Avoid reading past buffer when calling GETACL
[zen-stable.git] / fs / xfs / xfs_log_recover.c
bloba89c2f222ff35268aabcd2cca35d2a6a027eef2d
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_mount.h"
28 #include "xfs_error.h"
29 #include "xfs_bmap_btree.h"
30 #include "xfs_alloc_btree.h"
31 #include "xfs_ialloc_btree.h"
32 #include "xfs_dinode.h"
33 #include "xfs_inode.h"
34 #include "xfs_inode_item.h"
35 #include "xfs_alloc.h"
36 #include "xfs_ialloc.h"
37 #include "xfs_log_priv.h"
38 #include "xfs_buf_item.h"
39 #include "xfs_log_recover.h"
40 #include "xfs_extfree_item.h"
41 #include "xfs_trans_priv.h"
42 #include "xfs_quota.h"
43 #include "xfs_rw.h"
44 #include "xfs_utils.h"
45 #include "xfs_trace.h"
47 STATIC int xlog_find_zeroed(xlog_t *, xfs_daddr_t *);
48 STATIC int xlog_clear_stale_blocks(xlog_t *, xfs_lsn_t);
49 #if defined(DEBUG)
50 STATIC void xlog_recover_check_summary(xlog_t *);
51 #else
52 #define xlog_recover_check_summary(log)
53 #endif
56 * This structure is used during recovery to record the buf log items which
57 * have been canceled and should not be replayed.
59 struct xfs_buf_cancel {
60 xfs_daddr_t bc_blkno;
61 uint bc_len;
62 int bc_refcount;
63 struct list_head bc_list;
67 * Sector aligned buffer routines for buffer create/read/write/access
71 * Verify the given count of basic blocks is valid number of blocks
72 * to specify for an operation involving the given XFS log buffer.
73 * Returns nonzero if the count is valid, 0 otherwise.
76 static inline int
77 xlog_buf_bbcount_valid(
78 xlog_t *log,
79 int bbcount)
81 return bbcount > 0 && bbcount <= log->l_logBBsize;
85 * Allocate a buffer to hold log data. The buffer needs to be able
86 * to map to a range of nbblks basic blocks at any valid (basic
87 * block) offset within the log.
89 STATIC xfs_buf_t *
90 xlog_get_bp(
91 xlog_t *log,
92 int nbblks)
94 struct xfs_buf *bp;
96 if (!xlog_buf_bbcount_valid(log, nbblks)) {
97 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
98 nbblks);
99 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
100 return NULL;
104 * We do log I/O in units of log sectors (a power-of-2
105 * multiple of the basic block size), so we round up the
106 * requested size to accommodate the basic blocks required
107 * for complete log sectors.
109 * In addition, the buffer may be used for a non-sector-
110 * aligned block offset, in which case an I/O of the
111 * requested size could extend beyond the end of the
112 * buffer. If the requested size is only 1 basic block it
113 * will never straddle a sector boundary, so this won't be
114 * an issue. Nor will this be a problem if the log I/O is
115 * done in basic blocks (sector size 1). But otherwise we
116 * extend the buffer by one extra log sector to ensure
117 * there's space to accommodate this possibility.
119 if (nbblks > 1 && log->l_sectBBsize > 1)
120 nbblks += log->l_sectBBsize;
121 nbblks = round_up(nbblks, log->l_sectBBsize);
123 bp = xfs_buf_get_uncached(log->l_mp->m_logdev_targp, BBTOB(nbblks), 0);
124 if (bp)
125 xfs_buf_unlock(bp);
126 return bp;
129 STATIC void
130 xlog_put_bp(
131 xfs_buf_t *bp)
133 xfs_buf_free(bp);
137 * Return the address of the start of the given block number's data
138 * in a log buffer. The buffer covers a log sector-aligned region.
140 STATIC xfs_caddr_t
141 xlog_align(
142 xlog_t *log,
143 xfs_daddr_t blk_no,
144 int nbblks,
145 xfs_buf_t *bp)
147 xfs_daddr_t offset = blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1);
149 ASSERT(BBTOB(offset + nbblks) <= XFS_BUF_SIZE(bp));
150 return bp->b_addr + BBTOB(offset);
155 * nbblks should be uint, but oh well. Just want to catch that 32-bit length.
157 STATIC int
158 xlog_bread_noalign(
159 xlog_t *log,
160 xfs_daddr_t blk_no,
161 int nbblks,
162 xfs_buf_t *bp)
164 int error;
166 if (!xlog_buf_bbcount_valid(log, nbblks)) {
167 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
168 nbblks);
169 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
170 return EFSCORRUPTED;
173 blk_no = round_down(blk_no, log->l_sectBBsize);
174 nbblks = round_up(nbblks, log->l_sectBBsize);
176 ASSERT(nbblks > 0);
177 ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
179 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
180 XFS_BUF_READ(bp);
181 XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
183 xfsbdstrat(log->l_mp, bp);
184 error = xfs_buf_iowait(bp);
185 if (error)
186 xfs_buf_ioerror_alert(bp, __func__);
187 return error;
190 STATIC int
191 xlog_bread(
192 xlog_t *log,
193 xfs_daddr_t blk_no,
194 int nbblks,
195 xfs_buf_t *bp,
196 xfs_caddr_t *offset)
198 int error;
200 error = xlog_bread_noalign(log, blk_no, nbblks, bp);
201 if (error)
202 return error;
204 *offset = xlog_align(log, blk_no, nbblks, bp);
205 return 0;
209 * Read at an offset into the buffer. Returns with the buffer in it's original
210 * state regardless of the result of the read.
212 STATIC int
213 xlog_bread_offset(
214 xlog_t *log,
215 xfs_daddr_t blk_no, /* block to read from */
216 int nbblks, /* blocks to read */
217 xfs_buf_t *bp,
218 xfs_caddr_t offset)
220 xfs_caddr_t orig_offset = bp->b_addr;
221 int orig_len = bp->b_buffer_length;
222 int error, error2;
224 error = xfs_buf_associate_memory(bp, offset, BBTOB(nbblks));
225 if (error)
226 return error;
228 error = xlog_bread_noalign(log, blk_no, nbblks, bp);
230 /* must reset buffer pointer even on error */
231 error2 = xfs_buf_associate_memory(bp, orig_offset, orig_len);
232 if (error)
233 return error;
234 return error2;
238 * Write out the buffer at the given block for the given number of blocks.
239 * The buffer is kept locked across the write and is returned locked.
240 * This can only be used for synchronous log writes.
242 STATIC int
243 xlog_bwrite(
244 xlog_t *log,
245 xfs_daddr_t blk_no,
246 int nbblks,
247 xfs_buf_t *bp)
249 int error;
251 if (!xlog_buf_bbcount_valid(log, nbblks)) {
252 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
253 nbblks);
254 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
255 return EFSCORRUPTED;
258 blk_no = round_down(blk_no, log->l_sectBBsize);
259 nbblks = round_up(nbblks, log->l_sectBBsize);
261 ASSERT(nbblks > 0);
262 ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
264 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
265 XFS_BUF_ZEROFLAGS(bp);
266 xfs_buf_hold(bp);
267 xfs_buf_lock(bp);
268 XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
270 error = xfs_bwrite(bp);
271 if (error)
272 xfs_buf_ioerror_alert(bp, __func__);
273 xfs_buf_relse(bp);
274 return error;
277 #ifdef DEBUG
279 * dump debug superblock and log record information
281 STATIC void
282 xlog_header_check_dump(
283 xfs_mount_t *mp,
284 xlog_rec_header_t *head)
286 xfs_debug(mp, "%s: SB : uuid = %pU, fmt = %d\n",
287 __func__, &mp->m_sb.sb_uuid, XLOG_FMT);
288 xfs_debug(mp, " log : uuid = %pU, fmt = %d\n",
289 &head->h_fs_uuid, be32_to_cpu(head->h_fmt));
291 #else
292 #define xlog_header_check_dump(mp, head)
293 #endif
296 * check log record header for recovery
298 STATIC int
299 xlog_header_check_recover(
300 xfs_mount_t *mp,
301 xlog_rec_header_t *head)
303 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
306 * IRIX doesn't write the h_fmt field and leaves it zeroed
307 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
308 * a dirty log created in IRIX.
310 if (unlikely(head->h_fmt != cpu_to_be32(XLOG_FMT))) {
311 xfs_warn(mp,
312 "dirty log written in incompatible format - can't recover");
313 xlog_header_check_dump(mp, head);
314 XFS_ERROR_REPORT("xlog_header_check_recover(1)",
315 XFS_ERRLEVEL_HIGH, mp);
316 return XFS_ERROR(EFSCORRUPTED);
317 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
318 xfs_warn(mp,
319 "dirty log entry has mismatched uuid - can't recover");
320 xlog_header_check_dump(mp, head);
321 XFS_ERROR_REPORT("xlog_header_check_recover(2)",
322 XFS_ERRLEVEL_HIGH, mp);
323 return XFS_ERROR(EFSCORRUPTED);
325 return 0;
329 * read the head block of the log and check the header
331 STATIC int
332 xlog_header_check_mount(
333 xfs_mount_t *mp,
334 xlog_rec_header_t *head)
336 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
338 if (uuid_is_nil(&head->h_fs_uuid)) {
340 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
341 * h_fs_uuid is nil, we assume this log was last mounted
342 * by IRIX and continue.
344 xfs_warn(mp, "nil uuid in log - IRIX style log");
345 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
346 xfs_warn(mp, "log has mismatched uuid - can't recover");
347 xlog_header_check_dump(mp, head);
348 XFS_ERROR_REPORT("xlog_header_check_mount",
349 XFS_ERRLEVEL_HIGH, mp);
350 return XFS_ERROR(EFSCORRUPTED);
352 return 0;
355 STATIC void
356 xlog_recover_iodone(
357 struct xfs_buf *bp)
359 if (bp->b_error) {
361 * We're not going to bother about retrying
362 * this during recovery. One strike!
364 xfs_buf_ioerror_alert(bp, __func__);
365 xfs_force_shutdown(bp->b_target->bt_mount,
366 SHUTDOWN_META_IO_ERROR);
368 bp->b_iodone = NULL;
369 xfs_buf_ioend(bp, 0);
373 * This routine finds (to an approximation) the first block in the physical
374 * log which contains the given cycle. It uses a binary search algorithm.
375 * Note that the algorithm can not be perfect because the disk will not
376 * necessarily be perfect.
378 STATIC int
379 xlog_find_cycle_start(
380 xlog_t *log,
381 xfs_buf_t *bp,
382 xfs_daddr_t first_blk,
383 xfs_daddr_t *last_blk,
384 uint cycle)
386 xfs_caddr_t offset;
387 xfs_daddr_t mid_blk;
388 xfs_daddr_t end_blk;
389 uint mid_cycle;
390 int error;
392 end_blk = *last_blk;
393 mid_blk = BLK_AVG(first_blk, end_blk);
394 while (mid_blk != first_blk && mid_blk != end_blk) {
395 error = xlog_bread(log, mid_blk, 1, bp, &offset);
396 if (error)
397 return error;
398 mid_cycle = xlog_get_cycle(offset);
399 if (mid_cycle == cycle)
400 end_blk = mid_blk; /* last_half_cycle == mid_cycle */
401 else
402 first_blk = mid_blk; /* first_half_cycle == mid_cycle */
403 mid_blk = BLK_AVG(first_blk, end_blk);
405 ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
406 (mid_blk == end_blk && mid_blk-1 == first_blk));
408 *last_blk = end_blk;
410 return 0;
414 * Check that a range of blocks does not contain stop_on_cycle_no.
415 * Fill in *new_blk with the block offset where such a block is
416 * found, or with -1 (an invalid block number) if there is no such
417 * block in the range. The scan needs to occur from front to back
418 * and the pointer into the region must be updated since a later
419 * routine will need to perform another test.
421 STATIC int
422 xlog_find_verify_cycle(
423 xlog_t *log,
424 xfs_daddr_t start_blk,
425 int nbblks,
426 uint stop_on_cycle_no,
427 xfs_daddr_t *new_blk)
429 xfs_daddr_t i, j;
430 uint cycle;
431 xfs_buf_t *bp;
432 xfs_daddr_t bufblks;
433 xfs_caddr_t buf = NULL;
434 int error = 0;
437 * Greedily allocate a buffer big enough to handle the full
438 * range of basic blocks we'll be examining. If that fails,
439 * try a smaller size. We need to be able to read at least
440 * a log sector, or we're out of luck.
442 bufblks = 1 << ffs(nbblks);
443 while (!(bp = xlog_get_bp(log, bufblks))) {
444 bufblks >>= 1;
445 if (bufblks < log->l_sectBBsize)
446 return ENOMEM;
449 for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
450 int bcount;
452 bcount = min(bufblks, (start_blk + nbblks - i));
454 error = xlog_bread(log, i, bcount, bp, &buf);
455 if (error)
456 goto out;
458 for (j = 0; j < bcount; j++) {
459 cycle = xlog_get_cycle(buf);
460 if (cycle == stop_on_cycle_no) {
461 *new_blk = i+j;
462 goto out;
465 buf += BBSIZE;
469 *new_blk = -1;
471 out:
472 xlog_put_bp(bp);
473 return error;
477 * Potentially backup over partial log record write.
479 * In the typical case, last_blk is the number of the block directly after
480 * a good log record. Therefore, we subtract one to get the block number
481 * of the last block in the given buffer. extra_bblks contains the number
482 * of blocks we would have read on a previous read. This happens when the
483 * last log record is split over the end of the physical log.
485 * extra_bblks is the number of blocks potentially verified on a previous
486 * call to this routine.
488 STATIC int
489 xlog_find_verify_log_record(
490 xlog_t *log,
491 xfs_daddr_t start_blk,
492 xfs_daddr_t *last_blk,
493 int extra_bblks)
495 xfs_daddr_t i;
496 xfs_buf_t *bp;
497 xfs_caddr_t offset = NULL;
498 xlog_rec_header_t *head = NULL;
499 int error = 0;
500 int smallmem = 0;
501 int num_blks = *last_blk - start_blk;
502 int xhdrs;
504 ASSERT(start_blk != 0 || *last_blk != start_blk);
506 if (!(bp = xlog_get_bp(log, num_blks))) {
507 if (!(bp = xlog_get_bp(log, 1)))
508 return ENOMEM;
509 smallmem = 1;
510 } else {
511 error = xlog_bread(log, start_blk, num_blks, bp, &offset);
512 if (error)
513 goto out;
514 offset += ((num_blks - 1) << BBSHIFT);
517 for (i = (*last_blk) - 1; i >= 0; i--) {
518 if (i < start_blk) {
519 /* valid log record not found */
520 xfs_warn(log->l_mp,
521 "Log inconsistent (didn't find previous header)");
522 ASSERT(0);
523 error = XFS_ERROR(EIO);
524 goto out;
527 if (smallmem) {
528 error = xlog_bread(log, i, 1, bp, &offset);
529 if (error)
530 goto out;
533 head = (xlog_rec_header_t *)offset;
535 if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
536 break;
538 if (!smallmem)
539 offset -= BBSIZE;
543 * We hit the beginning of the physical log & still no header. Return
544 * to caller. If caller can handle a return of -1, then this routine
545 * will be called again for the end of the physical log.
547 if (i == -1) {
548 error = -1;
549 goto out;
553 * We have the final block of the good log (the first block
554 * of the log record _before_ the head. So we check the uuid.
556 if ((error = xlog_header_check_mount(log->l_mp, head)))
557 goto out;
560 * We may have found a log record header before we expected one.
561 * last_blk will be the 1st block # with a given cycle #. We may end
562 * up reading an entire log record. In this case, we don't want to
563 * reset last_blk. Only when last_blk points in the middle of a log
564 * record do we update last_blk.
566 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
567 uint h_size = be32_to_cpu(head->h_size);
569 xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
570 if (h_size % XLOG_HEADER_CYCLE_SIZE)
571 xhdrs++;
572 } else {
573 xhdrs = 1;
576 if (*last_blk - i + extra_bblks !=
577 BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
578 *last_blk = i;
580 out:
581 xlog_put_bp(bp);
582 return error;
586 * Head is defined to be the point of the log where the next log write
587 * write could go. This means that incomplete LR writes at the end are
588 * eliminated when calculating the head. We aren't guaranteed that previous
589 * LR have complete transactions. We only know that a cycle number of
590 * current cycle number -1 won't be present in the log if we start writing
591 * from our current block number.
593 * last_blk contains the block number of the first block with a given
594 * cycle number.
596 * Return: zero if normal, non-zero if error.
598 STATIC int
599 xlog_find_head(
600 xlog_t *log,
601 xfs_daddr_t *return_head_blk)
603 xfs_buf_t *bp;
604 xfs_caddr_t offset;
605 xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk;
606 int num_scan_bblks;
607 uint first_half_cycle, last_half_cycle;
608 uint stop_on_cycle;
609 int error, log_bbnum = log->l_logBBsize;
611 /* Is the end of the log device zeroed? */
612 if ((error = xlog_find_zeroed(log, &first_blk)) == -1) {
613 *return_head_blk = first_blk;
615 /* Is the whole lot zeroed? */
616 if (!first_blk) {
617 /* Linux XFS shouldn't generate totally zeroed logs -
618 * mkfs etc write a dummy unmount record to a fresh
619 * log so we can store the uuid in there
621 xfs_warn(log->l_mp, "totally zeroed log");
624 return 0;
625 } else if (error) {
626 xfs_warn(log->l_mp, "empty log check failed");
627 return error;
630 first_blk = 0; /* get cycle # of 1st block */
631 bp = xlog_get_bp(log, 1);
632 if (!bp)
633 return ENOMEM;
635 error = xlog_bread(log, 0, 1, bp, &offset);
636 if (error)
637 goto bp_err;
639 first_half_cycle = xlog_get_cycle(offset);
641 last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */
642 error = xlog_bread(log, last_blk, 1, bp, &offset);
643 if (error)
644 goto bp_err;
646 last_half_cycle = xlog_get_cycle(offset);
647 ASSERT(last_half_cycle != 0);
650 * If the 1st half cycle number is equal to the last half cycle number,
651 * then the entire log is stamped with the same cycle number. In this
652 * case, head_blk can't be set to zero (which makes sense). The below
653 * math doesn't work out properly with head_blk equal to zero. Instead,
654 * we set it to log_bbnum which is an invalid block number, but this
655 * value makes the math correct. If head_blk doesn't changed through
656 * all the tests below, *head_blk is set to zero at the very end rather
657 * than log_bbnum. In a sense, log_bbnum and zero are the same block
658 * in a circular file.
660 if (first_half_cycle == last_half_cycle) {
662 * In this case we believe that the entire log should have
663 * cycle number last_half_cycle. We need to scan backwards
664 * from the end verifying that there are no holes still
665 * containing last_half_cycle - 1. If we find such a hole,
666 * then the start of that hole will be the new head. The
667 * simple case looks like
668 * x | x ... | x - 1 | x
669 * Another case that fits this picture would be
670 * x | x + 1 | x ... | x
671 * In this case the head really is somewhere at the end of the
672 * log, as one of the latest writes at the beginning was
673 * incomplete.
674 * One more case is
675 * x | x + 1 | x ... | x - 1 | x
676 * This is really the combination of the above two cases, and
677 * the head has to end up at the start of the x-1 hole at the
678 * end of the log.
680 * In the 256k log case, we will read from the beginning to the
681 * end of the log and search for cycle numbers equal to x-1.
682 * We don't worry about the x+1 blocks that we encounter,
683 * because we know that they cannot be the head since the log
684 * started with x.
686 head_blk = log_bbnum;
687 stop_on_cycle = last_half_cycle - 1;
688 } else {
690 * In this case we want to find the first block with cycle
691 * number matching last_half_cycle. We expect the log to be
692 * some variation on
693 * x + 1 ... | x ... | x
694 * The first block with cycle number x (last_half_cycle) will
695 * be where the new head belongs. First we do a binary search
696 * for the first occurrence of last_half_cycle. The binary
697 * search may not be totally accurate, so then we scan back
698 * from there looking for occurrences of last_half_cycle before
699 * us. If that backwards scan wraps around the beginning of
700 * the log, then we look for occurrences of last_half_cycle - 1
701 * at the end of the log. The cases we're looking for look
702 * like
703 * v binary search stopped here
704 * x + 1 ... | x | x + 1 | x ... | x
705 * ^ but we want to locate this spot
706 * or
707 * <---------> less than scan distance
708 * x + 1 ... | x ... | x - 1 | x
709 * ^ we want to locate this spot
711 stop_on_cycle = last_half_cycle;
712 if ((error = xlog_find_cycle_start(log, bp, first_blk,
713 &head_blk, last_half_cycle)))
714 goto bp_err;
718 * Now validate the answer. Scan back some number of maximum possible
719 * blocks and make sure each one has the expected cycle number. The
720 * maximum is determined by the total possible amount of buffering
721 * in the in-core log. The following number can be made tighter if
722 * we actually look at the block size of the filesystem.
724 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
725 if (head_blk >= num_scan_bblks) {
727 * We are guaranteed that the entire check can be performed
728 * in one buffer.
730 start_blk = head_blk - num_scan_bblks;
731 if ((error = xlog_find_verify_cycle(log,
732 start_blk, num_scan_bblks,
733 stop_on_cycle, &new_blk)))
734 goto bp_err;
735 if (new_blk != -1)
736 head_blk = new_blk;
737 } else { /* need to read 2 parts of log */
739 * We are going to scan backwards in the log in two parts.
740 * First we scan the physical end of the log. In this part
741 * of the log, we are looking for blocks with cycle number
742 * last_half_cycle - 1.
743 * If we find one, then we know that the log starts there, as
744 * we've found a hole that didn't get written in going around
745 * the end of the physical log. The simple case for this is
746 * x + 1 ... | x ... | x - 1 | x
747 * <---------> less than scan distance
748 * If all of the blocks at the end of the log have cycle number
749 * last_half_cycle, then we check the blocks at the start of
750 * the log looking for occurrences of last_half_cycle. If we
751 * find one, then our current estimate for the location of the
752 * first occurrence of last_half_cycle is wrong and we move
753 * back to the hole we've found. This case looks like
754 * x + 1 ... | x | x + 1 | x ...
755 * ^ binary search stopped here
756 * Another case we need to handle that only occurs in 256k
757 * logs is
758 * x + 1 ... | x ... | x+1 | x ...
759 * ^ binary search stops here
760 * In a 256k log, the scan at the end of the log will see the
761 * x + 1 blocks. We need to skip past those since that is
762 * certainly not the head of the log. By searching for
763 * last_half_cycle-1 we accomplish that.
765 ASSERT(head_blk <= INT_MAX &&
766 (xfs_daddr_t) num_scan_bblks >= head_blk);
767 start_blk = log_bbnum - (num_scan_bblks - head_blk);
768 if ((error = xlog_find_verify_cycle(log, start_blk,
769 num_scan_bblks - (int)head_blk,
770 (stop_on_cycle - 1), &new_blk)))
771 goto bp_err;
772 if (new_blk != -1) {
773 head_blk = new_blk;
774 goto validate_head;
778 * Scan beginning of log now. The last part of the physical
779 * log is good. This scan needs to verify that it doesn't find
780 * the last_half_cycle.
782 start_blk = 0;
783 ASSERT(head_blk <= INT_MAX);
784 if ((error = xlog_find_verify_cycle(log,
785 start_blk, (int)head_blk,
786 stop_on_cycle, &new_blk)))
787 goto bp_err;
788 if (new_blk != -1)
789 head_blk = new_blk;
792 validate_head:
794 * Now we need to make sure head_blk is not pointing to a block in
795 * the middle of a log record.
797 num_scan_bblks = XLOG_REC_SHIFT(log);
798 if (head_blk >= num_scan_bblks) {
799 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
801 /* start ptr at last block ptr before head_blk */
802 if ((error = xlog_find_verify_log_record(log, start_blk,
803 &head_blk, 0)) == -1) {
804 error = XFS_ERROR(EIO);
805 goto bp_err;
806 } else if (error)
807 goto bp_err;
808 } else {
809 start_blk = 0;
810 ASSERT(head_blk <= INT_MAX);
811 if ((error = xlog_find_verify_log_record(log, start_blk,
812 &head_blk, 0)) == -1) {
813 /* We hit the beginning of the log during our search */
814 start_blk = log_bbnum - (num_scan_bblks - head_blk);
815 new_blk = log_bbnum;
816 ASSERT(start_blk <= INT_MAX &&
817 (xfs_daddr_t) log_bbnum-start_blk >= 0);
818 ASSERT(head_blk <= INT_MAX);
819 if ((error = xlog_find_verify_log_record(log,
820 start_blk, &new_blk,
821 (int)head_blk)) == -1) {
822 error = XFS_ERROR(EIO);
823 goto bp_err;
824 } else if (error)
825 goto bp_err;
826 if (new_blk != log_bbnum)
827 head_blk = new_blk;
828 } else if (error)
829 goto bp_err;
832 xlog_put_bp(bp);
833 if (head_blk == log_bbnum)
834 *return_head_blk = 0;
835 else
836 *return_head_blk = head_blk;
838 * When returning here, we have a good block number. Bad block
839 * means that during a previous crash, we didn't have a clean break
840 * from cycle number N to cycle number N-1. In this case, we need
841 * to find the first block with cycle number N-1.
843 return 0;
845 bp_err:
846 xlog_put_bp(bp);
848 if (error)
849 xfs_warn(log->l_mp, "failed to find log head");
850 return error;
854 * Find the sync block number or the tail of the log.
856 * This will be the block number of the last record to have its
857 * associated buffers synced to disk. Every log record header has
858 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
859 * to get a sync block number. The only concern is to figure out which
860 * log record header to believe.
862 * The following algorithm uses the log record header with the largest
863 * lsn. The entire log record does not need to be valid. We only care
864 * that the header is valid.
866 * We could speed up search by using current head_blk buffer, but it is not
867 * available.
869 STATIC int
870 xlog_find_tail(
871 xlog_t *log,
872 xfs_daddr_t *head_blk,
873 xfs_daddr_t *tail_blk)
875 xlog_rec_header_t *rhead;
876 xlog_op_header_t *op_head;
877 xfs_caddr_t offset = NULL;
878 xfs_buf_t *bp;
879 int error, i, found;
880 xfs_daddr_t umount_data_blk;
881 xfs_daddr_t after_umount_blk;
882 xfs_lsn_t tail_lsn;
883 int hblks;
885 found = 0;
888 * Find previous log record
890 if ((error = xlog_find_head(log, head_blk)))
891 return error;
893 bp = xlog_get_bp(log, 1);
894 if (!bp)
895 return ENOMEM;
896 if (*head_blk == 0) { /* special case */
897 error = xlog_bread(log, 0, 1, bp, &offset);
898 if (error)
899 goto done;
901 if (xlog_get_cycle(offset) == 0) {
902 *tail_blk = 0;
903 /* leave all other log inited values alone */
904 goto done;
909 * Search backwards looking for log record header block
911 ASSERT(*head_blk < INT_MAX);
912 for (i = (int)(*head_blk) - 1; i >= 0; i--) {
913 error = xlog_bread(log, i, 1, bp, &offset);
914 if (error)
915 goto done;
917 if (*(__be32 *)offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
918 found = 1;
919 break;
923 * If we haven't found the log record header block, start looking
924 * again from the end of the physical log. XXXmiken: There should be
925 * a check here to make sure we didn't search more than N blocks in
926 * the previous code.
928 if (!found) {
929 for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
930 error = xlog_bread(log, i, 1, bp, &offset);
931 if (error)
932 goto done;
934 if (*(__be32 *)offset ==
935 cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
936 found = 2;
937 break;
941 if (!found) {
942 xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__);
943 ASSERT(0);
944 return XFS_ERROR(EIO);
947 /* find blk_no of tail of log */
948 rhead = (xlog_rec_header_t *)offset;
949 *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
952 * Reset log values according to the state of the log when we
953 * crashed. In the case where head_blk == 0, we bump curr_cycle
954 * one because the next write starts a new cycle rather than
955 * continuing the cycle of the last good log record. At this
956 * point we have guaranteed that all partial log records have been
957 * accounted for. Therefore, we know that the last good log record
958 * written was complete and ended exactly on the end boundary
959 * of the physical log.
961 log->l_prev_block = i;
962 log->l_curr_block = (int)*head_blk;
963 log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
964 if (found == 2)
965 log->l_curr_cycle++;
966 atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn));
967 atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn));
968 xlog_assign_grant_head(&log->l_grant_reserve_head, log->l_curr_cycle,
969 BBTOB(log->l_curr_block));
970 xlog_assign_grant_head(&log->l_grant_write_head, log->l_curr_cycle,
971 BBTOB(log->l_curr_block));
974 * Look for unmount record. If we find it, then we know there
975 * was a clean unmount. Since 'i' could be the last block in
976 * the physical log, we convert to a log block before comparing
977 * to the head_blk.
979 * Save the current tail lsn to use to pass to
980 * xlog_clear_stale_blocks() below. We won't want to clear the
981 * unmount record if there is one, so we pass the lsn of the
982 * unmount record rather than the block after it.
984 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
985 int h_size = be32_to_cpu(rhead->h_size);
986 int h_version = be32_to_cpu(rhead->h_version);
988 if ((h_version & XLOG_VERSION_2) &&
989 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
990 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
991 if (h_size % XLOG_HEADER_CYCLE_SIZE)
992 hblks++;
993 } else {
994 hblks = 1;
996 } else {
997 hblks = 1;
999 after_umount_blk = (i + hblks + (int)
1000 BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize;
1001 tail_lsn = atomic64_read(&log->l_tail_lsn);
1002 if (*head_blk == after_umount_blk &&
1003 be32_to_cpu(rhead->h_num_logops) == 1) {
1004 umount_data_blk = (i + hblks) % log->l_logBBsize;
1005 error = xlog_bread(log, umount_data_blk, 1, bp, &offset);
1006 if (error)
1007 goto done;
1009 op_head = (xlog_op_header_t *)offset;
1010 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
1012 * Set tail and last sync so that newly written
1013 * log records will point recovery to after the
1014 * current unmount record.
1016 xlog_assign_atomic_lsn(&log->l_tail_lsn,
1017 log->l_curr_cycle, after_umount_blk);
1018 xlog_assign_atomic_lsn(&log->l_last_sync_lsn,
1019 log->l_curr_cycle, after_umount_blk);
1020 *tail_blk = after_umount_blk;
1023 * Note that the unmount was clean. If the unmount
1024 * was not clean, we need to know this to rebuild the
1025 * superblock counters from the perag headers if we
1026 * have a filesystem using non-persistent counters.
1028 log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
1033 * Make sure that there are no blocks in front of the head
1034 * with the same cycle number as the head. This can happen
1035 * because we allow multiple outstanding log writes concurrently,
1036 * and the later writes might make it out before earlier ones.
1038 * We use the lsn from before modifying it so that we'll never
1039 * overwrite the unmount record after a clean unmount.
1041 * Do this only if we are going to recover the filesystem
1043 * NOTE: This used to say "if (!readonly)"
1044 * However on Linux, we can & do recover a read-only filesystem.
1045 * We only skip recovery if NORECOVERY is specified on mount,
1046 * in which case we would not be here.
1048 * But... if the -device- itself is readonly, just skip this.
1049 * We can't recover this device anyway, so it won't matter.
1051 if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp))
1052 error = xlog_clear_stale_blocks(log, tail_lsn);
1054 done:
1055 xlog_put_bp(bp);
1057 if (error)
1058 xfs_warn(log->l_mp, "failed to locate log tail");
1059 return error;
1063 * Is the log zeroed at all?
1065 * The last binary search should be changed to perform an X block read
1066 * once X becomes small enough. You can then search linearly through
1067 * the X blocks. This will cut down on the number of reads we need to do.
1069 * If the log is partially zeroed, this routine will pass back the blkno
1070 * of the first block with cycle number 0. It won't have a complete LR
1071 * preceding it.
1073 * Return:
1074 * 0 => the log is completely written to
1075 * -1 => use *blk_no as the first block of the log
1076 * >0 => error has occurred
1078 STATIC int
1079 xlog_find_zeroed(
1080 xlog_t *log,
1081 xfs_daddr_t *blk_no)
1083 xfs_buf_t *bp;
1084 xfs_caddr_t offset;
1085 uint first_cycle, last_cycle;
1086 xfs_daddr_t new_blk, last_blk, start_blk;
1087 xfs_daddr_t num_scan_bblks;
1088 int error, log_bbnum = log->l_logBBsize;
1090 *blk_no = 0;
1092 /* check totally zeroed log */
1093 bp = xlog_get_bp(log, 1);
1094 if (!bp)
1095 return ENOMEM;
1096 error = xlog_bread(log, 0, 1, bp, &offset);
1097 if (error)
1098 goto bp_err;
1100 first_cycle = xlog_get_cycle(offset);
1101 if (first_cycle == 0) { /* completely zeroed log */
1102 *blk_no = 0;
1103 xlog_put_bp(bp);
1104 return -1;
1107 /* check partially zeroed log */
1108 error = xlog_bread(log, log_bbnum-1, 1, bp, &offset);
1109 if (error)
1110 goto bp_err;
1112 last_cycle = xlog_get_cycle(offset);
1113 if (last_cycle != 0) { /* log completely written to */
1114 xlog_put_bp(bp);
1115 return 0;
1116 } else if (first_cycle != 1) {
1118 * If the cycle of the last block is zero, the cycle of
1119 * the first block must be 1. If it's not, maybe we're
1120 * not looking at a log... Bail out.
1122 xfs_warn(log->l_mp,
1123 "Log inconsistent or not a log (last==0, first!=1)");
1124 return XFS_ERROR(EINVAL);
1127 /* we have a partially zeroed log */
1128 last_blk = log_bbnum-1;
1129 if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
1130 goto bp_err;
1133 * Validate the answer. Because there is no way to guarantee that
1134 * the entire log is made up of log records which are the same size,
1135 * we scan over the defined maximum blocks. At this point, the maximum
1136 * is not chosen to mean anything special. XXXmiken
1138 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1139 ASSERT(num_scan_bblks <= INT_MAX);
1141 if (last_blk < num_scan_bblks)
1142 num_scan_bblks = last_blk;
1143 start_blk = last_blk - num_scan_bblks;
1146 * We search for any instances of cycle number 0 that occur before
1147 * our current estimate of the head. What we're trying to detect is
1148 * 1 ... | 0 | 1 | 0...
1149 * ^ binary search ends here
1151 if ((error = xlog_find_verify_cycle(log, start_blk,
1152 (int)num_scan_bblks, 0, &new_blk)))
1153 goto bp_err;
1154 if (new_blk != -1)
1155 last_blk = new_blk;
1158 * Potentially backup over partial log record write. We don't need
1159 * to search the end of the log because we know it is zero.
1161 if ((error = xlog_find_verify_log_record(log, start_blk,
1162 &last_blk, 0)) == -1) {
1163 error = XFS_ERROR(EIO);
1164 goto bp_err;
1165 } else if (error)
1166 goto bp_err;
1168 *blk_no = last_blk;
1169 bp_err:
1170 xlog_put_bp(bp);
1171 if (error)
1172 return error;
1173 return -1;
1177 * These are simple subroutines used by xlog_clear_stale_blocks() below
1178 * to initialize a buffer full of empty log record headers and write
1179 * them into the log.
1181 STATIC void
1182 xlog_add_record(
1183 xlog_t *log,
1184 xfs_caddr_t buf,
1185 int cycle,
1186 int block,
1187 int tail_cycle,
1188 int tail_block)
1190 xlog_rec_header_t *recp = (xlog_rec_header_t *)buf;
1192 memset(buf, 0, BBSIZE);
1193 recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1194 recp->h_cycle = cpu_to_be32(cycle);
1195 recp->h_version = cpu_to_be32(
1196 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1197 recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1198 recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1199 recp->h_fmt = cpu_to_be32(XLOG_FMT);
1200 memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1203 STATIC int
1204 xlog_write_log_records(
1205 xlog_t *log,
1206 int cycle,
1207 int start_block,
1208 int blocks,
1209 int tail_cycle,
1210 int tail_block)
1212 xfs_caddr_t offset;
1213 xfs_buf_t *bp;
1214 int balign, ealign;
1215 int sectbb = log->l_sectBBsize;
1216 int end_block = start_block + blocks;
1217 int bufblks;
1218 int error = 0;
1219 int i, j = 0;
1222 * Greedily allocate a buffer big enough to handle the full
1223 * range of basic blocks to be written. If that fails, try
1224 * a smaller size. We need to be able to write at least a
1225 * log sector, or we're out of luck.
1227 bufblks = 1 << ffs(blocks);
1228 while (!(bp = xlog_get_bp(log, bufblks))) {
1229 bufblks >>= 1;
1230 if (bufblks < sectbb)
1231 return ENOMEM;
1234 /* We may need to do a read at the start to fill in part of
1235 * the buffer in the starting sector not covered by the first
1236 * write below.
1238 balign = round_down(start_block, sectbb);
1239 if (balign != start_block) {
1240 error = xlog_bread_noalign(log, start_block, 1, bp);
1241 if (error)
1242 goto out_put_bp;
1244 j = start_block - balign;
1247 for (i = start_block; i < end_block; i += bufblks) {
1248 int bcount, endcount;
1250 bcount = min(bufblks, end_block - start_block);
1251 endcount = bcount - j;
1253 /* We may need to do a read at the end to fill in part of
1254 * the buffer in the final sector not covered by the write.
1255 * If this is the same sector as the above read, skip it.
1257 ealign = round_down(end_block, sectbb);
1258 if (j == 0 && (start_block + endcount > ealign)) {
1259 offset = bp->b_addr + BBTOB(ealign - start_block);
1260 error = xlog_bread_offset(log, ealign, sectbb,
1261 bp, offset);
1262 if (error)
1263 break;
1267 offset = xlog_align(log, start_block, endcount, bp);
1268 for (; j < endcount; j++) {
1269 xlog_add_record(log, offset, cycle, i+j,
1270 tail_cycle, tail_block);
1271 offset += BBSIZE;
1273 error = xlog_bwrite(log, start_block, endcount, bp);
1274 if (error)
1275 break;
1276 start_block += endcount;
1277 j = 0;
1280 out_put_bp:
1281 xlog_put_bp(bp);
1282 return error;
1286 * This routine is called to blow away any incomplete log writes out
1287 * in front of the log head. We do this so that we won't become confused
1288 * if we come up, write only a little bit more, and then crash again.
1289 * If we leave the partial log records out there, this situation could
1290 * cause us to think those partial writes are valid blocks since they
1291 * have the current cycle number. We get rid of them by overwriting them
1292 * with empty log records with the old cycle number rather than the
1293 * current one.
1295 * The tail lsn is passed in rather than taken from
1296 * the log so that we will not write over the unmount record after a
1297 * clean unmount in a 512 block log. Doing so would leave the log without
1298 * any valid log records in it until a new one was written. If we crashed
1299 * during that time we would not be able to recover.
1301 STATIC int
1302 xlog_clear_stale_blocks(
1303 xlog_t *log,
1304 xfs_lsn_t tail_lsn)
1306 int tail_cycle, head_cycle;
1307 int tail_block, head_block;
1308 int tail_distance, max_distance;
1309 int distance;
1310 int error;
1312 tail_cycle = CYCLE_LSN(tail_lsn);
1313 tail_block = BLOCK_LSN(tail_lsn);
1314 head_cycle = log->l_curr_cycle;
1315 head_block = log->l_curr_block;
1318 * Figure out the distance between the new head of the log
1319 * and the tail. We want to write over any blocks beyond the
1320 * head that we may have written just before the crash, but
1321 * we don't want to overwrite the tail of the log.
1323 if (head_cycle == tail_cycle) {
1325 * The tail is behind the head in the physical log,
1326 * so the distance from the head to the tail is the
1327 * distance from the head to the end of the log plus
1328 * the distance from the beginning of the log to the
1329 * tail.
1331 if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1332 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1333 XFS_ERRLEVEL_LOW, log->l_mp);
1334 return XFS_ERROR(EFSCORRUPTED);
1336 tail_distance = tail_block + (log->l_logBBsize - head_block);
1337 } else {
1339 * The head is behind the tail in the physical log,
1340 * so the distance from the head to the tail is just
1341 * the tail block minus the head block.
1343 if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1344 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1345 XFS_ERRLEVEL_LOW, log->l_mp);
1346 return XFS_ERROR(EFSCORRUPTED);
1348 tail_distance = tail_block - head_block;
1352 * If the head is right up against the tail, we can't clear
1353 * anything.
1355 if (tail_distance <= 0) {
1356 ASSERT(tail_distance == 0);
1357 return 0;
1360 max_distance = XLOG_TOTAL_REC_SHIFT(log);
1362 * Take the smaller of the maximum amount of outstanding I/O
1363 * we could have and the distance to the tail to clear out.
1364 * We take the smaller so that we don't overwrite the tail and
1365 * we don't waste all day writing from the head to the tail
1366 * for no reason.
1368 max_distance = MIN(max_distance, tail_distance);
1370 if ((head_block + max_distance) <= log->l_logBBsize) {
1372 * We can stomp all the blocks we need to without
1373 * wrapping around the end of the log. Just do it
1374 * in a single write. Use the cycle number of the
1375 * current cycle minus one so that the log will look like:
1376 * n ... | n - 1 ...
1378 error = xlog_write_log_records(log, (head_cycle - 1),
1379 head_block, max_distance, tail_cycle,
1380 tail_block);
1381 if (error)
1382 return error;
1383 } else {
1385 * We need to wrap around the end of the physical log in
1386 * order to clear all the blocks. Do it in two separate
1387 * I/Os. The first write should be from the head to the
1388 * end of the physical log, and it should use the current
1389 * cycle number minus one just like above.
1391 distance = log->l_logBBsize - head_block;
1392 error = xlog_write_log_records(log, (head_cycle - 1),
1393 head_block, distance, tail_cycle,
1394 tail_block);
1396 if (error)
1397 return error;
1400 * Now write the blocks at the start of the physical log.
1401 * This writes the remainder of the blocks we want to clear.
1402 * It uses the current cycle number since we're now on the
1403 * same cycle as the head so that we get:
1404 * n ... n ... | n - 1 ...
1405 * ^^^^^ blocks we're writing
1407 distance = max_distance - (log->l_logBBsize - head_block);
1408 error = xlog_write_log_records(log, head_cycle, 0, distance,
1409 tail_cycle, tail_block);
1410 if (error)
1411 return error;
1414 return 0;
1417 /******************************************************************************
1419 * Log recover routines
1421 ******************************************************************************
1424 STATIC xlog_recover_t *
1425 xlog_recover_find_tid(
1426 struct hlist_head *head,
1427 xlog_tid_t tid)
1429 xlog_recover_t *trans;
1430 struct hlist_node *n;
1432 hlist_for_each_entry(trans, n, head, r_list) {
1433 if (trans->r_log_tid == tid)
1434 return trans;
1436 return NULL;
1439 STATIC void
1440 xlog_recover_new_tid(
1441 struct hlist_head *head,
1442 xlog_tid_t tid,
1443 xfs_lsn_t lsn)
1445 xlog_recover_t *trans;
1447 trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP);
1448 trans->r_log_tid = tid;
1449 trans->r_lsn = lsn;
1450 INIT_LIST_HEAD(&trans->r_itemq);
1452 INIT_HLIST_NODE(&trans->r_list);
1453 hlist_add_head(&trans->r_list, head);
1456 STATIC void
1457 xlog_recover_add_item(
1458 struct list_head *head)
1460 xlog_recover_item_t *item;
1462 item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
1463 INIT_LIST_HEAD(&item->ri_list);
1464 list_add_tail(&item->ri_list, head);
1467 STATIC int
1468 xlog_recover_add_to_cont_trans(
1469 struct log *log,
1470 xlog_recover_t *trans,
1471 xfs_caddr_t dp,
1472 int len)
1474 xlog_recover_item_t *item;
1475 xfs_caddr_t ptr, old_ptr;
1476 int old_len;
1478 if (list_empty(&trans->r_itemq)) {
1479 /* finish copying rest of trans header */
1480 xlog_recover_add_item(&trans->r_itemq);
1481 ptr = (xfs_caddr_t) &trans->r_theader +
1482 sizeof(xfs_trans_header_t) - len;
1483 memcpy(ptr, dp, len); /* d, s, l */
1484 return 0;
1486 /* take the tail entry */
1487 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
1489 old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
1490 old_len = item->ri_buf[item->ri_cnt-1].i_len;
1492 ptr = kmem_realloc(old_ptr, len+old_len, old_len, KM_SLEEP);
1493 memcpy(&ptr[old_len], dp, len); /* d, s, l */
1494 item->ri_buf[item->ri_cnt-1].i_len += len;
1495 item->ri_buf[item->ri_cnt-1].i_addr = ptr;
1496 trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
1497 return 0;
1501 * The next region to add is the start of a new region. It could be
1502 * a whole region or it could be the first part of a new region. Because
1503 * of this, the assumption here is that the type and size fields of all
1504 * format structures fit into the first 32 bits of the structure.
1506 * This works because all regions must be 32 bit aligned. Therefore, we
1507 * either have both fields or we have neither field. In the case we have
1508 * neither field, the data part of the region is zero length. We only have
1509 * a log_op_header and can throw away the header since a new one will appear
1510 * later. If we have at least 4 bytes, then we can determine how many regions
1511 * will appear in the current log item.
1513 STATIC int
1514 xlog_recover_add_to_trans(
1515 struct log *log,
1516 xlog_recover_t *trans,
1517 xfs_caddr_t dp,
1518 int len)
1520 xfs_inode_log_format_t *in_f; /* any will do */
1521 xlog_recover_item_t *item;
1522 xfs_caddr_t ptr;
1524 if (!len)
1525 return 0;
1526 if (list_empty(&trans->r_itemq)) {
1527 /* we need to catch log corruptions here */
1528 if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
1529 xfs_warn(log->l_mp, "%s: bad header magic number",
1530 __func__);
1531 ASSERT(0);
1532 return XFS_ERROR(EIO);
1534 if (len == sizeof(xfs_trans_header_t))
1535 xlog_recover_add_item(&trans->r_itemq);
1536 memcpy(&trans->r_theader, dp, len); /* d, s, l */
1537 return 0;
1540 ptr = kmem_alloc(len, KM_SLEEP);
1541 memcpy(ptr, dp, len);
1542 in_f = (xfs_inode_log_format_t *)ptr;
1544 /* take the tail entry */
1545 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
1546 if (item->ri_total != 0 &&
1547 item->ri_total == item->ri_cnt) {
1548 /* tail item is in use, get a new one */
1549 xlog_recover_add_item(&trans->r_itemq);
1550 item = list_entry(trans->r_itemq.prev,
1551 xlog_recover_item_t, ri_list);
1554 if (item->ri_total == 0) { /* first region to be added */
1555 if (in_f->ilf_size == 0 ||
1556 in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
1557 xfs_warn(log->l_mp,
1558 "bad number of regions (%d) in inode log format",
1559 in_f->ilf_size);
1560 ASSERT(0);
1561 return XFS_ERROR(EIO);
1564 item->ri_total = in_f->ilf_size;
1565 item->ri_buf =
1566 kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
1567 KM_SLEEP);
1569 ASSERT(item->ri_total > item->ri_cnt);
1570 /* Description region is ri_buf[0] */
1571 item->ri_buf[item->ri_cnt].i_addr = ptr;
1572 item->ri_buf[item->ri_cnt].i_len = len;
1573 item->ri_cnt++;
1574 trace_xfs_log_recover_item_add(log, trans, item, 0);
1575 return 0;
1579 * Sort the log items in the transaction. Cancelled buffers need
1580 * to be put first so they are processed before any items that might
1581 * modify the buffers. If they are cancelled, then the modifications
1582 * don't need to be replayed.
1584 STATIC int
1585 xlog_recover_reorder_trans(
1586 struct log *log,
1587 xlog_recover_t *trans,
1588 int pass)
1590 xlog_recover_item_t *item, *n;
1591 LIST_HEAD(sort_list);
1593 list_splice_init(&trans->r_itemq, &sort_list);
1594 list_for_each_entry_safe(item, n, &sort_list, ri_list) {
1595 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
1597 switch (ITEM_TYPE(item)) {
1598 case XFS_LI_BUF:
1599 if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
1600 trace_xfs_log_recover_item_reorder_head(log,
1601 trans, item, pass);
1602 list_move(&item->ri_list, &trans->r_itemq);
1603 break;
1605 case XFS_LI_INODE:
1606 case XFS_LI_DQUOT:
1607 case XFS_LI_QUOTAOFF:
1608 case XFS_LI_EFD:
1609 case XFS_LI_EFI:
1610 trace_xfs_log_recover_item_reorder_tail(log,
1611 trans, item, pass);
1612 list_move_tail(&item->ri_list, &trans->r_itemq);
1613 break;
1614 default:
1615 xfs_warn(log->l_mp,
1616 "%s: unrecognized type of log operation",
1617 __func__);
1618 ASSERT(0);
1619 return XFS_ERROR(EIO);
1622 ASSERT(list_empty(&sort_list));
1623 return 0;
1627 * Build up the table of buf cancel records so that we don't replay
1628 * cancelled data in the second pass. For buffer records that are
1629 * not cancel records, there is nothing to do here so we just return.
1631 * If we get a cancel record which is already in the table, this indicates
1632 * that the buffer was cancelled multiple times. In order to ensure
1633 * that during pass 2 we keep the record in the table until we reach its
1634 * last occurrence in the log, we keep a reference count in the cancel
1635 * record in the table to tell us how many times we expect to see this
1636 * record during the second pass.
1638 STATIC int
1639 xlog_recover_buffer_pass1(
1640 struct log *log,
1641 xlog_recover_item_t *item)
1643 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
1644 struct list_head *bucket;
1645 struct xfs_buf_cancel *bcp;
1648 * If this isn't a cancel buffer item, then just return.
1650 if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
1651 trace_xfs_log_recover_buf_not_cancel(log, buf_f);
1652 return 0;
1656 * Insert an xfs_buf_cancel record into the hash table of them.
1657 * If there is already an identical record, bump its reference count.
1659 bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno);
1660 list_for_each_entry(bcp, bucket, bc_list) {
1661 if (bcp->bc_blkno == buf_f->blf_blkno &&
1662 bcp->bc_len == buf_f->blf_len) {
1663 bcp->bc_refcount++;
1664 trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f);
1665 return 0;
1669 bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), KM_SLEEP);
1670 bcp->bc_blkno = buf_f->blf_blkno;
1671 bcp->bc_len = buf_f->blf_len;
1672 bcp->bc_refcount = 1;
1673 list_add_tail(&bcp->bc_list, bucket);
1675 trace_xfs_log_recover_buf_cancel_add(log, buf_f);
1676 return 0;
1680 * Check to see whether the buffer being recovered has a corresponding
1681 * entry in the buffer cancel record table. If it does then return 1
1682 * so that it will be cancelled, otherwise return 0. If the buffer is
1683 * actually a buffer cancel item (XFS_BLF_CANCEL is set), then decrement
1684 * the refcount on the entry in the table and remove it from the table
1685 * if this is the last reference.
1687 * We remove the cancel record from the table when we encounter its
1688 * last occurrence in the log so that if the same buffer is re-used
1689 * again after its last cancellation we actually replay the changes
1690 * made at that point.
1692 STATIC int
1693 xlog_check_buffer_cancelled(
1694 struct log *log,
1695 xfs_daddr_t blkno,
1696 uint len,
1697 ushort flags)
1699 struct list_head *bucket;
1700 struct xfs_buf_cancel *bcp;
1702 if (log->l_buf_cancel_table == NULL) {
1704 * There is nothing in the table built in pass one,
1705 * so this buffer must not be cancelled.
1707 ASSERT(!(flags & XFS_BLF_CANCEL));
1708 return 0;
1712 * Search for an entry in the cancel table that matches our buffer.
1714 bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno);
1715 list_for_each_entry(bcp, bucket, bc_list) {
1716 if (bcp->bc_blkno == blkno && bcp->bc_len == len)
1717 goto found;
1721 * We didn't find a corresponding entry in the table, so return 0 so
1722 * that the buffer is NOT cancelled.
1724 ASSERT(!(flags & XFS_BLF_CANCEL));
1725 return 0;
1727 found:
1729 * We've go a match, so return 1 so that the recovery of this buffer
1730 * is cancelled. If this buffer is actually a buffer cancel log
1731 * item, then decrement the refcount on the one in the table and
1732 * remove it if this is the last reference.
1734 if (flags & XFS_BLF_CANCEL) {
1735 if (--bcp->bc_refcount == 0) {
1736 list_del(&bcp->bc_list);
1737 kmem_free(bcp);
1740 return 1;
1744 * Perform recovery for a buffer full of inodes. In these buffers, the only
1745 * data which should be recovered is that which corresponds to the
1746 * di_next_unlinked pointers in the on disk inode structures. The rest of the
1747 * data for the inodes is always logged through the inodes themselves rather
1748 * than the inode buffer and is recovered in xlog_recover_inode_pass2().
1750 * The only time when buffers full of inodes are fully recovered is when the
1751 * buffer is full of newly allocated inodes. In this case the buffer will
1752 * not be marked as an inode buffer and so will be sent to
1753 * xlog_recover_do_reg_buffer() below during recovery.
1755 STATIC int
1756 xlog_recover_do_inode_buffer(
1757 struct xfs_mount *mp,
1758 xlog_recover_item_t *item,
1759 struct xfs_buf *bp,
1760 xfs_buf_log_format_t *buf_f)
1762 int i;
1763 int item_index = 0;
1764 int bit = 0;
1765 int nbits = 0;
1766 int reg_buf_offset = 0;
1767 int reg_buf_bytes = 0;
1768 int next_unlinked_offset;
1769 int inodes_per_buf;
1770 xfs_agino_t *logged_nextp;
1771 xfs_agino_t *buffer_nextp;
1773 trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
1775 inodes_per_buf = XFS_BUF_COUNT(bp) >> mp->m_sb.sb_inodelog;
1776 for (i = 0; i < inodes_per_buf; i++) {
1777 next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
1778 offsetof(xfs_dinode_t, di_next_unlinked);
1780 while (next_unlinked_offset >=
1781 (reg_buf_offset + reg_buf_bytes)) {
1783 * The next di_next_unlinked field is beyond
1784 * the current logged region. Find the next
1785 * logged region that contains or is beyond
1786 * the current di_next_unlinked field.
1788 bit += nbits;
1789 bit = xfs_next_bit(buf_f->blf_data_map,
1790 buf_f->blf_map_size, bit);
1793 * If there are no more logged regions in the
1794 * buffer, then we're done.
1796 if (bit == -1)
1797 return 0;
1799 nbits = xfs_contig_bits(buf_f->blf_data_map,
1800 buf_f->blf_map_size, bit);
1801 ASSERT(nbits > 0);
1802 reg_buf_offset = bit << XFS_BLF_SHIFT;
1803 reg_buf_bytes = nbits << XFS_BLF_SHIFT;
1804 item_index++;
1808 * If the current logged region starts after the current
1809 * di_next_unlinked field, then move on to the next
1810 * di_next_unlinked field.
1812 if (next_unlinked_offset < reg_buf_offset)
1813 continue;
1815 ASSERT(item->ri_buf[item_index].i_addr != NULL);
1816 ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0);
1817 ASSERT((reg_buf_offset + reg_buf_bytes) <= XFS_BUF_COUNT(bp));
1820 * The current logged region contains a copy of the
1821 * current di_next_unlinked field. Extract its value
1822 * and copy it to the buffer copy.
1824 logged_nextp = item->ri_buf[item_index].i_addr +
1825 next_unlinked_offset - reg_buf_offset;
1826 if (unlikely(*logged_nextp == 0)) {
1827 xfs_alert(mp,
1828 "Bad inode buffer log record (ptr = 0x%p, bp = 0x%p). "
1829 "Trying to replay bad (0) inode di_next_unlinked field.",
1830 item, bp);
1831 XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
1832 XFS_ERRLEVEL_LOW, mp);
1833 return XFS_ERROR(EFSCORRUPTED);
1836 buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp,
1837 next_unlinked_offset);
1838 *buffer_nextp = *logged_nextp;
1841 return 0;
1845 * Perform a 'normal' buffer recovery. Each logged region of the
1846 * buffer should be copied over the corresponding region in the
1847 * given buffer. The bitmap in the buf log format structure indicates
1848 * where to place the logged data.
1850 STATIC void
1851 xlog_recover_do_reg_buffer(
1852 struct xfs_mount *mp,
1853 xlog_recover_item_t *item,
1854 struct xfs_buf *bp,
1855 xfs_buf_log_format_t *buf_f)
1857 int i;
1858 int bit;
1859 int nbits;
1860 int error;
1862 trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
1864 bit = 0;
1865 i = 1; /* 0 is the buf format structure */
1866 while (1) {
1867 bit = xfs_next_bit(buf_f->blf_data_map,
1868 buf_f->blf_map_size, bit);
1869 if (bit == -1)
1870 break;
1871 nbits = xfs_contig_bits(buf_f->blf_data_map,
1872 buf_f->blf_map_size, bit);
1873 ASSERT(nbits > 0);
1874 ASSERT(item->ri_buf[i].i_addr != NULL);
1875 ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0);
1876 ASSERT(XFS_BUF_COUNT(bp) >=
1877 ((uint)bit << XFS_BLF_SHIFT)+(nbits<<XFS_BLF_SHIFT));
1880 * Do a sanity check if this is a dquot buffer. Just checking
1881 * the first dquot in the buffer should do. XXXThis is
1882 * probably a good thing to do for other buf types also.
1884 error = 0;
1885 if (buf_f->blf_flags &
1886 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
1887 if (item->ri_buf[i].i_addr == NULL) {
1888 xfs_alert(mp,
1889 "XFS: NULL dquot in %s.", __func__);
1890 goto next;
1892 if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) {
1893 xfs_alert(mp,
1894 "XFS: dquot too small (%d) in %s.",
1895 item->ri_buf[i].i_len, __func__);
1896 goto next;
1898 error = xfs_qm_dqcheck(mp, item->ri_buf[i].i_addr,
1899 -1, 0, XFS_QMOPT_DOWARN,
1900 "dquot_buf_recover");
1901 if (error)
1902 goto next;
1905 memcpy(xfs_buf_offset(bp,
1906 (uint)bit << XFS_BLF_SHIFT), /* dest */
1907 item->ri_buf[i].i_addr, /* source */
1908 nbits<<XFS_BLF_SHIFT); /* length */
1909 next:
1910 i++;
1911 bit += nbits;
1914 /* Shouldn't be any more regions */
1915 ASSERT(i == item->ri_total);
1919 * Do some primitive error checking on ondisk dquot data structures.
1922 xfs_qm_dqcheck(
1923 struct xfs_mount *mp,
1924 xfs_disk_dquot_t *ddq,
1925 xfs_dqid_t id,
1926 uint type, /* used only when IO_dorepair is true */
1927 uint flags,
1928 char *str)
1930 xfs_dqblk_t *d = (xfs_dqblk_t *)ddq;
1931 int errs = 0;
1934 * We can encounter an uninitialized dquot buffer for 2 reasons:
1935 * 1. If we crash while deleting the quotainode(s), and those blks got
1936 * used for user data. This is because we take the path of regular
1937 * file deletion; however, the size field of quotainodes is never
1938 * updated, so all the tricks that we play in itruncate_finish
1939 * don't quite matter.
1941 * 2. We don't play the quota buffers when there's a quotaoff logitem.
1942 * But the allocation will be replayed so we'll end up with an
1943 * uninitialized quota block.
1945 * This is all fine; things are still consistent, and we haven't lost
1946 * any quota information. Just don't complain about bad dquot blks.
1948 if (ddq->d_magic != cpu_to_be16(XFS_DQUOT_MAGIC)) {
1949 if (flags & XFS_QMOPT_DOWARN)
1950 xfs_alert(mp,
1951 "%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x",
1952 str, id, be16_to_cpu(ddq->d_magic), XFS_DQUOT_MAGIC);
1953 errs++;
1955 if (ddq->d_version != XFS_DQUOT_VERSION) {
1956 if (flags & XFS_QMOPT_DOWARN)
1957 xfs_alert(mp,
1958 "%s : XFS dquot ID 0x%x, version 0x%x != 0x%x",
1959 str, id, ddq->d_version, XFS_DQUOT_VERSION);
1960 errs++;
1963 if (ddq->d_flags != XFS_DQ_USER &&
1964 ddq->d_flags != XFS_DQ_PROJ &&
1965 ddq->d_flags != XFS_DQ_GROUP) {
1966 if (flags & XFS_QMOPT_DOWARN)
1967 xfs_alert(mp,
1968 "%s : XFS dquot ID 0x%x, unknown flags 0x%x",
1969 str, id, ddq->d_flags);
1970 errs++;
1973 if (id != -1 && id != be32_to_cpu(ddq->d_id)) {
1974 if (flags & XFS_QMOPT_DOWARN)
1975 xfs_alert(mp,
1976 "%s : ondisk-dquot 0x%p, ID mismatch: "
1977 "0x%x expected, found id 0x%x",
1978 str, ddq, id, be32_to_cpu(ddq->d_id));
1979 errs++;
1982 if (!errs && ddq->d_id) {
1983 if (ddq->d_blk_softlimit &&
1984 be64_to_cpu(ddq->d_bcount) >
1985 be64_to_cpu(ddq->d_blk_softlimit)) {
1986 if (!ddq->d_btimer) {
1987 if (flags & XFS_QMOPT_DOWARN)
1988 xfs_alert(mp,
1989 "%s : Dquot ID 0x%x (0x%p) BLK TIMER NOT STARTED",
1990 str, (int)be32_to_cpu(ddq->d_id), ddq);
1991 errs++;
1994 if (ddq->d_ino_softlimit &&
1995 be64_to_cpu(ddq->d_icount) >
1996 be64_to_cpu(ddq->d_ino_softlimit)) {
1997 if (!ddq->d_itimer) {
1998 if (flags & XFS_QMOPT_DOWARN)
1999 xfs_alert(mp,
2000 "%s : Dquot ID 0x%x (0x%p) INODE TIMER NOT STARTED",
2001 str, (int)be32_to_cpu(ddq->d_id), ddq);
2002 errs++;
2005 if (ddq->d_rtb_softlimit &&
2006 be64_to_cpu(ddq->d_rtbcount) >
2007 be64_to_cpu(ddq->d_rtb_softlimit)) {
2008 if (!ddq->d_rtbtimer) {
2009 if (flags & XFS_QMOPT_DOWARN)
2010 xfs_alert(mp,
2011 "%s : Dquot ID 0x%x (0x%p) RTBLK TIMER NOT STARTED",
2012 str, (int)be32_to_cpu(ddq->d_id), ddq);
2013 errs++;
2018 if (!errs || !(flags & XFS_QMOPT_DQREPAIR))
2019 return errs;
2021 if (flags & XFS_QMOPT_DOWARN)
2022 xfs_notice(mp, "Re-initializing dquot ID 0x%x", id);
2025 * Typically, a repair is only requested by quotacheck.
2027 ASSERT(id != -1);
2028 ASSERT(flags & XFS_QMOPT_DQREPAIR);
2029 memset(d, 0, sizeof(xfs_dqblk_t));
2031 d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC);
2032 d->dd_diskdq.d_version = XFS_DQUOT_VERSION;
2033 d->dd_diskdq.d_flags = type;
2034 d->dd_diskdq.d_id = cpu_to_be32(id);
2036 return errs;
2040 * Perform a dquot buffer recovery.
2041 * Simple algorithm: if we have found a QUOTAOFF logitem of the same type
2042 * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2043 * Else, treat it as a regular buffer and do recovery.
2045 STATIC void
2046 xlog_recover_do_dquot_buffer(
2047 xfs_mount_t *mp,
2048 xlog_t *log,
2049 xlog_recover_item_t *item,
2050 xfs_buf_t *bp,
2051 xfs_buf_log_format_t *buf_f)
2053 uint type;
2055 trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
2058 * Filesystems are required to send in quota flags at mount time.
2060 if (mp->m_qflags == 0) {
2061 return;
2064 type = 0;
2065 if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF)
2066 type |= XFS_DQ_USER;
2067 if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF)
2068 type |= XFS_DQ_PROJ;
2069 if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF)
2070 type |= XFS_DQ_GROUP;
2072 * This type of quotas was turned off, so ignore this buffer
2074 if (log->l_quotaoffs_flag & type)
2075 return;
2077 xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
2081 * This routine replays a modification made to a buffer at runtime.
2082 * There are actually two types of buffer, regular and inode, which
2083 * are handled differently. Inode buffers are handled differently
2084 * in that we only recover a specific set of data from them, namely
2085 * the inode di_next_unlinked fields. This is because all other inode
2086 * data is actually logged via inode records and any data we replay
2087 * here which overlaps that may be stale.
2089 * When meta-data buffers are freed at run time we log a buffer item
2090 * with the XFS_BLF_CANCEL bit set to indicate that previous copies
2091 * of the buffer in the log should not be replayed at recovery time.
2092 * This is so that if the blocks covered by the buffer are reused for
2093 * file data before we crash we don't end up replaying old, freed
2094 * meta-data into a user's file.
2096 * To handle the cancellation of buffer log items, we make two passes
2097 * over the log during recovery. During the first we build a table of
2098 * those buffers which have been cancelled, and during the second we
2099 * only replay those buffers which do not have corresponding cancel
2100 * records in the table. See xlog_recover_do_buffer_pass[1,2] above
2101 * for more details on the implementation of the table of cancel records.
2103 STATIC int
2104 xlog_recover_buffer_pass2(
2105 xlog_t *log,
2106 xlog_recover_item_t *item)
2108 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
2109 xfs_mount_t *mp = log->l_mp;
2110 xfs_buf_t *bp;
2111 int error;
2112 uint buf_flags;
2115 * In this pass we only want to recover all the buffers which have
2116 * not been cancelled and are not cancellation buffers themselves.
2118 if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno,
2119 buf_f->blf_len, buf_f->blf_flags)) {
2120 trace_xfs_log_recover_buf_cancel(log, buf_f);
2121 return 0;
2124 trace_xfs_log_recover_buf_recover(log, buf_f);
2126 buf_flags = XBF_LOCK;
2127 if (!(buf_f->blf_flags & XFS_BLF_INODE_BUF))
2128 buf_flags |= XBF_MAPPED;
2130 bp = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len,
2131 buf_flags);
2132 if (!bp)
2133 return XFS_ERROR(ENOMEM);
2134 error = bp->b_error;
2135 if (error) {
2136 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#1)");
2137 xfs_buf_relse(bp);
2138 return error;
2141 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
2142 error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
2143 } else if (buf_f->blf_flags &
2144 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2145 xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2146 } else {
2147 xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
2149 if (error)
2150 return XFS_ERROR(error);
2153 * Perform delayed write on the buffer. Asynchronous writes will be
2154 * slower when taking into account all the buffers to be flushed.
2156 * Also make sure that only inode buffers with good sizes stay in
2157 * the buffer cache. The kernel moves inodes in buffers of 1 block
2158 * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger. The inode
2159 * buffers in the log can be a different size if the log was generated
2160 * by an older kernel using unclustered inode buffers or a newer kernel
2161 * running with a different inode cluster size. Regardless, if the
2162 * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE)
2163 * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep
2164 * the buffer out of the buffer cache so that the buffer won't
2165 * overlap with future reads of those inodes.
2167 if (XFS_DINODE_MAGIC ==
2168 be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
2169 (XFS_BUF_COUNT(bp) != MAX(log->l_mp->m_sb.sb_blocksize,
2170 (__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) {
2171 xfs_buf_stale(bp);
2172 error = xfs_bwrite(bp);
2173 } else {
2174 ASSERT(bp->b_target->bt_mount == mp);
2175 bp->b_iodone = xlog_recover_iodone;
2176 xfs_buf_delwri_queue(bp);
2179 xfs_buf_relse(bp);
2180 return error;
2183 STATIC int
2184 xlog_recover_inode_pass2(
2185 xlog_t *log,
2186 xlog_recover_item_t *item)
2188 xfs_inode_log_format_t *in_f;
2189 xfs_mount_t *mp = log->l_mp;
2190 xfs_buf_t *bp;
2191 xfs_dinode_t *dip;
2192 int len;
2193 xfs_caddr_t src;
2194 xfs_caddr_t dest;
2195 int error;
2196 int attr_index;
2197 uint fields;
2198 xfs_icdinode_t *dicp;
2199 int need_free = 0;
2201 if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
2202 in_f = item->ri_buf[0].i_addr;
2203 } else {
2204 in_f = kmem_alloc(sizeof(xfs_inode_log_format_t), KM_SLEEP);
2205 need_free = 1;
2206 error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
2207 if (error)
2208 goto error;
2212 * Inode buffers can be freed, look out for it,
2213 * and do not replay the inode.
2215 if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
2216 in_f->ilf_len, 0)) {
2217 error = 0;
2218 trace_xfs_log_recover_inode_cancel(log, in_f);
2219 goto error;
2221 trace_xfs_log_recover_inode_recover(log, in_f);
2223 bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len,
2224 XBF_LOCK);
2225 if (!bp) {
2226 error = ENOMEM;
2227 goto error;
2229 error = bp->b_error;
2230 if (error) {
2231 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#2)");
2232 xfs_buf_relse(bp);
2233 goto error;
2235 ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
2236 dip = (xfs_dinode_t *)xfs_buf_offset(bp, in_f->ilf_boffset);
2239 * Make sure the place we're flushing out to really looks
2240 * like an inode!
2242 if (unlikely(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC))) {
2243 xfs_buf_relse(bp);
2244 xfs_alert(mp,
2245 "%s: Bad inode magic number, dip = 0x%p, dino bp = 0x%p, ino = %Ld",
2246 __func__, dip, bp, in_f->ilf_ino);
2247 XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)",
2248 XFS_ERRLEVEL_LOW, mp);
2249 error = EFSCORRUPTED;
2250 goto error;
2252 dicp = item->ri_buf[1].i_addr;
2253 if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
2254 xfs_buf_relse(bp);
2255 xfs_alert(mp,
2256 "%s: Bad inode log record, rec ptr 0x%p, ino %Ld",
2257 __func__, item, in_f->ilf_ino);
2258 XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)",
2259 XFS_ERRLEVEL_LOW, mp);
2260 error = EFSCORRUPTED;
2261 goto error;
2264 /* Skip replay when the on disk inode is newer than the log one */
2265 if (dicp->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
2267 * Deal with the wrap case, DI_MAX_FLUSH is less
2268 * than smaller numbers
2270 if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
2271 dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) {
2272 /* do nothing */
2273 } else {
2274 xfs_buf_relse(bp);
2275 trace_xfs_log_recover_inode_skip(log, in_f);
2276 error = 0;
2277 goto error;
2280 /* Take the opportunity to reset the flush iteration count */
2281 dicp->di_flushiter = 0;
2283 if (unlikely(S_ISREG(dicp->di_mode))) {
2284 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2285 (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
2286 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)",
2287 XFS_ERRLEVEL_LOW, mp, dicp);
2288 xfs_buf_relse(bp);
2289 xfs_alert(mp,
2290 "%s: Bad regular inode log record, rec ptr 0x%p, "
2291 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2292 __func__, item, dip, bp, in_f->ilf_ino);
2293 error = EFSCORRUPTED;
2294 goto error;
2296 } else if (unlikely(S_ISDIR(dicp->di_mode))) {
2297 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2298 (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
2299 (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
2300 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)",
2301 XFS_ERRLEVEL_LOW, mp, dicp);
2302 xfs_buf_relse(bp);
2303 xfs_alert(mp,
2304 "%s: Bad dir inode log record, rec ptr 0x%p, "
2305 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2306 __func__, item, dip, bp, in_f->ilf_ino);
2307 error = EFSCORRUPTED;
2308 goto error;
2311 if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
2312 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)",
2313 XFS_ERRLEVEL_LOW, mp, dicp);
2314 xfs_buf_relse(bp);
2315 xfs_alert(mp,
2316 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
2317 "dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
2318 __func__, item, dip, bp, in_f->ilf_ino,
2319 dicp->di_nextents + dicp->di_anextents,
2320 dicp->di_nblocks);
2321 error = EFSCORRUPTED;
2322 goto error;
2324 if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
2325 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)",
2326 XFS_ERRLEVEL_LOW, mp, dicp);
2327 xfs_buf_relse(bp);
2328 xfs_alert(mp,
2329 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
2330 "dino bp 0x%p, ino %Ld, forkoff 0x%x", __func__,
2331 item, dip, bp, in_f->ilf_ino, dicp->di_forkoff);
2332 error = EFSCORRUPTED;
2333 goto error;
2335 if (unlikely(item->ri_buf[1].i_len > sizeof(struct xfs_icdinode))) {
2336 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)",
2337 XFS_ERRLEVEL_LOW, mp, dicp);
2338 xfs_buf_relse(bp);
2339 xfs_alert(mp,
2340 "%s: Bad inode log record length %d, rec ptr 0x%p",
2341 __func__, item->ri_buf[1].i_len, item);
2342 error = EFSCORRUPTED;
2343 goto error;
2346 /* The core is in in-core format */
2347 xfs_dinode_to_disk(dip, item->ri_buf[1].i_addr);
2349 /* the rest is in on-disk format */
2350 if (item->ri_buf[1].i_len > sizeof(struct xfs_icdinode)) {
2351 memcpy((xfs_caddr_t) dip + sizeof(struct xfs_icdinode),
2352 item->ri_buf[1].i_addr + sizeof(struct xfs_icdinode),
2353 item->ri_buf[1].i_len - sizeof(struct xfs_icdinode));
2356 fields = in_f->ilf_fields;
2357 switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
2358 case XFS_ILOG_DEV:
2359 xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
2360 break;
2361 case XFS_ILOG_UUID:
2362 memcpy(XFS_DFORK_DPTR(dip),
2363 &in_f->ilf_u.ilfu_uuid,
2364 sizeof(uuid_t));
2365 break;
2368 if (in_f->ilf_size == 2)
2369 goto write_inode_buffer;
2370 len = item->ri_buf[2].i_len;
2371 src = item->ri_buf[2].i_addr;
2372 ASSERT(in_f->ilf_size <= 4);
2373 ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
2374 ASSERT(!(fields & XFS_ILOG_DFORK) ||
2375 (len == in_f->ilf_dsize));
2377 switch (fields & XFS_ILOG_DFORK) {
2378 case XFS_ILOG_DDATA:
2379 case XFS_ILOG_DEXT:
2380 memcpy(XFS_DFORK_DPTR(dip), src, len);
2381 break;
2383 case XFS_ILOG_DBROOT:
2384 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
2385 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
2386 XFS_DFORK_DSIZE(dip, mp));
2387 break;
2389 default:
2391 * There are no data fork flags set.
2393 ASSERT((fields & XFS_ILOG_DFORK) == 0);
2394 break;
2398 * If we logged any attribute data, recover it. There may or
2399 * may not have been any other non-core data logged in this
2400 * transaction.
2402 if (in_f->ilf_fields & XFS_ILOG_AFORK) {
2403 if (in_f->ilf_fields & XFS_ILOG_DFORK) {
2404 attr_index = 3;
2405 } else {
2406 attr_index = 2;
2408 len = item->ri_buf[attr_index].i_len;
2409 src = item->ri_buf[attr_index].i_addr;
2410 ASSERT(len == in_f->ilf_asize);
2412 switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
2413 case XFS_ILOG_ADATA:
2414 case XFS_ILOG_AEXT:
2415 dest = XFS_DFORK_APTR(dip);
2416 ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
2417 memcpy(dest, src, len);
2418 break;
2420 case XFS_ILOG_ABROOT:
2421 dest = XFS_DFORK_APTR(dip);
2422 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
2423 len, (xfs_bmdr_block_t*)dest,
2424 XFS_DFORK_ASIZE(dip, mp));
2425 break;
2427 default:
2428 xfs_warn(log->l_mp, "%s: Invalid flag", __func__);
2429 ASSERT(0);
2430 xfs_buf_relse(bp);
2431 error = EIO;
2432 goto error;
2436 write_inode_buffer:
2437 ASSERT(bp->b_target->bt_mount == mp);
2438 bp->b_iodone = xlog_recover_iodone;
2439 xfs_buf_delwri_queue(bp);
2440 xfs_buf_relse(bp);
2441 error:
2442 if (need_free)
2443 kmem_free(in_f);
2444 return XFS_ERROR(error);
2448 * Recover QUOTAOFF records. We simply make a note of it in the xlog_t
2449 * structure, so that we know not to do any dquot item or dquot buffer recovery,
2450 * of that type.
2452 STATIC int
2453 xlog_recover_quotaoff_pass1(
2454 xlog_t *log,
2455 xlog_recover_item_t *item)
2457 xfs_qoff_logformat_t *qoff_f = item->ri_buf[0].i_addr;
2458 ASSERT(qoff_f);
2461 * The logitem format's flag tells us if this was user quotaoff,
2462 * group/project quotaoff or both.
2464 if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
2465 log->l_quotaoffs_flag |= XFS_DQ_USER;
2466 if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
2467 log->l_quotaoffs_flag |= XFS_DQ_PROJ;
2468 if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
2469 log->l_quotaoffs_flag |= XFS_DQ_GROUP;
2471 return (0);
2475 * Recover a dquot record
2477 STATIC int
2478 xlog_recover_dquot_pass2(
2479 xlog_t *log,
2480 xlog_recover_item_t *item)
2482 xfs_mount_t *mp = log->l_mp;
2483 xfs_buf_t *bp;
2484 struct xfs_disk_dquot *ddq, *recddq;
2485 int error;
2486 xfs_dq_logformat_t *dq_f;
2487 uint type;
2491 * Filesystems are required to send in quota flags at mount time.
2493 if (mp->m_qflags == 0)
2494 return (0);
2496 recddq = item->ri_buf[1].i_addr;
2497 if (recddq == NULL) {
2498 xfs_alert(log->l_mp, "NULL dquot in %s.", __func__);
2499 return XFS_ERROR(EIO);
2501 if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) {
2502 xfs_alert(log->l_mp, "dquot too small (%d) in %s.",
2503 item->ri_buf[1].i_len, __func__);
2504 return XFS_ERROR(EIO);
2508 * This type of quotas was turned off, so ignore this record.
2510 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
2511 ASSERT(type);
2512 if (log->l_quotaoffs_flag & type)
2513 return (0);
2516 * At this point we know that quota was _not_ turned off.
2517 * Since the mount flags are not indicating to us otherwise, this
2518 * must mean that quota is on, and the dquot needs to be replayed.
2519 * Remember that we may not have fully recovered the superblock yet,
2520 * so we can't do the usual trick of looking at the SB quota bits.
2522 * The other possibility, of course, is that the quota subsystem was
2523 * removed since the last mount - ENOSYS.
2525 dq_f = item->ri_buf[0].i_addr;
2526 ASSERT(dq_f);
2527 error = xfs_qm_dqcheck(mp, recddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
2528 "xlog_recover_dquot_pass2 (log copy)");
2529 if (error)
2530 return XFS_ERROR(EIO);
2531 ASSERT(dq_f->qlf_len == 1);
2533 error = xfs_read_buf(mp, mp->m_ddev_targp,
2534 dq_f->qlf_blkno,
2535 XFS_FSB_TO_BB(mp, dq_f->qlf_len),
2536 0, &bp);
2537 if (error) {
2538 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#3)");
2539 return error;
2541 ASSERT(bp);
2542 ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset);
2545 * At least the magic num portion should be on disk because this
2546 * was among a chunk of dquots created earlier, and we did some
2547 * minimal initialization then.
2549 error = xfs_qm_dqcheck(mp, ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
2550 "xlog_recover_dquot_pass2");
2551 if (error) {
2552 xfs_buf_relse(bp);
2553 return XFS_ERROR(EIO);
2556 memcpy(ddq, recddq, item->ri_buf[1].i_len);
2558 ASSERT(dq_f->qlf_size == 2);
2559 ASSERT(bp->b_target->bt_mount == mp);
2560 bp->b_iodone = xlog_recover_iodone;
2561 xfs_buf_delwri_queue(bp);
2562 xfs_buf_relse(bp);
2564 return (0);
2568 * This routine is called to create an in-core extent free intent
2569 * item from the efi format structure which was logged on disk.
2570 * It allocates an in-core efi, copies the extents from the format
2571 * structure into it, and adds the efi to the AIL with the given
2572 * LSN.
2574 STATIC int
2575 xlog_recover_efi_pass2(
2576 xlog_t *log,
2577 xlog_recover_item_t *item,
2578 xfs_lsn_t lsn)
2580 int error;
2581 xfs_mount_t *mp = log->l_mp;
2582 xfs_efi_log_item_t *efip;
2583 xfs_efi_log_format_t *efi_formatp;
2585 efi_formatp = item->ri_buf[0].i_addr;
2587 efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
2588 if ((error = xfs_efi_copy_format(&(item->ri_buf[0]),
2589 &(efip->efi_format)))) {
2590 xfs_efi_item_free(efip);
2591 return error;
2593 atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
2595 spin_lock(&log->l_ailp->xa_lock);
2597 * xfs_trans_ail_update() drops the AIL lock.
2599 xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn);
2600 return 0;
2605 * This routine is called when an efd format structure is found in
2606 * a committed transaction in the log. It's purpose is to cancel
2607 * the corresponding efi if it was still in the log. To do this
2608 * it searches the AIL for the efi with an id equal to that in the
2609 * efd format structure. If we find it, we remove the efi from the
2610 * AIL and free it.
2612 STATIC int
2613 xlog_recover_efd_pass2(
2614 xlog_t *log,
2615 xlog_recover_item_t *item)
2617 xfs_efd_log_format_t *efd_formatp;
2618 xfs_efi_log_item_t *efip = NULL;
2619 xfs_log_item_t *lip;
2620 __uint64_t efi_id;
2621 struct xfs_ail_cursor cur;
2622 struct xfs_ail *ailp = log->l_ailp;
2624 efd_formatp = item->ri_buf[0].i_addr;
2625 ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
2626 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
2627 (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
2628 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
2629 efi_id = efd_formatp->efd_efi_id;
2632 * Search for the efi with the id in the efd format structure
2633 * in the AIL.
2635 spin_lock(&ailp->xa_lock);
2636 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
2637 while (lip != NULL) {
2638 if (lip->li_type == XFS_LI_EFI) {
2639 efip = (xfs_efi_log_item_t *)lip;
2640 if (efip->efi_format.efi_id == efi_id) {
2642 * xfs_trans_ail_delete() drops the
2643 * AIL lock.
2645 xfs_trans_ail_delete(ailp, lip);
2646 xfs_efi_item_free(efip);
2647 spin_lock(&ailp->xa_lock);
2648 break;
2651 lip = xfs_trans_ail_cursor_next(ailp, &cur);
2653 xfs_trans_ail_cursor_done(ailp, &cur);
2654 spin_unlock(&ailp->xa_lock);
2656 return 0;
2660 * Free up any resources allocated by the transaction
2662 * Remember that EFIs, EFDs, and IUNLINKs are handled later.
2664 STATIC void
2665 xlog_recover_free_trans(
2666 struct xlog_recover *trans)
2668 xlog_recover_item_t *item, *n;
2669 int i;
2671 list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
2672 /* Free the regions in the item. */
2673 list_del(&item->ri_list);
2674 for (i = 0; i < item->ri_cnt; i++)
2675 kmem_free(item->ri_buf[i].i_addr);
2676 /* Free the item itself */
2677 kmem_free(item->ri_buf);
2678 kmem_free(item);
2680 /* Free the transaction recover structure */
2681 kmem_free(trans);
2684 STATIC int
2685 xlog_recover_commit_pass1(
2686 struct log *log,
2687 struct xlog_recover *trans,
2688 xlog_recover_item_t *item)
2690 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1);
2692 switch (ITEM_TYPE(item)) {
2693 case XFS_LI_BUF:
2694 return xlog_recover_buffer_pass1(log, item);
2695 case XFS_LI_QUOTAOFF:
2696 return xlog_recover_quotaoff_pass1(log, item);
2697 case XFS_LI_INODE:
2698 case XFS_LI_EFI:
2699 case XFS_LI_EFD:
2700 case XFS_LI_DQUOT:
2701 /* nothing to do in pass 1 */
2702 return 0;
2703 default:
2704 xfs_warn(log->l_mp, "%s: invalid item type (%d)",
2705 __func__, ITEM_TYPE(item));
2706 ASSERT(0);
2707 return XFS_ERROR(EIO);
2711 STATIC int
2712 xlog_recover_commit_pass2(
2713 struct log *log,
2714 struct xlog_recover *trans,
2715 xlog_recover_item_t *item)
2717 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2);
2719 switch (ITEM_TYPE(item)) {
2720 case XFS_LI_BUF:
2721 return xlog_recover_buffer_pass2(log, item);
2722 case XFS_LI_INODE:
2723 return xlog_recover_inode_pass2(log, item);
2724 case XFS_LI_EFI:
2725 return xlog_recover_efi_pass2(log, item, trans->r_lsn);
2726 case XFS_LI_EFD:
2727 return xlog_recover_efd_pass2(log, item);
2728 case XFS_LI_DQUOT:
2729 return xlog_recover_dquot_pass2(log, item);
2730 case XFS_LI_QUOTAOFF:
2731 /* nothing to do in pass2 */
2732 return 0;
2733 default:
2734 xfs_warn(log->l_mp, "%s: invalid item type (%d)",
2735 __func__, ITEM_TYPE(item));
2736 ASSERT(0);
2737 return XFS_ERROR(EIO);
2742 * Perform the transaction.
2744 * If the transaction modifies a buffer or inode, do it now. Otherwise,
2745 * EFIs and EFDs get queued up by adding entries into the AIL for them.
2747 STATIC int
2748 xlog_recover_commit_trans(
2749 struct log *log,
2750 struct xlog_recover *trans,
2751 int pass)
2753 int error = 0;
2754 xlog_recover_item_t *item;
2756 hlist_del(&trans->r_list);
2758 error = xlog_recover_reorder_trans(log, trans, pass);
2759 if (error)
2760 return error;
2762 list_for_each_entry(item, &trans->r_itemq, ri_list) {
2763 if (pass == XLOG_RECOVER_PASS1)
2764 error = xlog_recover_commit_pass1(log, trans, item);
2765 else
2766 error = xlog_recover_commit_pass2(log, trans, item);
2767 if (error)
2768 return error;
2771 xlog_recover_free_trans(trans);
2772 return 0;
2775 STATIC int
2776 xlog_recover_unmount_trans(
2777 struct log *log,
2778 xlog_recover_t *trans)
2780 /* Do nothing now */
2781 xfs_warn(log->l_mp, "%s: Unmount LR", __func__);
2782 return 0;
2786 * There are two valid states of the r_state field. 0 indicates that the
2787 * transaction structure is in a normal state. We have either seen the
2788 * start of the transaction or the last operation we added was not a partial
2789 * operation. If the last operation we added to the transaction was a
2790 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
2792 * NOTE: skip LRs with 0 data length.
2794 STATIC int
2795 xlog_recover_process_data(
2796 xlog_t *log,
2797 struct hlist_head rhash[],
2798 xlog_rec_header_t *rhead,
2799 xfs_caddr_t dp,
2800 int pass)
2802 xfs_caddr_t lp;
2803 int num_logops;
2804 xlog_op_header_t *ohead;
2805 xlog_recover_t *trans;
2806 xlog_tid_t tid;
2807 int error;
2808 unsigned long hash;
2809 uint flags;
2811 lp = dp + be32_to_cpu(rhead->h_len);
2812 num_logops = be32_to_cpu(rhead->h_num_logops);
2814 /* check the log format matches our own - else we can't recover */
2815 if (xlog_header_check_recover(log->l_mp, rhead))
2816 return (XFS_ERROR(EIO));
2818 while ((dp < lp) && num_logops) {
2819 ASSERT(dp + sizeof(xlog_op_header_t) <= lp);
2820 ohead = (xlog_op_header_t *)dp;
2821 dp += sizeof(xlog_op_header_t);
2822 if (ohead->oh_clientid != XFS_TRANSACTION &&
2823 ohead->oh_clientid != XFS_LOG) {
2824 xfs_warn(log->l_mp, "%s: bad clientid 0x%x",
2825 __func__, ohead->oh_clientid);
2826 ASSERT(0);
2827 return (XFS_ERROR(EIO));
2829 tid = be32_to_cpu(ohead->oh_tid);
2830 hash = XLOG_RHASH(tid);
2831 trans = xlog_recover_find_tid(&rhash[hash], tid);
2832 if (trans == NULL) { /* not found; add new tid */
2833 if (ohead->oh_flags & XLOG_START_TRANS)
2834 xlog_recover_new_tid(&rhash[hash], tid,
2835 be64_to_cpu(rhead->h_lsn));
2836 } else {
2837 if (dp + be32_to_cpu(ohead->oh_len) > lp) {
2838 xfs_warn(log->l_mp, "%s: bad length 0x%x",
2839 __func__, be32_to_cpu(ohead->oh_len));
2840 WARN_ON(1);
2841 return (XFS_ERROR(EIO));
2843 flags = ohead->oh_flags & ~XLOG_END_TRANS;
2844 if (flags & XLOG_WAS_CONT_TRANS)
2845 flags &= ~XLOG_CONTINUE_TRANS;
2846 switch (flags) {
2847 case XLOG_COMMIT_TRANS:
2848 error = xlog_recover_commit_trans(log,
2849 trans, pass);
2850 break;
2851 case XLOG_UNMOUNT_TRANS:
2852 error = xlog_recover_unmount_trans(log, trans);
2853 break;
2854 case XLOG_WAS_CONT_TRANS:
2855 error = xlog_recover_add_to_cont_trans(log,
2856 trans, dp,
2857 be32_to_cpu(ohead->oh_len));
2858 break;
2859 case XLOG_START_TRANS:
2860 xfs_warn(log->l_mp, "%s: bad transaction",
2861 __func__);
2862 ASSERT(0);
2863 error = XFS_ERROR(EIO);
2864 break;
2865 case 0:
2866 case XLOG_CONTINUE_TRANS:
2867 error = xlog_recover_add_to_trans(log, trans,
2868 dp, be32_to_cpu(ohead->oh_len));
2869 break;
2870 default:
2871 xfs_warn(log->l_mp, "%s: bad flag 0x%x",
2872 __func__, flags);
2873 ASSERT(0);
2874 error = XFS_ERROR(EIO);
2875 break;
2877 if (error)
2878 return error;
2880 dp += be32_to_cpu(ohead->oh_len);
2881 num_logops--;
2883 return 0;
2887 * Process an extent free intent item that was recovered from
2888 * the log. We need to free the extents that it describes.
2890 STATIC int
2891 xlog_recover_process_efi(
2892 xfs_mount_t *mp,
2893 xfs_efi_log_item_t *efip)
2895 xfs_efd_log_item_t *efdp;
2896 xfs_trans_t *tp;
2897 int i;
2898 int error = 0;
2899 xfs_extent_t *extp;
2900 xfs_fsblock_t startblock_fsb;
2902 ASSERT(!test_bit(XFS_EFI_RECOVERED, &efip->efi_flags));
2905 * First check the validity of the extents described by the
2906 * EFI. If any are bad, then assume that all are bad and
2907 * just toss the EFI.
2909 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
2910 extp = &(efip->efi_format.efi_extents[i]);
2911 startblock_fsb = XFS_BB_TO_FSB(mp,
2912 XFS_FSB_TO_DADDR(mp, extp->ext_start));
2913 if ((startblock_fsb == 0) ||
2914 (extp->ext_len == 0) ||
2915 (startblock_fsb >= mp->m_sb.sb_dblocks) ||
2916 (extp->ext_len >= mp->m_sb.sb_agblocks)) {
2918 * This will pull the EFI from the AIL and
2919 * free the memory associated with it.
2921 xfs_efi_release(efip, efip->efi_format.efi_nextents);
2922 return XFS_ERROR(EIO);
2926 tp = xfs_trans_alloc(mp, 0);
2927 error = xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 0, 0);
2928 if (error)
2929 goto abort_error;
2930 efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
2932 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
2933 extp = &(efip->efi_format.efi_extents[i]);
2934 error = xfs_free_extent(tp, extp->ext_start, extp->ext_len);
2935 if (error)
2936 goto abort_error;
2937 xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
2938 extp->ext_len);
2941 set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
2942 error = xfs_trans_commit(tp, 0);
2943 return error;
2945 abort_error:
2946 xfs_trans_cancel(tp, XFS_TRANS_ABORT);
2947 return error;
2951 * When this is called, all of the EFIs which did not have
2952 * corresponding EFDs should be in the AIL. What we do now
2953 * is free the extents associated with each one.
2955 * Since we process the EFIs in normal transactions, they
2956 * will be removed at some point after the commit. This prevents
2957 * us from just walking down the list processing each one.
2958 * We'll use a flag in the EFI to skip those that we've already
2959 * processed and use the AIL iteration mechanism's generation
2960 * count to try to speed this up at least a bit.
2962 * When we start, we know that the EFIs are the only things in
2963 * the AIL. As we process them, however, other items are added
2964 * to the AIL. Since everything added to the AIL must come after
2965 * everything already in the AIL, we stop processing as soon as
2966 * we see something other than an EFI in the AIL.
2968 STATIC int
2969 xlog_recover_process_efis(
2970 xlog_t *log)
2972 xfs_log_item_t *lip;
2973 xfs_efi_log_item_t *efip;
2974 int error = 0;
2975 struct xfs_ail_cursor cur;
2976 struct xfs_ail *ailp;
2978 ailp = log->l_ailp;
2979 spin_lock(&ailp->xa_lock);
2980 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
2981 while (lip != NULL) {
2983 * We're done when we see something other than an EFI.
2984 * There should be no EFIs left in the AIL now.
2986 if (lip->li_type != XFS_LI_EFI) {
2987 #ifdef DEBUG
2988 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
2989 ASSERT(lip->li_type != XFS_LI_EFI);
2990 #endif
2991 break;
2995 * Skip EFIs that we've already processed.
2997 efip = (xfs_efi_log_item_t *)lip;
2998 if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags)) {
2999 lip = xfs_trans_ail_cursor_next(ailp, &cur);
3000 continue;
3003 spin_unlock(&ailp->xa_lock);
3004 error = xlog_recover_process_efi(log->l_mp, efip);
3005 spin_lock(&ailp->xa_lock);
3006 if (error)
3007 goto out;
3008 lip = xfs_trans_ail_cursor_next(ailp, &cur);
3010 out:
3011 xfs_trans_ail_cursor_done(ailp, &cur);
3012 spin_unlock(&ailp->xa_lock);
3013 return error;
3017 * This routine performs a transaction to null out a bad inode pointer
3018 * in an agi unlinked inode hash bucket.
3020 STATIC void
3021 xlog_recover_clear_agi_bucket(
3022 xfs_mount_t *mp,
3023 xfs_agnumber_t agno,
3024 int bucket)
3026 xfs_trans_t *tp;
3027 xfs_agi_t *agi;
3028 xfs_buf_t *agibp;
3029 int offset;
3030 int error;
3032 tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
3033 error = xfs_trans_reserve(tp, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp),
3034 0, 0, 0);
3035 if (error)
3036 goto out_abort;
3038 error = xfs_read_agi(mp, tp, agno, &agibp);
3039 if (error)
3040 goto out_abort;
3042 agi = XFS_BUF_TO_AGI(agibp);
3043 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
3044 offset = offsetof(xfs_agi_t, agi_unlinked) +
3045 (sizeof(xfs_agino_t) * bucket);
3046 xfs_trans_log_buf(tp, agibp, offset,
3047 (offset + sizeof(xfs_agino_t) - 1));
3049 error = xfs_trans_commit(tp, 0);
3050 if (error)
3051 goto out_error;
3052 return;
3054 out_abort:
3055 xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3056 out_error:
3057 xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno);
3058 return;
3061 STATIC xfs_agino_t
3062 xlog_recover_process_one_iunlink(
3063 struct xfs_mount *mp,
3064 xfs_agnumber_t agno,
3065 xfs_agino_t agino,
3066 int bucket)
3068 struct xfs_buf *ibp;
3069 struct xfs_dinode *dip;
3070 struct xfs_inode *ip;
3071 xfs_ino_t ino;
3072 int error;
3074 ino = XFS_AGINO_TO_INO(mp, agno, agino);
3075 error = xfs_iget(mp, NULL, ino, 0, 0, &ip);
3076 if (error)
3077 goto fail;
3080 * Get the on disk inode to find the next inode in the bucket.
3082 error = xfs_itobp(mp, NULL, ip, &dip, &ibp, XBF_LOCK);
3083 if (error)
3084 goto fail_iput;
3086 ASSERT(ip->i_d.di_nlink == 0);
3087 ASSERT(ip->i_d.di_mode != 0);
3089 /* setup for the next pass */
3090 agino = be32_to_cpu(dip->di_next_unlinked);
3091 xfs_buf_relse(ibp);
3094 * Prevent any DMAPI event from being sent when the reference on
3095 * the inode is dropped.
3097 ip->i_d.di_dmevmask = 0;
3099 IRELE(ip);
3100 return agino;
3102 fail_iput:
3103 IRELE(ip);
3104 fail:
3106 * We can't read in the inode this bucket points to, or this inode
3107 * is messed up. Just ditch this bucket of inodes. We will lose
3108 * some inodes and space, but at least we won't hang.
3110 * Call xlog_recover_clear_agi_bucket() to perform a transaction to
3111 * clear the inode pointer in the bucket.
3113 xlog_recover_clear_agi_bucket(mp, agno, bucket);
3114 return NULLAGINO;
3118 * xlog_iunlink_recover
3120 * This is called during recovery to process any inodes which
3121 * we unlinked but not freed when the system crashed. These
3122 * inodes will be on the lists in the AGI blocks. What we do
3123 * here is scan all the AGIs and fully truncate and free any
3124 * inodes found on the lists. Each inode is removed from the
3125 * lists when it has been fully truncated and is freed. The
3126 * freeing of the inode and its removal from the list must be
3127 * atomic.
3129 STATIC void
3130 xlog_recover_process_iunlinks(
3131 xlog_t *log)
3133 xfs_mount_t *mp;
3134 xfs_agnumber_t agno;
3135 xfs_agi_t *agi;
3136 xfs_buf_t *agibp;
3137 xfs_agino_t agino;
3138 int bucket;
3139 int error;
3140 uint mp_dmevmask;
3142 mp = log->l_mp;
3145 * Prevent any DMAPI event from being sent while in this function.
3147 mp_dmevmask = mp->m_dmevmask;
3148 mp->m_dmevmask = 0;
3150 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3152 * Find the agi for this ag.
3154 error = xfs_read_agi(mp, NULL, agno, &agibp);
3155 if (error) {
3157 * AGI is b0rked. Don't process it.
3159 * We should probably mark the filesystem as corrupt
3160 * after we've recovered all the ag's we can....
3162 continue;
3165 * Unlock the buffer so that it can be acquired in the normal
3166 * course of the transaction to truncate and free each inode.
3167 * Because we are not racing with anyone else here for the AGI
3168 * buffer, we don't even need to hold it locked to read the
3169 * initial unlinked bucket entries out of the buffer. We keep
3170 * buffer reference though, so that it stays pinned in memory
3171 * while we need the buffer.
3173 agi = XFS_BUF_TO_AGI(agibp);
3174 xfs_buf_unlock(agibp);
3176 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
3177 agino = be32_to_cpu(agi->agi_unlinked[bucket]);
3178 while (agino != NULLAGINO) {
3179 agino = xlog_recover_process_one_iunlink(mp,
3180 agno, agino, bucket);
3183 xfs_buf_rele(agibp);
3186 mp->m_dmevmask = mp_dmevmask;
3190 #ifdef DEBUG
3191 STATIC void
3192 xlog_pack_data_checksum(
3193 xlog_t *log,
3194 xlog_in_core_t *iclog,
3195 int size)
3197 int i;
3198 __be32 *up;
3199 uint chksum = 0;
3201 up = (__be32 *)iclog->ic_datap;
3202 /* divide length by 4 to get # words */
3203 for (i = 0; i < (size >> 2); i++) {
3204 chksum ^= be32_to_cpu(*up);
3205 up++;
3207 iclog->ic_header.h_chksum = cpu_to_be32(chksum);
3209 #else
3210 #define xlog_pack_data_checksum(log, iclog, size)
3211 #endif
3214 * Stamp cycle number in every block
3216 void
3217 xlog_pack_data(
3218 xlog_t *log,
3219 xlog_in_core_t *iclog,
3220 int roundoff)
3222 int i, j, k;
3223 int size = iclog->ic_offset + roundoff;
3224 __be32 cycle_lsn;
3225 xfs_caddr_t dp;
3227 xlog_pack_data_checksum(log, iclog, size);
3229 cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
3231 dp = iclog->ic_datap;
3232 for (i = 0; i < BTOBB(size) &&
3233 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
3234 iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
3235 *(__be32 *)dp = cycle_lsn;
3236 dp += BBSIZE;
3239 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3240 xlog_in_core_2_t *xhdr = iclog->ic_data;
3242 for ( ; i < BTOBB(size); i++) {
3243 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3244 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3245 xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
3246 *(__be32 *)dp = cycle_lsn;
3247 dp += BBSIZE;
3250 for (i = 1; i < log->l_iclog_heads; i++) {
3251 xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
3256 STATIC void
3257 xlog_unpack_data(
3258 xlog_rec_header_t *rhead,
3259 xfs_caddr_t dp,
3260 xlog_t *log)
3262 int i, j, k;
3264 for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
3265 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
3266 *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
3267 dp += BBSIZE;
3270 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3271 xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
3272 for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
3273 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3274 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3275 *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
3276 dp += BBSIZE;
3281 STATIC int
3282 xlog_valid_rec_header(
3283 xlog_t *log,
3284 xlog_rec_header_t *rhead,
3285 xfs_daddr_t blkno)
3287 int hlen;
3289 if (unlikely(rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))) {
3290 XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
3291 XFS_ERRLEVEL_LOW, log->l_mp);
3292 return XFS_ERROR(EFSCORRUPTED);
3294 if (unlikely(
3295 (!rhead->h_version ||
3296 (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
3297 xfs_warn(log->l_mp, "%s: unrecognised log version (%d).",
3298 __func__, be32_to_cpu(rhead->h_version));
3299 return XFS_ERROR(EIO);
3302 /* LR body must have data or it wouldn't have been written */
3303 hlen = be32_to_cpu(rhead->h_len);
3304 if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
3305 XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
3306 XFS_ERRLEVEL_LOW, log->l_mp);
3307 return XFS_ERROR(EFSCORRUPTED);
3309 if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
3310 XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
3311 XFS_ERRLEVEL_LOW, log->l_mp);
3312 return XFS_ERROR(EFSCORRUPTED);
3314 return 0;
3318 * Read the log from tail to head and process the log records found.
3319 * Handle the two cases where the tail and head are in the same cycle
3320 * and where the active portion of the log wraps around the end of
3321 * the physical log separately. The pass parameter is passed through
3322 * to the routines called to process the data and is not looked at
3323 * here.
3325 STATIC int
3326 xlog_do_recovery_pass(
3327 xlog_t *log,
3328 xfs_daddr_t head_blk,
3329 xfs_daddr_t tail_blk,
3330 int pass)
3332 xlog_rec_header_t *rhead;
3333 xfs_daddr_t blk_no;
3334 xfs_caddr_t offset;
3335 xfs_buf_t *hbp, *dbp;
3336 int error = 0, h_size;
3337 int bblks, split_bblks;
3338 int hblks, split_hblks, wrapped_hblks;
3339 struct hlist_head rhash[XLOG_RHASH_SIZE];
3341 ASSERT(head_blk != tail_blk);
3344 * Read the header of the tail block and get the iclog buffer size from
3345 * h_size. Use this to tell how many sectors make up the log header.
3347 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
3349 * When using variable length iclogs, read first sector of
3350 * iclog header and extract the header size from it. Get a
3351 * new hbp that is the correct size.
3353 hbp = xlog_get_bp(log, 1);
3354 if (!hbp)
3355 return ENOMEM;
3357 error = xlog_bread(log, tail_blk, 1, hbp, &offset);
3358 if (error)
3359 goto bread_err1;
3361 rhead = (xlog_rec_header_t *)offset;
3362 error = xlog_valid_rec_header(log, rhead, tail_blk);
3363 if (error)
3364 goto bread_err1;
3365 h_size = be32_to_cpu(rhead->h_size);
3366 if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
3367 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
3368 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
3369 if (h_size % XLOG_HEADER_CYCLE_SIZE)
3370 hblks++;
3371 xlog_put_bp(hbp);
3372 hbp = xlog_get_bp(log, hblks);
3373 } else {
3374 hblks = 1;
3376 } else {
3377 ASSERT(log->l_sectBBsize == 1);
3378 hblks = 1;
3379 hbp = xlog_get_bp(log, 1);
3380 h_size = XLOG_BIG_RECORD_BSIZE;
3383 if (!hbp)
3384 return ENOMEM;
3385 dbp = xlog_get_bp(log, BTOBB(h_size));
3386 if (!dbp) {
3387 xlog_put_bp(hbp);
3388 return ENOMEM;
3391 memset(rhash, 0, sizeof(rhash));
3392 if (tail_blk <= head_blk) {
3393 for (blk_no = tail_blk; blk_no < head_blk; ) {
3394 error = xlog_bread(log, blk_no, hblks, hbp, &offset);
3395 if (error)
3396 goto bread_err2;
3398 rhead = (xlog_rec_header_t *)offset;
3399 error = xlog_valid_rec_header(log, rhead, blk_no);
3400 if (error)
3401 goto bread_err2;
3403 /* blocks in data section */
3404 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3405 error = xlog_bread(log, blk_no + hblks, bblks, dbp,
3406 &offset);
3407 if (error)
3408 goto bread_err2;
3410 xlog_unpack_data(rhead, offset, log);
3411 if ((error = xlog_recover_process_data(log,
3412 rhash, rhead, offset, pass)))
3413 goto bread_err2;
3414 blk_no += bblks + hblks;
3416 } else {
3418 * Perform recovery around the end of the physical log.
3419 * When the head is not on the same cycle number as the tail,
3420 * we can't do a sequential recovery as above.
3422 blk_no = tail_blk;
3423 while (blk_no < log->l_logBBsize) {
3425 * Check for header wrapping around physical end-of-log
3427 offset = hbp->b_addr;
3428 split_hblks = 0;
3429 wrapped_hblks = 0;
3430 if (blk_no + hblks <= log->l_logBBsize) {
3431 /* Read header in one read */
3432 error = xlog_bread(log, blk_no, hblks, hbp,
3433 &offset);
3434 if (error)
3435 goto bread_err2;
3436 } else {
3437 /* This LR is split across physical log end */
3438 if (blk_no != log->l_logBBsize) {
3439 /* some data before physical log end */
3440 ASSERT(blk_no <= INT_MAX);
3441 split_hblks = log->l_logBBsize - (int)blk_no;
3442 ASSERT(split_hblks > 0);
3443 error = xlog_bread(log, blk_no,
3444 split_hblks, hbp,
3445 &offset);
3446 if (error)
3447 goto bread_err2;
3451 * Note: this black magic still works with
3452 * large sector sizes (non-512) only because:
3453 * - we increased the buffer size originally
3454 * by 1 sector giving us enough extra space
3455 * for the second read;
3456 * - the log start is guaranteed to be sector
3457 * aligned;
3458 * - we read the log end (LR header start)
3459 * _first_, then the log start (LR header end)
3460 * - order is important.
3462 wrapped_hblks = hblks - split_hblks;
3463 error = xlog_bread_offset(log, 0,
3464 wrapped_hblks, hbp,
3465 offset + BBTOB(split_hblks));
3466 if (error)
3467 goto bread_err2;
3469 rhead = (xlog_rec_header_t *)offset;
3470 error = xlog_valid_rec_header(log, rhead,
3471 split_hblks ? blk_no : 0);
3472 if (error)
3473 goto bread_err2;
3475 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3476 blk_no += hblks;
3478 /* Read in data for log record */
3479 if (blk_no + bblks <= log->l_logBBsize) {
3480 error = xlog_bread(log, blk_no, bblks, dbp,
3481 &offset);
3482 if (error)
3483 goto bread_err2;
3484 } else {
3485 /* This log record is split across the
3486 * physical end of log */
3487 offset = dbp->b_addr;
3488 split_bblks = 0;
3489 if (blk_no != log->l_logBBsize) {
3490 /* some data is before the physical
3491 * end of log */
3492 ASSERT(!wrapped_hblks);
3493 ASSERT(blk_no <= INT_MAX);
3494 split_bblks =
3495 log->l_logBBsize - (int)blk_no;
3496 ASSERT(split_bblks > 0);
3497 error = xlog_bread(log, blk_no,
3498 split_bblks, dbp,
3499 &offset);
3500 if (error)
3501 goto bread_err2;
3505 * Note: this black magic still works with
3506 * large sector sizes (non-512) only because:
3507 * - we increased the buffer size originally
3508 * by 1 sector giving us enough extra space
3509 * for the second read;
3510 * - the log start is guaranteed to be sector
3511 * aligned;
3512 * - we read the log end (LR header start)
3513 * _first_, then the log start (LR header end)
3514 * - order is important.
3516 error = xlog_bread_offset(log, 0,
3517 bblks - split_bblks, hbp,
3518 offset + BBTOB(split_bblks));
3519 if (error)
3520 goto bread_err2;
3522 xlog_unpack_data(rhead, offset, log);
3523 if ((error = xlog_recover_process_data(log, rhash,
3524 rhead, offset, pass)))
3525 goto bread_err2;
3526 blk_no += bblks;
3529 ASSERT(blk_no >= log->l_logBBsize);
3530 blk_no -= log->l_logBBsize;
3532 /* read first part of physical log */
3533 while (blk_no < head_blk) {
3534 error = xlog_bread(log, blk_no, hblks, hbp, &offset);
3535 if (error)
3536 goto bread_err2;
3538 rhead = (xlog_rec_header_t *)offset;
3539 error = xlog_valid_rec_header(log, rhead, blk_no);
3540 if (error)
3541 goto bread_err2;
3543 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3544 error = xlog_bread(log, blk_no+hblks, bblks, dbp,
3545 &offset);
3546 if (error)
3547 goto bread_err2;
3549 xlog_unpack_data(rhead, offset, log);
3550 if ((error = xlog_recover_process_data(log, rhash,
3551 rhead, offset, pass)))
3552 goto bread_err2;
3553 blk_no += bblks + hblks;
3557 bread_err2:
3558 xlog_put_bp(dbp);
3559 bread_err1:
3560 xlog_put_bp(hbp);
3561 return error;
3565 * Do the recovery of the log. We actually do this in two phases.
3566 * The two passes are necessary in order to implement the function
3567 * of cancelling a record written into the log. The first pass
3568 * determines those things which have been cancelled, and the
3569 * second pass replays log items normally except for those which
3570 * have been cancelled. The handling of the replay and cancellations
3571 * takes place in the log item type specific routines.
3573 * The table of items which have cancel records in the log is allocated
3574 * and freed at this level, since only here do we know when all of
3575 * the log recovery has been completed.
3577 STATIC int
3578 xlog_do_log_recovery(
3579 xlog_t *log,
3580 xfs_daddr_t head_blk,
3581 xfs_daddr_t tail_blk)
3583 int error, i;
3585 ASSERT(head_blk != tail_blk);
3588 * First do a pass to find all of the cancelled buf log items.
3589 * Store them in the buf_cancel_table for use in the second pass.
3591 log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE *
3592 sizeof(struct list_head),
3593 KM_SLEEP);
3594 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
3595 INIT_LIST_HEAD(&log->l_buf_cancel_table[i]);
3597 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3598 XLOG_RECOVER_PASS1);
3599 if (error != 0) {
3600 kmem_free(log->l_buf_cancel_table);
3601 log->l_buf_cancel_table = NULL;
3602 return error;
3605 * Then do a second pass to actually recover the items in the log.
3606 * When it is complete free the table of buf cancel items.
3608 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3609 XLOG_RECOVER_PASS2);
3610 #ifdef DEBUG
3611 if (!error) {
3612 int i;
3614 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
3615 ASSERT(list_empty(&log->l_buf_cancel_table[i]));
3617 #endif /* DEBUG */
3619 kmem_free(log->l_buf_cancel_table);
3620 log->l_buf_cancel_table = NULL;
3622 return error;
3626 * Do the actual recovery
3628 STATIC int
3629 xlog_do_recover(
3630 xlog_t *log,
3631 xfs_daddr_t head_blk,
3632 xfs_daddr_t tail_blk)
3634 int error;
3635 xfs_buf_t *bp;
3636 xfs_sb_t *sbp;
3639 * First replay the images in the log.
3641 error = xlog_do_log_recovery(log, head_blk, tail_blk);
3642 if (error) {
3643 return error;
3646 xfs_flush_buftarg(log->l_mp->m_ddev_targp, 1);
3649 * If IO errors happened during recovery, bail out.
3651 if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
3652 return (EIO);
3656 * We now update the tail_lsn since much of the recovery has completed
3657 * and there may be space available to use. If there were no extent
3658 * or iunlinks, we can free up the entire log and set the tail_lsn to
3659 * be the last_sync_lsn. This was set in xlog_find_tail to be the
3660 * lsn of the last known good LR on disk. If there are extent frees
3661 * or iunlinks they will have some entries in the AIL; so we look at
3662 * the AIL to determine how to set the tail_lsn.
3664 xlog_assign_tail_lsn(log->l_mp);
3667 * Now that we've finished replaying all buffer and inode
3668 * updates, re-read in the superblock.
3670 bp = xfs_getsb(log->l_mp, 0);
3671 XFS_BUF_UNDONE(bp);
3672 ASSERT(!(XFS_BUF_ISWRITE(bp)));
3673 ASSERT(!(XFS_BUF_ISDELAYWRITE(bp)));
3674 XFS_BUF_READ(bp);
3675 XFS_BUF_UNASYNC(bp);
3676 xfsbdstrat(log->l_mp, bp);
3677 error = xfs_buf_iowait(bp);
3678 if (error) {
3679 xfs_buf_ioerror_alert(bp, __func__);
3680 ASSERT(0);
3681 xfs_buf_relse(bp);
3682 return error;
3685 /* Convert superblock from on-disk format */
3686 sbp = &log->l_mp->m_sb;
3687 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
3688 ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
3689 ASSERT(xfs_sb_good_version(sbp));
3690 xfs_buf_relse(bp);
3692 /* We've re-read the superblock so re-initialize per-cpu counters */
3693 xfs_icsb_reinit_counters(log->l_mp);
3695 xlog_recover_check_summary(log);
3697 /* Normal transactions can now occur */
3698 log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
3699 return 0;
3703 * Perform recovery and re-initialize some log variables in xlog_find_tail.
3705 * Return error or zero.
3708 xlog_recover(
3709 xlog_t *log)
3711 xfs_daddr_t head_blk, tail_blk;
3712 int error;
3714 /* find the tail of the log */
3715 if ((error = xlog_find_tail(log, &head_blk, &tail_blk)))
3716 return error;
3718 if (tail_blk != head_blk) {
3719 /* There used to be a comment here:
3721 * disallow recovery on read-only mounts. note -- mount
3722 * checks for ENOSPC and turns it into an intelligent
3723 * error message.
3724 * ...but this is no longer true. Now, unless you specify
3725 * NORECOVERY (in which case this function would never be
3726 * called), we just go ahead and recover. We do this all
3727 * under the vfs layer, so we can get away with it unless
3728 * the device itself is read-only, in which case we fail.
3730 if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
3731 return error;
3734 xfs_notice(log->l_mp, "Starting recovery (logdev: %s)",
3735 log->l_mp->m_logname ? log->l_mp->m_logname
3736 : "internal");
3738 error = xlog_do_recover(log, head_blk, tail_blk);
3739 log->l_flags |= XLOG_RECOVERY_NEEDED;
3741 return error;
3745 * In the first part of recovery we replay inodes and buffers and build
3746 * up the list of extent free items which need to be processed. Here
3747 * we process the extent free items and clean up the on disk unlinked
3748 * inode lists. This is separated from the first part of recovery so
3749 * that the root and real-time bitmap inodes can be read in from disk in
3750 * between the two stages. This is necessary so that we can free space
3751 * in the real-time portion of the file system.
3754 xlog_recover_finish(
3755 xlog_t *log)
3758 * Now we're ready to do the transactions needed for the
3759 * rest of recovery. Start with completing all the extent
3760 * free intent records and then process the unlinked inode
3761 * lists. At this point, we essentially run in normal mode
3762 * except that we're still performing recovery actions
3763 * rather than accepting new requests.
3765 if (log->l_flags & XLOG_RECOVERY_NEEDED) {
3766 int error;
3767 error = xlog_recover_process_efis(log);
3768 if (error) {
3769 xfs_alert(log->l_mp, "Failed to recover EFIs");
3770 return error;
3773 * Sync the log to get all the EFIs out of the AIL.
3774 * This isn't absolutely necessary, but it helps in
3775 * case the unlink transactions would have problems
3776 * pushing the EFIs out of the way.
3778 xfs_log_force(log->l_mp, XFS_LOG_SYNC);
3780 xlog_recover_process_iunlinks(log);
3782 xlog_recover_check_summary(log);
3784 xfs_notice(log->l_mp, "Ending recovery (logdev: %s)",
3785 log->l_mp->m_logname ? log->l_mp->m_logname
3786 : "internal");
3787 log->l_flags &= ~XLOG_RECOVERY_NEEDED;
3788 } else {
3789 xfs_info(log->l_mp, "Ending clean mount");
3791 return 0;
3795 #if defined(DEBUG)
3797 * Read all of the agf and agi counters and check that they
3798 * are consistent with the superblock counters.
3800 void
3801 xlog_recover_check_summary(
3802 xlog_t *log)
3804 xfs_mount_t *mp;
3805 xfs_agf_t *agfp;
3806 xfs_buf_t *agfbp;
3807 xfs_buf_t *agibp;
3808 xfs_agnumber_t agno;
3809 __uint64_t freeblks;
3810 __uint64_t itotal;
3811 __uint64_t ifree;
3812 int error;
3814 mp = log->l_mp;
3816 freeblks = 0LL;
3817 itotal = 0LL;
3818 ifree = 0LL;
3819 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3820 error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
3821 if (error) {
3822 xfs_alert(mp, "%s agf read failed agno %d error %d",
3823 __func__, agno, error);
3824 } else {
3825 agfp = XFS_BUF_TO_AGF(agfbp);
3826 freeblks += be32_to_cpu(agfp->agf_freeblks) +
3827 be32_to_cpu(agfp->agf_flcount);
3828 xfs_buf_relse(agfbp);
3831 error = xfs_read_agi(mp, NULL, agno, &agibp);
3832 if (error) {
3833 xfs_alert(mp, "%s agi read failed agno %d error %d",
3834 __func__, agno, error);
3835 } else {
3836 struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp);
3838 itotal += be32_to_cpu(agi->agi_count);
3839 ifree += be32_to_cpu(agi->agi_freecount);
3840 xfs_buf_relse(agibp);
3844 #endif /* DEBUG */