct file *file, struct address_space *mapping,
115 loff_t pos, unsigned len, unsigned flags,
116 struct page **pagep, void **fsdata)
118 int ret;
120 ret = block_write_begin(mapping, pos, len, flags, pagep, udf_get_block);
121 if (unlikely(ret)) {
122 struct inode *inode = mapping->host;
123 struct udf_inode_info *iinfo = UDF_I(inode);
124 loff_t isize = inode->i_size;
126 if (pos + len > isize) {
127 truncate_pagecache(inode, pos + len, isize);
128 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
129 down_write(&iinfo->i_data_sem);
130 udf_truncate_extents(inode);
131 up_write(&iinfo->i_data_sem);
136 return ret;
139 static sector_t udf_bmap(struct address_space *mapping, sector_t block)
141 return generic_block_bmap(mapping, block, udf_get_block);
144 const struct address_space_operations udf_aops = {
145 .readpage = udf_readpage,
146 .readpages = udf_readpages,
147 .writepage = udf_writepage,
148 .write_begin = udf_write_begin,
149 .write_end = generic_write_end,
150 .bmap = udf_bmap,
154 * Expand file stored in ICB to a normal one-block-file
156 * This function requires i_data_sem for writing and releases it.
157 * This function requires i_mutex held
159 int udf_expand_file_adinicb(struct inode *inode)
161 struct page *page;
162 char *kaddr;
163 struct udf_inode_info *iinfo = UDF_I(inode);
164 int err;
165 struct writeback_control udf_wbc = {
166 .sync_mode = WB_SYNC_NONE,
167 .nr_to_write = 1,
170 if (!iinfo->i_lenAlloc) {
171 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
172 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
173 else
174 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
175 /* from now on we have normal address_space methods */
176 inode->i_data.a_ops = &udf_aops;
177 up_write(&iinfo->i_data_sem);
178 mark_inode_dirty(inode);
179 return 0;
182 * Release i_data_sem so that we can lock a page - page lock ranks
183 * above i_data_sem. i_mutex still protects us against file changes.
185 up_write(&iinfo->i_data_sem);
187 page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS);
188 if (!page)
189 return -ENOMEM;
191 if (!PageUptodate(page)) {
192 kaddr = kmap(page);
193 memset(kaddr + iinfo->i_lenAlloc, 0x00,
194 PAGE_CACHE_SIZE - iinfo->i_lenAlloc);
195 memcpy(kaddr, iinfo->i_ext.i_data + iinfo->i_lenEAttr,
196 iinfo->i_lenAlloc);
197 flush_dcache_page(page);
198 SetPageUptodate(page);
199 kunmap(page);
201 down_write(&iinfo->i_data_sem);
202 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0x00,
203 iinfo->i_lenAlloc);
204 iinfo->i_lenAlloc = 0;
205 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
206 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
207 else
208 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
209 /* from now on we have normal address_space methods */
210 inode->i_data.a_ops = &udf_aops;
211 up_write(&iinfo->i_data_sem);
212 err = inode->i_data.a_ops->writepage(page, &udf_wbc);
213 if (err) {
214 /* Restore everything back so that we don't lose data... */
215 lock_page(page);
216 kaddr = kmap(page);
217 down_write(&iinfo->i_data_sem);
218 memcpy(iinfo->i_ext.i_data + iinfo->i_lenEAttr, kaddr,
219 inode->i_size);
220 kunmap(page);
221 unlock_page(page);
222 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
223 inode->i_data.a_ops = &udf_adinicb_aops;
224 up_write(&iinfo->i_data_sem);
226 page_cache_release(page);
227 mark_inode_dirty(inode);
229 return err;
232 struct buffer_head *udf_expand_dir_adinicb(struct inode *inode, int *block,
233 int *err)
235 int newblock;
236 struct buffer_head *dbh = NULL;
237 struct kernel_lb_addr eloc;
238 uint8_t alloctype;
239 struct extent_position epos;
241 struct udf_fileident_bh sfibh, dfibh;
242 loff_t f_pos = udf_ext0_offset(inode);
243 int size = udf_ext0_offset(inode) + inode->i_size;
244 struct fileIdentDesc cfi, *sfi, *dfi;
245 struct udf_inode_info *iinfo = UDF_I(inode);
247 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
248 alloctype = ICBTAG_FLAG_AD_SHORT;
249 else
250 alloctype = ICBTAG_FLAG_AD_LONG;
252 if (!inode->i_size) {
253 iinfo->i_alloc_type = alloctype;
254 mark_inode_dirty(inode);
255 return NULL;
258 /* alloc block, and copy data to it */
259 *block = udf_new_block(inode->i_sb, inode,
260 iinfo->i_location.partitionReferenceNum,
261 iinfo->i_location.logicalBlockNum, err);
262 if (!(*block))
263 return NULL;
264 newblock = udf_get_pblock(inode->i_sb, *block,
265 iinfo->i_location.partitionReferenceNum,
267 if (!newblock)
268 return NULL;
269 dbh = udf_tgetblk(inode->i_sb, newblock);
270 if (!dbh)
271 return NULL;
272 lock_buffer(dbh);
273 memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize);
274 set_buffer_uptodate(dbh);
275 unlock_buffer(dbh);
276 mark_buffer_dirty_inode(dbh, inode);
278 sfibh.soffset = sfibh.eoffset =
279 f_pos & (inode->i_sb->s_blocksize - 1);
280 sfibh.sbh = sfibh.ebh = NULL;
281 dfibh.soffset = dfibh.eoffset = 0;
282 dfibh.sbh = dfibh.ebh = dbh;
283 while (f_pos < size) {
284 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
285 sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL,
286 NULL, NULL, NULL);
287 if (!sfi) {
288 brelse(dbh);
289 return NULL;
291 iinfo->i_alloc_type = alloctype;
292 sfi->descTag.tagLocation = cpu_to_le32(*block);
293 dfibh.soffset = dfibh.eoffset;
294 dfibh.eoffset += (sfibh.eoffset - sfibh.soffset);
295 dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset);
296 if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse,
297 sfi->fileIdent +
298 le16_to_cpu(sfi->lengthOfImpUse))) {
299 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
300 brelse(dbh);
301 return NULL;
304 mark_buffer_dirty_inode(dbh, inode);
306 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0,
307 iinfo->i_lenAlloc);
308 iinfo->i_lenAlloc = 0;
309 eloc.logicalBlockNum = *block;
310 eloc.partitionReferenceNum =
311 iinfo->i_location.partitionReferenceNum;
312 iinfo->i_lenExtents = inode->i_size;
313 epos.bh = NULL;
314 epos.block = iinfo->i_location;
315 epos.offset = udf_file_entry_alloc_offset(inode);
316 udf_add_aext(inode, &epos, &eloc, inode->i_size, 0);
317 /* UniqueID stuff */
319 brelse(epos.bh);
320 mark_inode_dirty(inode);
321 return dbh;
324 static int udf_get_block(struct inode *inode, sector_t block,
325 struct buffer_head *bh_result, int create)
327 int err, new;
328 sector_t phys = 0;
329 struct udf_inode_info *iinfo;
331 if (!create) {
332 phys = udf_block_map(inode, block);
333 if (phys)
334 map_bh(bh_result, inode->i_sb, phys);
335 return 0;
338 err = -EIO;
339 new = 0;
340 iinfo = UDF_I(inode);
342 down_write(&iinfo->i_data_sem);
343 if (block == iinfo->i_next_alloc_block + 1) {
344 iinfo->i_next_alloc_block++;
345 iinfo->i_next_alloc_goal++;
349 phys = inode_getblk(inode, block, &err, &new);
350 if (!phys)
351 goto abort;
353 if (new)
354 set_buffer_new(bh_result);
355 map_bh(bh_result, inode->i_sb, phys);
357 abort:
358 up_write(&iinfo->i_data_sem);
359 return err;
362 static struct buffer_head *udf_getblk(struct inode *inode, long block,
363 int create, int *err)
365 struct buffer_head *bh;
366 struct buffer_head dummy;
368 dummy.b_state = 0;
369 dummy.b_blocknr = -1000;
370 *err = udf_get_block(inode, block, &dummy, create);
371 if (!*err && buffer_mapped(&dummy)) {
372 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
373 if (buffer_new(&dummy)) {
374 lock_buffer(bh);
375 memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
376 set_buffer_uptodate(bh);
377 unlock_buffer(bh);
378 mark_buffer_dirty_inode(bh, inode);
380 return bh;
383 return NULL;
386 /* Extend the file by 'blocks' blocks, return the number of extents added */
387 static int udf_do_extend_file(struct inode *inode,
388 struct extent_position *last_pos,
389 struct kernel_long_ad *last_ext,
390 sector_t blocks)
392 sector_t add;
393 int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
394 struct super_block *sb = inode->i_sb;
395 struct kernel_lb_addr prealloc_loc = {};
396 int prealloc_len = 0;
397 struct udf_inode_info *iinfo;
398 int err;
400 /* The previous extent is fake and we should not extend by anything
401 * - there's nothing to do... */
402 if (!blocks && fake)
403 return 0;
405 iinfo = UDF_I(inode);
406 /* Round the last extent up to a multiple of block size */
407 if (last_ext->extLength & (sb->s_blocksize - 1)) {
408 last_ext->extLength =
409 (last_ext->extLength & UDF_EXTENT_FLAG_MASK) |
410 (((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) +
411 sb->s_blocksize - 1) & ~(sb->s_blocksize - 1));
412 iinfo->i_lenExtents =
413 (iinfo->i_lenExtents + sb->s_blocksize - 1) &
414 ~(sb->s_blocksize - 1);
417 /* Last extent are just preallocated blocks? */
418 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
419 EXT_NOT_RECORDED_ALLOCATED) {
420 /* Save the extent so that we can reattach it to the end */
421 prealloc_loc = last_ext->extLocation;
422 prealloc_len = last_ext->extLength;
423 /* Mark the extent as a hole */
424 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
425 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
426 last_ext->extLocation.logicalBlockNum = 0;
427 last_ext->extLocation.partitionReferenceNum = 0;
430 /* Can we merge with the previous extent? */
431 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
432 EXT_NOT_RECORDED_NOT_ALLOCATED) {
433 add = ((1 << 30) - sb->s_blocksize -
434 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK)) >>
435 sb->s_blocksize_bits;
436 if (add > blocks)
437 add = blocks;
438 blocks -= add;
439 last_ext->extLength += add << sb->s_blocksize_bits;
442 if (fake) {
443 udf_add_aext(inode, last_pos, &last_ext->extLocation,
444 last_ext->extLength, 1);
445 count++;
446 } else
447 udf_write_aext(inode, last_pos, &last_ext->extLocation,
448 last_ext->extLength, 1);
450 /* Managed to do everything necessary? */
451 if (!blocks)
452 goto out;
454 /* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
455 last_ext->extLocation.logicalBlockNum = 0;
456 last_ext->extLocation.partitionReferenceNum = 0;
457 add = (1 << (30-sb->s_blocksize_bits)) - 1;
458 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
459 (add << sb->s_blocksize_bits);
461 /* Create enough extents to cover the whole hole */
462 while (blocks > add) {
463 blocks -= add;
464 err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
465 last_ext->extLength, 1);
466 if (err)
467 return err;
468 count++;
470 if (blocks) {
471 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
472 (blocks << sb->s_blocksize_bits);
473 err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
474 last_ext->extLength, 1);
475 if (err)
476 return err;
477 count++;
480 out:
481 /* Do we have some preallocated blocks saved? */
482 if (prealloc_len) {
483 err = udf_add_aext(inode, last_pos, &prealloc_loc,
484 prealloc_len, 1);
485 if (err)
486 return err;
487 last_ext->extLocation = prealloc_loc;
488 last_ext->extLength = prealloc_len;
489 count++;
492 /* last_pos should point to the last written extent... */
493 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
494 last_pos->offset -= sizeof(struct short_ad);
495 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
496 last_pos->offset -= sizeof(struct long_ad);
497 else
498 return -EIO;
500 return count;
503 static int udf_extend_file(struct inode *inode, loff_t newsize)
506 struct extent_position epos;
507 struct kernel_lb_addr eloc;
508 uint32_t elen;
509 int8_t etype;
510 struct super_block *sb = inode->i_sb;
511 sector_t first_block = newsize >> sb->s_blocksize_bits, offset;
512 int adsize;
513 struct udf_inode_info *iinfo = UDF_I(inode);
514 struct kernel_long_ad extent;
515 int err;
517 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
518 adsize = sizeof(struct short_ad);
519 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
520 adsize = sizeof(struct long_ad);
521 else
522 BUG();
524 etype = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset);
526 /* File has extent covering the new size (could happen when extending
527 * inside a block)? */
528 if (etype != -1)
529 return 0;
530 if (newsize & (sb->s_blocksize - 1))
531 offset++;
532 /* Extended file just to the boundary of the last file block? */
533 if (offset == 0)
534 return 0;
536 /* Truncate is extending the file by 'offset' blocks */
537 if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) ||
538 (epos.bh && epos.offset == sizeof(struct allocExtDesc))) {
539 /* File has no extents at all or has empty last
540 * indirect extent! Create a fake extent... */
541 extent.extLocation.logicalBlockNum = 0;
542 extent.extLocation.partitionReferenceNum = 0;
543 extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
544 } else {
545 epos.offset -= adsize;
546 etype = udf_next_aext(inode, &epos, &extent.extLocation,
547 &extent.extLength, 0);
548 extent.extLength |= etype << 30;
550 err = udf_do_extend_file(inode, &epos, &extent, offset);
551 if (err < 0)
552 goto out;
553 err = 0;
554 iinfo->i_lenExtents = newsize;
555 out:
556 brelse(epos.bh);
557 return err;
560 static sector_t inode_getblk(struct inode *inode, sector_t block,
561 int *err, int *new)
563 static sector_t last_block;
564 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE];
565 struct extent_position prev_epos, cur_epos, next_epos;
566 int count = 0, startnum = 0, endnum = 0;
567 uint32_t elen = 0, tmpelen;
568 struct kernel_lb_addr eloc, tmpeloc;
569 int c = 1;
570 loff_t lbcount = 0, b_off = 0;
571 uint32_t newblocknum, newblock;
572 sector_t offset = 0;
573 int8_t etype;
574 struct udf_inode_info *iinfo = UDF_I(inode);
575 int goal = 0, pgoal = iinfo->i_location.logicalBlockNum;
576 int lastblock = 0;
578 *err = 0;
579 *new = 0;
580 prev_epos.offset = udf_file_entry_alloc_offset(inode);
581 prev_epos.block = iinfo->i_location;
582 prev_epos.bh = NULL;
583 cur_epos = next_epos = prev_epos;
584 b_off = (loff_t)block << inode->i_sb->s_blocksize_bits;
586 /* find the extent which contains the block we are looking for.
587 alternate between laarr[0] and laarr[1] for locations of the
588 current extent, and the previous extent */
589 do {
590 if (prev_epos.bh != cur_epos.bh) {
591 brelse(prev_epos.bh);
592 get_bh(cur_epos.bh);
593 prev_epos.bh = cur_epos.bh;
595 if (cur_epos.bh != next_epos.bh) {
596 brelse(cur_epos.bh);
597 get_bh(next_epos.bh);
598 cur_epos.bh = next_epos.bh;
601 lbcount += elen;
603 prev_epos.block = cur_epos.block;
604 cur_epos.block = next_epos.block;
606 prev_epos.offset = cur_epos.offset;
607 cur_epos.offset = next_epos.offset;
609 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1);
610 if (etype == -1)
611 break;
613 c = !c;
615 laarr[c].extLength = (etype << 30) | elen;
616 laarr[c].extLocation = eloc;
618 if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
619 pgoal = eloc.logicalBlockNum +
620 ((elen + inode->i_sb->s_blocksize - 1) >>
621 inode->i_sb->s_blocksize_bits);
623 count++;
624 } while (lbcount + elen <= b_off);
626 b_off -= lbcount;
627 offset = b_off >> inode->i_sb->s_blocksize_bits;
629 * Move prev_epos and cur_epos into indirect extent if we are at
630 * the pointer to it
632 udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0);
633 udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0);
635 /* if the extent is allocated and recorded, return the block
636 if the extent is not a multiple of the blocksize, round up */
638 if (etype == (EXT_RECORDED_ALLOCATED >> 30)) {
639 if (elen & (inode->i_sb->s_blocksize - 1)) {
640 elen = EXT_RECORDED_ALLOCATED |
641 ((elen + inode->i_sb->s_blocksize - 1) &
642 ~(inode->i_sb->s_blocksize - 1));
643 udf_write_aext(inode, &cur_epos, &eloc, elen, 1);
645 brelse(prev_epos.bh);
646 brelse(cur_epos.bh);
647 brelse(next_epos.bh);
648 newblock = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
649 return newblock;
652 last_block = block;
653 /* Are we beyond EOF? */
654 if (etype == -1) {
655 int ret;
657 if (count) {
658 if (c)
659 laarr[0] = laarr[1];
660 startnum = 1;
661 } else {
662 /* Create a fake extent when there's not one */
663 memset(&laarr[0].extLocation, 0x00,
664 sizeof(struct kernel_lb_addr));
665 laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
666 /* Will udf_do_extend_file() create real extent from
667 a fake one? */
668 startnum = (offset > 0);
670 /* Create extents for the hole between EOF and offset */
671 ret = udf_do_extend_file(inode, &prev_epos, laarr, offset);
672 if (ret < 0) {
673 brelse(prev_epos.bh);
674 brelse(cur_epos.bh);
675 brelse(next_epos.bh);
676 *err = ret;
677 return 0;
679 c = 0;
680 offset = 0;
681 count += ret;
682 /* We are not covered by a preallocated extent? */
683 if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) !=
684 EXT_NOT_RECORDED_ALLOCATED) {
685 /* Is there any real extent? - otherwise we overwrite
686 * the fake one... */
687 if (count)
688 c = !c;
689 laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
690 inode->i_sb->s_blocksize;
691 memset(&laarr[c].extLocation, 0x00,
692 sizeof(struct kernel_lb_addr));
693 count++;
694 endnum++;
696 endnum = c + 1;
697 lastblock = 1;
698 } else {
699 endnum = startnum = ((count > 2) ? 2 : count);
701 /* if the current extent is in position 0,
702 swap it with the previous */
703 if (!c && count != 1) {
704 laarr[2] = laarr[0];
705 laarr[0] = laarr[1];
706 laarr[1] = laarr[2];
707 c = 1;
710 /* if the current block is located in an extent,
711 read the next extent */
712 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0);
713 if (etype != -1) {
714 laarr[c + 1].extLength = (etype << 30) | elen;
715 laarr[c + 1].extLocation = eloc;
716 count++;
717 startnum++;
718 endnum++;
719 } else
720 lastblock = 1;
723 /* if the current extent is not recorded but allocated, get the
724 * block in the extent corresponding to the requested block */
725 if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30))
726 newblocknum = laarr[c].extLocation.logicalBlockNum + offset;
727 else { /* otherwise, allocate a new block */
728 if (iinfo->i_next_alloc_block == block)
729 goal = iinfo->i_next_alloc_goal;
731 if (!goal) {
732 if (!(goal = pgoal)) /* XXX: what was intended here? */
733 goal = iinfo->i_location.logicalBlockNum + 1;
736 newblocknum = udf_new_block(inode->i_sb, inode,
737 iinfo->i_location.partitionReferenceNum,
738 goal, err);
739 if (!newblocknum) {
740 brelse(prev_epos.bh);
741 *err = -ENOSPC;
742 return 0;
744 iinfo->i_lenExtents += inode->i_sb->s_blocksize;
747 /* if the extent the requsted block is located in contains multiple
748 * blocks, split the extent into at most three extents. blocks prior
749 * to requested block, requested block, and blocks after requested
750 * block */
751 udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum);
753 #ifdef UDF_PREALLOCATE
754 /* We preallocate blocks only for regular files. It also makes sense
755 * for directories but there's a problem when to drop the
756 * preallocation. We might use some delayed work for that but I feel
757 * it's overengineering for a filesystem like UDF. */
758 if (S_ISREG(inode->i_mode))
759 udf_prealloc_extents(inode, c, lastblock, laarr, &endnum);
760 #endif
762 /* merge any continuous blocks in laarr */
763 udf_merge_extents(inode, laarr, &endnum);
765 /* write back the new extents, inserting new extents if the new number
766 * of extents is greater than the old number, and deleting extents if
767 * the new number of extents is less than the old number */
768 udf_update_extents(inode, laarr, startnum, endnum, &prev_epos);
770 brelse(prev_epos.bh);
772 newblock = udf_get_pblock(inode->i_sb, newblocknum,
773 iinfo->i_location.partitionReferenceNum, 0);
774 if (!newblock) {
775 *err = -EIO;
776 return 0;
778 *new = 1;
779 iinfo->i_next_alloc_block = block;
780 iinfo->i_next_alloc_goal = newblocknum;
781 inode->i_ctime = current_fs_time(inode->i_sb);
783 if (IS_SYNC(inode))
784 udf_sync_inode(inode);
785 else
786 mark_inode_dirty(inode);
788 return newblock;
791 static void udf_split_extents(struct inode *inode, int *c, int offset,
792 int newblocknum,
793 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
794 int *endnum)
796 unsigned long blocksize = inode->i_sb->s_blocksize;
797 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
799 if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) ||
800 (laarr[*c].extLength >> 30) ==
801 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
802 int curr = *c;
803 int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) +
804 blocksize - 1) >> blocksize_bits;
805 int8_t etype = (laarr[curr].extLength >> 30);
807 if (blen == 1)
809 else if (!offset || blen == offset + 1) {
810 laarr[curr + 2] = laarr[curr + 1];
811 laarr[curr + 1] = laarr[curr];
812 } else {
813 laarr[curr + 3] = laarr[curr + 1];
814 laarr[curr + 2] = laarr[curr + 1] = laarr[curr];
817 if (offset) {
818 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
819 udf_free_blocks(inode->i_sb, inode,
820 &laarr[curr].extLocation,
821 0, offset);
822 laarr[curr].extLength =
823 EXT_NOT_RECORDED_NOT_ALLOCATED |
824 (offset << blocksize_bits);
825 laarr[curr].extLocation.logicalBlockNum = 0;
826 laarr[curr].extLocation.
827 partitionReferenceNum = 0;
828 } else
829 laarr[curr].extLength = (etype << 30) |
830 (offset << blocksize_bits);
831 curr++;
832 (*c)++;
833 (*endnum)++;
836 laarr[curr].extLocation.logicalBlockNum = newblocknum;
837 if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
838 laarr[curr].extLocation.partitionReferenceNum =
839 UDF_I(inode)->i_location.partitionReferenceNum;
840 laarr[curr].extLength = EXT_RECORDED_ALLOCATED |
841 blocksize;
842 curr++;
844 if (blen != offset + 1) {
845 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30))
846 laarr[curr].extLocation.logicalBlockNum +=
847 offset + 1;
848 laarr[curr].extLength = (etype << 30) |
849 ((blen - (offset + 1)) << blocksize_bits);
850 curr++;
851 (*endnum)++;
856 static void udf_prealloc_extents(struct inode *inode, int c, int lastblock,
857 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
858 int *endnum)
860 int start, length = 0, currlength = 0, i;
862 if (*endnum >= (c + 1)) {
863 if (!lastblock)
864 return;
865 else
866 start = c;
867 } else {
868 if ((laarr[c + 1].extLength >> 30) ==
869 (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
870 start = c + 1;
871 length = currlength =
872 (((laarr[c + 1].extLength &
873 UDF_EXTENT_LENGTH_MASK) +
874 inode->i_sb->s_blocksize - 1) >>
875 inode->i_sb->s_blocksize_bits);
876 } else
877 start = c;
880 for (i = start + 1; i <= *endnum; i++) {
881 if (i == *endnum) {
882 if (lastblock)
883 length += UDF_DEFAULT_PREALLOC_BLOCKS;
884 } else if ((laarr[i].extLength >> 30) ==
885 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
886 length += (((laarr[i].extLength &
887 UDF_EXTENT_LENGTH_MASK) +
888 inode->i_sb->s_blocksize - 1) >>
889 inode->i_sb->s_blocksize_bits);
890 } else
891 break;
894 if (length) {
895 int next = laarr[start].extLocation.logicalBlockNum +
896 (((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) +
897 inode->i_sb->s_blocksize - 1) >>
898 inode->i_sb->s_blocksize_bits);
899 int numalloc = udf_prealloc_blocks(inode->i_sb, inode,
900 laarr[start].extLocation.partitionReferenceNum,
901 next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ?
902 length : UDF_DEFAULT_PREALLOC_BLOCKS) -
903 currlength);
904 if (numalloc) {
905 if (start == (c + 1))
906 laarr[start].extLength +=
907 (numalloc <<
908 inode->i_sb->s_blocksize_bits);
909 else {
910 memmove(&laarr[c + 2], &laarr[c + 1],
911 sizeof(struct long_ad) * (*endnum - (c + 1)));
912 (*endnum)++;
913 laarr[c + 1].extLocation.logicalBlockNum = next;
914 laarr[c + 1].extLocation.partitionReferenceNum =
915 laarr[c].extLocation.
916 partitionReferenceNum;
917 laarr[c + 1].extLength =
918 EXT_NOT_RECORDED_ALLOCATED |
919 (numalloc <<
920 inode->i_sb->s_blocksize_bits);
921 start = c + 1;
924 for (i = start + 1; numalloc && i < *endnum; i++) {
925 int elen = ((laarr[i].extLength &
926 UDF_EXTENT_LENGTH_MASK) +
927 inode->i_sb->s_blocksize - 1) >>
928 inode->i_sb->s_blocksize_bits;
930 if (elen > numalloc) {
931 laarr[i].extLength -=
932 (numalloc <<
933 inode->i_sb->s_blocksize_bits);
934 numalloc = 0;
935 } else {
936 numalloc -= elen;
937 if (*endnum > (i + 1))
938 memmove(&laarr[i],
939 &laarr[i + 1],
940 sizeof(struct long_ad) *
941 (*endnum - (i + 1)));
942 i--;
943 (*endnum)--;
946 UDF_I(inode)->i_lenExtents +=
947 numalloc << inode->i_sb->s_blocksize_bits;
952 static void udf_merge_extents(struct inode *inode,
953 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
954 int *endnum)
956 int i;
957 unsigned long blocksize = inode->i_sb->s_blocksize;
958 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
960 for (i = 0; i < (*endnum - 1); i++) {
961 struct kernel_long_ad *li /*l[i]*/ = &laarr[i];
962 struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1];
964 if (((li->extLength >> 30) == (lip1->extLength >> 30)) &&
965 (((li->extLength >> 30) ==
966 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) ||
967 ((lip1->extLocation.logicalBlockNum -
968 li->extLocation.logicalBlockNum) ==
969 (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
970 blocksize - 1) >> blocksize_bits)))) {
972 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
973 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
974 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
975 lip1->extLength = (lip1->extLength -
976 (li->extLength &
977 UDF_EXTENT_LENGTH_MASK) +
978 UDF_EXTENT_LENGTH_MASK) &
979 ~(blocksize - 1);
980 li->extLength = (li->extLength &
981 UDF_EXTENT_FLAG_MASK) +
982 (UDF_EXTENT_LENGTH_MASK + 1) -
983 blocksize;
984 lip1->extLocation.logicalBlockNum =
985 li->extLocation.logicalBlockNum +
986 ((li->extLength &
987 UDF_EXTENT_LENGTH_MASK) >>
988 blocksize_bits);
989 } else {
990 li->extLength = lip1->extLength +
991 (((li->extLength &
992 UDF_EXTENT_LENGTH_MASK) +
993 blocksize - 1) & ~(blocksize - 1));
994 if (*endnum > (i + 2))
995 memmove(&laarr[i + 1], &laarr[i + 2],
996 sizeof(struct long_ad) *
997 (*endnum - (i + 2)));
998 i--;
999 (*endnum)--;
1001 } else if (((li->extLength >> 30) ==
1002 (EXT_NOT_RECORDED_ALLOCATED >> 30)) &&
1003 ((lip1->extLength >> 30) ==
1004 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) {
1005 udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0,
1006 ((li->extLength &
1007 UDF_EXTENT_LENGTH_MASK) +
1008 blocksize - 1) >> blocksize_bits);
1009 li->extLocation.logicalBlockNum = 0;
1010 li->extLocation.partitionReferenceNum = 0;
1012 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1013 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1014 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1015 lip1->extLength = (lip1->extLength -
1016 (li->extLength &
1017 UDF_EXTENT_LENGTH_MASK) +
1018 UDF_EXTENT_LENGTH_MASK) &
1019 ~(blocksize - 1);
1020 li->extLength = (li->extLength &
1021 UDF_EXTENT_FLAG_MASK) +
1022 (UDF_EXTENT_LENGTH_MASK + 1) -
1023 blocksize;
1024 } else {
1025 li->extLength = lip1->extLength +
1026 (((li->extLength &
1027 UDF_EXTENT_LENGTH_MASK) +
1028 blocksize - 1) & ~(blocksize - 1));
1029 if (*endnum > (i + 2))
1030 memmove(&laarr[i + 1], &laarr[i + 2],
1031 sizeof(struct long_ad) *
1032 (*endnum - (i + 2)));
1033 i--;
1034 (*endnum)--;
1036 } else if ((li->extLength >> 30) ==
1037 (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
1038 udf_free_blocks(inode->i_sb, inode,
1039 &li->extLocation, 0,
1040 ((li->extLength &
1041 UDF_EXTENT_LENGTH_MASK) +
1042 blocksize - 1) >> blocksize_bits);
1043 li->extLocation.logicalBlockNum = 0;
1044 li->extLocation.partitionReferenceNum = 0;
1045 li->extLength = (li->extLength &
1046 UDF_EXTENT_LENGTH_MASK) |
1047 EXT_NOT_RECORDED_NOT_ALLOCATED;
1052 static void udf_update_extents(struct inode *inode,
1053 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
1054 int startnum, int endnum,
1055 struct extent_position *epos)
1057 int start = 0, i;
1058 struct kernel_lb_addr tmploc;
1059 uint32_t tmplen;
1061 if (startnum > endnum) {
1062 for (i = 0; i < (startnum - endnum); i++)
1063 udf_delete_aext(inode, *epos, laarr[i].extLocation,
1064 laarr[i].extLength);
1065 } else if (startnum < endnum) {
1066 for (i = 0; i < (endnum - startnum); i++) {
1067 udf_insert_aext(inode, *epos, laarr[i].extLocation,
1068 laarr[i].extLength);
1069 udf_next_aext(inode, epos, &laarr[i].extLocation,
1070 &laarr[i].extLength, 1);
1071 start++;
1075 for (i = start; i < endnum; i++) {
1076 udf_next_aext(inode, epos, &tmploc, &tmplen, 0);
1077 udf_write_aext(inode, epos, &laarr[i].extLocation,
1078 laarr[i].extLength, 1);
1082 struct buffer_head *udf_bread(struct inode *inode, int block,
1083 int create, int *err)
1085 struct buffer_head *bh = NULL;
1087 bh = udf_getblk(inode, block, create, err);
1088 if (!bh)
1089 return NULL;
1091 if (buffer_uptodate(bh))
1092 return bh;
1094 ll_rw_block(READ, 1, &bh);
1096 wait_on_buffer(bh);
1097 if (buffer_uptodate(bh))
1098 return bh;
1100 brelse(bh);
1101 *err = -EIO;
1102 return NULL;
1105 int udf_setsize(struct inode *inode, loff_t newsize)
1107 int err;
1108 struct udf_inode_info *iinfo;
1109 int bsize = 1 << inode->i_blkbits;
1111 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1112 S_ISLNK(inode->i_mode)))
1113 return -EINVAL;
1114 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1115 return -EPERM;
1117 iinfo = UDF_I(inode);
1118 if (newsize > inode->i_size) {
1119 down_write(&iinfo->i_data_sem);
1120 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1121 if (bsize <
1122 (udf_file_entry_alloc_offset(inode) + newsize)) {
1123 err = udf_expand_file_adinicb(inode);
1124 if (err)
1125 return err;
1126 down_write(&iinfo->i_data_sem);
1127 } else
1128 iinfo->i_lenAlloc = newsize;
1130 err = udf_extend_file(inode, newsize);
1131 if (err) {
1132 up_write(&iinfo->i_data_sem);
1133 return err;
1135 truncate_setsize(inode, newsize);
1136 up_write(&iinfo->i_data_sem);
1137 } else {
1138 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1139 down_write(&iinfo->i_data_sem);
1140 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr + newsize,
1141 0x00, bsize - newsize -
1142 udf_file_entry_alloc_offset(inode));
1143 iinfo->i_lenAlloc = newsize;
1144 truncate_setsize(inode, newsize);
1145 up_write(&iinfo->i_data_sem);
1146 goto update_time;
1148 err = block_truncate_page(inode->i_mapping, newsize,
1149 udf_get_block);
1150 if (err)
1151 return err;
1152 down_write(&iinfo->i_data_sem);
1153 truncate_setsize(inode, newsize);
1154 udf_truncate_extents(inode);
1155 up_write(&iinfo->i_data_sem);
1157 update_time:
1158 inode->i_mtime = inode->i_ctime = current_fs_time(inode->i_sb);
1159 if (IS_SYNC(inode))
1160 udf_sync_inode(inode);
1161 else
1162 mark_inode_dirty(inode);
1163 return 0;
1166 static void __udf_read_inode(struct inode *inode)
1168 struct buffer_head *bh = NULL;
1169 struct fileEntry *fe;
1170 uint16_t ident;
1171 struct udf_inode_info *iinfo = UDF_I(inode);
1174 * Set defaults, but the inode is still incomplete!
1175 * Note: get_new_inode() sets the following on a new inode:
1176 * i_sb = sb
1177 * i_no = ino
1178 * i_flags = sb->s_flags
1179 * i_state = 0
1180 * clean_inode(): zero fills and sets
1181 * i_count = 1
1182 * i_nlink = 1
1183 * i_op = NULL;
1185 bh = udf_read_ptagged(inode->i_sb, &iinfo->i_location, 0, &ident);
1186 if (!bh) {
1187 udf_err(inode->i_sb, "(ino %ld) failed !bh\n", inode->i_ino);
1188 make_bad_inode(inode);
1189 return;
1192 if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE &&
1193 ident != TAG_IDENT_USE) {
1194 udf_err(inode->i_sb, "(ino %ld) failed ident=%d\n",
1195 inode->i_ino, ident);
1196 brelse(bh);
1197 make_bad_inode(inode);
1198 return;
1201 fe = (struct fileEntry *)bh->b_data;
1203 if (fe->icbTag.strategyType == cpu_to_le16(4096)) {
1204 struct buffer_head *ibh;
1206 ibh = udf_read_ptagged(inode->i_sb, &iinfo->i_location, 1,
1207 &ident);
1208 if (ident == TAG_IDENT_IE && ibh) {
1209 struct buffer_head *nbh = NULL;
1210 struct kernel_lb_addr loc;
1211 struct indirectEntry *ie;
1213 ie = (struct indirectEntry *)ibh->b_data;
1214 loc = lelb_to_cpu(ie->indirectICB.extLocation);
1216 if (ie->indirectICB.extLength &&
1217 (nbh = udf_read_ptagged(inode->i_sb, &loc, 0,
1218 &ident))) {
1219 if (ident == TAG_IDENT_FE ||
1220 ident == TAG_IDENT_EFE) {
1221 memcpy(&iinfo->i_location,
1222 &loc,
1223 sizeof(struct kernel_lb_addr));
1224 brelse(bh);
1225 brelse(ibh);
1226 brelse(nbh);
1227 __udf_read_inode(inode);
1228 return;
1230 brelse(nbh);
1233 brelse(ibh);
1234 } else if (fe->icbTag.strategyType != cpu_to_le16(4)) {
1235 udf_err(inode->i_sb, "unsupported strategy type: %d\n",
1236 le16_to_cpu(fe->icbTag.strategyType));
1237 brelse(bh);
1238 make_bad_inode(inode);
1239 return;
1241 udf_fill_inode(inode, bh);
1243 brelse(bh);
1246 static void udf_fill_inode(struct inode *inode, struct buffer_head *bh)
1248 struct fileEntry *fe;
1249 struct extendedFileEntry *efe;
1250 int offset;
1251 struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1252 struct udf_inode_info *iinfo = UDF_I(inode);
1253 unsigned int link_count;
1255 fe = (struct fileEntry *)bh->b_data;
1256 efe = (struct extendedFileEntry *)bh->b_data;
1258 if (fe->icbTag.strategyType == cpu_to_le16(4))
1259 iinfo->i_strat4096 = 0;
1260 else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */
1261 iinfo->i_strat4096 = 1;
1263 iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) &
1264 ICBTAG_FLAG_AD_MASK;
1265 iinfo->i_unique = 0;
1266 iinfo->i_lenEAttr = 0;
1267 iinfo->i_lenExtents = 0;
1268 iinfo->i_lenAlloc = 0;
1269 iinfo->i_next_alloc_block = 0;
1270 iinfo->i_next_alloc_goal = 0;
1271 if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) {
1272 iinfo->i_efe = 1;
1273 iinfo->i_use = 0;
1274 if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize -
1275 sizeof(struct extendedFileEntry))) {
1276 make_bad_inode(inode);
1277 return;
1279 memcpy(iinfo->i_ext.i_data,
1280 bh->b_data + sizeof(struct extendedFileEntry),
1281 inode->i_sb->s_blocksize -
1282 sizeof(struct extendedFileEntry));
1283 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) {
1284 iinfo->i_efe = 0;
1285 iinfo->i_use = 0;
1286 if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize -
1287 sizeof(struct fileEntry))) {
1288 make_bad_inode(inode);
1289 return;
1291 memcpy(iinfo->i_ext.i_data,
1292 bh->b_data + sizeof(struct fileEntry),
1293 inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1294 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) {
1295 iinfo->i_efe = 0;
1296 iinfo->i_use = 1;
1297 iinfo->i_lenAlloc = le32_to_cpu(
1298 ((struct unallocSpaceEntry *)bh->b_data)->
1299 lengthAllocDescs);
1300 if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize -
1301 sizeof(struct unallocSpaceEntry))) {
1302 make_bad_inode(inode);
1303 return;
1305 memcpy(iinfo->i_ext.i_data,
1306 bh->b_data + sizeof(struct unallocSpaceEntry),
1307 inode->i_sb->s_blocksize -
1308 sizeof(struct unallocSpaceEntry));
1309 return;
1312 read_lock(&sbi->s_cred_lock);
1313 inode->i_uid = le32_to_cpu(fe->uid);
1314 if (inode->i_uid == -1 ||
1315 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_IGNORE) ||
1316 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET))
1317 inode->i_uid = UDF_SB(inode->i_sb)->s_uid;
1319 inode->i_gid = le32_to_cpu(fe->gid);
1320 if (inode->i_gid == -1 ||
1321 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_IGNORE) ||
1322 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET))
1323 inode->i_gid = UDF_SB(inode->i_sb)->s_gid;
1325 if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY &&
1326 sbi->s_fmode != UDF_INVALID_MODE)
1327 inode->i_mode = sbi->s_fmode;
1328 else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY &&
1329 sbi->s_dmode != UDF_INVALID_MODE)
1330 inode->i_mode = sbi->s_dmode;
1331 else
1332 inode->i_mode = udf_convert_permissions(fe);
1333 inode->i_mode &= ~sbi->s_umask;
1334 read_unlock(&sbi->s_cred_lock);
1336 link_count = le16_to_cpu(fe->fileLinkCount);
1337 if (!link_count)
1338 link_count = 1;
1339 set_nlink(inode, link_count);
1341 inode->i_size = le64_to_cpu(fe->informationLength);
1342 iinfo->i_lenExtents = inode->i_size;
1344 if (iinfo->i_efe == 0) {
1345 inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) <<
1346 (inode->i_sb->s_blocksize_bits - 9);
1348 if (!udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime))
1349 inode->i_atime = sbi->s_record_time;
1351 if (!udf_disk_stamp_to_time(&inode->i_mtime,
1352 fe->modificationTime))
1353 inode->i_mtime = sbi->s_record_time;
1355 if (!udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime))
1356 inode->i_ctime = sbi->s_record_time;
1358 iinfo->i_unique = le64_to_cpu(fe->uniqueID);
1359 iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr);
1360 iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs);
1361 offset = sizeof(struct fileEntry) + iinfo->i_lenEAttr;
1362 } else {
1363 inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) <<
1364 (inode->i_sb->s_blocksize_bits - 9);
1366 if (!udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime))
1367 inode->i_atime = sbi->s_record_time;
1369 if (!udf_disk_stamp_to_time(&inode->i_mtime,
1370 efe->modificationTime))
1371 inode->i_mtime = sbi->s_record_time;
1373 if (!udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime))
1374 iinfo->i_crtime = sbi->s_record_time;
1376 if (!udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime))
1377 inode->i_ctime = sbi->s_record_time;
1379 iinfo->i_unique = le64_to_cpu(efe->uniqueID);
1380 iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr);
1381 iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs);
1382 offset = sizeof(struct extendedFileEntry) +
1383 iinfo->i_lenEAttr;
1386 switch (fe->icbTag.fileType) {
1387 case ICBTAG_FILE_TYPE_DIRECTORY:
1388 inode->i_op = &udf_dir_inode_operations;
1389 inode->i_fop = &udf_dir_operations;
1390 inode->i_mode |= S_IFDIR;
1391 inc_nlink(inode);
1392 break;
1393 case ICBTAG_FILE_TYPE_REALTIME:
1394 case ICBTAG_FILE_TYPE_REGULAR:
1395 case ICBTAG_FILE_TYPE_UNDEF:
1396 case ICBTAG_FILE_TYPE_VAT20:
1397 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1398 inode->i_data.a_ops = &udf_adinicb_aops;
1399 else
1400 inode->i_data.a_ops = &udf_aops;
1401 inode->i_op = &udf_file_inode_operations;
1402 inode->i_fop = &udf_file_operations;
1403 inode->i_mode |= S_IFREG;
1404 break;
1405 case ICBTAG_FILE_TYPE_BLOCK:
1406 inode->i_mode |= S_IFBLK;
1407 break;
1408 case ICBTAG_FILE_TYPE_CHAR:
1409 inode->i_mode |= S_IFCHR;
1410 break;
1411 case ICBTAG_FILE_TYPE_FIFO:
1412 init_special_inode(inode, inode->i_mode | S_IFIFO, 0);
1413 break;
1414 case ICBTAG_FILE_TYPE_SOCKET:
1415 init_special_inode(inode, inode->i_mode | S_IFSOCK, 0);
1416 break;
1417 case ICBTAG_FILE_TYPE_SYMLINK:
1418 inode->i_data.a_ops = &udf_symlink_aops;
1419 inode->i_op = &udf_symlink_inode_operations;
1420 inode->i_mode = S_IFLNK | S_IRWXUGO;
1421 break;
1422 case ICBTAG_FILE_TYPE_MAIN:
1423 udf_debug("METADATA FILE-----\n");
1424 break;
1425 case ICBTAG_FILE_TYPE_MIRROR:
1426 udf_debug("METADATA MIRROR FILE-----\n");
1427 break;
1428 case ICBTAG_FILE_TYPE_BITMAP:
1429 udf_debug("METADATA BITMAP FILE-----\n");
1430 break;
1431 default:
1432 udf_err(inode->i_sb, "(ino %ld) failed unknown file type=%d\n",
1433 inode->i_ino, fe->icbTag.fileType);
1434 make_bad_inode(inode);
1435 return;
1437 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1438 struct deviceSpec *dsea =
1439 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1440 if (dsea) {
1441 init_special_inode(inode, inode->i_mode,
1442 MKDEV(le32_to_cpu(dsea->majorDeviceIdent),
1443 le32_to_cpu(dsea->minorDeviceIdent)));
1444 /* Developer ID ??? */
1445 } else
1446 make_bad_inode(inode);
1450 static int udf_alloc_i_data(struct inode *inode, size_t size)
1452 struct udf_inode_info *iinfo = UDF_I(inode);
1453 iinfo->i_ext.i_data = kmalloc(size, GFP_KERNEL);
1455 if (!iinfo->i_ext.i_data) {
1456 udf_err(inode->i_sb, "(ino %ld) no free memory\n",
1457 inode->i_ino);
1458 return -ENOMEM;
1461 return 0;
1464 static umode_t udf_convert_permissions(struct fileEntry *fe)
1466 umode_t mode;
1467 uint32_t permissions;
1468 uint32_t flags;
1470 permissions = le32_to_cpu(fe->permissions);
1471 flags = le16_to_cpu(fe->icbTag.flags);
1473 mode = ((permissions) & S_IRWXO) |
1474 ((permissions >> 2) & S_IRWXG) |
1475 ((permissions >> 4) & S_IRWXU) |
1476 ((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) |
1477 ((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) |
1478 ((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0);
1480 return mode;
1483 int udf_write_inode(struct inode *inode, struct writeback_control *wbc)
1485 return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1488 static int udf_sync_inode(struct inode *inode)
1490 return udf_update_inode(inode, 1);
1493 static int udf_update_inode(struct inode *inode, int do_sync)
1495 struct buffer_head *bh = NULL;
1496 struct fileEntry *fe;
1497 struct extendedFileEntry *efe;
1498 uint32_t udfperms;
1499 uint16_t icbflags;
1500 uint16_t crclen;
1501 int err = 0;
1502 struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1503 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1504 struct udf_inode_info *iinfo = UDF_I(inode);
1506 bh = udf_tgetblk(inode->i_sb,
1507 udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0));
1508 if (!bh) {
1509 udf_debug("getblk failure\n");
1510 return -ENOMEM;
1513 lock_buffer(bh);
1514 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1515 fe = (struct fileEntry *)bh->b_data;
1516 efe = (struct extendedFileEntry *)bh->b_data;
1518 if (iinfo->i_use) {
1519 struct unallocSpaceEntry *use =
1520 (struct unallocSpaceEntry *)bh->b_data;
1522 use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1523 memcpy(bh->b_data + sizeof(struct unallocSpaceEntry),
1524 iinfo->i_ext.i_data, inode->i_sb->s_blocksize -
1525 sizeof(struct unallocSpaceEntry));
1526 use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE);
1527 use->descTag.tagLocation =
1528 cpu_to_le32(iinfo->i_location.logicalBlockNum);
1529 crclen = sizeof(struct unallocSpaceEntry) +
1530 iinfo->i_lenAlloc - sizeof(struct tag);
1531 use->descTag.descCRCLength = cpu_to_le16(crclen);
1532 use->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)use +
1533 sizeof(struct tag),
1534 crclen));
1535 use->descTag.tagChecksum = udf_tag_checksum(&use->descTag);
1537 goto out;
1540 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET))
1541 fe->uid = cpu_to_le32(-1);
1542 else
1543 fe->uid = cpu_to_le32(inode->i_uid);
1545 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET))
1546 fe->gid = cpu_to_le32(-1);
1547 else
1548 fe->gid = cpu_to_le32(inode->i_gid);
1550 udfperms = ((inode->i_mode & S_IRWXO)) |
1551 ((inode->i_mode & S_IRWXG) << 2) |
1552 ((inode->i_mode & S_IRWXU) << 4);
1554 udfperms |= (le32_to_cpu(fe->permissions) &
1555 (FE_PERM_O_DELETE | FE_PERM_O_CHATTR |
1556 FE_PERM_G_DELETE | FE_PERM_G_CHATTR |
1557 FE_PERM_U_DELETE | FE_PERM_U_CHATTR));
1558 fe->permissions = cpu_to_le32(udfperms);
1560 if (S_ISDIR(inode->i_mode))
1561 fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1);
1562 else
1563 fe->fileLinkCount = cpu_to_le16(inode->i_nlink);
1565 fe->informationLength = cpu_to_le64(inode->i_size);
1567 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1568 struct regid *eid;
1569 struct deviceSpec *dsea =
1570 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1571 if (!dsea) {
1572 dsea = (struct deviceSpec *)
1573 udf_add_extendedattr(inode,
1574 sizeof(struct deviceSpec) +
1575 sizeof(struct regid), 12, 0x3);
1576 dsea->attrType = cpu_to_le32(12);
1577 dsea->attrSubtype = 1;
1578 dsea->attrLength = cpu_to_le32(
1579 sizeof(struct deviceSpec) +
1580 sizeof(struct regid));
1581 dsea->impUseLength = cpu_to_le32(sizeof(struct regid));
1583 eid = (struct regid *)dsea->impUse;
1584 memset(eid, 0, sizeof(struct regid));
1585 strcpy(eid->ident, UDF_ID_DEVELOPER);
1586 eid->identSuffix[0] = UDF_OS_CLASS_UNIX;
1587 eid->identSuffix[1] = UDF_OS_ID_LINUX;
1588 dsea->majorDeviceIdent = cpu_to_le32(imajor(inode));
1589 dsea->minorDeviceIdent = cpu_to_le32(iminor(inode));
1592 if (iinfo->i_efe == 0) {
1593 memcpy(bh->b_data + sizeof(struct fileEntry),
1594 iinfo->i_ext.i_data,
1595 inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1596 fe->logicalBlocksRecorded = cpu_to_le64(
1597 (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1598 (blocksize_bits - 9));
1600 udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime);
1601 udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime);
1602 udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime);
1603 memset(&(fe->impIdent), 0, sizeof(struct regid));
1604 strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER);
1605 fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1606 fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1607 fe->uniqueID = cpu_to_le64(iinfo->i_unique);
1608 fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1609 fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1610 fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE);
1611 crclen = sizeof(struct fileEntry);
1612 } else {
1613 memcpy(bh->b_data + sizeof(struct extendedFileEntry),
1614 iinfo->i_ext.i_data,
1615 inode->i_sb->s_blocksize -
1616 sizeof(struct extendedFileEntry));
1617 efe->objectSize = cpu_to_le64(inode->i_size);
1618 efe->logicalBlocksRecorded = cpu_to_le64(
1619 (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1620 (blocksize_bits - 9));
1622 if (iinfo->i_crtime.tv_sec > inode->i_atime.tv_sec ||
1623 (iinfo->i_crtime.tv_sec == inode->i_atime.tv_sec &&
1624 iinfo->i_crtime.tv_nsec > inode->i_atime.tv_nsec))
1625 iinfo->i_crtime = inode->i_atime;
1627 if (iinfo->i_crtime.tv_sec > inode->i_mtime.tv_sec ||
1628 (iinfo->i_crtime.tv_sec == inode->i_mtime.tv_sec &&
1629 iinfo->i_crtime.tv_nsec > inode->i_mtime.tv_nsec))
1630 iinfo->i_crtime = inode->i_mtime;
1632 if (iinfo->i_crtime.tv_sec > inode->i_ctime.tv_sec ||
1633 (iinfo->i_crtime.tv_sec == inode->i_ctime.tv_sec &&
1634 iinfo->i_crtime.tv_nsec > inode->i_ctime.tv_nsec))
1635 iinfo->i_crtime = inode->i_ctime;
1637 udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime);
1638 udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime);
1639 udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime);
1640 udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime);
1642 memset(&(efe->impIdent), 0, sizeof(struct regid));
1643 strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER);
1644 efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1645 efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1646 efe->uniqueID = cpu_to_le64(iinfo->i_unique);
1647 efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1648 efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1649 efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE);
1650 crclen = sizeof(struct extendedFileEntry);
1652 if (iinfo->i_strat4096) {
1653 fe->icbTag.strategyType = cpu_to_le16(4096);
1654 fe->icbTag.strategyParameter = cpu_to_le16(1);
1655 fe->icbTag.numEntries = cpu_to_le16(2);
1656 } else {
1657 fe->icbTag.strategyType = cpu_to_le16(4);
1658 fe->icbTag.numEntries = cpu_to_le16(1);
1661 if (S_ISDIR(inode->i_mode))
1662 fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY;
1663 else if (S_ISREG(inode->i_mode))
1664 fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR;
1665 else if (S_ISLNK(inode->i_mode))
1666 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK;
1667 else if (S_ISBLK(inode->i_mode))
1668 fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK;
1669 else if (S_ISCHR(inode->i_mode))
1670 fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR;
1671 else if (S_ISFIFO(inode->i_mode))
1672 fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO;
1673 else if (S_ISSOCK(inode->i_mode))
1674 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET;
1676 icbflags = iinfo->i_alloc_type |
1677 ((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) |
1678 ((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) |
1679 ((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) |
1680 (le16_to_cpu(fe->icbTag.flags) &
1681 ~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID |
1682 ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY));
1684 fe->icbTag.flags = cpu_to_le16(icbflags);
1685 if (sbi->s_udfrev >= 0x0200)
1686 fe->descTag.descVersion = cpu_to_le16(3);
1687 else
1688 fe->descTag.descVersion = cpu_to_le16(2);
1689 fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number);
1690 fe->descTag.tagLocation = cpu_to_le32(
1691 iinfo->i_location.logicalBlockNum);
1692 crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag);
1693 fe->descTag.descCRCLength = cpu_to_le16(crclen);
1694 fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag),
1695 crclen));
1696 fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag);
1698 out:
1699 set_buffer_uptodate(bh);
1700 unlock_buffer(bh);
1702 /* write the data blocks */
1703 mark_buffer_dirty(bh);
1704 if (do_sync) {
1705 sync_dirty_buffer(bh);
1706 if (buffer_write_io_error(bh)) {
1707 udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n",
1708 inode->i_ino);
1709 err = -EIO;
1712 brelse(bh);
1714 return err;
1717 struct inode *udf_iget(struct super_block *sb, struct kernel_lb_addr *ino)
1719 unsigned long block = udf_get_lb_pblock(sb, ino, 0);
1720 struct inode *inode = iget_locked(sb, block);
1722 if (!inode)
1723 return NULL;
1725 if (inode->i_state & I_NEW) {
1726 memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr));
1727 __udf_read_inode(inode);
1728 unlock_new_inode(inode);
1731 if (is_bad_inode(inode))
1732 goto out_iput;
1734 if (ino->logicalBlockNum >= UDF_SB(sb)->
1735 s_partmaps[ino->partitionReferenceNum].s_partition_len) {
1736 udf_debug("block=%d, partition=%d out of range\n",
1737 ino->logicalBlockNum, ino->partitionReferenceNum);
1738 make_bad_inode(inode);
1739 goto out_iput;
1742 return inode;
1744 out_iput:
1745 iput(inode);
1746 return NULL;
1749 int udf_add_aext(struct inode *inode, struct extent_position *epos,
1750 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
1752 int adsize;
1753 struct short_ad *sad = NULL;
1754 struct long_ad *lad = NULL;
1755 struct allocExtDesc *aed;
1756 uint8_t *ptr;
1757 struct udf_inode_info *iinfo = UDF_I(inode);
1759 if (!epos->bh)
1760 ptr = iinfo->i_ext.i_data + epos->offset -
1761 udf_file_entry_alloc_offset(inode) +
1762 iinfo->i_lenEAttr;
1763 else
1764 ptr = epos->bh->b_data + epos->offset;
1766 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1767 adsize = sizeof(struct short_ad);
1768 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1769 adsize = sizeof(struct long_ad);
1770 else
1771 return -EIO;
1773 if (epos->offset + (2 * adsize) > inode->i_sb->s_blocksize) {
1774 unsigned char *sptr, *dptr;
1775 struct buffer_head *nbh;
1776 int err, loffset;
1777 struct kernel_lb_addr obloc = epos->block;
1779 epos->block.logicalBlockNum = udf_new_block(inode->i_sb, NULL,
1780 obloc.partitionReferenceNum,
1781 obloc.logicalBlockNum, &err);
1782 if (!epos->block.logicalBlockNum)
1783 return -ENOSPC;
1784 nbh = udf_tgetblk(inode->i_sb, udf_get_lb_pblock(inode->i_sb,
1785 &epos->block,
1786 0));
1787 if (!nbh)
1788 return -EIO;
1789 lock_buffer(nbh);
1790 memset(nbh->b_data, 0x00, inode->i_sb->s_blocksize);
1791 set_buffer_uptodate(nbh);
1792 unlock_buffer(nbh);
1793 mark_buffer_dirty_inode(nbh, inode);
1795 aed = (struct allocExtDesc *)(nbh->b_data);
1796 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT))
1797 aed->previousAllocExtLocation =
1798 cpu_to_le32(obloc.logicalBlockNum);
1799 if (epos->offset + adsize > inode->i_sb->s_blocksize) {
1800 loffset = epos->offset;
1801 aed->lengthAllocDescs = cpu_to_le32(adsize);
1802 sptr = ptr - adsize;
1803 dptr = nbh->b_data + sizeof(struct allocExtDesc);
1804 memcpy(dptr, sptr, adsize);
1805 epos->offset = sizeof(struct allocExtDesc) + adsize;
1806 } else {
1807 loffset = epos->offset + adsize;
1808 aed->lengthAllocDescs = cpu_to_le32(0);
1809 sptr = ptr;
1810 epos->offset = sizeof(struct allocExtDesc);
1812 if (epos->bh) {
1813 aed = (struct allocExtDesc *)epos->bh->b_data;
1814 le32_add_cpu(&aed->lengthAllocDescs, adsize);
1815 } else {
1816 iinfo->i_lenAlloc += adsize;
1817 mark_inode_dirty(inode);
1820 if (UDF_SB(inode->i_sb)->s_udfrev >= 0x0200)
1821 udf_new_tag(nbh->b_data, TAG_IDENT_AED, 3, 1,
1822 epos->block.logicalBlockNum, sizeof(struct tag));
1823 else
1824 udf_new_tag(nbh->b_data, TAG_IDENT_AED, 2, 1,
1825 epos->block.logicalBlockNum, sizeof(struct tag));
1826 switch (iinfo->i_alloc_type) {
1827 case ICBTAG_FLAG_AD_SHORT:
1828 sad = (struct short_ad *)sptr;
1829 sad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS |
1830 inode->i_sb->s_blocksize);
1831 sad->extPosition =
1832 cpu_to_le32(epos->block.logicalBlockNum);
1833 break;
1834 case ICBTAG_FLAG_AD_LONG:
1835 lad = (struct long_ad *)sptr;
1836 lad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS |
1837 inode->i_sb->s_blocksize);
1838 lad->extLocation = cpu_to_lelb(epos->block);
1839 memset(lad->impUse, 0x00, sizeof(lad->impUse));
1840 break;
1842 if (epos->bh) {
1843 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1844 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
1845 udf_update_tag(epos->bh->b_data, loffset);
1846 else
1847 udf_update_tag(epos->bh->b_data,
1848 sizeof(struct allocExtDesc));
1849 mark_buffer_dirty_inode(epos->bh, inode);
1850 brelse(epos->bh);
1851 } else {
1852 mark_inode_dirty(inode);
1854 epos->bh = nbh;
1857 udf_write_aext(inode, epos, eloc, elen, inc);
1859 if (!epos->bh) {
1860 iinfo->i_lenAlloc += adsize;
1861 mark_inode_dirty(inode);
1862 } else {
1863 aed = (struct allocExtDesc *)epos->bh->b_data;
1864 le32_add_cpu(&aed->lengthAllocDescs, adsize);
1865 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1866 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
1867 udf_update_tag(epos->bh->b_data,
1868 epos->offset + (inc ? 0 : adsize));
1869 else
1870 udf_update_tag(epos->bh->b_data,
1871 sizeof(struct allocExtDesc));
1872 mark_buffer_dirty_inode(epos->bh, inode);
1875 return 0;
1878 void udf_write_aext(struct inode *inode, struct extent_position *epos,
1879 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
1881 int adsize;
1882 uint8_t *ptr;
1883 struct short_ad *sad;
1884 struct long_ad *lad;
1885 struct udf_inode_info *iinfo = UDF_I(inode);
1887 if (!epos->bh)
1888 ptr = iinfo->i_ext.i_data + epos->offset -
1889 udf_file_entry_alloc_offset(inode) +
1890 iinfo->i_lenEAttr;
1891 else
1892 ptr = epos->bh->b_data + epos->offset;
1894 switch (iinfo->i_alloc_type) {
1895 case ICBTAG_FLAG_AD_SHORT:
1896 sad = (struct short_ad *)ptr;
1897 sad->extLength = cpu_to_le32(elen);
1898 sad->extPosition = cpu_to_le32(eloc->logicalBlockNum);
1899 adsize = sizeof(struct short_ad);
1900 break;
1901 case ICBTAG_FLAG_AD_LONG:
1902 lad = (struct long_ad *)ptr;
1903 lad->extLength = cpu_to_le32(elen);
1904 lad->extLocation = cpu_to_lelb(*eloc);
1905 memset(lad->impUse, 0x00, sizeof(lad->impUse));
1906 adsize = sizeof(struct long_ad);
1907 break;
1908 default:
1909 return;
1912 if (epos->bh) {
1913 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1914 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) {
1915 struct allocExtDesc *aed =
1916 (struct allocExtDesc *)epos->bh->b_data;
1917 udf_update_tag(epos->bh->b_data,
1918 le32_to_cpu(aed->lengthAllocDescs) +
1919 sizeof(struct allocExtDesc));
1921 mark_buffer_dirty_inode(epos->bh, inode);
1922 } else {
1923 mark_inode_dirty(inode);
1926 if (inc)
1927 epos->offset += adsize;
1930 int8_t udf_next_aext(struct inode *inode, struct extent_position *epos,
1931 struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
1933 int8_t etype;
1935 while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) ==
1936 (EXT_NEXT_EXTENT_ALLOCDECS >> 30)) {
1937 int block;
1938 epos->block = *eloc;
1939 epos->offset = sizeof(struct allocExtDesc);
1940 brelse(epos->bh);
1941 block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0);
1942 epos->bh = udf_tread(inode->i_sb, block);
1943 if (!epos->bh) {
1944 udf_debug("reading block %d failed!\n", block);
1945 return -1;
1949 return etype;
1952 int8_t udf_current_aext(struct inode *inode, struct extent_position *epos,
1953 struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
1955 int alen;
1956 int8_t etype;
1957 uint8_t *ptr;
1958 struct short_ad *sad;
1959 struct long_ad *lad;
1960 struct udf_inode_info *iinfo = UDF_I(inode);
1962 if (!epos->bh) {
1963 if (!epos->offset)
1964 epos->offset = udf_file_entry_alloc_offset(inode);
1965 ptr = iinfo->i_ext.i_data + epos->offset -
1966 udf_file_entry_alloc_offset(inode) +
1967 iinfo->i_lenEAttr;
1968 alen = udf_file_entry_alloc_offset(inode) +
1969 iinfo->i_lenAlloc;
1970 } else {
1971 if (!epos->offset)
1972 epos->offset = sizeof(struct allocExtDesc);
1973 ptr = epos->bh->b_data + epos->offset;
1974 alen = sizeof(struct allocExtDesc) +
1975 le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)->
1976 lengthAllocDescs);
1979 switch (iinfo->i_alloc_type) {
1980 case ICBTAG_FLAG_AD_SHORT:
1981 sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc);
1982 if (!sad)
1983 return -1;
1984 etype = le32_to_cpu(sad->extLength) >> 30;
1985 eloc->logicalBlockNum = le32_to_cpu(sad->extPosition);
1986 eloc->partitionReferenceNum =
1987 iinfo->i_location.partitionReferenceNum;
1988 *elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK;
1989 break;
1990 case ICBTAG_FLAG_AD_LONG:
1991 lad = udf_get_filelongad(ptr, alen, &epos->offset, inc);
1992 if (!lad)
1993 return -1;
1994 etype = le32_to_cpu(lad->extLength) >> 30;
1995 *eloc = lelb_to_cpu(lad->extLocation);
1996 *elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK;
1997 break;
1998 default:
1999 udf_debug("alloc_type = %d unsupported\n", iinfo->i_alloc_type);
2000 return -1;
2003 return etype;
2006 static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos,
2007 struct kernel_lb_addr neloc, uint32_t nelen)
2009 struct kernel_lb_addr oeloc;
2010 uint32_t oelen;
2011 int8_t etype;
2013 if (epos.bh)
2014 get_bh(epos.bh);
2016 while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) {
2017 udf_write_aext(inode, &epos, &neloc, nelen, 1);
2018 neloc = oeloc;
2019 nelen = (etype << 30) | oelen;
2021 udf_add_aext(inode, &epos, &neloc, nelen, 1);
2022 brelse(epos.bh);
2024 return (nelen >> 30);
2027 int8_t udf_delete_aext(struct inode *inode, struct extent_position epos,
2028 struct kernel_lb_addr eloc, uint32_t elen)
2030 struct extent_position oepos;
2031 int adsize;
2032 int8_t etype;
2033 struct allocExtDesc *aed;
2034 struct udf_inode_info *iinfo;
2036 if (epos.bh) {
2037 get_bh(epos.bh);
2038 get_bh(epos.bh);
2041 iinfo = UDF_I(inode);
2042 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2043 adsize = sizeof(struct short_ad);
2044 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2045 adsize = sizeof(struct long_ad);
2046 else
2047 adsize = 0;
2049 oepos = epos;
2050 if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1)
2051 return -1;
2053 while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) {
2054 udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1);
2055 if (oepos.bh != epos.bh) {
2056 oepos.block = epos.block;
2057 brelse(oepos.bh);
2058 get_bh(epos.bh);
2059 oepos.bh = epos.bh;
2060 oepos.offset = epos.offset - adsize;
2063 memset(&eloc, 0x00, sizeof(struct kernel_lb_addr));
2064 elen = 0;
2066 if (epos.bh != oepos.bh) {
2067 udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1);
2068 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2069 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2070 if (!oepos.bh) {
2071 iinfo->i_lenAlloc -= (adsize * 2);
2072 mark_inode_dirty(inode);
2073 } else {
2074 aed = (struct allocExtDesc *)oepos.bh->b_data;
2075 le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize));
2076 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2077 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2078 udf_update_tag(oepos.bh->b_data,
2079 oepos.offset - (2 * adsize));
2080 else
2081 udf_update_tag(oepos.bh->b_data,
2082 sizeof(struct allocExtDesc));
2083 mark_buffer_dirty_inode(oepos.bh, inode);
2085 } else {
2086 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2087 if (!oepos.bh) {
2088 iinfo->i_lenAlloc -= adsize;
2089 mark_inode_dirty(inode);
2090 } else {
2091 aed = (struct allocExtDesc *)oepos.bh->b_data;
2092 le32_add_cpu(&aed->lengthAllocDescs, -adsize);
2093 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2094 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2095 udf_update_tag(oepos.bh->b_data,
2096 epos.offset - adsize);
2097 else
2098 udf_update_tag(oepos.bh->b_data,
2099 sizeof(struct allocExtDesc));
2100 mark_buffer_dirty_inode(oepos.bh, inode);
2104 brelse(epos.bh);
2105 brelse(oepos.bh);
2107 return (elen >> 30);
2110 int8_t inode_bmap(struct inode *inode, sector_t block,
2111 struct extent_position *pos, struct kernel_lb_addr *eloc,
2112 uint32_t *elen, sector_t *offset)
2114 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
2115 loff_t lbcount = 0, bcount =
2116 (loff_t) block << blocksize_bits;
2117 int8_t etype;
2118 struct udf_inode_info *iinfo;
2120 iinfo = UDF_I(inode);
2121 pos->offset = 0;
2122 pos->block = iinfo->i_location;
2123 pos->bh = NULL;
2124 *elen = 0;
2126 do {
2127 etype = udf_next_aext(inode, pos, eloc, elen, 1);
2128 if (etype == -1) {
2129 *offset = (bcount - lbcount) >> blocksize_bits;
2130 iinfo->i_lenExtents = lbcount;
2131 return -1;
2133 lbcount += *elen;
2134 } while (lbcount <= bcount);
2136 *offset = (bcount + *elen - lbcount) >> blocksize_bits;
2138 return etype;
2141 long udf_block_map(struct inode *inode, sector_t block)
2143 struct kernel_lb_addr eloc;
2144 uint32_t elen;
2145 sector_t offset;
2146 struct extent_position epos = {};
2147 int ret;
2149 down_read(&UDF_I(inode)->i_data_sem);
2151 if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) ==
2152 (EXT_RECORDED_ALLOCATED >> 30))
2153 ret = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
2154 else
2155 ret = 0;
2157 up_read(&UDF_I(inode)->i_data_sem);
2158 brelse(epos.bh);
2160 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV))
2161 return udf_fixed_to_variable(ret);
2162 else
2163 return ret;