staging: et131x: Remove even more forward declarations
[zen-stable.git] / drivers / staging / et131x / et131x.c
blob2e621aaadd68490c226d029fa063ea465ce5e63f
1 /*
2 * Agere Systems Inc.
3 * 10/100/1000 Base-T Ethernet Driver for the ET1301 and ET131x series MACs
5 * Copyright © 2005 Agere Systems Inc.
6 * All rights reserved.
7 * http://www.agere.com
9 * Copyright (c) 2011 Mark Einon <mark.einon@gmail.com>
11 *------------------------------------------------------------------------------
13 * SOFTWARE LICENSE
15 * This software is provided subject to the following terms and conditions,
16 * which you should read carefully before using the software. Using this
17 * software indicates your acceptance of these terms and conditions. If you do
18 * not agree with these terms and conditions, do not use the software.
20 * Copyright © 2005 Agere Systems Inc.
21 * All rights reserved.
23 * Redistribution and use in source or binary forms, with or without
24 * modifications, are permitted provided that the following conditions are met:
26 * . Redistributions of source code must retain the above copyright notice, this
27 * list of conditions and the following Disclaimer as comments in the code as
28 * well as in the documentation and/or other materials provided with the
29 * distribution.
31 * . Redistributions in binary form must reproduce the above copyright notice,
32 * this list of conditions and the following Disclaimer in the documentation
33 * and/or other materials provided with the distribution.
35 * . Neither the name of Agere Systems Inc. nor the names of the contributors
36 * may be used to endorse or promote products derived from this software
37 * without specific prior written permission.
39 * Disclaimer
41 * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
42 * INCLUDING, BUT NOT LIMITED TO, INFRINGEMENT AND THE IMPLIED WARRANTIES OF
43 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. ANY
44 * USE, MODIFICATION OR DISTRIBUTION OF THIS SOFTWARE IS SOLELY AT THE USERS OWN
45 * RISK. IN NO EVENT SHALL AGERE SYSTEMS INC. OR CONTRIBUTORS BE LIABLE FOR ANY
46 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
47 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
48 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
49 * ON ANY THEORY OF LIABILITY, INCLUDING, BUT NOT LIMITED TO, CONTRACT, STRICT
50 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
51 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
52 * DAMAGE.
56 #include <linux/pci.h>
57 #include <linux/init.h>
58 #include <linux/module.h>
59 #include <linux/types.h>
60 #include <linux/kernel.h>
62 #include <linux/sched.h>
63 #include <linux/ptrace.h>
64 #include <linux/slab.h>
65 #include <linux/ctype.h>
66 #include <linux/string.h>
67 #include <linux/timer.h>
68 #include <linux/interrupt.h>
69 #include <linux/in.h>
70 #include <linux/delay.h>
71 #include <linux/bitops.h>
72 #include <linux/io.h>
73 #include <asm/system.h>
75 #include <linux/netdevice.h>
76 #include <linux/etherdevice.h>
77 #include <linux/skbuff.h>
78 #include <linux/if_arp.h>
79 #include <linux/ioport.h>
80 #include <linux/crc32.h>
81 #include <linux/random.h>
82 #include <linux/phy.h>
84 #include "et131x.h"
86 MODULE_AUTHOR("Victor Soriano <vjsoriano@agere.com>");
87 MODULE_AUTHOR("Mark Einon <mark.einon@gmail.com>");
88 MODULE_LICENSE("Dual BSD/GPL");
89 MODULE_DESCRIPTION("10/100/1000 Base-T Ethernet Driver "
90 "for the ET1310 by Agere Systems");
92 /* EEPROM defines */
93 #define MAX_NUM_REGISTER_POLLS 1000
94 #define MAX_NUM_WRITE_RETRIES 2
96 /* MAC defines */
97 #define COUNTER_WRAP_16_BIT 0x10000
98 #define COUNTER_WRAP_12_BIT 0x1000
100 /* PCI defines */
101 #define INTERNAL_MEM_SIZE 0x400 /* 1024 of internal memory */
102 #define INTERNAL_MEM_RX_OFFSET 0x1FF /* 50% Tx, 50% Rx */
104 /* ISR defines */
106 * For interrupts, normal running is:
107 * rxdma_xfr_done, phy_interrupt, mac_stat_interrupt,
108 * watchdog_interrupt & txdma_xfer_done
110 * In both cases, when flow control is enabled for either Tx or bi-direction,
111 * we additional enable rx_fbr0_low and rx_fbr1_low, so we know when the
112 * buffer rings are running low.
114 #define INT_MASK_DISABLE 0xffffffff
116 /* NOTE: Masking out MAC_STAT Interrupt for now...
117 * #define INT_MASK_ENABLE 0xfff6bf17
118 * #define INT_MASK_ENABLE_NO_FLOW 0xfff6bfd7
120 #define INT_MASK_ENABLE 0xfffebf17
121 #define INT_MASK_ENABLE_NO_FLOW 0xfffebfd7
123 /* General defines */
124 /* Packet and header sizes */
125 #define NIC_MIN_PACKET_SIZE 60
127 /* Multicast list size */
128 #define NIC_MAX_MCAST_LIST 128
130 /* Supported Filters */
131 #define ET131X_PACKET_TYPE_DIRECTED 0x0001
132 #define ET131X_PACKET_TYPE_MULTICAST 0x0002
133 #define ET131X_PACKET_TYPE_BROADCAST 0x0004
134 #define ET131X_PACKET_TYPE_PROMISCUOUS 0x0008
135 #define ET131X_PACKET_TYPE_ALL_MULTICAST 0x0010
137 /* Tx Timeout */
138 #define ET131X_TX_TIMEOUT (1 * HZ)
139 #define NIC_SEND_HANG_THRESHOLD 0
141 /* MP_TCB flags */
142 #define fMP_DEST_MULTI 0x00000001
143 #define fMP_DEST_BROAD 0x00000002
145 /* MP_ADAPTER flags */
146 #define fMP_ADAPTER_RECV_LOOKASIDE 0x00000004
147 #define fMP_ADAPTER_INTERRUPT_IN_USE 0x00000008
149 /* MP_SHARED flags */
150 #define fMP_ADAPTER_LOWER_POWER 0x00200000
152 #define fMP_ADAPTER_NON_RECOVER_ERROR 0x00800000
153 #define fMP_ADAPTER_HARDWARE_ERROR 0x04000000
155 #define fMP_ADAPTER_FAIL_SEND_MASK 0x3ff00000
157 /* Some offsets in PCI config space that are actually used. */
158 #define ET1310_PCI_MAX_PYLD 0x4C
159 #define ET1310_PCI_MAC_ADDRESS 0xA4
160 #define ET1310_PCI_EEPROM_STATUS 0xB2
161 #define ET1310_PCI_ACK_NACK 0xC0
162 #define ET1310_PCI_REPLAY 0xC2
163 #define ET1310_PCI_L0L1LATENCY 0xCF
165 /* PCI Product IDs */
166 #define ET131X_PCI_DEVICE_ID_GIG 0xED00 /* ET1310 1000 Base-T 8 */
167 #define ET131X_PCI_DEVICE_ID_FAST 0xED01 /* ET1310 100 Base-T */
169 /* Define order of magnitude converter */
170 #define NANO_IN_A_MICRO 1000
172 #define PARM_RX_NUM_BUFS_DEF 4
173 #define PARM_RX_TIME_INT_DEF 10
174 #define PARM_RX_MEM_END_DEF 0x2bc
175 #define PARM_TX_TIME_INT_DEF 40
176 #define PARM_TX_NUM_BUFS_DEF 4
177 #define PARM_DMA_CACHE_DEF 0
179 /* RX defines */
180 #define USE_FBR0 1
182 #define FBR_CHUNKS 32
184 #define MAX_DESC_PER_RING_RX 1024
186 /* number of RFDs - default and min */
187 #ifdef USE_FBR0
188 #define RFD_LOW_WATER_MARK 40
189 #define NIC_DEFAULT_NUM_RFD 1024
190 #define NUM_FBRS 2
191 #else
192 #define RFD_LOW_WATER_MARK 20
193 #define NIC_DEFAULT_NUM_RFD 256
194 #define NUM_FBRS 1
195 #endif
197 #define NIC_MIN_NUM_RFD 64
199 #define NUM_PACKETS_HANDLED 256
201 #define ALCATEL_MULTICAST_PKT 0x01000000
202 #define ALCATEL_BROADCAST_PKT 0x02000000
204 /* typedefs for Free Buffer Descriptors */
205 struct fbr_desc {
206 u32 addr_lo;
207 u32 addr_hi;
208 u32 word2; /* Bits 10-31 reserved, 0-9 descriptor */
211 /* Packet Status Ring Descriptors
213 * Word 0:
215 * top 16 bits are from the Alcatel Status Word as enumerated in
216 * PE-MCXMAC Data Sheet IPD DS54 0210-1 (also IPD-DS80 0205-2)
218 * 0: hp hash pass
219 * 1: ipa IP checksum assist
220 * 2: ipp IP checksum pass
221 * 3: tcpa TCP checksum assist
222 * 4: tcpp TCP checksum pass
223 * 5: wol WOL Event
224 * 6: rxmac_error RXMAC Error Indicator
225 * 7: drop Drop packet
226 * 8: ft Frame Truncated
227 * 9: jp Jumbo Packet
228 * 10: vp VLAN Packet
229 * 11-15: unused
230 * 16: asw_prev_pkt_dropped e.g. IFG too small on previous
231 * 17: asw_RX_DV_event short receive event detected
232 * 18: asw_false_carrier_event bad carrier since last good packet
233 * 19: asw_code_err one or more nibbles signalled as errors
234 * 20: asw_CRC_err CRC error
235 * 21: asw_len_chk_err frame length field incorrect
236 * 22: asw_too_long frame length > 1518 bytes
237 * 23: asw_OK valid CRC + no code error
238 * 24: asw_multicast has a multicast address
239 * 25: asw_broadcast has a broadcast address
240 * 26: asw_dribble_nibble spurious bits after EOP
241 * 27: asw_control_frame is a control frame
242 * 28: asw_pause_frame is a pause frame
243 * 29: asw_unsupported_op unsupported OP code
244 * 30: asw_VLAN_tag VLAN tag detected
245 * 31: asw_long_evt Rx long event
247 * Word 1:
248 * 0-15: length length in bytes
249 * 16-25: bi Buffer Index
250 * 26-27: ri Ring Index
251 * 28-31: reserved
254 struct pkt_stat_desc {
255 u32 word0;
256 u32 word1;
259 /* Typedefs for the RX DMA status word */
262 * rx status word 0 holds part of the status bits of the Rx DMA engine
263 * that get copied out to memory by the ET-1310. Word 0 is a 32 bit word
264 * which contains the Free Buffer ring 0 and 1 available offset.
266 * bit 0-9 FBR1 offset
267 * bit 10 Wrap flag for FBR1
268 * bit 16-25 FBR0 offset
269 * bit 26 Wrap flag for FBR0
273 * RXSTAT_WORD1_t structure holds part of the status bits of the Rx DMA engine
274 * that get copied out to memory by the ET-1310. Word 3 is a 32 bit word
275 * which contains the Packet Status Ring available offset.
277 * bit 0-15 reserved
278 * bit 16-27 PSRoffset
279 * bit 28 PSRwrap
280 * bit 29-31 unused
284 * struct rx_status_block is a structure representing the status of the Rx
285 * DMA engine it sits in free memory, and is pointed to by 0x101c / 0x1020
287 struct rx_status_block {
288 u32 word0;
289 u32 word1;
293 * Structure for look-up table holding free buffer ring pointers, addresses
294 * and state.
296 struct fbr_lookup {
297 void *virt[MAX_DESC_PER_RING_RX];
298 void *buffer1[MAX_DESC_PER_RING_RX];
299 void *buffer2[MAX_DESC_PER_RING_RX];
300 u32 bus_high[MAX_DESC_PER_RING_RX];
301 u32 bus_low[MAX_DESC_PER_RING_RX];
302 void *ring_virtaddr;
303 dma_addr_t ring_physaddr;
304 void *mem_virtaddrs[MAX_DESC_PER_RING_RX / FBR_CHUNKS];
305 dma_addr_t mem_physaddrs[MAX_DESC_PER_RING_RX / FBR_CHUNKS];
306 uint64_t real_physaddr;
307 uint64_t offset;
308 u32 local_full;
309 u32 num_entries;
310 u32 buffsize;
314 * struct rx_ring is the sructure representing the adaptor's local
315 * reference(s) to the rings
317 ******************************************************************************
318 * IMPORTANT NOTE :- fbr_lookup *fbr[NUM_FBRS] uses index 0 to refer to FBR1
319 * and index 1 to refer to FRB0
320 ******************************************************************************
322 struct rx_ring {
323 struct fbr_lookup *fbr[NUM_FBRS];
324 void *ps_ring_virtaddr;
325 dma_addr_t ps_ring_physaddr;
326 u32 local_psr_full;
327 u32 psr_num_entries;
329 struct rx_status_block *rx_status_block;
330 dma_addr_t rx_status_bus;
332 /* RECV */
333 struct list_head recv_list;
334 u32 num_ready_recv;
336 u32 num_rfd;
338 bool unfinished_receives;
340 /* lookaside lists */
341 struct kmem_cache *recv_lookaside;
344 /* TX defines */
346 * word 2 of the control bits in the Tx Descriptor ring for the ET-1310
348 * 0-15: length of packet
349 * 16-27: VLAN tag
350 * 28: VLAN CFI
351 * 29-31: VLAN priority
353 * word 3 of the control bits in the Tx Descriptor ring for the ET-1310
355 * 0: last packet in the sequence
356 * 1: first packet in the sequence
357 * 2: interrupt the processor when this pkt sent
358 * 3: Control word - no packet data
359 * 4: Issue half-duplex backpressure : XON/XOFF
360 * 5: send pause frame
361 * 6: Tx frame has error
362 * 7: append CRC
363 * 8: MAC override
364 * 9: pad packet
365 * 10: Packet is a Huge packet
366 * 11: append VLAN tag
367 * 12: IP checksum assist
368 * 13: TCP checksum assist
369 * 14: UDP checksum assist
372 /* struct tx_desc represents each descriptor on the ring */
373 struct tx_desc {
374 u32 addr_hi;
375 u32 addr_lo;
376 u32 len_vlan; /* control words how to xmit the */
377 u32 flags; /* data (detailed above) */
381 * The status of the Tx DMA engine it sits in free memory, and is pointed to
382 * by 0x101c / 0x1020. This is a DMA10 type
385 /* TCB (Transmit Control Block: Host Side) */
386 struct tcb {
387 struct tcb *next; /* Next entry in ring */
388 u32 flags; /* Our flags for the packet */
389 u32 count; /* Used to spot stuck/lost packets */
390 u32 stale; /* Used to spot stuck/lost packets */
391 struct sk_buff *skb; /* Network skb we are tied to */
392 u32 index; /* Ring indexes */
393 u32 index_start;
396 /* Structure representing our local reference(s) to the ring */
397 struct tx_ring {
398 /* TCB (Transmit Control Block) memory and lists */
399 struct tcb *tcb_ring;
401 /* List of TCBs that are ready to be used */
402 struct tcb *tcb_qhead;
403 struct tcb *tcb_qtail;
405 /* list of TCBs that are currently being sent. NOTE that access to all
406 * three of these (including used) are controlled via the
407 * TCBSendQLock. This lock should be secured prior to incementing /
408 * decrementing used, or any queue manipulation on send_head /
409 * tail
411 struct tcb *send_head;
412 struct tcb *send_tail;
413 int used;
415 /* The actual descriptor ring */
416 struct tx_desc *tx_desc_ring;
417 dma_addr_t tx_desc_ring_pa;
419 /* send_idx indicates where we last wrote to in the descriptor ring. */
420 u32 send_idx;
422 /* The location of the write-back status block */
423 u32 *tx_status;
424 dma_addr_t tx_status_pa;
426 /* Packets since the last IRQ: used for interrupt coalescing */
427 int since_irq;
430 /* ADAPTER defines */
432 * Do not change these values: if changed, then change also in respective
433 * TXdma and Rxdma engines
435 #define NUM_DESC_PER_RING_TX 512 /* TX Do not change these values */
436 #define NUM_TCB 64
439 * These values are all superseded by registry entries to facilitate tuning.
440 * Once the desired performance has been achieved, the optimal registry values
441 * should be re-populated to these #defines:
443 #define TX_ERROR_PERIOD 1000
445 #define LO_MARK_PERCENT_FOR_PSR 15
446 #define LO_MARK_PERCENT_FOR_RX 15
448 /* RFD (Receive Frame Descriptor) */
449 struct rfd {
450 struct list_head list_node;
451 struct sk_buff *skb;
452 u32 len; /* total size of receive frame */
453 u16 bufferindex;
454 u8 ringindex;
457 /* Flow Control */
458 #define FLOW_BOTH 0
459 #define FLOW_TXONLY 1
460 #define FLOW_RXONLY 2
461 #define FLOW_NONE 3
463 /* Struct to define some device statistics */
464 struct ce_stats {
465 /* MIB II variables
467 * NOTE: atomic_t types are only guaranteed to store 24-bits; if we
468 * MUST have 32, then we'll need another way to perform atomic
469 * operations
471 u32 unicast_pkts_rcvd;
472 atomic_t unicast_pkts_xmtd;
473 u32 multicast_pkts_rcvd;
474 atomic_t multicast_pkts_xmtd;
475 u32 broadcast_pkts_rcvd;
476 atomic_t broadcast_pkts_xmtd;
477 u32 rcvd_pkts_dropped;
479 /* Tx Statistics. */
480 u32 tx_underflows;
482 u32 tx_collisions;
483 u32 tx_excessive_collisions;
484 u32 tx_first_collisions;
485 u32 tx_late_collisions;
486 u32 tx_max_pkt_errs;
487 u32 tx_deferred;
489 /* Rx Statistics. */
490 u32 rx_overflows;
492 u32 rx_length_errs;
493 u32 rx_align_errs;
494 u32 rx_crc_errs;
495 u32 rx_code_violations;
496 u32 rx_other_errs;
498 u32 synchronous_iterations;
499 u32 interrupt_status;
502 /* The private adapter structure */
503 struct et131x_adapter {
504 struct net_device *netdev;
505 struct pci_dev *pdev;
506 struct mii_bus *mii_bus;
507 struct phy_device *phydev;
508 struct work_struct task;
510 /* Flags that indicate current state of the adapter */
511 u32 flags;
513 /* local link state, to determine if a state change has occurred */
514 int link;
516 /* Configuration */
517 u8 rom_addr[ETH_ALEN];
518 u8 addr[ETH_ALEN];
519 bool has_eeprom;
520 u8 eeprom_data[2];
522 /* Spinlocks */
523 spinlock_t lock;
525 spinlock_t tcb_send_qlock;
526 spinlock_t tcb_ready_qlock;
527 spinlock_t send_hw_lock;
529 spinlock_t rcv_lock;
530 spinlock_t rcv_pend_lock;
531 spinlock_t fbr_lock;
533 spinlock_t phy_lock;
535 /* Packet Filter and look ahead size */
536 u32 packet_filter;
538 /* multicast list */
539 u32 multicast_addr_count;
540 u8 multicast_list[NIC_MAX_MCAST_LIST][ETH_ALEN];
542 /* Pointer to the device's PCI register space */
543 struct address_map __iomem *regs;
545 /* Registry parameters */
546 u8 wanted_flow; /* Flow we want for 802.3x flow control */
547 u32 registry_jumbo_packet; /* Max supported ethernet packet size */
549 /* Derived from the registry: */
550 u8 flowcontrol; /* flow control validated by the far-end */
552 /* Minimize init-time */
553 struct timer_list error_timer;
555 /* variable putting the phy into coma mode when boot up with no cable
556 * plugged in after 5 seconds
558 u8 boot_coma;
560 /* Next two used to save power information at power down. This
561 * information will be used during power up to set up parts of Power
562 * Management in JAGCore
564 u16 pdown_speed;
565 u8 pdown_duplex;
567 /* Tx Memory Variables */
568 struct tx_ring tx_ring;
570 /* Rx Memory Variables */
571 struct rx_ring rx_ring;
573 /* Stats */
574 struct ce_stats stats;
576 struct net_device_stats net_stats;
579 void et131x_rx_dma_disable(struct et131x_adapter *adapter);
580 void et131x_rx_dma_enable(struct et131x_adapter *adapter);
581 void et131x_init_send(struct et131x_adapter *adapter);
582 void et131x_tx_dma_enable(struct et131x_adapter *adapter);
584 /* EEPROM functions */
586 static int eeprom_wait_ready(struct pci_dev *pdev, u32 *status)
588 u32 reg;
589 int i;
592 * 1. Check LBCIF Status Register for bits 6 & 3:2 all equal to 0 and
593 * bits 7,1:0 both equal to 1, at least once after reset.
594 * Subsequent operations need only to check that bits 1:0 are equal
595 * to 1 prior to starting a single byte read/write
598 for (i = 0; i < MAX_NUM_REGISTER_POLLS; i++) {
599 /* Read registers grouped in DWORD1 */
600 if (pci_read_config_dword(pdev, LBCIF_DWORD1_GROUP, &reg))
601 return -EIO;
603 /* I2C idle and Phy Queue Avail both true */
604 if ((reg & 0x3000) == 0x3000) {
605 if (status)
606 *status = reg;
607 return reg & 0xFF;
610 return -ETIMEDOUT;
615 * eeprom_write - Write a byte to the ET1310's EEPROM
616 * @adapter: pointer to our private adapter structure
617 * @addr: the address to write
618 * @data: the value to write
620 * Returns 1 for a successful write.
622 static int eeprom_write(struct et131x_adapter *adapter, u32 addr, u8 data)
624 struct pci_dev *pdev = adapter->pdev;
625 int index = 0;
626 int retries;
627 int err = 0;
628 int i2c_wack = 0;
629 int writeok = 0;
630 u32 status;
631 u32 val = 0;
634 * For an EEPROM, an I2C single byte write is defined as a START
635 * condition followed by the device address, EEPROM address, one byte
636 * of data and a STOP condition. The STOP condition will trigger the
637 * EEPROM's internally timed write cycle to the nonvolatile memory.
638 * All inputs are disabled during this write cycle and the EEPROM will
639 * not respond to any access until the internal write is complete.
642 err = eeprom_wait_ready(pdev, NULL);
643 if (err)
644 return err;
647 * 2. Write to the LBCIF Control Register: bit 7=1, bit 6=1, bit 3=0,
648 * and bits 1:0 both =0. Bit 5 should be set according to the
649 * type of EEPROM being accessed (1=two byte addressing, 0=one
650 * byte addressing).
652 if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
653 LBCIF_CONTROL_LBCIF_ENABLE | LBCIF_CONTROL_I2C_WRITE))
654 return -EIO;
656 i2c_wack = 1;
658 /* Prepare EEPROM address for Step 3 */
660 for (retries = 0; retries < MAX_NUM_WRITE_RETRIES; retries++) {
661 /* Write the address to the LBCIF Address Register */
662 if (pci_write_config_dword(pdev, LBCIF_ADDRESS_REGISTER, addr))
663 break;
665 * Write the data to the LBCIF Data Register (the I2C write
666 * will begin).
668 if (pci_write_config_byte(pdev, LBCIF_DATA_REGISTER, data))
669 break;
671 * Monitor bit 1:0 of the LBCIF Status Register. When bits
672 * 1:0 are both equal to 1, the I2C write has completed and the
673 * internal write cycle of the EEPROM is about to start.
674 * (bits 1:0 = 01 is a legal state while waiting from both
675 * equal to 1, but bits 1:0 = 10 is invalid and implies that
676 * something is broken).
678 err = eeprom_wait_ready(pdev, &status);
679 if (err < 0)
680 return 0;
683 * Check bit 3 of the LBCIF Status Register. If equal to 1,
684 * an error has occurred.Don't break here if we are revision
685 * 1, this is so we do a blind write for load bug.
687 if ((status & LBCIF_STATUS_GENERAL_ERROR)
688 && adapter->pdev->revision == 0)
689 break;
692 * Check bit 2 of the LBCIF Status Register. If equal to 1 an
693 * ACK error has occurred on the address phase of the write.
694 * This could be due to an actual hardware failure or the
695 * EEPROM may still be in its internal write cycle from a
696 * previous write. This write operation was ignored and must be
697 *repeated later.
699 if (status & LBCIF_STATUS_ACK_ERROR) {
701 * This could be due to an actual hardware failure
702 * or the EEPROM may still be in its internal write
703 * cycle from a previous write. This write operation
704 * was ignored and must be repeated later.
706 udelay(10);
707 continue;
710 writeok = 1;
711 break;
715 * Set bit 6 of the LBCIF Control Register = 0.
717 udelay(10);
719 while (i2c_wack) {
720 if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
721 LBCIF_CONTROL_LBCIF_ENABLE))
722 writeok = 0;
724 /* Do read until internal ACK_ERROR goes away meaning write
725 * completed
727 do {
728 pci_write_config_dword(pdev,
729 LBCIF_ADDRESS_REGISTER,
730 addr);
731 do {
732 pci_read_config_dword(pdev,
733 LBCIF_DATA_REGISTER, &val);
734 } while ((val & 0x00010000) == 0);
735 } while (val & 0x00040000);
737 if ((val & 0xFF00) != 0xC000 || index == 10000)
738 break;
739 index++;
741 return writeok ? 0 : -EIO;
745 * eeprom_read - Read a byte from the ET1310's EEPROM
746 * @adapter: pointer to our private adapter structure
747 * @addr: the address from which to read
748 * @pdata: a pointer to a byte in which to store the value of the read
749 * @eeprom_id: the ID of the EEPROM
750 * @addrmode: how the EEPROM is to be accessed
752 * Returns 1 for a successful read
754 static int eeprom_read(struct et131x_adapter *adapter, u32 addr, u8 *pdata)
756 struct pci_dev *pdev = adapter->pdev;
757 int err;
758 u32 status;
761 * A single byte read is similar to the single byte write, with the
762 * exception of the data flow:
765 err = eeprom_wait_ready(pdev, NULL);
766 if (err)
767 return err;
769 * Write to the LBCIF Control Register: bit 7=1, bit 6=0, bit 3=0,
770 * and bits 1:0 both =0. Bit 5 should be set according to the type
771 * of EEPROM being accessed (1=two byte addressing, 0=one byte
772 * addressing).
774 if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
775 LBCIF_CONTROL_LBCIF_ENABLE))
776 return -EIO;
778 * Write the address to the LBCIF Address Register (I2C read will
779 * begin).
781 if (pci_write_config_dword(pdev, LBCIF_ADDRESS_REGISTER, addr))
782 return -EIO;
784 * Monitor bit 0 of the LBCIF Status Register. When = 1, I2C read
785 * is complete. (if bit 1 =1 and bit 0 stays = 0, a hardware failure
786 * has occurred).
788 err = eeprom_wait_ready(pdev, &status);
789 if (err < 0)
790 return err;
792 * Regardless of error status, read data byte from LBCIF Data
793 * Register.
795 *pdata = err;
797 * Check bit 2 of the LBCIF Status Register. If = 1,
798 * then an error has occurred.
800 return (status & LBCIF_STATUS_ACK_ERROR) ? -EIO : 0;
803 int et131x_init_eeprom(struct et131x_adapter *adapter)
805 struct pci_dev *pdev = adapter->pdev;
806 u8 eestatus;
808 /* We first need to check the EEPROM Status code located at offset
809 * 0xB2 of config space
811 pci_read_config_byte(pdev, ET1310_PCI_EEPROM_STATUS,
812 &eestatus);
814 /* THIS IS A WORKAROUND:
815 * I need to call this function twice to get my card in a
816 * LG M1 Express Dual running. I tried also a msleep before this
817 * function, because I thougth there could be some time condidions
818 * but it didn't work. Call the whole function twice also work.
820 if (pci_read_config_byte(pdev, ET1310_PCI_EEPROM_STATUS, &eestatus)) {
821 dev_err(&pdev->dev,
822 "Could not read PCI config space for EEPROM Status\n");
823 return -EIO;
826 /* Determine if the error(s) we care about are present. If they are
827 * present we need to fail.
829 if (eestatus & 0x4C) {
830 int write_failed = 0;
831 if (pdev->revision == 0x01) {
832 int i;
833 static const u8 eedata[4] = { 0xFE, 0x13, 0x10, 0xFF };
835 /* Re-write the first 4 bytes if we have an eeprom
836 * present and the revision id is 1, this fixes the
837 * corruption seen with 1310 B Silicon
839 for (i = 0; i < 3; i++)
840 if (eeprom_write(adapter, i, eedata[i]) < 0)
841 write_failed = 1;
843 if (pdev->revision != 0x01 || write_failed) {
844 dev_err(&pdev->dev,
845 "Fatal EEPROM Status Error - 0x%04x\n", eestatus);
847 /* This error could mean that there was an error
848 * reading the eeprom or that the eeprom doesn't exist.
849 * We will treat each case the same and not try to
850 * gather additional information that normally would
851 * come from the eeprom, like MAC Address
853 adapter->has_eeprom = 0;
854 return -EIO;
857 adapter->has_eeprom = 1;
859 /* Read the EEPROM for information regarding LED behavior. Refer to
860 * ET1310_phy.c, et131x_xcvr_init(), for its use.
862 eeprom_read(adapter, 0x70, &adapter->eeprom_data[0]);
863 eeprom_read(adapter, 0x71, &adapter->eeprom_data[1]);
865 if (adapter->eeprom_data[0] != 0xcd)
866 /* Disable all optional features */
867 adapter->eeprom_data[1] = 0x00;
869 return 0;
872 /* MAC functions */
875 * et1310_config_mac_regs1 - Initialize the first part of MAC regs
876 * @adapter: pointer to our adapter structure
878 void et1310_config_mac_regs1(struct et131x_adapter *adapter)
880 struct mac_regs __iomem *macregs = &adapter->regs->mac;
881 u32 station1;
882 u32 station2;
883 u32 ipg;
885 /* First we need to reset everything. Write to MAC configuration
886 * register 1 to perform reset.
888 writel(0xC00F0000, &macregs->cfg1);
890 /* Next lets configure the MAC Inter-packet gap register */
891 ipg = 0x38005860; /* IPG1 0x38 IPG2 0x58 B2B 0x60 */
892 ipg |= 0x50 << 8; /* ifg enforce 0x50 */
893 writel(ipg, &macregs->ipg);
895 /* Next lets configure the MAC Half Duplex register */
896 /* BEB trunc 0xA, Ex Defer, Rexmit 0xF Coll 0x37 */
897 writel(0x00A1F037, &macregs->hfdp);
899 /* Next lets configure the MAC Interface Control register */
900 writel(0, &macregs->if_ctrl);
902 /* Let's move on to setting up the mii management configuration */
903 writel(0x07, &macregs->mii_mgmt_cfg); /* Clock reset 0x7 */
905 /* Next lets configure the MAC Station Address register. These
906 * values are read from the EEPROM during initialization and stored
907 * in the adapter structure. We write what is stored in the adapter
908 * structure to the MAC Station Address registers high and low. This
909 * station address is used for generating and checking pause control
910 * packets.
912 station2 = (adapter->addr[1] << ET_MAC_STATION_ADDR2_OC2_SHIFT) |
913 (adapter->addr[0] << ET_MAC_STATION_ADDR2_OC1_SHIFT);
914 station1 = (adapter->addr[5] << ET_MAC_STATION_ADDR1_OC6_SHIFT) |
915 (adapter->addr[4] << ET_MAC_STATION_ADDR1_OC5_SHIFT) |
916 (adapter->addr[3] << ET_MAC_STATION_ADDR1_OC4_SHIFT) |
917 adapter->addr[2];
918 writel(station1, &macregs->station_addr_1);
919 writel(station2, &macregs->station_addr_2);
921 /* Max ethernet packet in bytes that will passed by the mac without
922 * being truncated. Allow the MAC to pass 4 more than our max packet
923 * size. This is 4 for the Ethernet CRC.
925 * Packets larger than (registry_jumbo_packet) that do not contain a
926 * VLAN ID will be dropped by the Rx function.
928 writel(adapter->registry_jumbo_packet + 4, &macregs->max_fm_len);
930 /* clear out MAC config reset */
931 writel(0, &macregs->cfg1);
935 * et1310_config_mac_regs2 - Initialize the second part of MAC regs
936 * @adapter: pointer to our adapter structure
938 void et1310_config_mac_regs2(struct et131x_adapter *adapter)
940 int32_t delay = 0;
941 struct mac_regs __iomem *mac = &adapter->regs->mac;
942 struct phy_device *phydev = adapter->phydev;
943 u32 cfg1;
944 u32 cfg2;
945 u32 ifctrl;
946 u32 ctl;
948 ctl = readl(&adapter->regs->txmac.ctl);
949 cfg1 = readl(&mac->cfg1);
950 cfg2 = readl(&mac->cfg2);
951 ifctrl = readl(&mac->if_ctrl);
953 /* Set up the if mode bits */
954 cfg2 &= ~0x300;
955 if (phydev && phydev->speed == SPEED_1000) {
956 cfg2 |= 0x200;
957 /* Phy mode bit */
958 ifctrl &= ~(1 << 24);
959 } else {
960 cfg2 |= 0x100;
961 ifctrl |= (1 << 24);
964 /* We need to enable Rx/Tx */
965 cfg1 |= CFG1_RX_ENABLE | CFG1_TX_ENABLE | CFG1_TX_FLOW;
966 /* Initialize loop back to off */
967 cfg1 &= ~(CFG1_LOOPBACK | CFG1_RX_FLOW);
968 if (adapter->flowcontrol == FLOW_RXONLY ||
969 adapter->flowcontrol == FLOW_BOTH)
970 cfg1 |= CFG1_RX_FLOW;
971 writel(cfg1, &mac->cfg1);
973 /* Now we need to initialize the MAC Configuration 2 register */
974 /* preamble 7, check length, huge frame off, pad crc, crc enable
975 full duplex off */
976 cfg2 |= 0x7016;
977 cfg2 &= ~0x0021;
979 /* Turn on duplex if needed */
980 if (phydev && phydev->duplex == DUPLEX_FULL)
981 cfg2 |= 0x01;
983 ifctrl &= ~(1 << 26);
984 if (phydev && phydev->duplex == DUPLEX_HALF)
985 ifctrl |= (1<<26); /* Enable ghd */
987 writel(ifctrl, &mac->if_ctrl);
988 writel(cfg2, &mac->cfg2);
990 do {
991 udelay(10);
992 delay++;
993 cfg1 = readl(&mac->cfg1);
994 } while ((cfg1 & CFG1_WAIT) != CFG1_WAIT && delay < 100);
996 if (delay == 100) {
997 dev_warn(&adapter->pdev->dev,
998 "Syncd bits did not respond correctly cfg1 word 0x%08x\n",
999 cfg1);
1002 /* Enable txmac */
1003 ctl |= 0x09; /* TX mac enable, FC disable */
1004 writel(ctl, &adapter->regs->txmac.ctl);
1006 /* Ready to start the RXDMA/TXDMA engine */
1007 if (adapter->flags & fMP_ADAPTER_LOWER_POWER) {
1008 et131x_rx_dma_enable(adapter);
1009 et131x_tx_dma_enable(adapter);
1014 * et1310_in_phy_coma - check if the device is in phy coma
1015 * @adapter: pointer to our adapter structure
1017 * Returns 0 if the device is not in phy coma, 1 if it is in phy coma
1019 int et1310_in_phy_coma(struct et131x_adapter *adapter)
1021 u32 pmcsr;
1023 pmcsr = readl(&adapter->regs->global.pm_csr);
1025 return ET_PM_PHY_SW_COMA & pmcsr ? 1 : 0;
1028 void et1310_setup_device_for_multicast(struct et131x_adapter *adapter)
1030 struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
1031 uint32_t nIndex;
1032 uint32_t result;
1033 uint32_t hash1 = 0;
1034 uint32_t hash2 = 0;
1035 uint32_t hash3 = 0;
1036 uint32_t hash4 = 0;
1037 u32 pm_csr;
1039 /* If ET131X_PACKET_TYPE_MULTICAST is specified, then we provision
1040 * the multi-cast LIST. If it is NOT specified, (and "ALL" is not
1041 * specified) then we should pass NO multi-cast addresses to the
1042 * driver.
1044 if (adapter->packet_filter & ET131X_PACKET_TYPE_MULTICAST) {
1045 /* Loop through our multicast array and set up the device */
1046 for (nIndex = 0; nIndex < adapter->multicast_addr_count;
1047 nIndex++) {
1048 result = ether_crc(6, adapter->multicast_list[nIndex]);
1050 result = (result & 0x3F800000) >> 23;
1052 if (result < 32) {
1053 hash1 |= (1 << result);
1054 } else if ((31 < result) && (result < 64)) {
1055 result -= 32;
1056 hash2 |= (1 << result);
1057 } else if ((63 < result) && (result < 96)) {
1058 result -= 64;
1059 hash3 |= (1 << result);
1060 } else {
1061 result -= 96;
1062 hash4 |= (1 << result);
1067 /* Write out the new hash to the device */
1068 pm_csr = readl(&adapter->regs->global.pm_csr);
1069 if (!et1310_in_phy_coma(adapter)) {
1070 writel(hash1, &rxmac->multi_hash1);
1071 writel(hash2, &rxmac->multi_hash2);
1072 writel(hash3, &rxmac->multi_hash3);
1073 writel(hash4, &rxmac->multi_hash4);
1077 void et1310_setup_device_for_unicast(struct et131x_adapter *adapter)
1079 struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
1080 u32 uni_pf1;
1081 u32 uni_pf2;
1082 u32 uni_pf3;
1083 u32 pm_csr;
1085 /* Set up unicast packet filter reg 3 to be the first two octets of
1086 * the MAC address for both address
1088 * Set up unicast packet filter reg 2 to be the octets 2 - 5 of the
1089 * MAC address for second address
1091 * Set up unicast packet filter reg 3 to be the octets 2 - 5 of the
1092 * MAC address for first address
1094 uni_pf3 = (adapter->addr[0] << ET_UNI_PF_ADDR2_1_SHIFT) |
1095 (adapter->addr[1] << ET_UNI_PF_ADDR2_2_SHIFT) |
1096 (adapter->addr[0] << ET_UNI_PF_ADDR1_1_SHIFT) |
1097 adapter->addr[1];
1099 uni_pf2 = (adapter->addr[2] << ET_UNI_PF_ADDR2_3_SHIFT) |
1100 (adapter->addr[3] << ET_UNI_PF_ADDR2_4_SHIFT) |
1101 (adapter->addr[4] << ET_UNI_PF_ADDR2_5_SHIFT) |
1102 adapter->addr[5];
1104 uni_pf1 = (adapter->addr[2] << ET_UNI_PF_ADDR1_3_SHIFT) |
1105 (adapter->addr[3] << ET_UNI_PF_ADDR1_4_SHIFT) |
1106 (adapter->addr[4] << ET_UNI_PF_ADDR1_5_SHIFT) |
1107 adapter->addr[5];
1109 pm_csr = readl(&adapter->regs->global.pm_csr);
1110 if (!et1310_in_phy_coma(adapter)) {
1111 writel(uni_pf1, &rxmac->uni_pf_addr1);
1112 writel(uni_pf2, &rxmac->uni_pf_addr2);
1113 writel(uni_pf3, &rxmac->uni_pf_addr3);
1117 void et1310_config_rxmac_regs(struct et131x_adapter *adapter)
1119 struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
1120 struct phy_device *phydev = adapter->phydev;
1121 u32 sa_lo;
1122 u32 sa_hi = 0;
1123 u32 pf_ctrl = 0;
1125 /* Disable the MAC while it is being configured (also disable WOL) */
1126 writel(0x8, &rxmac->ctrl);
1128 /* Initialize WOL to disabled. */
1129 writel(0, &rxmac->crc0);
1130 writel(0, &rxmac->crc12);
1131 writel(0, &rxmac->crc34);
1133 /* We need to set the WOL mask0 - mask4 next. We initialize it to
1134 * its default Values of 0x00000000 because there are not WOL masks
1135 * as of this time.
1137 writel(0, &rxmac->mask0_word0);
1138 writel(0, &rxmac->mask0_word1);
1139 writel(0, &rxmac->mask0_word2);
1140 writel(0, &rxmac->mask0_word3);
1142 writel(0, &rxmac->mask1_word0);
1143 writel(0, &rxmac->mask1_word1);
1144 writel(0, &rxmac->mask1_word2);
1145 writel(0, &rxmac->mask1_word3);
1147 writel(0, &rxmac->mask2_word0);
1148 writel(0, &rxmac->mask2_word1);
1149 writel(0, &rxmac->mask2_word2);
1150 writel(0, &rxmac->mask2_word3);
1152 writel(0, &rxmac->mask3_word0);
1153 writel(0, &rxmac->mask3_word1);
1154 writel(0, &rxmac->mask3_word2);
1155 writel(0, &rxmac->mask3_word3);
1157 writel(0, &rxmac->mask4_word0);
1158 writel(0, &rxmac->mask4_word1);
1159 writel(0, &rxmac->mask4_word2);
1160 writel(0, &rxmac->mask4_word3);
1162 /* Lets setup the WOL Source Address */
1163 sa_lo = (adapter->addr[2] << ET_WOL_LO_SA3_SHIFT) |
1164 (adapter->addr[3] << ET_WOL_LO_SA4_SHIFT) |
1165 (adapter->addr[4] << ET_WOL_LO_SA5_SHIFT) |
1166 adapter->addr[5];
1167 writel(sa_lo, &rxmac->sa_lo);
1169 sa_hi = (u32) (adapter->addr[0] << ET_WOL_HI_SA1_SHIFT) |
1170 adapter->addr[1];
1171 writel(sa_hi, &rxmac->sa_hi);
1173 /* Disable all Packet Filtering */
1174 writel(0, &rxmac->pf_ctrl);
1176 /* Let's initialize the Unicast Packet filtering address */
1177 if (adapter->packet_filter & ET131X_PACKET_TYPE_DIRECTED) {
1178 et1310_setup_device_for_unicast(adapter);
1179 pf_ctrl |= 4; /* Unicast filter */
1180 } else {
1181 writel(0, &rxmac->uni_pf_addr1);
1182 writel(0, &rxmac->uni_pf_addr2);
1183 writel(0, &rxmac->uni_pf_addr3);
1186 /* Let's initialize the Multicast hash */
1187 if (!(adapter->packet_filter & ET131X_PACKET_TYPE_ALL_MULTICAST)) {
1188 pf_ctrl |= 2; /* Multicast filter */
1189 et1310_setup_device_for_multicast(adapter);
1192 /* Runt packet filtering. Didn't work in version A silicon. */
1193 pf_ctrl |= (NIC_MIN_PACKET_SIZE + 4) << 16;
1194 pf_ctrl |= 8; /* Fragment filter */
1196 if (adapter->registry_jumbo_packet > 8192)
1197 /* In order to transmit jumbo packets greater than 8k, the
1198 * FIFO between RxMAC and RxDMA needs to be reduced in size
1199 * to (16k - Jumbo packet size). In order to implement this,
1200 * we must use "cut through" mode in the RxMAC, which chops
1201 * packets down into segments which are (max_size * 16). In
1202 * this case we selected 256 bytes, since this is the size of
1203 * the PCI-Express TLP's that the 1310 uses.
1205 * seg_en on, fc_en off, size 0x10
1207 writel(0x41, &rxmac->mcif_ctrl_max_seg);
1208 else
1209 writel(0, &rxmac->mcif_ctrl_max_seg);
1211 /* Initialize the MCIF water marks */
1212 writel(0, &rxmac->mcif_water_mark);
1214 /* Initialize the MIF control */
1215 writel(0, &rxmac->mif_ctrl);
1217 /* Initialize the Space Available Register */
1218 writel(0, &rxmac->space_avail);
1220 /* Initialize the the mif_ctrl register
1221 * bit 3: Receive code error. One or more nibbles were signaled as
1222 * errors during the reception of the packet. Clear this
1223 * bit in Gigabit, set it in 100Mbit. This was derived
1224 * experimentally at UNH.
1225 * bit 4: Receive CRC error. The packet's CRC did not match the
1226 * internally generated CRC.
1227 * bit 5: Receive length check error. Indicates that frame length
1228 * field value in the packet does not match the actual data
1229 * byte length and is not a type field.
1230 * bit 16: Receive frame truncated.
1231 * bit 17: Drop packet enable
1233 if (phydev && phydev->speed == SPEED_100)
1234 writel(0x30038, &rxmac->mif_ctrl);
1235 else
1236 writel(0x30030, &rxmac->mif_ctrl);
1238 /* Finally we initialize RxMac to be enabled & WOL disabled. Packet
1239 * filter is always enabled since it is where the runt packets are
1240 * supposed to be dropped. For version A silicon, runt packet
1241 * dropping doesn't work, so it is disabled in the pf_ctrl register,
1242 * but we still leave the packet filter on.
1244 writel(pf_ctrl, &rxmac->pf_ctrl);
1245 writel(0x9, &rxmac->ctrl);
1248 void et1310_config_txmac_regs(struct et131x_adapter *adapter)
1250 struct txmac_regs __iomem *txmac = &adapter->regs->txmac;
1252 /* We need to update the Control Frame Parameters
1253 * cfpt - control frame pause timer set to 64 (0x40)
1254 * cfep - control frame extended pause timer set to 0x0
1256 if (adapter->flowcontrol == FLOW_NONE)
1257 writel(0, &txmac->cf_param);
1258 else
1259 writel(0x40, &txmac->cf_param);
1262 void et1310_config_macstat_regs(struct et131x_adapter *adapter)
1264 struct macstat_regs __iomem *macstat =
1265 &adapter->regs->macstat;
1267 /* Next we need to initialize all the macstat registers to zero on
1268 * the device.
1270 writel(0, &macstat->txrx_0_64_byte_frames);
1271 writel(0, &macstat->txrx_65_127_byte_frames);
1272 writel(0, &macstat->txrx_128_255_byte_frames);
1273 writel(0, &macstat->txrx_256_511_byte_frames);
1274 writel(0, &macstat->txrx_512_1023_byte_frames);
1275 writel(0, &macstat->txrx_1024_1518_byte_frames);
1276 writel(0, &macstat->txrx_1519_1522_gvln_frames);
1278 writel(0, &macstat->rx_bytes);
1279 writel(0, &macstat->rx_packets);
1280 writel(0, &macstat->rx_fcs_errs);
1281 writel(0, &macstat->rx_multicast_packets);
1282 writel(0, &macstat->rx_broadcast_packets);
1283 writel(0, &macstat->rx_control_frames);
1284 writel(0, &macstat->rx_pause_frames);
1285 writel(0, &macstat->rx_unknown_opcodes);
1286 writel(0, &macstat->rx_align_errs);
1287 writel(0, &macstat->rx_frame_len_errs);
1288 writel(0, &macstat->rx_code_errs);
1289 writel(0, &macstat->rx_carrier_sense_errs);
1290 writel(0, &macstat->rx_undersize_packets);
1291 writel(0, &macstat->rx_oversize_packets);
1292 writel(0, &macstat->rx_fragment_packets);
1293 writel(0, &macstat->rx_jabbers);
1294 writel(0, &macstat->rx_drops);
1296 writel(0, &macstat->tx_bytes);
1297 writel(0, &macstat->tx_packets);
1298 writel(0, &macstat->tx_multicast_packets);
1299 writel(0, &macstat->tx_broadcast_packets);
1300 writel(0, &macstat->tx_pause_frames);
1301 writel(0, &macstat->tx_deferred);
1302 writel(0, &macstat->tx_excessive_deferred);
1303 writel(0, &macstat->tx_single_collisions);
1304 writel(0, &macstat->tx_multiple_collisions);
1305 writel(0, &macstat->tx_late_collisions);
1306 writel(0, &macstat->tx_excessive_collisions);
1307 writel(0, &macstat->tx_total_collisions);
1308 writel(0, &macstat->tx_pause_honored_frames);
1309 writel(0, &macstat->tx_drops);
1310 writel(0, &macstat->tx_jabbers);
1311 writel(0, &macstat->tx_fcs_errs);
1312 writel(0, &macstat->tx_control_frames);
1313 writel(0, &macstat->tx_oversize_frames);
1314 writel(0, &macstat->tx_undersize_frames);
1315 writel(0, &macstat->tx_fragments);
1316 writel(0, &macstat->carry_reg1);
1317 writel(0, &macstat->carry_reg2);
1319 /* Unmask any counters that we want to track the overflow of.
1320 * Initially this will be all counters. It may become clear later
1321 * that we do not need to track all counters.
1323 writel(0xFFFFBE32, &macstat->carry_reg1_mask);
1324 writel(0xFFFE7E8B, &macstat->carry_reg2_mask);
1328 * et131x_phy_mii_read - Read from the PHY through the MII Interface on the MAC
1329 * @adapter: pointer to our private adapter structure
1330 * @addr: the address of the transceiver
1331 * @reg: the register to read
1332 * @value: pointer to a 16-bit value in which the value will be stored
1334 * Returns 0 on success, errno on failure (as defined in errno.h)
1336 int et131x_phy_mii_read(struct et131x_adapter *adapter, u8 addr,
1337 u8 reg, u16 *value)
1339 struct mac_regs __iomem *mac = &adapter->regs->mac;
1340 int status = 0;
1341 u32 delay = 0;
1342 u32 mii_addr;
1343 u32 mii_cmd;
1344 u32 mii_indicator;
1346 /* Save a local copy of the registers we are dealing with so we can
1347 * set them back
1349 mii_addr = readl(&mac->mii_mgmt_addr);
1350 mii_cmd = readl(&mac->mii_mgmt_cmd);
1352 /* Stop the current operation */
1353 writel(0, &mac->mii_mgmt_cmd);
1355 /* Set up the register we need to read from on the correct PHY */
1356 writel(MII_ADDR(addr, reg), &mac->mii_mgmt_addr);
1358 writel(0x1, &mac->mii_mgmt_cmd);
1360 do {
1361 udelay(50);
1362 delay++;
1363 mii_indicator = readl(&mac->mii_mgmt_indicator);
1364 } while ((mii_indicator & MGMT_WAIT) && delay < 50);
1366 /* If we hit the max delay, we could not read the register */
1367 if (delay == 50) {
1368 dev_warn(&adapter->pdev->dev,
1369 "reg 0x%08x could not be read\n", reg);
1370 dev_warn(&adapter->pdev->dev, "status is 0x%08x\n",
1371 mii_indicator);
1373 status = -EIO;
1376 /* If we hit here we were able to read the register and we need to
1377 * return the value to the caller */
1378 *value = readl(&mac->mii_mgmt_stat) & 0xFFFF;
1380 /* Stop the read operation */
1381 writel(0, &mac->mii_mgmt_cmd);
1383 /* set the registers we touched back to the state at which we entered
1384 * this function
1386 writel(mii_addr, &mac->mii_mgmt_addr);
1387 writel(mii_cmd, &mac->mii_mgmt_cmd);
1389 return status;
1392 int et131x_mii_read(struct et131x_adapter *adapter, u8 reg, u16 *value)
1394 struct phy_device *phydev = adapter->phydev;
1396 if (!phydev)
1397 return -EIO;
1399 return et131x_phy_mii_read(adapter, phydev->addr, reg, value);
1403 * et131x_mii_write - Write to a PHY register through the MII interface of the MAC
1404 * @adapter: pointer to our private adapter structure
1405 * @reg: the register to read
1406 * @value: 16-bit value to write
1408 * FIXME: one caller in netdev still
1410 * Return 0 on success, errno on failure (as defined in errno.h)
1412 int et131x_mii_write(struct et131x_adapter *adapter, u8 reg, u16 value)
1414 struct mac_regs __iomem *mac = &adapter->regs->mac;
1415 struct phy_device *phydev = adapter->phydev;
1416 int status = 0;
1417 u8 addr;
1418 u32 delay = 0;
1419 u32 mii_addr;
1420 u32 mii_cmd;
1421 u32 mii_indicator;
1423 if (!phydev)
1424 return -EIO;
1426 addr = phydev->addr;
1428 /* Save a local copy of the registers we are dealing with so we can
1429 * set them back
1431 mii_addr = readl(&mac->mii_mgmt_addr);
1432 mii_cmd = readl(&mac->mii_mgmt_cmd);
1434 /* Stop the current operation */
1435 writel(0, &mac->mii_mgmt_cmd);
1437 /* Set up the register we need to write to on the correct PHY */
1438 writel(MII_ADDR(addr, reg), &mac->mii_mgmt_addr);
1440 /* Add the value to write to the registers to the mac */
1441 writel(value, &mac->mii_mgmt_ctrl);
1443 do {
1444 udelay(50);
1445 delay++;
1446 mii_indicator = readl(&mac->mii_mgmt_indicator);
1447 } while ((mii_indicator & MGMT_BUSY) && delay < 100);
1449 /* If we hit the max delay, we could not write the register */
1450 if (delay == 100) {
1451 u16 tmp;
1453 dev_warn(&adapter->pdev->dev,
1454 "reg 0x%08x could not be written", reg);
1455 dev_warn(&adapter->pdev->dev, "status is 0x%08x\n",
1456 mii_indicator);
1457 dev_warn(&adapter->pdev->dev, "command is 0x%08x\n",
1458 readl(&mac->mii_mgmt_cmd));
1460 et131x_mii_read(adapter, reg, &tmp);
1462 status = -EIO;
1464 /* Stop the write operation */
1465 writel(0, &mac->mii_mgmt_cmd);
1468 * set the registers we touched back to the state at which we entered
1469 * this function
1471 writel(mii_addr, &mac->mii_mgmt_addr);
1472 writel(mii_cmd, &mac->mii_mgmt_cmd);
1474 return status;
1477 /* Still used from _mac for BIT_READ */
1478 void et1310_phy_access_mii_bit(struct et131x_adapter *adapter, u16 action,
1479 u16 regnum, u16 bitnum, u8 *value)
1481 u16 reg;
1482 u16 mask = 0x0001 << bitnum;
1484 /* Read the requested register */
1485 et131x_mii_read(adapter, regnum, &reg);
1487 switch (action) {
1488 case TRUEPHY_BIT_READ:
1489 *value = (reg & mask) >> bitnum;
1490 break;
1492 case TRUEPHY_BIT_SET:
1493 et131x_mii_write(adapter, regnum, reg | mask);
1494 break;
1496 case TRUEPHY_BIT_CLEAR:
1497 et131x_mii_write(adapter, regnum, reg & ~mask);
1498 break;
1500 default:
1501 break;
1505 void et1310_config_flow_control(struct et131x_adapter *adapter)
1507 struct phy_device *phydev = adapter->phydev;
1509 if (phydev->duplex == DUPLEX_HALF) {
1510 adapter->flowcontrol = FLOW_NONE;
1511 } else {
1512 char remote_pause, remote_async_pause;
1514 et1310_phy_access_mii_bit(adapter,
1515 TRUEPHY_BIT_READ, 5, 10, &remote_pause);
1516 et1310_phy_access_mii_bit(adapter,
1517 TRUEPHY_BIT_READ, 5, 11,
1518 &remote_async_pause);
1520 if ((remote_pause == TRUEPHY_BIT_SET) &&
1521 (remote_async_pause == TRUEPHY_BIT_SET)) {
1522 adapter->flowcontrol = adapter->wanted_flow;
1523 } else if ((remote_pause == TRUEPHY_BIT_SET) &&
1524 (remote_async_pause == TRUEPHY_BIT_CLEAR)) {
1525 if (adapter->wanted_flow == FLOW_BOTH)
1526 adapter->flowcontrol = FLOW_BOTH;
1527 else
1528 adapter->flowcontrol = FLOW_NONE;
1529 } else if ((remote_pause == TRUEPHY_BIT_CLEAR) &&
1530 (remote_async_pause == TRUEPHY_BIT_CLEAR)) {
1531 adapter->flowcontrol = FLOW_NONE;
1532 } else {/* if (remote_pause == TRUEPHY_CLEAR_BIT &&
1533 remote_async_pause == TRUEPHY_SET_BIT) */
1534 if (adapter->wanted_flow == FLOW_BOTH)
1535 adapter->flowcontrol = FLOW_RXONLY;
1536 else
1537 adapter->flowcontrol = FLOW_NONE;
1543 * et1310_update_macstat_host_counters - Update the local copy of the statistics
1544 * @adapter: pointer to the adapter structure
1546 void et1310_update_macstat_host_counters(struct et131x_adapter *adapter)
1548 struct ce_stats *stats = &adapter->stats;
1549 struct macstat_regs __iomem *macstat =
1550 &adapter->regs->macstat;
1552 stats->tx_collisions += readl(&macstat->tx_total_collisions);
1553 stats->tx_first_collisions += readl(&macstat->tx_single_collisions);
1554 stats->tx_deferred += readl(&macstat->tx_deferred);
1555 stats->tx_excessive_collisions +=
1556 readl(&macstat->tx_multiple_collisions);
1557 stats->tx_late_collisions += readl(&macstat->tx_late_collisions);
1558 stats->tx_underflows += readl(&macstat->tx_undersize_frames);
1559 stats->tx_max_pkt_errs += readl(&macstat->tx_oversize_frames);
1561 stats->rx_align_errs += readl(&macstat->rx_align_errs);
1562 stats->rx_crc_errs += readl(&macstat->rx_code_errs);
1563 stats->rcvd_pkts_dropped += readl(&macstat->rx_drops);
1564 stats->rx_overflows += readl(&macstat->rx_oversize_packets);
1565 stats->rx_code_violations += readl(&macstat->rx_fcs_errs);
1566 stats->rx_length_errs += readl(&macstat->rx_frame_len_errs);
1567 stats->rx_other_errs += readl(&macstat->rx_fragment_packets);
1571 * et1310_handle_macstat_interrupt
1572 * @adapter: pointer to the adapter structure
1574 * One of the MACSTAT counters has wrapped. Update the local copy of
1575 * the statistics held in the adapter structure, checking the "wrap"
1576 * bit for each counter.
1578 void et1310_handle_macstat_interrupt(struct et131x_adapter *adapter)
1580 u32 carry_reg1;
1581 u32 carry_reg2;
1583 /* Read the interrupt bits from the register(s). These are Clear On
1584 * Write.
1586 carry_reg1 = readl(&adapter->regs->macstat.carry_reg1);
1587 carry_reg2 = readl(&adapter->regs->macstat.carry_reg2);
1589 writel(carry_reg1, &adapter->regs->macstat.carry_reg1);
1590 writel(carry_reg2, &adapter->regs->macstat.carry_reg2);
1592 /* We need to do update the host copy of all the MAC_STAT counters.
1593 * For each counter, check it's overflow bit. If the overflow bit is
1594 * set, then increment the host version of the count by one complete
1595 * revolution of the counter. This routine is called when the counter
1596 * block indicates that one of the counters has wrapped.
1598 if (carry_reg1 & (1 << 14))
1599 adapter->stats.rx_code_violations += COUNTER_WRAP_16_BIT;
1600 if (carry_reg1 & (1 << 8))
1601 adapter->stats.rx_align_errs += COUNTER_WRAP_12_BIT;
1602 if (carry_reg1 & (1 << 7))
1603 adapter->stats.rx_length_errs += COUNTER_WRAP_16_BIT;
1604 if (carry_reg1 & (1 << 2))
1605 adapter->stats.rx_other_errs += COUNTER_WRAP_16_BIT;
1606 if (carry_reg1 & (1 << 6))
1607 adapter->stats.rx_crc_errs += COUNTER_WRAP_16_BIT;
1608 if (carry_reg1 & (1 << 3))
1609 adapter->stats.rx_overflows += COUNTER_WRAP_16_BIT;
1610 if (carry_reg1 & (1 << 0))
1611 adapter->stats.rcvd_pkts_dropped += COUNTER_WRAP_16_BIT;
1612 if (carry_reg2 & (1 << 16))
1613 adapter->stats.tx_max_pkt_errs += COUNTER_WRAP_12_BIT;
1614 if (carry_reg2 & (1 << 15))
1615 adapter->stats.tx_underflows += COUNTER_WRAP_12_BIT;
1616 if (carry_reg2 & (1 << 6))
1617 adapter->stats.tx_first_collisions += COUNTER_WRAP_12_BIT;
1618 if (carry_reg2 & (1 << 8))
1619 adapter->stats.tx_deferred += COUNTER_WRAP_12_BIT;
1620 if (carry_reg2 & (1 << 5))
1621 adapter->stats.tx_excessive_collisions += COUNTER_WRAP_12_BIT;
1622 if (carry_reg2 & (1 << 4))
1623 adapter->stats.tx_late_collisions += COUNTER_WRAP_12_BIT;
1624 if (carry_reg2 & (1 << 2))
1625 adapter->stats.tx_collisions += COUNTER_WRAP_12_BIT;
1628 /* PHY functions */
1630 int et131x_mdio_read(struct mii_bus *bus, int phy_addr, int reg)
1632 struct net_device *netdev = bus->priv;
1633 struct et131x_adapter *adapter = netdev_priv(netdev);
1634 u16 value;
1635 int ret;
1637 ret = et131x_phy_mii_read(adapter, phy_addr, reg, &value);
1639 if (ret < 0)
1640 return ret;
1641 else
1642 return value;
1645 int et131x_mdio_write(struct mii_bus *bus, int phy_addr, int reg, u16 value)
1647 struct net_device *netdev = bus->priv;
1648 struct et131x_adapter *adapter = netdev_priv(netdev);
1650 return et131x_mii_write(adapter, reg, value);
1653 int et131x_mdio_reset(struct mii_bus *bus)
1655 struct net_device *netdev = bus->priv;
1656 struct et131x_adapter *adapter = netdev_priv(netdev);
1658 et131x_mii_write(adapter, MII_BMCR, BMCR_RESET);
1660 return 0;
1664 * et1310_phy_power_down - PHY power control
1665 * @adapter: device to control
1666 * @down: true for off/false for back on
1668 * one hundred, ten, one thousand megs
1669 * How would you like to have your LAN accessed
1670 * Can't you see that this code processed
1671 * Phy power, phy power..
1673 void et1310_phy_power_down(struct et131x_adapter *adapter, bool down)
1675 u16 data;
1677 et131x_mii_read(adapter, MII_BMCR, &data);
1678 data &= ~BMCR_PDOWN;
1679 if (down)
1680 data |= BMCR_PDOWN;
1681 et131x_mii_write(adapter, MII_BMCR, data);
1685 * et131x_xcvr_init - Init the phy if we are setting it into force mode
1686 * @adapter: pointer to our private adapter structure
1689 void et131x_xcvr_init(struct et131x_adapter *adapter)
1691 u16 imr;
1692 u16 isr;
1693 u16 lcr2;
1695 et131x_mii_read(adapter, PHY_INTERRUPT_STATUS, &isr);
1696 et131x_mii_read(adapter, PHY_INTERRUPT_MASK, &imr);
1698 /* Set the link status interrupt only. Bad behavior when link status
1699 * and auto neg are set, we run into a nested interrupt problem
1701 imr |= (ET_PHY_INT_MASK_AUTONEGSTAT &
1702 ET_PHY_INT_MASK_LINKSTAT &
1703 ET_PHY_INT_MASK_ENABLE);
1705 et131x_mii_write(adapter, PHY_INTERRUPT_MASK, imr);
1707 /* Set the LED behavior such that LED 1 indicates speed (off =
1708 * 10Mbits, blink = 100Mbits, on = 1000Mbits) and LED 2 indicates
1709 * link and activity (on for link, blink off for activity).
1711 * NOTE: Some customizations have been added here for specific
1712 * vendors; The LED behavior is now determined by vendor data in the
1713 * EEPROM. However, the above description is the default.
1715 if ((adapter->eeprom_data[1] & 0x4) == 0) {
1716 et131x_mii_read(adapter, PHY_LED_2, &lcr2);
1718 lcr2 &= (ET_LED2_LED_100TX & ET_LED2_LED_1000T);
1719 lcr2 |= (LED_VAL_LINKON_ACTIVE << LED_LINK_SHIFT);
1721 if ((adapter->eeprom_data[1] & 0x8) == 0)
1722 lcr2 |= (LED_VAL_1000BT_100BTX << LED_TXRX_SHIFT);
1723 else
1724 lcr2 |= (LED_VAL_LINKON << LED_TXRX_SHIFT);
1726 et131x_mii_write(adapter, PHY_LED_2, lcr2);
1731 * et131x_configure_global_regs - configure JAGCore global regs
1732 * @adapter: pointer to our adapter structure
1734 * Used to configure the global registers on the JAGCore
1736 void et131x_configure_global_regs(struct et131x_adapter *adapter)
1738 struct global_regs __iomem *regs = &adapter->regs->global;
1740 writel(0, &regs->rxq_start_addr);
1741 writel(INTERNAL_MEM_SIZE - 1, &regs->txq_end_addr);
1743 if (adapter->registry_jumbo_packet < 2048) {
1744 /* Tx / RxDMA and Tx/Rx MAC interfaces have a 1k word
1745 * block of RAM that the driver can split between Tx
1746 * and Rx as it desires. Our default is to split it
1747 * 50/50:
1749 writel(PARM_RX_MEM_END_DEF, &regs->rxq_end_addr);
1750 writel(PARM_RX_MEM_END_DEF + 1, &regs->txq_start_addr);
1751 } else if (adapter->registry_jumbo_packet < 8192) {
1752 /* For jumbo packets > 2k but < 8k, split 50-50. */
1753 writel(INTERNAL_MEM_RX_OFFSET, &regs->rxq_end_addr);
1754 writel(INTERNAL_MEM_RX_OFFSET + 1, &regs->txq_start_addr);
1755 } else {
1756 /* 9216 is the only packet size greater than 8k that
1757 * is available. The Tx buffer has to be big enough
1758 * for one whole packet on the Tx side. We'll make
1759 * the Tx 9408, and give the rest to Rx
1761 writel(0x01b3, &regs->rxq_end_addr);
1762 writel(0x01b4, &regs->txq_start_addr);
1765 /* Initialize the loopback register. Disable all loopbacks. */
1766 writel(0, &regs->loopback);
1768 /* MSI Register */
1769 writel(0, &regs->msi_config);
1771 /* By default, disable the watchdog timer. It will be enabled when
1772 * a packet is queued.
1774 writel(0, &regs->watchdog_timer);
1777 /* PM functions */
1780 * et131x_config_rx_dma_regs - Start of Rx_DMA init sequence
1781 * @adapter: pointer to our adapter structure
1783 void et131x_config_rx_dma_regs(struct et131x_adapter *adapter)
1785 struct rxdma_regs __iomem *rx_dma = &adapter->regs->rxdma;
1786 struct rx_ring *rx_local = &adapter->rx_ring;
1787 struct fbr_desc *fbr_entry;
1788 u32 entry;
1789 u32 psr_num_des;
1790 unsigned long flags;
1792 /* Halt RXDMA to perform the reconfigure. */
1793 et131x_rx_dma_disable(adapter);
1795 /* Load the completion writeback physical address
1797 * NOTE : dma_alloc_coherent(), used above to alloc DMA regions,
1798 * ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses
1799 * are ever returned, make sure the high part is retrieved here
1800 * before storing the adjusted address.
1802 writel((u32) ((u64)rx_local->rx_status_bus >> 32),
1803 &rx_dma->dma_wb_base_hi);
1804 writel((u32) rx_local->rx_status_bus, &rx_dma->dma_wb_base_lo);
1806 memset(rx_local->rx_status_block, 0, sizeof(struct rx_status_block));
1808 /* Set the address and parameters of the packet status ring into the
1809 * 1310's registers
1811 writel((u32) ((u64)rx_local->ps_ring_physaddr >> 32),
1812 &rx_dma->psr_base_hi);
1813 writel((u32) rx_local->ps_ring_physaddr, &rx_dma->psr_base_lo);
1814 writel(rx_local->psr_num_entries - 1, &rx_dma->psr_num_des);
1815 writel(0, &rx_dma->psr_full_offset);
1817 psr_num_des = readl(&rx_dma->psr_num_des) & 0xFFF;
1818 writel((psr_num_des * LO_MARK_PERCENT_FOR_PSR) / 100,
1819 &rx_dma->psr_min_des);
1821 spin_lock_irqsave(&adapter->rcv_lock, flags);
1823 /* These local variables track the PSR in the adapter structure */
1824 rx_local->local_psr_full = 0;
1826 /* Now's the best time to initialize FBR1 contents */
1827 fbr_entry = (struct fbr_desc *) rx_local->fbr[0]->ring_virtaddr;
1828 for (entry = 0; entry < rx_local->fbr[0]->num_entries; entry++) {
1829 fbr_entry->addr_hi = rx_local->fbr[0]->bus_high[entry];
1830 fbr_entry->addr_lo = rx_local->fbr[0]->bus_low[entry];
1831 fbr_entry->word2 = entry;
1832 fbr_entry++;
1835 /* Set the address and parameters of Free buffer ring 1 (and 0 if
1836 * required) into the 1310's registers
1838 writel((u32) (rx_local->fbr[0]->real_physaddr >> 32),
1839 &rx_dma->fbr1_base_hi);
1840 writel((u32) rx_local->fbr[0]->real_physaddr, &rx_dma->fbr1_base_lo);
1841 writel(rx_local->fbr[0]->num_entries - 1, &rx_dma->fbr1_num_des);
1842 writel(ET_DMA10_WRAP, &rx_dma->fbr1_full_offset);
1844 /* This variable tracks the free buffer ring 1 full position, so it
1845 * has to match the above.
1847 rx_local->fbr[0]->local_full = ET_DMA10_WRAP;
1848 writel(
1849 ((rx_local->fbr[0]->num_entries * LO_MARK_PERCENT_FOR_RX) / 100) - 1,
1850 &rx_dma->fbr1_min_des);
1852 #ifdef USE_FBR0
1853 /* Now's the best time to initialize FBR0 contents */
1854 fbr_entry = (struct fbr_desc *) rx_local->fbr[1]->ring_virtaddr;
1855 for (entry = 0; entry < rx_local->fbr[1]->num_entries; entry++) {
1856 fbr_entry->addr_hi = rx_local->fbr[1]->bus_high[entry];
1857 fbr_entry->addr_lo = rx_local->fbr[1]->bus_low[entry];
1858 fbr_entry->word2 = entry;
1859 fbr_entry++;
1862 writel((u32) (rx_local->fbr[1]->real_physaddr >> 32),
1863 &rx_dma->fbr0_base_hi);
1864 writel((u32) rx_local->fbr[1]->real_physaddr, &rx_dma->fbr0_base_lo);
1865 writel(rx_local->fbr[1]->num_entries - 1, &rx_dma->fbr0_num_des);
1866 writel(ET_DMA10_WRAP, &rx_dma->fbr0_full_offset);
1868 /* This variable tracks the free buffer ring 0 full position, so it
1869 * has to match the above.
1871 rx_local->fbr[1]->local_full = ET_DMA10_WRAP;
1872 writel(
1873 ((rx_local->fbr[1]->num_entries * LO_MARK_PERCENT_FOR_RX) / 100) - 1,
1874 &rx_dma->fbr0_min_des);
1875 #endif
1877 /* Program the number of packets we will receive before generating an
1878 * interrupt.
1879 * For version B silicon, this value gets updated once autoneg is
1880 *complete.
1882 writel(PARM_RX_NUM_BUFS_DEF, &rx_dma->num_pkt_done);
1884 /* The "time_done" is not working correctly to coalesce interrupts
1885 * after a given time period, but rather is giving us an interrupt
1886 * regardless of whether we have received packets.
1887 * This value gets updated once autoneg is complete.
1889 writel(PARM_RX_TIME_INT_DEF, &rx_dma->max_pkt_time);
1891 spin_unlock_irqrestore(&adapter->rcv_lock, flags);
1895 * et131x_config_tx_dma_regs - Set up the tx dma section of the JAGCore.
1896 * @adapter: pointer to our private adapter structure
1898 * Configure the transmit engine with the ring buffers we have created
1899 * and prepare it for use.
1901 void et131x_config_tx_dma_regs(struct et131x_adapter *adapter)
1903 struct txdma_regs __iomem *txdma = &adapter->regs->txdma;
1905 /* Load the hardware with the start of the transmit descriptor ring. */
1906 writel((u32) ((u64)adapter->tx_ring.tx_desc_ring_pa >> 32),
1907 &txdma->pr_base_hi);
1908 writel((u32) adapter->tx_ring.tx_desc_ring_pa,
1909 &txdma->pr_base_lo);
1911 /* Initialise the transmit DMA engine */
1912 writel(NUM_DESC_PER_RING_TX - 1, &txdma->pr_num_des);
1914 /* Load the completion writeback physical address */
1915 writel((u32)((u64)adapter->tx_ring.tx_status_pa >> 32),
1916 &txdma->dma_wb_base_hi);
1917 writel((u32)adapter->tx_ring.tx_status_pa, &txdma->dma_wb_base_lo);
1919 *adapter->tx_ring.tx_status = 0;
1921 writel(0, &txdma->service_request);
1922 adapter->tx_ring.send_idx = 0;
1926 * et131x_adapter_setup - Set the adapter up as per cassini+ documentation
1927 * @adapter: pointer to our private adapter structure
1929 * Returns 0 on success, errno on failure (as defined in errno.h)
1931 void et131x_adapter_setup(struct et131x_adapter *adapter)
1933 /* Configure the JAGCore */
1934 et131x_configure_global_regs(adapter);
1936 et1310_config_mac_regs1(adapter);
1938 /* Configure the MMC registers */
1939 /* All we need to do is initialize the Memory Control Register */
1940 writel(ET_MMC_ENABLE, &adapter->regs->mmc.mmc_ctrl);
1942 et1310_config_rxmac_regs(adapter);
1943 et1310_config_txmac_regs(adapter);
1945 et131x_config_rx_dma_regs(adapter);
1946 et131x_config_tx_dma_regs(adapter);
1948 et1310_config_macstat_regs(adapter);
1950 et1310_phy_power_down(adapter, 0);
1951 et131x_xcvr_init(adapter);
1955 * et131x_soft_reset - Issue a soft reset to the hardware, complete for ET1310
1956 * @adapter: pointer to our private adapter structure
1958 void et131x_soft_reset(struct et131x_adapter *adapter)
1960 /* Disable MAC Core */
1961 writel(0xc00f0000, &adapter->regs->mac.cfg1);
1963 /* Set everything to a reset value */
1964 writel(0x7F, &adapter->regs->global.sw_reset);
1965 writel(0x000f0000, &adapter->regs->mac.cfg1);
1966 writel(0x00000000, &adapter->regs->mac.cfg1);
1970 * et131x_enable_interrupts - enable interrupt
1971 * @adapter: et131x device
1973 * Enable the appropriate interrupts on the ET131x according to our
1974 * configuration
1976 void et131x_enable_interrupts(struct et131x_adapter *adapter)
1978 u32 mask;
1980 /* Enable all global interrupts */
1981 if (adapter->flowcontrol == FLOW_TXONLY ||
1982 adapter->flowcontrol == FLOW_BOTH)
1983 mask = INT_MASK_ENABLE;
1984 else
1985 mask = INT_MASK_ENABLE_NO_FLOW;
1987 writel(mask, &adapter->regs->global.int_mask);
1991 * et131x_disable_interrupts - interrupt disable
1992 * @adapter: et131x device
1994 * Block all interrupts from the et131x device at the device itself
1996 void et131x_disable_interrupts(struct et131x_adapter *adapter)
1998 /* Disable all global interrupts */
1999 writel(INT_MASK_DISABLE, &adapter->regs->global.int_mask);
2003 * et131x_tx_dma_disable - Stop of Tx_DMA on the ET1310
2004 * @adapter: pointer to our adapter structure
2006 void et131x_tx_dma_disable(struct et131x_adapter *adapter)
2008 /* Setup the tramsmit dma configuration register */
2009 writel(ET_TXDMA_CSR_HALT|ET_TXDMA_SNGL_EPKT,
2010 &adapter->regs->txdma.csr);
2014 * et131x_tx_dma_enable - re-start of Tx_DMA on the ET1310.
2015 * @adapter: pointer to our adapter structure
2017 * Mainly used after a return to the D0 (full-power) state from a lower state.
2019 void et131x_tx_dma_enable(struct et131x_adapter *adapter)
2021 /* Setup the transmit dma configuration register for normal
2022 * operation
2024 writel(ET_TXDMA_SNGL_EPKT|(PARM_DMA_CACHE_DEF << ET_TXDMA_CACHE_SHIFT),
2025 &adapter->regs->txdma.csr);
2029 * et131x_enable_txrx - Enable tx/rx queues
2030 * @netdev: device to be enabled
2032 void et131x_enable_txrx(struct net_device *netdev)
2034 struct et131x_adapter *adapter = netdev_priv(netdev);
2036 /* Enable the Tx and Rx DMA engines (if not already enabled) */
2037 et131x_rx_dma_enable(adapter);
2038 et131x_tx_dma_enable(adapter);
2040 /* Enable device interrupts */
2041 if (adapter->flags & fMP_ADAPTER_INTERRUPT_IN_USE)
2042 et131x_enable_interrupts(adapter);
2044 /* We're ready to move some data, so start the queue */
2045 netif_start_queue(netdev);
2049 * et131x_disable_txrx - Disable tx/rx queues
2050 * @netdev: device to be disabled
2052 void et131x_disable_txrx(struct net_device *netdev)
2054 struct et131x_adapter *adapter = netdev_priv(netdev);
2056 /* First thing is to stop the queue */
2057 netif_stop_queue(netdev);
2059 /* Stop the Tx and Rx DMA engines */
2060 et131x_rx_dma_disable(adapter);
2061 et131x_tx_dma_disable(adapter);
2063 /* Disable device interrupts */
2064 et131x_disable_interrupts(adapter);
2068 * et1310_enable_phy_coma - called when network cable is unplugged
2069 * @adapter: pointer to our adapter structure
2071 * driver receive an phy status change interrupt while in D0 and check that
2072 * phy_status is down.
2074 * -- gate off JAGCore;
2075 * -- set gigE PHY in Coma mode
2076 * -- wake on phy_interrupt; Perform software reset JAGCore,
2077 * re-initialize jagcore and gigE PHY
2079 * Add D0-ASPM-PhyLinkDown Support:
2080 * -- while in D0, when there is a phy_interrupt indicating phy link
2081 * down status, call the MPSetPhyComa routine to enter this active
2082 * state power saving mode
2083 * -- while in D0-ASPM-PhyLinkDown mode, when there is a phy_interrupt
2084 * indicating linkup status, call the MPDisablePhyComa routine to
2085 * restore JAGCore and gigE PHY
2087 void et1310_enable_phy_coma(struct et131x_adapter *adapter)
2089 unsigned long flags;
2090 u32 pmcsr;
2092 pmcsr = readl(&adapter->regs->global.pm_csr);
2094 /* Save the GbE PHY speed and duplex modes. Need to restore this
2095 * when cable is plugged back in
2098 * TODO - when PM is re-enabled, check if we need to
2099 * perform a similar task as this -
2100 * adapter->pdown_speed = adapter->ai_force_speed;
2101 * adapter->pdown_duplex = adapter->ai_force_duplex;
2104 /* Stop sending packets. */
2105 spin_lock_irqsave(&adapter->send_hw_lock, flags);
2106 adapter->flags |= fMP_ADAPTER_LOWER_POWER;
2107 spin_unlock_irqrestore(&adapter->send_hw_lock, flags);
2109 /* Wait for outstanding Receive packets */
2111 et131x_disable_txrx(adapter->netdev);
2113 /* Gate off JAGCore 3 clock domains */
2114 pmcsr &= ~ET_PMCSR_INIT;
2115 writel(pmcsr, &adapter->regs->global.pm_csr);
2117 /* Program gigE PHY in to Coma mode */
2118 pmcsr |= ET_PM_PHY_SW_COMA;
2119 writel(pmcsr, &adapter->regs->global.pm_csr);
2123 * et1310_disable_phy_coma - Disable the Phy Coma Mode
2124 * @adapter: pointer to our adapter structure
2126 void et1310_disable_phy_coma(struct et131x_adapter *adapter)
2128 u32 pmcsr;
2130 pmcsr = readl(&adapter->regs->global.pm_csr);
2132 /* Disable phy_sw_coma register and re-enable JAGCore clocks */
2133 pmcsr |= ET_PMCSR_INIT;
2134 pmcsr &= ~ET_PM_PHY_SW_COMA;
2135 writel(pmcsr, &adapter->regs->global.pm_csr);
2137 /* Restore the GbE PHY speed and duplex modes;
2138 * Reset JAGCore; re-configure and initialize JAGCore and gigE PHY
2140 /* TODO - when PM is re-enabled, check if we need to
2141 * perform a similar task as this -
2142 * adapter->ai_force_speed = adapter->pdown_speed;
2143 * adapter->ai_force_duplex = adapter->pdown_duplex;
2146 /* Re-initialize the send structures */
2147 et131x_init_send(adapter);
2149 /* Bring the device back to the state it was during init prior to
2150 * autonegotiation being complete. This way, when we get the auto-neg
2151 * complete interrupt, we can complete init by calling ConfigMacREGS2.
2153 et131x_soft_reset(adapter);
2155 /* setup et1310 as per the documentation ?? */
2156 et131x_adapter_setup(adapter);
2158 /* Allow Tx to restart */
2159 adapter->flags &= ~fMP_ADAPTER_LOWER_POWER;
2161 et131x_enable_txrx(adapter->netdev);
2164 /* RX functions */
2166 static inline u32 bump_free_buff_ring(u32 *free_buff_ring, u32 limit)
2168 u32 tmp_free_buff_ring = *free_buff_ring;
2169 tmp_free_buff_ring++;
2170 /* This works for all cases where limit < 1024. The 1023 case
2171 works because 1023++ is 1024 which means the if condition is not
2172 taken but the carry of the bit into the wrap bit toggles the wrap
2173 value correctly */
2174 if ((tmp_free_buff_ring & ET_DMA10_MASK) > limit) {
2175 tmp_free_buff_ring &= ~ET_DMA10_MASK;
2176 tmp_free_buff_ring ^= ET_DMA10_WRAP;
2178 /* For the 1023 case */
2179 tmp_free_buff_ring &= (ET_DMA10_MASK|ET_DMA10_WRAP);
2180 *free_buff_ring = tmp_free_buff_ring;
2181 return tmp_free_buff_ring;
2185 * et131x_align_allocated_memory - Align allocated memory on a given boundary
2186 * @adapter: pointer to our adapter structure
2187 * @phys_addr: pointer to Physical address
2188 * @offset: pointer to the offset variable
2189 * @mask: correct mask
2191 void et131x_align_allocated_memory(struct et131x_adapter *adapter,
2192 uint64_t *phys_addr,
2193 uint64_t *offset, uint64_t mask)
2195 uint64_t new_addr;
2197 *offset = 0;
2199 new_addr = *phys_addr & ~mask;
2201 if (new_addr != *phys_addr) {
2202 /* Move to next aligned block */
2203 new_addr += mask + 1;
2204 /* Return offset for adjusting virt addr */
2205 *offset = new_addr - *phys_addr;
2206 /* Return new physical address */
2207 *phys_addr = new_addr;
2212 * et131x_rx_dma_memory_alloc
2213 * @adapter: pointer to our private adapter structure
2215 * Returns 0 on success and errno on failure (as defined in errno.h)
2217 * Allocates Free buffer ring 1 for sure, free buffer ring 0 if required,
2218 * and the Packet Status Ring.
2220 int et131x_rx_dma_memory_alloc(struct et131x_adapter *adapter)
2222 u32 i, j;
2223 u32 bufsize;
2224 u32 pktstat_ringsize, fbr_chunksize;
2225 struct rx_ring *rx_ring;
2227 /* Setup some convenience pointers */
2228 rx_ring = &adapter->rx_ring;
2230 /* Alloc memory for the lookup table */
2231 #ifdef USE_FBR0
2232 rx_ring->fbr[1] = kmalloc(sizeof(struct fbr_lookup), GFP_KERNEL);
2233 #endif
2234 rx_ring->fbr[0] = kmalloc(sizeof(struct fbr_lookup), GFP_KERNEL);
2236 /* The first thing we will do is configure the sizes of the buffer
2237 * rings. These will change based on jumbo packet support. Larger
2238 * jumbo packets increases the size of each entry in FBR0, and the
2239 * number of entries in FBR0, while at the same time decreasing the
2240 * number of entries in FBR1.
2242 * FBR1 holds "large" frames, FBR0 holds "small" frames. If FBR1
2243 * entries are huge in order to accommodate a "jumbo" frame, then it
2244 * will have less entries. Conversely, FBR1 will now be relied upon
2245 * to carry more "normal" frames, thus it's entry size also increases
2246 * and the number of entries goes up too (since it now carries
2247 * "small" + "regular" packets.
2249 * In this scheme, we try to maintain 512 entries between the two
2250 * rings. Also, FBR1 remains a constant size - when it's size doubles
2251 * the number of entries halves. FBR0 increases in size, however.
2254 if (adapter->registry_jumbo_packet < 2048) {
2255 #ifdef USE_FBR0
2256 rx_ring->fbr[1]->buffsize = 256;
2257 rx_ring->fbr[1]->num_entries = 512;
2258 #endif
2259 rx_ring->fbr[0]->buffsize = 2048;
2260 rx_ring->fbr[0]->num_entries = 512;
2261 } else if (adapter->registry_jumbo_packet < 4096) {
2262 #ifdef USE_FBR0
2263 rx_ring->fbr[1]->buffsize = 512;
2264 rx_ring->fbr[1]->num_entries = 1024;
2265 #endif
2266 rx_ring->fbr[0]->buffsize = 4096;
2267 rx_ring->fbr[0]->num_entries = 512;
2268 } else {
2269 #ifdef USE_FBR0
2270 rx_ring->fbr[1]->buffsize = 1024;
2271 rx_ring->fbr[1]->num_entries = 768;
2272 #endif
2273 rx_ring->fbr[0]->buffsize = 16384;
2274 rx_ring->fbr[0]->num_entries = 128;
2277 #ifdef USE_FBR0
2278 adapter->rx_ring.psr_num_entries = adapter->rx_ring.fbr[1]->num_entries +
2279 adapter->rx_ring.fbr[0]->num_entries;
2280 #else
2281 adapter->rx_ring.psr_num_entries = adapter->rx_ring.fbr[0]->num_entries;
2282 #endif
2284 /* Allocate an area of memory for Free Buffer Ring 1 */
2285 bufsize = (sizeof(struct fbr_desc) * rx_ring->fbr[0]->num_entries) + 0xfff;
2286 rx_ring->fbr[0]->ring_virtaddr = dma_alloc_coherent(&adapter->pdev->dev,
2287 bufsize,
2288 &rx_ring->fbr[0]->ring_physaddr,
2289 GFP_KERNEL);
2290 if (!rx_ring->fbr[0]->ring_virtaddr) {
2291 dev_err(&adapter->pdev->dev,
2292 "Cannot alloc memory for Free Buffer Ring 1\n");
2293 return -ENOMEM;
2296 /* Save physical address
2298 * NOTE: dma_alloc_coherent(), used above to alloc DMA regions,
2299 * ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses
2300 * are ever returned, make sure the high part is retrieved here
2301 * before storing the adjusted address.
2303 rx_ring->fbr[0]->real_physaddr = rx_ring->fbr[0]->ring_physaddr;
2305 /* Align Free Buffer Ring 1 on a 4K boundary */
2306 et131x_align_allocated_memory(adapter,
2307 &rx_ring->fbr[0]->real_physaddr,
2308 &rx_ring->fbr[0]->offset, 0x0FFF);
2310 rx_ring->fbr[0]->ring_virtaddr =
2311 (void *)((u8 *) rx_ring->fbr[0]->ring_virtaddr +
2312 rx_ring->fbr[0]->offset);
2314 #ifdef USE_FBR0
2315 /* Allocate an area of memory for Free Buffer Ring 0 */
2316 bufsize = (sizeof(struct fbr_desc) * rx_ring->fbr[1]->num_entries) + 0xfff;
2317 rx_ring->fbr[1]->ring_virtaddr = dma_alloc_coherent(&adapter->pdev->dev,
2318 bufsize,
2319 &rx_ring->fbr[1]->ring_physaddr,
2320 GFP_KERNEL);
2321 if (!rx_ring->fbr[1]->ring_virtaddr) {
2322 dev_err(&adapter->pdev->dev,
2323 "Cannot alloc memory for Free Buffer Ring 0\n");
2324 return -ENOMEM;
2327 /* Save physical address
2329 * NOTE: dma_alloc_coherent(), used above to alloc DMA regions,
2330 * ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses
2331 * are ever returned, make sure the high part is retrieved here before
2332 * storing the adjusted address.
2334 rx_ring->fbr[1]->real_physaddr = rx_ring->fbr[1]->ring_physaddr;
2336 /* Align Free Buffer Ring 0 on a 4K boundary */
2337 et131x_align_allocated_memory(adapter,
2338 &rx_ring->fbr[1]->real_physaddr,
2339 &rx_ring->fbr[1]->offset, 0x0FFF);
2341 rx_ring->fbr[1]->ring_virtaddr =
2342 (void *)((u8 *) rx_ring->fbr[1]->ring_virtaddr +
2343 rx_ring->fbr[1]->offset);
2344 #endif
2345 for (i = 0; i < (rx_ring->fbr[0]->num_entries / FBR_CHUNKS); i++) {
2346 u64 fbr1_offset;
2347 u64 fbr1_tmp_physaddr;
2348 u32 fbr1_align;
2350 /* This code allocates an area of memory big enough for N
2351 * free buffers + (buffer_size - 1) so that the buffers can
2352 * be aligned on 4k boundaries. If each buffer were aligned
2353 * to a buffer_size boundary, the effect would be to double
2354 * the size of FBR0. By allocating N buffers at once, we
2355 * reduce this overhead.
2357 if (rx_ring->fbr[0]->buffsize > 4096)
2358 fbr1_align = 4096;
2359 else
2360 fbr1_align = rx_ring->fbr[0]->buffsize;
2362 fbr_chunksize =
2363 (FBR_CHUNKS * rx_ring->fbr[0]->buffsize) + fbr1_align - 1;
2364 rx_ring->fbr[0]->mem_virtaddrs[i] =
2365 dma_alloc_coherent(&adapter->pdev->dev, fbr_chunksize,
2366 &rx_ring->fbr[0]->mem_physaddrs[i], GFP_KERNEL);
2368 if (!rx_ring->fbr[0]->mem_virtaddrs[i]) {
2369 dev_err(&adapter->pdev->dev,
2370 "Could not alloc memory\n");
2371 return -ENOMEM;
2374 /* See NOTE in "Save Physical Address" comment above */
2375 fbr1_tmp_physaddr = rx_ring->fbr[0]->mem_physaddrs[i];
2377 et131x_align_allocated_memory(adapter,
2378 &fbr1_tmp_physaddr,
2379 &fbr1_offset, (fbr1_align - 1));
2381 for (j = 0; j < FBR_CHUNKS; j++) {
2382 u32 index = (i * FBR_CHUNKS) + j;
2384 /* Save the Virtual address of this index for quick
2385 * access later
2387 rx_ring->fbr[0]->virt[index] =
2388 (u8 *) rx_ring->fbr[0]->mem_virtaddrs[i] +
2389 (j * rx_ring->fbr[0]->buffsize) + fbr1_offset;
2391 /* now store the physical address in the descriptor
2392 * so the device can access it
2394 rx_ring->fbr[0]->bus_high[index] =
2395 (u32) (fbr1_tmp_physaddr >> 32);
2396 rx_ring->fbr[0]->bus_low[index] =
2397 (u32) fbr1_tmp_physaddr;
2399 fbr1_tmp_physaddr += rx_ring->fbr[0]->buffsize;
2401 rx_ring->fbr[0]->buffer1[index] =
2402 rx_ring->fbr[0]->virt[index];
2403 rx_ring->fbr[0]->buffer2[index] =
2404 rx_ring->fbr[0]->virt[index] - 4;
2408 #ifdef USE_FBR0
2409 /* Same for FBR0 (if in use) */
2410 for (i = 0; i < (rx_ring->fbr[1]->num_entries / FBR_CHUNKS); i++) {
2411 u64 fbr0_offset;
2412 u64 fbr0_tmp_physaddr;
2414 fbr_chunksize =
2415 ((FBR_CHUNKS + 1) * rx_ring->fbr[1]->buffsize) - 1;
2416 rx_ring->fbr[1]->mem_virtaddrs[i] =
2417 dma_alloc_coherent(&adapter->pdev->dev, fbr_chunksize,
2418 &rx_ring->fbr[1]->mem_physaddrs[i], GFP_KERNEL);
2420 if (!rx_ring->fbr[1]->mem_virtaddrs[i]) {
2421 dev_err(&adapter->pdev->dev,
2422 "Could not alloc memory\n");
2423 return -ENOMEM;
2426 /* See NOTE in "Save Physical Address" comment above */
2427 fbr0_tmp_physaddr = rx_ring->fbr[1]->mem_physaddrs[i];
2429 et131x_align_allocated_memory(adapter,
2430 &fbr0_tmp_physaddr,
2431 &fbr0_offset,
2432 rx_ring->fbr[1]->buffsize - 1);
2434 for (j = 0; j < FBR_CHUNKS; j++) {
2435 u32 index = (i * FBR_CHUNKS) + j;
2437 rx_ring->fbr[1]->virt[index] =
2438 (u8 *) rx_ring->fbr[1]->mem_virtaddrs[i] +
2439 (j * rx_ring->fbr[1]->buffsize) + fbr0_offset;
2441 rx_ring->fbr[1]->bus_high[index] =
2442 (u32) (fbr0_tmp_physaddr >> 32);
2443 rx_ring->fbr[1]->bus_low[index] =
2444 (u32) fbr0_tmp_physaddr;
2446 fbr0_tmp_physaddr += rx_ring->fbr[1]->buffsize;
2448 rx_ring->fbr[1]->buffer1[index] =
2449 rx_ring->fbr[1]->virt[index];
2450 rx_ring->fbr[1]->buffer2[index] =
2451 rx_ring->fbr[1]->virt[index] - 4;
2454 #endif
2456 /* Allocate an area of memory for FIFO of Packet Status ring entries */
2457 pktstat_ringsize =
2458 sizeof(struct pkt_stat_desc) * adapter->rx_ring.psr_num_entries;
2460 rx_ring->ps_ring_virtaddr = dma_alloc_coherent(&adapter->pdev->dev,
2461 pktstat_ringsize,
2462 &rx_ring->ps_ring_physaddr,
2463 GFP_KERNEL);
2465 if (!rx_ring->ps_ring_virtaddr) {
2466 dev_err(&adapter->pdev->dev,
2467 "Cannot alloc memory for Packet Status Ring\n");
2468 return -ENOMEM;
2470 printk(KERN_INFO "Packet Status Ring %lx\n",
2471 (unsigned long) rx_ring->ps_ring_physaddr);
2474 * NOTE : dma_alloc_coherent(), used above to alloc DMA regions,
2475 * ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses
2476 * are ever returned, make sure the high part is retrieved here before
2477 * storing the adjusted address.
2480 /* Allocate an area of memory for writeback of status information */
2481 rx_ring->rx_status_block = dma_alloc_coherent(&adapter->pdev->dev,
2482 sizeof(struct rx_status_block),
2483 &rx_ring->rx_status_bus,
2484 GFP_KERNEL);
2485 if (!rx_ring->rx_status_block) {
2486 dev_err(&adapter->pdev->dev,
2487 "Cannot alloc memory for Status Block\n");
2488 return -ENOMEM;
2490 rx_ring->num_rfd = NIC_DEFAULT_NUM_RFD;
2491 printk(KERN_INFO "PRS %lx\n", (unsigned long)rx_ring->rx_status_bus);
2493 /* Recv
2494 * kmem_cache_create initializes a lookaside list. After successful
2495 * creation, nonpaged fixed-size blocks can be allocated from and
2496 * freed to the lookaside list.
2497 * RFDs will be allocated from this pool.
2499 rx_ring->recv_lookaside = kmem_cache_create(adapter->netdev->name,
2500 sizeof(struct rfd),
2502 SLAB_CACHE_DMA |
2503 SLAB_HWCACHE_ALIGN,
2504 NULL);
2506 adapter->flags |= fMP_ADAPTER_RECV_LOOKASIDE;
2508 /* The RFDs are going to be put on lists later on, so initialize the
2509 * lists now.
2511 INIT_LIST_HEAD(&rx_ring->recv_list);
2512 return 0;
2516 * et131x_rx_dma_memory_free - Free all memory allocated within this module.
2517 * @adapter: pointer to our private adapter structure
2519 void et131x_rx_dma_memory_free(struct et131x_adapter *adapter)
2521 u32 index;
2522 u32 bufsize;
2523 u32 pktstat_ringsize;
2524 struct rfd *rfd;
2525 struct rx_ring *rx_ring;
2527 /* Setup some convenience pointers */
2528 rx_ring = &adapter->rx_ring;
2530 /* Free RFDs and associated packet descriptors */
2531 WARN_ON(rx_ring->num_ready_recv != rx_ring->num_rfd);
2533 while (!list_empty(&rx_ring->recv_list)) {
2534 rfd = (struct rfd *) list_entry(rx_ring->recv_list.next,
2535 struct rfd, list_node);
2537 list_del(&rfd->list_node);
2538 rfd->skb = NULL;
2539 kmem_cache_free(adapter->rx_ring.recv_lookaside, rfd);
2542 /* Free Free Buffer Ring 1 */
2543 if (rx_ring->fbr[0]->ring_virtaddr) {
2544 /* First the packet memory */
2545 for (index = 0; index <
2546 (rx_ring->fbr[0]->num_entries / FBR_CHUNKS); index++) {
2547 if (rx_ring->fbr[0]->mem_virtaddrs[index]) {
2548 u32 fbr1_align;
2550 if (rx_ring->fbr[0]->buffsize > 4096)
2551 fbr1_align = 4096;
2552 else
2553 fbr1_align = rx_ring->fbr[0]->buffsize;
2555 bufsize =
2556 (rx_ring->fbr[0]->buffsize * FBR_CHUNKS) +
2557 fbr1_align - 1;
2559 dma_free_coherent(&adapter->pdev->dev,
2560 bufsize,
2561 rx_ring->fbr[0]->mem_virtaddrs[index],
2562 rx_ring->fbr[0]->mem_physaddrs[index]);
2564 rx_ring->fbr[0]->mem_virtaddrs[index] = NULL;
2568 /* Now the FIFO itself */
2569 rx_ring->fbr[0]->ring_virtaddr = (void *)((u8 *)
2570 rx_ring->fbr[0]->ring_virtaddr - rx_ring->fbr[0]->offset);
2572 bufsize = (sizeof(struct fbr_desc) * rx_ring->fbr[0]->num_entries)
2573 + 0xfff;
2575 dma_free_coherent(&adapter->pdev->dev, bufsize,
2576 rx_ring->fbr[0]->ring_virtaddr,
2577 rx_ring->fbr[0]->ring_physaddr);
2579 rx_ring->fbr[0]->ring_virtaddr = NULL;
2582 #ifdef USE_FBR0
2583 /* Now the same for Free Buffer Ring 0 */
2584 if (rx_ring->fbr[1]->ring_virtaddr) {
2585 /* First the packet memory */
2586 for (index = 0; index <
2587 (rx_ring->fbr[1]->num_entries / FBR_CHUNKS); index++) {
2588 if (rx_ring->fbr[1]->mem_virtaddrs[index]) {
2589 bufsize =
2590 (rx_ring->fbr[1]->buffsize *
2591 (FBR_CHUNKS + 1)) - 1;
2593 dma_free_coherent(&adapter->pdev->dev,
2594 bufsize,
2595 rx_ring->fbr[1]->mem_virtaddrs[index],
2596 rx_ring->fbr[1]->mem_physaddrs[index]);
2598 rx_ring->fbr[1]->mem_virtaddrs[index] = NULL;
2602 /* Now the FIFO itself */
2603 rx_ring->fbr[1]->ring_virtaddr = (void *)((u8 *)
2604 rx_ring->fbr[1]->ring_virtaddr - rx_ring->fbr[1]->offset);
2606 bufsize = (sizeof(struct fbr_desc) * rx_ring->fbr[1]->num_entries)
2607 + 0xfff;
2609 dma_free_coherent(&adapter->pdev->dev,
2610 bufsize,
2611 rx_ring->fbr[1]->ring_virtaddr,
2612 rx_ring->fbr[1]->ring_physaddr);
2614 rx_ring->fbr[1]->ring_virtaddr = NULL;
2616 #endif
2618 /* Free Packet Status Ring */
2619 if (rx_ring->ps_ring_virtaddr) {
2620 pktstat_ringsize =
2621 sizeof(struct pkt_stat_desc) *
2622 adapter->rx_ring.psr_num_entries;
2624 dma_free_coherent(&adapter->pdev->dev, pktstat_ringsize,
2625 rx_ring->ps_ring_virtaddr,
2626 rx_ring->ps_ring_physaddr);
2628 rx_ring->ps_ring_virtaddr = NULL;
2631 /* Free area of memory for the writeback of status information */
2632 if (rx_ring->rx_status_block) {
2633 dma_free_coherent(&adapter->pdev->dev,
2634 sizeof(struct rx_status_block),
2635 rx_ring->rx_status_block, rx_ring->rx_status_bus);
2636 rx_ring->rx_status_block = NULL;
2639 /* Destroy the lookaside (RFD) pool */
2640 if (adapter->flags & fMP_ADAPTER_RECV_LOOKASIDE) {
2641 kmem_cache_destroy(rx_ring->recv_lookaside);
2642 adapter->flags &= ~fMP_ADAPTER_RECV_LOOKASIDE;
2645 /* Free the FBR Lookup Table */
2646 #ifdef USE_FBR0
2647 kfree(rx_ring->fbr[1]);
2648 #endif
2650 kfree(rx_ring->fbr[0]);
2652 /* Reset Counters */
2653 rx_ring->num_ready_recv = 0;
2657 * et131x_init_recv - Initialize receive data structures.
2658 * @adapter: pointer to our private adapter structure
2660 * Returns 0 on success and errno on failure (as defined in errno.h)
2662 int et131x_init_recv(struct et131x_adapter *adapter)
2664 int status = -ENOMEM;
2665 struct rfd *rfd = NULL;
2666 u32 rfdct;
2667 u32 numrfd = 0;
2668 struct rx_ring *rx_ring;
2670 /* Setup some convenience pointers */
2671 rx_ring = &adapter->rx_ring;
2673 /* Setup each RFD */
2674 for (rfdct = 0; rfdct < rx_ring->num_rfd; rfdct++) {
2675 rfd = kmem_cache_alloc(rx_ring->recv_lookaside,
2676 GFP_ATOMIC | GFP_DMA);
2678 if (!rfd) {
2679 dev_err(&adapter->pdev->dev,
2680 "Couldn't alloc RFD out of kmem_cache\n");
2681 status = -ENOMEM;
2682 continue;
2685 rfd->skb = NULL;
2687 /* Add this RFD to the recv_list */
2688 list_add_tail(&rfd->list_node, &rx_ring->recv_list);
2690 /* Increment both the available RFD's, and the total RFD's. */
2691 rx_ring->num_ready_recv++;
2692 numrfd++;
2695 if (numrfd > NIC_MIN_NUM_RFD)
2696 status = 0;
2698 rx_ring->num_rfd = numrfd;
2700 if (status != 0) {
2701 kmem_cache_free(rx_ring->recv_lookaside, rfd);
2702 dev_err(&adapter->pdev->dev,
2703 "Allocation problems in et131x_init_recv\n");
2705 return status;
2709 * et131x_set_rx_dma_timer - Set the heartbeat timer according to line rate.
2710 * @adapter: pointer to our adapter structure
2712 void et131x_set_rx_dma_timer(struct et131x_adapter *adapter)
2714 struct phy_device *phydev = adapter->phydev;
2716 if (!phydev)
2717 return;
2719 /* For version B silicon, we do not use the RxDMA timer for 10 and 100
2720 * Mbits/s line rates. We do not enable and RxDMA interrupt coalescing.
2722 if ((phydev->speed == SPEED_100) || (phydev->speed == SPEED_10)) {
2723 writel(0, &adapter->regs->rxdma.max_pkt_time);
2724 writel(1, &adapter->regs->rxdma.num_pkt_done);
2729 * NICReturnRFD - Recycle a RFD and put it back onto the receive list
2730 * @adapter: pointer to our adapter
2731 * @rfd: pointer to the RFD
2733 static void nic_return_rfd(struct et131x_adapter *adapter, struct rfd *rfd)
2735 struct rx_ring *rx_local = &adapter->rx_ring;
2736 struct rxdma_regs __iomem *rx_dma = &adapter->regs->rxdma;
2737 u16 buff_index = rfd->bufferindex;
2738 u8 ring_index = rfd->ringindex;
2739 unsigned long flags;
2741 /* We don't use any of the OOB data besides status. Otherwise, we
2742 * need to clean up OOB data
2744 if (
2745 #ifdef USE_FBR0
2746 (ring_index == 0 && buff_index < rx_local->fbr[1]->num_entries) ||
2747 #endif
2748 (ring_index == 1 && buff_index < rx_local->fbr[0]->num_entries)) {
2749 spin_lock_irqsave(&adapter->fbr_lock, flags);
2751 if (ring_index == 1) {
2752 struct fbr_desc *next =
2753 (struct fbr_desc *) (rx_local->fbr[0]->ring_virtaddr) +
2754 INDEX10(rx_local->fbr[0]->local_full);
2756 /* Handle the Free Buffer Ring advancement here. Write
2757 * the PA / Buffer Index for the returned buffer into
2758 * the oldest (next to be freed)FBR entry
2760 next->addr_hi = rx_local->fbr[0]->bus_high[buff_index];
2761 next->addr_lo = rx_local->fbr[0]->bus_low[buff_index];
2762 next->word2 = buff_index;
2764 writel(bump_free_buff_ring(&rx_local->fbr[0]->local_full,
2765 rx_local->fbr[0]->num_entries - 1),
2766 &rx_dma->fbr1_full_offset);
2768 #ifdef USE_FBR0
2769 else {
2770 struct fbr_desc *next = (struct fbr_desc *)
2771 rx_local->fbr[1]->ring_virtaddr +
2772 INDEX10(rx_local->fbr[1]->local_full);
2774 /* Handle the Free Buffer Ring advancement here. Write
2775 * the PA / Buffer Index for the returned buffer into
2776 * the oldest (next to be freed) FBR entry
2778 next->addr_hi = rx_local->fbr[1]->bus_high[buff_index];
2779 next->addr_lo = rx_local->fbr[1]->bus_low[buff_index];
2780 next->word2 = buff_index;
2782 writel(bump_free_buff_ring(
2783 &rx_local->fbr[1]->local_full,
2784 rx_local->fbr[1]->num_entries - 1),
2785 &rx_dma->fbr0_full_offset);
2787 #endif
2788 spin_unlock_irqrestore(&adapter->fbr_lock, flags);
2789 } else {
2790 dev_err(&adapter->pdev->dev,
2791 "%s illegal Buffer Index returned\n", __func__);
2794 /* The processing on this RFD is done, so put it back on the tail of
2795 * our list
2797 spin_lock_irqsave(&adapter->rcv_lock, flags);
2798 list_add_tail(&rfd->list_node, &rx_local->recv_list);
2799 rx_local->num_ready_recv++;
2800 spin_unlock_irqrestore(&adapter->rcv_lock, flags);
2802 WARN_ON(rx_local->num_ready_recv > rx_local->num_rfd);
2806 * et131x_rx_dma_disable - Stop of Rx_DMA on the ET1310
2807 * @adapter: pointer to our adapter structure
2809 void et131x_rx_dma_disable(struct et131x_adapter *adapter)
2811 u32 csr;
2812 /* Setup the receive dma configuration register */
2813 writel(0x00002001, &adapter->regs->rxdma.csr);
2814 csr = readl(&adapter->regs->rxdma.csr);
2815 if ((csr & 0x00020000) == 0) { /* Check halt status (bit 17) */
2816 udelay(5);
2817 csr = readl(&adapter->regs->rxdma.csr);
2818 if ((csr & 0x00020000) == 0)
2819 dev_err(&adapter->pdev->dev,
2820 "RX Dma failed to enter halt state. CSR 0x%08x\n",
2821 csr);
2826 * et131x_rx_dma_enable - re-start of Rx_DMA on the ET1310.
2827 * @adapter: pointer to our adapter structure
2829 void et131x_rx_dma_enable(struct et131x_adapter *adapter)
2831 /* Setup the receive dma configuration register for normal operation */
2832 u32 csr = 0x2000; /* FBR1 enable */
2834 if (adapter->rx_ring.fbr[0]->buffsize == 4096)
2835 csr |= 0x0800;
2836 else if (adapter->rx_ring.fbr[0]->buffsize == 8192)
2837 csr |= 0x1000;
2838 else if (adapter->rx_ring.fbr[0]->buffsize == 16384)
2839 csr |= 0x1800;
2840 #ifdef USE_FBR0
2841 csr |= 0x0400; /* FBR0 enable */
2842 if (adapter->rx_ring.fbr[1]->buffsize == 256)
2843 csr |= 0x0100;
2844 else if (adapter->rx_ring.fbr[1]->buffsize == 512)
2845 csr |= 0x0200;
2846 else if (adapter->rx_ring.fbr[1]->buffsize == 1024)
2847 csr |= 0x0300;
2848 #endif
2849 writel(csr, &adapter->regs->rxdma.csr);
2851 csr = readl(&adapter->regs->rxdma.csr);
2852 if ((csr & 0x00020000) != 0) {
2853 udelay(5);
2854 csr = readl(&adapter->regs->rxdma.csr);
2855 if ((csr & 0x00020000) != 0) {
2856 dev_err(&adapter->pdev->dev,
2857 "RX Dma failed to exit halt state. CSR 0x%08x\n",
2858 csr);
2864 static inline void add_10bit(u32 *v, int n)
2866 *v = INDEX10(*v + n) | (*v & ET_DMA10_WRAP);
2869 static inline void add_12bit(u32 *v, int n)
2871 *v = INDEX12(*v + n) | (*v & ET_DMA12_WRAP);
2875 * nic_rx_pkts - Checks the hardware for available packets
2876 * @adapter: pointer to our adapter
2878 * Returns rfd, a pointer to our MPRFD.
2880 * Checks the hardware for available packets, using completion ring
2881 * If packets are available, it gets an RFD from the recv_list, attaches
2882 * the packet to it, puts the RFD in the RecvPendList, and also returns
2883 * the pointer to the RFD.
2885 static struct rfd *nic_rx_pkts(struct et131x_adapter *adapter)
2887 struct rx_ring *rx_local = &adapter->rx_ring;
2888 struct rx_status_block *status;
2889 struct pkt_stat_desc *psr;
2890 struct rfd *rfd;
2891 u32 i;
2892 u8 *buf;
2893 unsigned long flags;
2894 struct list_head *element;
2895 u8 ring_index;
2896 u16 buff_index;
2897 u32 len;
2898 u32 word0;
2899 u32 word1;
2901 /* RX Status block is written by the DMA engine prior to every
2902 * interrupt. It contains the next to be used entry in the Packet
2903 * Status Ring, and also the two Free Buffer rings.
2905 status = rx_local->rx_status_block;
2906 word1 = status->word1 >> 16; /* Get the useful bits */
2908 /* Check the PSR and wrap bits do not match */
2909 if ((word1 & 0x1FFF) == (rx_local->local_psr_full & 0x1FFF))
2910 /* Looks like this ring is not updated yet */
2911 return NULL;
2913 /* The packet status ring indicates that data is available. */
2914 psr = (struct pkt_stat_desc *) (rx_local->ps_ring_virtaddr) +
2915 (rx_local->local_psr_full & 0xFFF);
2917 /* Grab any information that is required once the PSR is
2918 * advanced, since we can no longer rely on the memory being
2919 * accurate
2921 len = psr->word1 & 0xFFFF;
2922 ring_index = (psr->word1 >> 26) & 0x03;
2923 buff_index = (psr->word1 >> 16) & 0x3FF;
2924 word0 = psr->word0;
2926 /* Indicate that we have used this PSR entry. */
2927 /* FIXME wrap 12 */
2928 add_12bit(&rx_local->local_psr_full, 1);
2929 if (
2930 (rx_local->local_psr_full & 0xFFF) > rx_local->psr_num_entries - 1) {
2931 /* Clear psr full and toggle the wrap bit */
2932 rx_local->local_psr_full &= ~0xFFF;
2933 rx_local->local_psr_full ^= 0x1000;
2936 writel(rx_local->local_psr_full,
2937 &adapter->regs->rxdma.psr_full_offset);
2939 #ifndef USE_FBR0
2940 if (ring_index != 1)
2941 return NULL;
2942 #endif
2944 #ifdef USE_FBR0
2945 if (ring_index > 1 ||
2946 (ring_index == 0 &&
2947 buff_index > rx_local->fbr[1]->num_entries - 1) ||
2948 (ring_index == 1 &&
2949 buff_index > rx_local->fbr[0]->num_entries - 1))
2950 #else
2951 if (ring_index != 1 || buff_index > rx_local->fbr[0]->num_entries - 1)
2952 #endif
2954 /* Illegal buffer or ring index cannot be used by S/W*/
2955 dev_err(&adapter->pdev->dev,
2956 "NICRxPkts PSR Entry %d indicates "
2957 "length of %d and/or bad bi(%d)\n",
2958 rx_local->local_psr_full & 0xFFF,
2959 len, buff_index);
2960 return NULL;
2963 /* Get and fill the RFD. */
2964 spin_lock_irqsave(&adapter->rcv_lock, flags);
2966 rfd = NULL;
2967 element = rx_local->recv_list.next;
2968 rfd = (struct rfd *) list_entry(element, struct rfd, list_node);
2970 if (rfd == NULL) {
2971 spin_unlock_irqrestore(&adapter->rcv_lock, flags);
2972 return NULL;
2975 list_del(&rfd->list_node);
2976 rx_local->num_ready_recv--;
2978 spin_unlock_irqrestore(&adapter->rcv_lock, flags);
2980 rfd->bufferindex = buff_index;
2981 rfd->ringindex = ring_index;
2983 /* In V1 silicon, there is a bug which screws up filtering of
2984 * runt packets. Therefore runt packet filtering is disabled
2985 * in the MAC and the packets are dropped here. They are
2986 * also counted here.
2988 if (len < (NIC_MIN_PACKET_SIZE + 4)) {
2989 adapter->stats.rx_other_errs++;
2990 len = 0;
2993 if (len) {
2994 /* Determine if this is a multicast packet coming in */
2995 if ((word0 & ALCATEL_MULTICAST_PKT) &&
2996 !(word0 & ALCATEL_BROADCAST_PKT)) {
2997 /* Promiscuous mode and Multicast mode are
2998 * not mutually exclusive as was first
2999 * thought. I guess Promiscuous is just
3000 * considered a super-set of the other
3001 * filters. Generally filter is 0x2b when in
3002 * promiscuous mode.
3004 if ((adapter->packet_filter &
3005 ET131X_PACKET_TYPE_MULTICAST)
3006 && !(adapter->packet_filter &
3007 ET131X_PACKET_TYPE_PROMISCUOUS)
3008 && !(adapter->packet_filter &
3009 ET131X_PACKET_TYPE_ALL_MULTICAST)) {
3011 * Note - ring_index for fbr[] array is reversed
3012 * 1 for FBR0 etc
3014 buf = rx_local->fbr[(ring_index == 0 ? 1 : 0)]->
3015 virt[buff_index];
3017 /* Loop through our list to see if the
3018 * destination address of this packet
3019 * matches one in our list.
3021 for (i = 0; i < adapter->multicast_addr_count;
3022 i++) {
3023 if (buf[0] ==
3024 adapter->multicast_list[i][0]
3025 && buf[1] ==
3026 adapter->multicast_list[i][1]
3027 && buf[2] ==
3028 adapter->multicast_list[i][2]
3029 && buf[3] ==
3030 adapter->multicast_list[i][3]
3031 && buf[4] ==
3032 adapter->multicast_list[i][4]
3033 && buf[5] ==
3034 adapter->multicast_list[i][5]) {
3035 break;
3039 /* If our index is equal to the number
3040 * of Multicast address we have, then
3041 * this means we did not find this
3042 * packet's matching address in our
3043 * list. Set the len to zero,
3044 * so we free our RFD when we return
3045 * from this function.
3047 if (i == adapter->multicast_addr_count)
3048 len = 0;
3051 if (len > 0)
3052 adapter->stats.multicast_pkts_rcvd++;
3053 } else if (word0 & ALCATEL_BROADCAST_PKT)
3054 adapter->stats.broadcast_pkts_rcvd++;
3055 else
3056 /* Not sure what this counter measures in
3057 * promiscuous mode. Perhaps we should check
3058 * the MAC address to see if it is directed
3059 * to us in promiscuous mode.
3061 adapter->stats.unicast_pkts_rcvd++;
3064 if (len > 0) {
3065 struct sk_buff *skb = NULL;
3067 /*rfd->len = len - 4; */
3068 rfd->len = len;
3070 skb = dev_alloc_skb(rfd->len + 2);
3071 if (!skb) {
3072 dev_err(&adapter->pdev->dev,
3073 "Couldn't alloc an SKB for Rx\n");
3074 return NULL;
3077 adapter->net_stats.rx_bytes += rfd->len;
3080 * Note - ring_index for fbr[] array is reversed,
3081 * 1 for FBR0 etc
3083 memcpy(skb_put(skb, rfd->len),
3084 rx_local->fbr[(ring_index == 0 ? 1 : 0)]->virt[buff_index],
3085 rfd->len);
3087 skb->dev = adapter->netdev;
3088 skb->protocol = eth_type_trans(skb, adapter->netdev);
3089 skb->ip_summed = CHECKSUM_NONE;
3091 netif_rx(skb);
3092 } else {
3093 rfd->len = 0;
3096 nic_return_rfd(adapter, rfd);
3097 return rfd;
3101 * et131x_handle_recv_interrupt - Interrupt handler for receive processing
3102 * @adapter: pointer to our adapter
3104 * Assumption, Rcv spinlock has been acquired.
3106 void et131x_handle_recv_interrupt(struct et131x_adapter *adapter)
3108 struct rfd *rfd = NULL;
3109 u32 count = 0;
3110 bool done = true;
3112 /* Process up to available RFD's */
3113 while (count < NUM_PACKETS_HANDLED) {
3114 if (list_empty(&adapter->rx_ring.recv_list)) {
3115 WARN_ON(adapter->rx_ring.num_ready_recv != 0);
3116 done = false;
3117 break;
3120 rfd = nic_rx_pkts(adapter);
3122 if (rfd == NULL)
3123 break;
3125 /* Do not receive any packets until a filter has been set.
3126 * Do not receive any packets until we have link.
3127 * If length is zero, return the RFD in order to advance the
3128 * Free buffer ring.
3130 if (!adapter->packet_filter ||
3131 !netif_carrier_ok(adapter->netdev) ||
3132 rfd->len == 0)
3133 continue;
3135 /* Increment the number of packets we received */
3136 adapter->net_stats.rx_packets++;
3138 /* Set the status on the packet, either resources or success */
3139 if (adapter->rx_ring.num_ready_recv < RFD_LOW_WATER_MARK) {
3140 dev_warn(&adapter->pdev->dev,
3141 "RFD's are running out\n");
3143 count++;
3146 if (count == NUM_PACKETS_HANDLED || !done) {
3147 adapter->rx_ring.unfinished_receives = true;
3148 writel(PARM_TX_TIME_INT_DEF * NANO_IN_A_MICRO,
3149 &adapter->regs->global.watchdog_timer);
3150 } else
3151 /* Watchdog timer will disable itself if appropriate. */
3152 adapter->rx_ring.unfinished_receives = false;
3155 /* TX functions */
3158 * et131x_tx_dma_memory_alloc
3159 * @adapter: pointer to our private adapter structure
3161 * Returns 0 on success and errno on failure (as defined in errno.h).
3163 * Allocates memory that will be visible both to the device and to the CPU.
3164 * The OS will pass us packets, pointers to which we will insert in the Tx
3165 * Descriptor queue. The device will read this queue to find the packets in
3166 * memory. The device will update the "status" in memory each time it xmits a
3167 * packet.
3169 int et131x_tx_dma_memory_alloc(struct et131x_adapter *adapter)
3171 int desc_size = 0;
3172 struct tx_ring *tx_ring = &adapter->tx_ring;
3174 /* Allocate memory for the TCB's (Transmit Control Block) */
3175 adapter->tx_ring.tcb_ring =
3176 kcalloc(NUM_TCB, sizeof(struct tcb), GFP_ATOMIC | GFP_DMA);
3177 if (!adapter->tx_ring.tcb_ring) {
3178 dev_err(&adapter->pdev->dev, "Cannot alloc memory for TCBs\n");
3179 return -ENOMEM;
3182 /* Allocate enough memory for the Tx descriptor ring, and allocate
3183 * some extra so that the ring can be aligned on a 4k boundary.
3185 desc_size = (sizeof(struct tx_desc) * NUM_DESC_PER_RING_TX) + 4096 - 1;
3186 tx_ring->tx_desc_ring =
3187 (struct tx_desc *) dma_alloc_coherent(&adapter->pdev->dev, desc_size,
3188 &tx_ring->tx_desc_ring_pa, GFP_KERNEL);
3189 if (!adapter->tx_ring.tx_desc_ring) {
3190 dev_err(&adapter->pdev->dev,
3191 "Cannot alloc memory for Tx Ring\n");
3192 return -ENOMEM;
3195 /* Save physical address
3197 * NOTE: dma_alloc_coherent(), used above to alloc DMA regions,
3198 * ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses
3199 * are ever returned, make sure the high part is retrieved here before
3200 * storing the adjusted address.
3202 /* Allocate memory for the Tx status block */
3203 tx_ring->tx_status = dma_alloc_coherent(&adapter->pdev->dev,
3204 sizeof(u32),
3205 &tx_ring->tx_status_pa,
3206 GFP_KERNEL);
3207 if (!adapter->tx_ring.tx_status_pa) {
3208 dev_err(&adapter->pdev->dev,
3209 "Cannot alloc memory for Tx status block\n");
3210 return -ENOMEM;
3212 return 0;
3216 * et131x_tx_dma_memory_free - Free all memory allocated within this module
3217 * @adapter: pointer to our private adapter structure
3219 * Returns 0 on success and errno on failure (as defined in errno.h).
3221 void et131x_tx_dma_memory_free(struct et131x_adapter *adapter)
3223 int desc_size = 0;
3225 if (adapter->tx_ring.tx_desc_ring) {
3226 /* Free memory relating to Tx rings here */
3227 desc_size = (sizeof(struct tx_desc) * NUM_DESC_PER_RING_TX)
3228 + 4096 - 1;
3229 dma_free_coherent(&adapter->pdev->dev,
3230 desc_size,
3231 adapter->tx_ring.tx_desc_ring,
3232 adapter->tx_ring.tx_desc_ring_pa);
3233 adapter->tx_ring.tx_desc_ring = NULL;
3236 /* Free memory for the Tx status block */
3237 if (adapter->tx_ring.tx_status) {
3238 dma_free_coherent(&adapter->pdev->dev,
3239 sizeof(u32),
3240 adapter->tx_ring.tx_status,
3241 adapter->tx_ring.tx_status_pa);
3243 adapter->tx_ring.tx_status = NULL;
3245 /* Free the memory for the tcb structures */
3246 kfree(adapter->tx_ring.tcb_ring);
3250 * et131x_init_send - Initialize send data structures
3251 * @adapter: pointer to our private adapter structure
3253 void et131x_init_send(struct et131x_adapter *adapter)
3255 struct tcb *tcb;
3256 u32 ct;
3257 struct tx_ring *tx_ring;
3259 /* Setup some convenience pointers */
3260 tx_ring = &adapter->tx_ring;
3261 tcb = adapter->tx_ring.tcb_ring;
3263 tx_ring->tcb_qhead = tcb;
3265 memset(tcb, 0, sizeof(struct tcb) * NUM_TCB);
3267 /* Go through and set up each TCB */
3268 for (ct = 0; ct++ < NUM_TCB; tcb++)
3269 /* Set the link pointer in HW TCB to the next TCB in the
3270 * chain
3272 tcb->next = tcb + 1;
3274 /* Set the tail pointer */
3275 tcb--;
3276 tx_ring->tcb_qtail = tcb;
3277 tcb->next = NULL;
3278 /* Curr send queue should now be empty */
3279 tx_ring->send_head = NULL;
3280 tx_ring->send_tail = NULL;
3284 * nic_send_packet - NIC specific send handler for version B silicon.
3285 * @adapter: pointer to our adapter
3286 * @tcb: pointer to struct tcb
3288 * Returns 0 or errno.
3290 static int nic_send_packet(struct et131x_adapter *adapter, struct tcb *tcb)
3292 u32 i;
3293 struct tx_desc desc[24]; /* 24 x 16 byte */
3294 u32 frag = 0;
3295 u32 thiscopy, remainder;
3296 struct sk_buff *skb = tcb->skb;
3297 u32 nr_frags = skb_shinfo(skb)->nr_frags + 1;
3298 struct skb_frag_struct *frags = &skb_shinfo(skb)->frags[0];
3299 unsigned long flags;
3300 struct phy_device *phydev = adapter->phydev;
3302 /* Part of the optimizations of this send routine restrict us to
3303 * sending 24 fragments at a pass. In practice we should never see
3304 * more than 5 fragments.
3306 * NOTE: The older version of this function (below) can handle any
3307 * number of fragments. If needed, we can call this function,
3308 * although it is less efficient.
3310 if (nr_frags > 23)
3311 return -EIO;
3313 memset(desc, 0, sizeof(struct tx_desc) * (nr_frags + 1));
3315 for (i = 0; i < nr_frags; i++) {
3316 /* If there is something in this element, lets get a
3317 * descriptor from the ring and get the necessary data
3319 if (i == 0) {
3320 /* If the fragments are smaller than a standard MTU,
3321 * then map them to a single descriptor in the Tx
3322 * Desc ring. However, if they're larger, as is
3323 * possible with support for jumbo packets, then
3324 * split them each across 2 descriptors.
3326 * This will work until we determine why the hardware
3327 * doesn't seem to like large fragments.
3329 if ((skb->len - skb->data_len) <= 1514) {
3330 desc[frag].addr_hi = 0;
3331 /* Low 16bits are length, high is vlan and
3332 unused currently so zero */
3333 desc[frag].len_vlan =
3334 skb->len - skb->data_len;
3336 /* NOTE: Here, the dma_addr_t returned from
3337 * dma_map_single() is implicitly cast as a
3338 * u32. Although dma_addr_t can be
3339 * 64-bit, the address returned by
3340 * dma_map_single() is always 32-bit
3341 * addressable (as defined by the pci/dma
3342 * subsystem)
3344 desc[frag++].addr_lo =
3345 dma_map_single(&adapter->pdev->dev,
3346 skb->data,
3347 skb->len -
3348 skb->data_len,
3349 DMA_TO_DEVICE);
3350 } else {
3351 desc[frag].addr_hi = 0;
3352 desc[frag].len_vlan =
3353 (skb->len - skb->data_len) / 2;
3355 /* NOTE: Here, the dma_addr_t returned from
3356 * dma_map_single() is implicitly cast as a
3357 * u32. Although dma_addr_t can be
3358 * 64-bit, the address returned by
3359 * dma_map_single() is always 32-bit
3360 * addressable (as defined by the pci/dma
3361 * subsystem)
3363 desc[frag++].addr_lo =
3364 dma_map_single(&adapter->pdev->dev,
3365 skb->data,
3366 ((skb->len -
3367 skb->data_len) / 2),
3368 DMA_TO_DEVICE);
3369 desc[frag].addr_hi = 0;
3371 desc[frag].len_vlan =
3372 (skb->len - skb->data_len) / 2;
3374 /* NOTE: Here, the dma_addr_t returned from
3375 * dma_map_single() is implicitly cast as a
3376 * u32. Although dma_addr_t can be
3377 * 64-bit, the address returned by
3378 * dma_map_single() is always 32-bit
3379 * addressable (as defined by the pci/dma
3380 * subsystem)
3382 desc[frag++].addr_lo =
3383 dma_map_single(&adapter->pdev->dev,
3384 skb->data +
3385 ((skb->len -
3386 skb->data_len) / 2),
3387 ((skb->len -
3388 skb->data_len) / 2),
3389 DMA_TO_DEVICE);
3391 } else {
3392 desc[frag].addr_hi = 0;
3393 desc[frag].len_vlan =
3394 frags[i - 1].size;
3396 /* NOTE: Here, the dma_addr_t returned from
3397 * dma_map_page() is implicitly cast as a u32.
3398 * Although dma_addr_t can be 64-bit, the address
3399 * returned by dma_map_page() is always 32-bit
3400 * addressable (as defined by the pci/dma subsystem)
3402 desc[frag++].addr_lo =
3403 dma_map_page(&adapter->pdev->dev,
3404 frags[i - 1].page,
3405 frags[i - 1].page_offset,
3406 frags[i - 1].size,
3407 DMA_TO_DEVICE);
3411 if (frag == 0)
3412 return -EIO;
3414 if (phydev && phydev->speed == SPEED_1000) {
3415 if (++adapter->tx_ring.since_irq == PARM_TX_NUM_BUFS_DEF) {
3416 /* Last element & Interrupt flag */
3417 desc[frag - 1].flags = 0x5;
3418 adapter->tx_ring.since_irq = 0;
3419 } else { /* Last element */
3420 desc[frag - 1].flags = 0x1;
3422 } else
3423 desc[frag - 1].flags = 0x5;
3425 desc[0].flags |= 2; /* First element flag */
3427 tcb->index_start = adapter->tx_ring.send_idx;
3428 tcb->stale = 0;
3430 spin_lock_irqsave(&adapter->send_hw_lock, flags);
3432 thiscopy = NUM_DESC_PER_RING_TX -
3433 INDEX10(adapter->tx_ring.send_idx);
3435 if (thiscopy >= frag) {
3436 remainder = 0;
3437 thiscopy = frag;
3438 } else {
3439 remainder = frag - thiscopy;
3442 memcpy(adapter->tx_ring.tx_desc_ring +
3443 INDEX10(adapter->tx_ring.send_idx), desc,
3444 sizeof(struct tx_desc) * thiscopy);
3446 add_10bit(&adapter->tx_ring.send_idx, thiscopy);
3448 if (INDEX10(adapter->tx_ring.send_idx) == 0 ||
3449 INDEX10(adapter->tx_ring.send_idx) == NUM_DESC_PER_RING_TX) {
3450 adapter->tx_ring.send_idx &= ~ET_DMA10_MASK;
3451 adapter->tx_ring.send_idx ^= ET_DMA10_WRAP;
3454 if (remainder) {
3455 memcpy(adapter->tx_ring.tx_desc_ring,
3456 desc + thiscopy,
3457 sizeof(struct tx_desc) * remainder);
3459 add_10bit(&adapter->tx_ring.send_idx, remainder);
3462 if (INDEX10(adapter->tx_ring.send_idx) == 0) {
3463 if (adapter->tx_ring.send_idx)
3464 tcb->index = NUM_DESC_PER_RING_TX - 1;
3465 else
3466 tcb->index = ET_DMA10_WRAP|(NUM_DESC_PER_RING_TX - 1);
3467 } else
3468 tcb->index = adapter->tx_ring.send_idx - 1;
3470 spin_lock(&adapter->tcb_send_qlock);
3472 if (adapter->tx_ring.send_tail)
3473 adapter->tx_ring.send_tail->next = tcb;
3474 else
3475 adapter->tx_ring.send_head = tcb;
3477 adapter->tx_ring.send_tail = tcb;
3479 WARN_ON(tcb->next != NULL);
3481 adapter->tx_ring.used++;
3483 spin_unlock(&adapter->tcb_send_qlock);
3485 /* Write the new write pointer back to the device. */
3486 writel(adapter->tx_ring.send_idx,
3487 &adapter->regs->txdma.service_request);
3489 /* For Gig only, we use Tx Interrupt coalescing. Enable the software
3490 * timer to wake us up if this packet isn't followed by N more.
3492 if (phydev && phydev->speed == SPEED_1000) {
3493 writel(PARM_TX_TIME_INT_DEF * NANO_IN_A_MICRO,
3494 &adapter->regs->global.watchdog_timer);
3496 spin_unlock_irqrestore(&adapter->send_hw_lock, flags);
3498 return 0;
3502 * send_packet - Do the work to send a packet
3503 * @skb: the packet(s) to send
3504 * @adapter: a pointer to the device's private adapter structure
3506 * Return 0 in almost all cases; non-zero value in extreme hard failure only.
3508 * Assumption: Send spinlock has been acquired
3510 static int send_packet(struct sk_buff *skb, struct et131x_adapter *adapter)
3512 int status;
3513 struct tcb *tcb = NULL;
3514 u16 *shbufva;
3515 unsigned long flags;
3517 /* All packets must have at least a MAC address and a protocol type */
3518 if (skb->len < ETH_HLEN)
3519 return -EIO;
3521 /* Get a TCB for this packet */
3522 spin_lock_irqsave(&adapter->tcb_ready_qlock, flags);
3524 tcb = adapter->tx_ring.tcb_qhead;
3526 if (tcb == NULL) {
3527 spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
3528 return -ENOMEM;
3531 adapter->tx_ring.tcb_qhead = tcb->next;
3533 if (adapter->tx_ring.tcb_qhead == NULL)
3534 adapter->tx_ring.tcb_qtail = NULL;
3536 spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
3538 tcb->skb = skb;
3540 if (skb->data != NULL && skb->len - skb->data_len >= 6) {
3541 shbufva = (u16 *) skb->data;
3543 if ((shbufva[0] == 0xffff) &&
3544 (shbufva[1] == 0xffff) && (shbufva[2] == 0xffff)) {
3545 tcb->flags |= fMP_DEST_BROAD;
3546 } else if ((shbufva[0] & 0x3) == 0x0001) {
3547 tcb->flags |= fMP_DEST_MULTI;
3551 tcb->next = NULL;
3553 /* Call the NIC specific send handler. */
3554 status = nic_send_packet(adapter, tcb);
3556 if (status != 0) {
3557 spin_lock_irqsave(&adapter->tcb_ready_qlock, flags);
3559 if (adapter->tx_ring.tcb_qtail)
3560 adapter->tx_ring.tcb_qtail->next = tcb;
3561 else
3562 /* Apparently ready Q is empty. */
3563 adapter->tx_ring.tcb_qhead = tcb;
3565 adapter->tx_ring.tcb_qtail = tcb;
3566 spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
3567 return status;
3569 WARN_ON(adapter->tx_ring.used > NUM_TCB);
3570 return 0;
3574 * et131x_send_packets - This function is called by the OS to send packets
3575 * @skb: the packet(s) to send
3576 * @netdev:device on which to TX the above packet(s)
3578 * Return 0 in almost all cases; non-zero value in extreme hard failure only
3580 int et131x_send_packets(struct sk_buff *skb, struct net_device *netdev)
3582 int status = 0;
3583 struct et131x_adapter *adapter = netdev_priv(netdev);
3585 /* Send these packets
3587 * NOTE: The Linux Tx entry point is only given one packet at a time
3588 * to Tx, so the PacketCount and it's array used makes no sense here
3591 /* TCB is not available */
3592 if (adapter->tx_ring.used >= NUM_TCB) {
3593 /* NOTE: If there's an error on send, no need to queue the
3594 * packet under Linux; if we just send an error up to the
3595 * netif layer, it will resend the skb to us.
3597 status = -ENOMEM;
3598 } else {
3599 /* We need to see if the link is up; if it's not, make the
3600 * netif layer think we're good and drop the packet
3602 if ((adapter->flags & fMP_ADAPTER_FAIL_SEND_MASK) ||
3603 !netif_carrier_ok(netdev)) {
3604 dev_kfree_skb_any(skb);
3605 skb = NULL;
3607 adapter->net_stats.tx_dropped++;
3608 } else {
3609 status = send_packet(skb, adapter);
3610 if (status != 0 && status != -ENOMEM) {
3611 /* On any other error, make netif think we're
3612 * OK and drop the packet
3614 dev_kfree_skb_any(skb);
3615 skb = NULL;
3616 adapter->net_stats.tx_dropped++;
3620 return status;
3624 * free_send_packet - Recycle a struct tcb
3625 * @adapter: pointer to our adapter
3626 * @tcb: pointer to struct tcb
3628 * Complete the packet if necessary
3629 * Assumption - Send spinlock has been acquired
3631 static inline void free_send_packet(struct et131x_adapter *adapter,
3632 struct tcb *tcb)
3634 unsigned long flags;
3635 struct tx_desc *desc = NULL;
3636 struct net_device_stats *stats = &adapter->net_stats;
3638 if (tcb->flags & fMP_DEST_BROAD)
3639 atomic_inc(&adapter->stats.broadcast_pkts_xmtd);
3640 else if (tcb->flags & fMP_DEST_MULTI)
3641 atomic_inc(&adapter->stats.multicast_pkts_xmtd);
3642 else
3643 atomic_inc(&adapter->stats.unicast_pkts_xmtd);
3645 if (tcb->skb) {
3646 stats->tx_bytes += tcb->skb->len;
3648 /* Iterate through the TX descriptors on the ring
3649 * corresponding to this packet and umap the fragments
3650 * they point to
3652 do {
3653 desc = (struct tx_desc *)
3654 (adapter->tx_ring.tx_desc_ring +
3655 INDEX10(tcb->index_start));
3657 dma_unmap_single(&adapter->pdev->dev,
3658 desc->addr_lo,
3659 desc->len_vlan, DMA_TO_DEVICE);
3661 add_10bit(&tcb->index_start, 1);
3662 if (INDEX10(tcb->index_start) >=
3663 NUM_DESC_PER_RING_TX) {
3664 tcb->index_start &= ~ET_DMA10_MASK;
3665 tcb->index_start ^= ET_DMA10_WRAP;
3667 } while (desc != (adapter->tx_ring.tx_desc_ring +
3668 INDEX10(tcb->index)));
3670 dev_kfree_skb_any(tcb->skb);
3673 memset(tcb, 0, sizeof(struct tcb));
3675 /* Add the TCB to the Ready Q */
3676 spin_lock_irqsave(&adapter->tcb_ready_qlock, flags);
3678 adapter->net_stats.tx_packets++;
3680 if (adapter->tx_ring.tcb_qtail)
3681 adapter->tx_ring.tcb_qtail->next = tcb;
3682 else
3683 /* Apparently ready Q is empty. */
3684 adapter->tx_ring.tcb_qhead = tcb;
3686 adapter->tx_ring.tcb_qtail = tcb;
3688 spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
3689 WARN_ON(adapter->tx_ring.used < 0);
3693 * et131x_free_busy_send_packets - Free and complete the stopped active sends
3694 * @adapter: pointer to our adapter
3696 * Assumption - Send spinlock has been acquired
3698 void et131x_free_busy_send_packets(struct et131x_adapter *adapter)
3700 struct tcb *tcb;
3701 unsigned long flags;
3702 u32 freed = 0;
3704 /* Any packets being sent? Check the first TCB on the send list */
3705 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3707 tcb = adapter->tx_ring.send_head;
3709 while (tcb != NULL && freed < NUM_TCB) {
3710 struct tcb *next = tcb->next;
3712 adapter->tx_ring.send_head = next;
3714 if (next == NULL)
3715 adapter->tx_ring.send_tail = NULL;
3717 adapter->tx_ring.used--;
3719 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3721 freed++;
3722 free_send_packet(adapter, tcb);
3724 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3726 tcb = adapter->tx_ring.send_head;
3729 WARN_ON(freed == NUM_TCB);
3731 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3733 adapter->tx_ring.used = 0;
3737 * et131x_handle_send_interrupt - Interrupt handler for sending processing
3738 * @adapter: pointer to our adapter
3740 * Re-claim the send resources, complete sends and get more to send from
3741 * the send wait queue.
3743 * Assumption - Send spinlock has been acquired
3745 void et131x_handle_send_interrupt(struct et131x_adapter *adapter)
3747 unsigned long flags;
3748 u32 serviced;
3749 struct tcb *tcb;
3750 u32 index;
3752 serviced = readl(&adapter->regs->txdma.new_service_complete);
3753 index = INDEX10(serviced);
3755 /* Has the ring wrapped? Process any descriptors that do not have
3756 * the same "wrap" indicator as the current completion indicator
3758 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3760 tcb = adapter->tx_ring.send_head;
3762 while (tcb &&
3763 ((serviced ^ tcb->index) & ET_DMA10_WRAP) &&
3764 index < INDEX10(tcb->index)) {
3765 adapter->tx_ring.used--;
3766 adapter->tx_ring.send_head = tcb->next;
3767 if (tcb->next == NULL)
3768 adapter->tx_ring.send_tail = NULL;
3770 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3771 free_send_packet(adapter, tcb);
3772 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3774 /* Goto the next packet */
3775 tcb = adapter->tx_ring.send_head;
3777 while (tcb &&
3778 !((serviced ^ tcb->index) & ET_DMA10_WRAP)
3779 && index > (tcb->index & ET_DMA10_MASK)) {
3780 adapter->tx_ring.used--;
3781 adapter->tx_ring.send_head = tcb->next;
3782 if (tcb->next == NULL)
3783 adapter->tx_ring.send_tail = NULL;
3785 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3786 free_send_packet(adapter, tcb);
3787 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3789 /* Goto the next packet */
3790 tcb = adapter->tx_ring.send_head;
3793 /* Wake up the queue when we hit a low-water mark */
3794 if (adapter->tx_ring.used <= NUM_TCB / 3)
3795 netif_wake_queue(adapter->netdev);
3797 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3800 /* ETHTOOL functions */
3802 static int et131x_get_settings(struct net_device *netdev,
3803 struct ethtool_cmd *cmd)
3805 struct et131x_adapter *adapter = netdev_priv(netdev);
3807 return phy_ethtool_gset(adapter->phydev, cmd);
3810 static int et131x_set_settings(struct net_device *netdev,
3811 struct ethtool_cmd *cmd)
3813 struct et131x_adapter *adapter = netdev_priv(netdev);
3815 return phy_ethtool_sset(adapter->phydev, cmd);
3818 static int et131x_get_regs_len(struct net_device *netdev)
3820 #define ET131X_REGS_LEN 256
3821 return ET131X_REGS_LEN * sizeof(u32);
3824 static void et131x_get_regs(struct net_device *netdev,
3825 struct ethtool_regs *regs, void *regs_data)
3827 struct et131x_adapter *adapter = netdev_priv(netdev);
3828 struct address_map __iomem *aregs = adapter->regs;
3829 u32 *regs_buff = regs_data;
3830 u32 num = 0;
3832 memset(regs_data, 0, et131x_get_regs_len(netdev));
3834 regs->version = (1 << 24) | (adapter->pdev->revision << 16) |
3835 adapter->pdev->device;
3837 /* PHY regs */
3838 et131x_mii_read(adapter, MII_BMCR, (u16 *)&regs_buff[num++]);
3839 et131x_mii_read(adapter, MII_BMSR, (u16 *)&regs_buff[num++]);
3840 et131x_mii_read(adapter, MII_PHYSID1, (u16 *)&regs_buff[num++]);
3841 et131x_mii_read(adapter, MII_PHYSID2, (u16 *)&regs_buff[num++]);
3842 et131x_mii_read(adapter, MII_ADVERTISE, (u16 *)&regs_buff[num++]);
3843 et131x_mii_read(adapter, MII_LPA, (u16 *)&regs_buff[num++]);
3844 et131x_mii_read(adapter, MII_EXPANSION, (u16 *)&regs_buff[num++]);
3845 /* Autoneg next page transmit reg */
3846 et131x_mii_read(adapter, 0x07, (u16 *)&regs_buff[num++]);
3847 /* Link partner next page reg */
3848 et131x_mii_read(adapter, 0x08, (u16 *)&regs_buff[num++]);
3849 et131x_mii_read(adapter, MII_CTRL1000, (u16 *)&regs_buff[num++]);
3850 et131x_mii_read(adapter, MII_STAT1000, (u16 *)&regs_buff[num++]);
3851 et131x_mii_read(adapter, MII_ESTATUS, (u16 *)&regs_buff[num++]);
3852 et131x_mii_read(adapter, PHY_INDEX_REG, (u16 *)&regs_buff[num++]);
3853 et131x_mii_read(adapter, PHY_DATA_REG, (u16 *)&regs_buff[num++]);
3854 et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG,
3855 (u16 *)&regs_buff[num++]);
3856 et131x_mii_read(adapter, PHY_LOOPBACK_CONTROL,
3857 (u16 *)&regs_buff[num++]);
3858 et131x_mii_read(adapter, PHY_LOOPBACK_CONTROL+1,
3859 (u16 *)&regs_buff[num++]);
3860 et131x_mii_read(adapter, PHY_REGISTER_MGMT_CONTROL,
3861 (u16 *)&regs_buff[num++]);
3862 et131x_mii_read(adapter, PHY_CONFIG, (u16 *)&regs_buff[num++]);
3863 et131x_mii_read(adapter, PHY_PHY_CONTROL, (u16 *)&regs_buff[num++]);
3864 et131x_mii_read(adapter, PHY_INTERRUPT_MASK, (u16 *)&regs_buff[num++]);
3865 et131x_mii_read(adapter, PHY_INTERRUPT_STATUS,
3866 (u16 *)&regs_buff[num++]);
3867 et131x_mii_read(adapter, PHY_PHY_STATUS, (u16 *)&regs_buff[num++]);
3868 et131x_mii_read(adapter, PHY_LED_1, (u16 *)&regs_buff[num++]);
3869 et131x_mii_read(adapter, PHY_LED_2, (u16 *)&regs_buff[num++]);
3871 /* Global regs */
3872 regs_buff[num++] = readl(&aregs->global.txq_start_addr);
3873 regs_buff[num++] = readl(&aregs->global.txq_end_addr);
3874 regs_buff[num++] = readl(&aregs->global.rxq_start_addr);
3875 regs_buff[num++] = readl(&aregs->global.rxq_end_addr);
3876 regs_buff[num++] = readl(&aregs->global.pm_csr);
3877 regs_buff[num++] = adapter->stats.interrupt_status;
3878 regs_buff[num++] = readl(&aregs->global.int_mask);
3879 regs_buff[num++] = readl(&aregs->global.int_alias_clr_en);
3880 regs_buff[num++] = readl(&aregs->global.int_status_alias);
3881 regs_buff[num++] = readl(&aregs->global.sw_reset);
3882 regs_buff[num++] = readl(&aregs->global.slv_timer);
3883 regs_buff[num++] = readl(&aregs->global.msi_config);
3884 regs_buff[num++] = readl(&aregs->global.loopback);
3885 regs_buff[num++] = readl(&aregs->global.watchdog_timer);
3887 /* TXDMA regs */
3888 regs_buff[num++] = readl(&aregs->txdma.csr);
3889 regs_buff[num++] = readl(&aregs->txdma.pr_base_hi);
3890 regs_buff[num++] = readl(&aregs->txdma.pr_base_lo);
3891 regs_buff[num++] = readl(&aregs->txdma.pr_num_des);
3892 regs_buff[num++] = readl(&aregs->txdma.txq_wr_addr);
3893 regs_buff[num++] = readl(&aregs->txdma.txq_wr_addr_ext);
3894 regs_buff[num++] = readl(&aregs->txdma.txq_rd_addr);
3895 regs_buff[num++] = readl(&aregs->txdma.dma_wb_base_hi);
3896 regs_buff[num++] = readl(&aregs->txdma.dma_wb_base_lo);
3897 regs_buff[num++] = readl(&aregs->txdma.service_request);
3898 regs_buff[num++] = readl(&aregs->txdma.service_complete);
3899 regs_buff[num++] = readl(&aregs->txdma.cache_rd_index);
3900 regs_buff[num++] = readl(&aregs->txdma.cache_wr_index);
3901 regs_buff[num++] = readl(&aregs->txdma.tx_dma_error);
3902 regs_buff[num++] = readl(&aregs->txdma.desc_abort_cnt);
3903 regs_buff[num++] = readl(&aregs->txdma.payload_abort_cnt);
3904 regs_buff[num++] = readl(&aregs->txdma.writeback_abort_cnt);
3905 regs_buff[num++] = readl(&aregs->txdma.desc_timeout_cnt);
3906 regs_buff[num++] = readl(&aregs->txdma.payload_timeout_cnt);
3907 regs_buff[num++] = readl(&aregs->txdma.writeback_timeout_cnt);
3908 regs_buff[num++] = readl(&aregs->txdma.desc_error_cnt);
3909 regs_buff[num++] = readl(&aregs->txdma.payload_error_cnt);
3910 regs_buff[num++] = readl(&aregs->txdma.writeback_error_cnt);
3911 regs_buff[num++] = readl(&aregs->txdma.dropped_tlp_cnt);
3912 regs_buff[num++] = readl(&aregs->txdma.new_service_complete);
3913 regs_buff[num++] = readl(&aregs->txdma.ethernet_packet_cnt);
3915 /* RXDMA regs */
3916 regs_buff[num++] = readl(&aregs->rxdma.csr);
3917 regs_buff[num++] = readl(&aregs->rxdma.dma_wb_base_hi);
3918 regs_buff[num++] = readl(&aregs->rxdma.dma_wb_base_lo);
3919 regs_buff[num++] = readl(&aregs->rxdma.num_pkt_done);
3920 regs_buff[num++] = readl(&aregs->rxdma.max_pkt_time);
3921 regs_buff[num++] = readl(&aregs->rxdma.rxq_rd_addr);
3922 regs_buff[num++] = readl(&aregs->rxdma.rxq_rd_addr_ext);
3923 regs_buff[num++] = readl(&aregs->rxdma.rxq_wr_addr);
3924 regs_buff[num++] = readl(&aregs->rxdma.psr_base_hi);
3925 regs_buff[num++] = readl(&aregs->rxdma.psr_base_lo);
3926 regs_buff[num++] = readl(&aregs->rxdma.psr_num_des);
3927 regs_buff[num++] = readl(&aregs->rxdma.psr_avail_offset);
3928 regs_buff[num++] = readl(&aregs->rxdma.psr_full_offset);
3929 regs_buff[num++] = readl(&aregs->rxdma.psr_access_index);
3930 regs_buff[num++] = readl(&aregs->rxdma.psr_min_des);
3931 regs_buff[num++] = readl(&aregs->rxdma.fbr0_base_lo);
3932 regs_buff[num++] = readl(&aregs->rxdma.fbr0_base_hi);
3933 regs_buff[num++] = readl(&aregs->rxdma.fbr0_num_des);
3934 regs_buff[num++] = readl(&aregs->rxdma.fbr0_avail_offset);
3935 regs_buff[num++] = readl(&aregs->rxdma.fbr0_full_offset);
3936 regs_buff[num++] = readl(&aregs->rxdma.fbr0_rd_index);
3937 regs_buff[num++] = readl(&aregs->rxdma.fbr0_min_des);
3938 regs_buff[num++] = readl(&aregs->rxdma.fbr1_base_lo);
3939 regs_buff[num++] = readl(&aregs->rxdma.fbr1_base_hi);
3940 regs_buff[num++] = readl(&aregs->rxdma.fbr1_num_des);
3941 regs_buff[num++] = readl(&aregs->rxdma.fbr1_avail_offset);
3942 regs_buff[num++] = readl(&aregs->rxdma.fbr1_full_offset);
3943 regs_buff[num++] = readl(&aregs->rxdma.fbr1_rd_index);
3944 regs_buff[num++] = readl(&aregs->rxdma.fbr1_min_des);
3947 #define ET131X_DRVINFO_LEN 32 /* value from ethtool.h */
3948 static void et131x_get_drvinfo(struct net_device *netdev,
3949 struct ethtool_drvinfo *info)
3951 struct et131x_adapter *adapter = netdev_priv(netdev);
3953 strncpy(info->driver, DRIVER_NAME, ET131X_DRVINFO_LEN);
3954 strncpy(info->version, DRIVER_VERSION, ET131X_DRVINFO_LEN);
3955 strncpy(info->bus_info, pci_name(adapter->pdev), ET131X_DRVINFO_LEN);
3958 static struct ethtool_ops et131x_ethtool_ops = {
3959 .get_settings = et131x_get_settings,
3960 .set_settings = et131x_set_settings,
3961 .get_drvinfo = et131x_get_drvinfo,
3962 .get_regs_len = et131x_get_regs_len,
3963 .get_regs = et131x_get_regs,
3964 .get_link = ethtool_op_get_link,
3967 void et131x_set_ethtool_ops(struct net_device *netdev)
3969 SET_ETHTOOL_OPS(netdev, &et131x_ethtool_ops);
3972 /* PCI functions */
3975 * et131x_hwaddr_init - set up the MAC Address on the ET1310
3976 * @adapter: pointer to our private adapter structure
3978 void et131x_hwaddr_init(struct et131x_adapter *adapter)
3980 /* If have our default mac from init and no mac address from
3981 * EEPROM then we need to generate the last octet and set it on the
3982 * device
3984 if (adapter->rom_addr[0] == 0x00 &&
3985 adapter->rom_addr[1] == 0x00 &&
3986 adapter->rom_addr[2] == 0x00 &&
3987 adapter->rom_addr[3] == 0x00 &&
3988 adapter->rom_addr[4] == 0x00 &&
3989 adapter->rom_addr[5] == 0x00) {
3991 * We need to randomly generate the last octet so we
3992 * decrease our chances of setting the mac address to
3993 * same as another one of our cards in the system
3995 get_random_bytes(&adapter->addr[5], 1);
3997 * We have the default value in the register we are
3998 * working with so we need to copy the current
3999 * address into the permanent address
4001 memcpy(adapter->rom_addr,
4002 adapter->addr, ETH_ALEN);
4003 } else {
4004 /* We do not have an override address, so set the
4005 * current address to the permanent address and add
4006 * it to the device
4008 memcpy(adapter->addr,
4009 adapter->rom_addr, ETH_ALEN);
4014 * et131x_pci_init - initial PCI setup
4015 * @adapter: pointer to our private adapter structure
4016 * @pdev: our PCI device
4018 * Perform the initial setup of PCI registers and if possible initialise
4019 * the MAC address. At this point the I/O registers have yet to be mapped
4021 static int et131x_pci_init(struct et131x_adapter *adapter,
4022 struct pci_dev *pdev)
4024 int i;
4025 u8 max_payload;
4026 u8 read_size_reg;
4028 if (et131x_init_eeprom(adapter) < 0)
4029 return -EIO;
4031 /* Let's set up the PORT LOGIC Register. First we need to know what
4032 * the max_payload_size is
4034 if (pci_read_config_byte(pdev, ET1310_PCI_MAX_PYLD, &max_payload)) {
4035 dev_err(&pdev->dev,
4036 "Could not read PCI config space for Max Payload Size\n");
4037 return -EIO;
4040 /* Program the Ack/Nak latency and replay timers */
4041 max_payload &= 0x07; /* Only the lower 3 bits are valid */
4043 if (max_payload < 2) {
4044 static const u16 acknak[2] = { 0x76, 0xD0 };
4045 static const u16 replay[2] = { 0x1E0, 0x2ED };
4047 if (pci_write_config_word(pdev, ET1310_PCI_ACK_NACK,
4048 acknak[max_payload])) {
4049 dev_err(&pdev->dev,
4050 "Could not write PCI config space for ACK/NAK\n");
4051 return -EIO;
4053 if (pci_write_config_word(pdev, ET1310_PCI_REPLAY,
4054 replay[max_payload])) {
4055 dev_err(&pdev->dev,
4056 "Could not write PCI config space for Replay Timer\n");
4057 return -EIO;
4061 /* l0s and l1 latency timers. We are using default values.
4062 * Representing 001 for L0s and 010 for L1
4064 if (pci_write_config_byte(pdev, ET1310_PCI_L0L1LATENCY, 0x11)) {
4065 dev_err(&pdev->dev,
4066 "Could not write PCI config space for Latency Timers\n");
4067 return -EIO;
4070 /* Change the max read size to 2k */
4071 if (pci_read_config_byte(pdev, 0x51, &read_size_reg)) {
4072 dev_err(&pdev->dev,
4073 "Could not read PCI config space for Max read size\n");
4074 return -EIO;
4077 read_size_reg &= 0x8f;
4078 read_size_reg |= 0x40;
4080 if (pci_write_config_byte(pdev, 0x51, read_size_reg)) {
4081 dev_err(&pdev->dev,
4082 "Could not write PCI config space for Max read size\n");
4083 return -EIO;
4086 /* Get MAC address from config space if an eeprom exists, otherwise
4087 * the MAC address there will not be valid
4089 if (!adapter->has_eeprom) {
4090 et131x_hwaddr_init(adapter);
4091 return 0;
4094 for (i = 0; i < ETH_ALEN; i++) {
4095 if (pci_read_config_byte(pdev, ET1310_PCI_MAC_ADDRESS + i,
4096 adapter->rom_addr + i)) {
4097 dev_err(&pdev->dev, "Could not read PCI config space for MAC address\n");
4098 return -EIO;
4101 memcpy(adapter->addr, adapter->rom_addr, ETH_ALEN);
4102 return 0;
4106 * et131x_error_timer_handler
4107 * @data: timer-specific variable; here a pointer to our adapter structure
4109 * The routine called when the error timer expires, to track the number of
4110 * recurring errors.
4112 void et131x_error_timer_handler(unsigned long data)
4114 struct et131x_adapter *adapter = (struct et131x_adapter *) data;
4115 struct phy_device *phydev = adapter->phydev;
4117 if (et1310_in_phy_coma(adapter)) {
4118 /* Bring the device immediately out of coma, to
4119 * prevent it from sleeping indefinitely, this
4120 * mechanism could be improved! */
4121 et1310_disable_phy_coma(adapter);
4122 adapter->boot_coma = 20;
4123 } else {
4124 et1310_update_macstat_host_counters(adapter);
4127 if (!phydev->link && adapter->boot_coma < 11)
4128 adapter->boot_coma++;
4130 if (adapter->boot_coma == 10) {
4131 if (!phydev->link) {
4132 if (!et1310_in_phy_coma(adapter)) {
4133 /* NOTE - This was originally a 'sync with
4134 * interrupt'. How to do that under Linux?
4136 et131x_enable_interrupts(adapter);
4137 et1310_enable_phy_coma(adapter);
4142 /* This is a periodic timer, so reschedule */
4143 mod_timer(&adapter->error_timer, jiffies +
4144 TX_ERROR_PERIOD * HZ / 1000);
4148 * et131x_adapter_memory_alloc
4149 * @adapter: pointer to our private adapter structure
4151 * Returns 0 on success, errno on failure (as defined in errno.h).
4153 * Allocate all the memory blocks for send, receive and others.
4155 int et131x_adapter_memory_alloc(struct et131x_adapter *adapter)
4157 int status;
4159 /* Allocate memory for the Tx Ring */
4160 status = et131x_tx_dma_memory_alloc(adapter);
4161 if (status != 0) {
4162 dev_err(&adapter->pdev->dev,
4163 "et131x_tx_dma_memory_alloc FAILED\n");
4164 return status;
4166 /* Receive buffer memory allocation */
4167 status = et131x_rx_dma_memory_alloc(adapter);
4168 if (status != 0) {
4169 dev_err(&adapter->pdev->dev,
4170 "et131x_rx_dma_memory_alloc FAILED\n");
4171 et131x_tx_dma_memory_free(adapter);
4172 return status;
4175 /* Init receive data structures */
4176 status = et131x_init_recv(adapter);
4177 if (status != 0) {
4178 dev_err(&adapter->pdev->dev,
4179 "et131x_init_recv FAILED\n");
4180 et131x_tx_dma_memory_free(adapter);
4181 et131x_rx_dma_memory_free(adapter);
4183 return status;
4187 * et131x_adapter_memory_free - Free all memory allocated for use by Tx & Rx
4188 * @adapter: pointer to our private adapter structure
4190 void et131x_adapter_memory_free(struct et131x_adapter *adapter)
4192 /* Free DMA memory */
4193 et131x_tx_dma_memory_free(adapter);
4194 et131x_rx_dma_memory_free(adapter);
4197 static void et131x_adjust_link(struct net_device *netdev)
4199 struct et131x_adapter *adapter = netdev_priv(netdev);
4200 struct phy_device *phydev = adapter->phydev;
4202 if (netif_carrier_ok(netdev)) {
4203 adapter->boot_coma = 20;
4205 if (phydev && phydev->speed == SPEED_10) {
4207 * NOTE - Is there a way to query this without
4208 * TruePHY?
4209 * && TRU_QueryCoreType(adapter->hTruePhy, 0)==
4210 * EMI_TRUEPHY_A13O) {
4212 u16 register18;
4214 et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG,
4215 &register18);
4216 et131x_mii_write(adapter, PHY_MPHY_CONTROL_REG,
4217 register18 | 0x4);
4218 et131x_mii_write(adapter, PHY_INDEX_REG,
4219 register18 | 0x8402);
4220 et131x_mii_write(adapter, PHY_DATA_REG,
4221 register18 | 511);
4222 et131x_mii_write(adapter, PHY_MPHY_CONTROL_REG,
4223 register18);
4226 et1310_config_flow_control(adapter);
4228 if (phydev && phydev->speed == SPEED_1000 &&
4229 adapter->registry_jumbo_packet > 2048) {
4230 u16 reg;
4232 et131x_mii_read(adapter, PHY_CONFIG, &reg);
4233 reg &= ~ET_PHY_CONFIG_TX_FIFO_DEPTH;
4234 reg |= ET_PHY_CONFIG_FIFO_DEPTH_32;
4235 et131x_mii_write(adapter, PHY_CONFIG, reg);
4238 et131x_set_rx_dma_timer(adapter);
4239 et1310_config_mac_regs2(adapter);
4242 if (phydev && phydev->link != adapter->link) {
4244 * Check to see if we are in coma mode and if
4245 * so, disable it because we will not be able
4246 * to read PHY values until we are out.
4248 if (et1310_in_phy_coma(adapter))
4249 et1310_disable_phy_coma(adapter);
4251 if (phydev->link) {
4252 adapter->boot_coma = 20;
4253 } else {
4254 dev_warn(&adapter->pdev->dev,
4255 "Link down - cable problem ?\n");
4256 adapter->boot_coma = 0;
4258 if (phydev->speed == SPEED_10) {
4259 /* NOTE - Is there a way to query this without
4260 * TruePHY?
4261 * && TRU_QueryCoreType(adapter->hTruePhy, 0) ==
4262 * EMI_TRUEPHY_A13O)
4264 u16 register18;
4266 et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG,
4267 &register18);
4268 et131x_mii_write(adapter, PHY_MPHY_CONTROL_REG,
4269 register18 | 0x4);
4270 et131x_mii_write(adapter, PHY_INDEX_REG,
4271 register18 | 0x8402);
4272 et131x_mii_write(adapter, PHY_DATA_REG,
4273 register18 | 511);
4274 et131x_mii_write(adapter, PHY_MPHY_CONTROL_REG,
4275 register18);
4278 /* Free the packets being actively sent & stopped */
4279 et131x_free_busy_send_packets(adapter);
4281 /* Re-initialize the send structures */
4282 et131x_init_send(adapter);
4285 * Bring the device back to the state it was during
4286 * init prior to autonegotiation being complete. This
4287 * way, when we get the auto-neg complete interrupt,
4288 * we can complete init by calling config_mac_regs2.
4290 et131x_soft_reset(adapter);
4292 /* Setup ET1310 as per the documentation */
4293 et131x_adapter_setup(adapter);
4295 /* perform reset of tx/rx */
4296 et131x_disable_txrx(netdev);
4297 et131x_enable_txrx(netdev);
4300 adapter->link = phydev->link;
4302 phy_print_status(phydev);
4306 static int et131x_mii_probe(struct net_device *netdev)
4308 struct et131x_adapter *adapter = netdev_priv(netdev);
4309 struct phy_device *phydev = NULL;
4311 phydev = phy_find_first(adapter->mii_bus);
4312 if (!phydev) {
4313 dev_err(&adapter->pdev->dev, "no PHY found\n");
4314 return -ENODEV;
4317 phydev = phy_connect(netdev, dev_name(&phydev->dev),
4318 &et131x_adjust_link, 0, PHY_INTERFACE_MODE_MII);
4320 if (IS_ERR(phydev)) {
4321 dev_err(&adapter->pdev->dev, "Could not attach to PHY\n");
4322 return PTR_ERR(phydev);
4325 phydev->supported &= (SUPPORTED_10baseT_Half
4326 | SUPPORTED_10baseT_Full
4327 | SUPPORTED_100baseT_Half
4328 | SUPPORTED_100baseT_Full
4329 | SUPPORTED_Autoneg
4330 | SUPPORTED_MII
4331 | SUPPORTED_TP);
4333 if (adapter->pdev->device != ET131X_PCI_DEVICE_ID_FAST)
4334 phydev->supported |= SUPPORTED_1000baseT_Full;
4336 phydev->advertising = phydev->supported;
4337 adapter->phydev = phydev;
4339 dev_info(&adapter->pdev->dev, "attached PHY driver [%s] "
4340 "(mii_bus:phy_addr=%s)\n",
4341 phydev->drv->name, dev_name(&phydev->dev));
4343 return 0;
4347 * et131x_adapter_init
4348 * @adapter: pointer to the private adapter struct
4349 * @pdev: pointer to the PCI device
4351 * Initialize the data structures for the et131x_adapter object and link
4352 * them together with the platform provided device structures.
4354 static struct et131x_adapter *et131x_adapter_init(struct net_device *netdev,
4355 struct pci_dev *pdev)
4357 static const u8 default_mac[] = { 0x00, 0x05, 0x3d, 0x00, 0x02, 0x00 };
4359 struct et131x_adapter *adapter;
4361 /* Allocate private adapter struct and copy in relevant information */
4362 adapter = netdev_priv(netdev);
4363 adapter->pdev = pci_dev_get(pdev);
4364 adapter->netdev = netdev;
4366 /* Do the same for the netdev struct */
4367 netdev->irq = pdev->irq;
4368 netdev->base_addr = pci_resource_start(pdev, 0);
4370 /* Initialize spinlocks here */
4371 spin_lock_init(&adapter->lock);
4372 spin_lock_init(&adapter->tcb_send_qlock);
4373 spin_lock_init(&adapter->tcb_ready_qlock);
4374 spin_lock_init(&adapter->send_hw_lock);
4375 spin_lock_init(&adapter->rcv_lock);
4376 spin_lock_init(&adapter->rcv_pend_lock);
4377 spin_lock_init(&adapter->fbr_lock);
4378 spin_lock_init(&adapter->phy_lock);
4380 adapter->registry_jumbo_packet = 1514; /* 1514-9216 */
4382 /* Set the MAC address to a default */
4383 memcpy(adapter->addr, default_mac, ETH_ALEN);
4385 return adapter;
4389 * et131x_pci_remove
4390 * @pdev: a pointer to the device's pci_dev structure
4392 * Registered in the pci_driver structure, this function is called when the
4393 * PCI subsystem detects that a PCI device which matches the information
4394 * contained in the pci_device_id table has been removed.
4396 static void __devexit et131x_pci_remove(struct pci_dev *pdev)
4398 struct net_device *netdev = pci_get_drvdata(pdev);
4399 struct et131x_adapter *adapter = netdev_priv(netdev);
4401 unregister_netdev(netdev);
4402 mdiobus_unregister(adapter->mii_bus);
4403 kfree(adapter->mii_bus->irq);
4404 mdiobus_free(adapter->mii_bus);
4406 et131x_adapter_memory_free(adapter);
4407 iounmap(adapter->regs);
4408 pci_dev_put(pdev);
4410 free_netdev(netdev);
4411 pci_release_regions(pdev);
4412 pci_disable_device(pdev);
4416 * et131x_up - Bring up a device for use.
4417 * @netdev: device to be opened
4419 void et131x_up(struct net_device *netdev)
4421 struct et131x_adapter *adapter = netdev_priv(netdev);
4423 et131x_enable_txrx(netdev);
4424 phy_start(adapter->phydev);
4428 * et131x_down - Bring down the device
4429 * @netdev: device to be broght down
4431 void et131x_down(struct net_device *netdev)
4433 struct et131x_adapter *adapter = netdev_priv(netdev);
4435 /* Save the timestamp for the TX watchdog, prevent a timeout */
4436 netdev->trans_start = jiffies;
4438 phy_stop(adapter->phydev);
4439 et131x_disable_txrx(netdev);
4442 #ifdef CONFIG_PM_SLEEP
4443 static int et131x_suspend(struct device *dev)
4445 struct pci_dev *pdev = to_pci_dev(dev);
4446 struct net_device *netdev = pci_get_drvdata(pdev);
4448 if (netif_running(netdev)) {
4449 netif_device_detach(netdev);
4450 et131x_down(netdev);
4451 pci_save_state(pdev);
4454 return 0;
4457 static int et131x_resume(struct device *dev)
4459 struct pci_dev *pdev = to_pci_dev(dev);
4460 struct net_device *netdev = pci_get_drvdata(pdev);
4462 if (netif_running(netdev)) {
4463 pci_restore_state(pdev);
4464 et131x_up(netdev);
4465 netif_device_attach(netdev);
4468 return 0;
4471 /* ISR functions */
4474 * et131x_isr - The Interrupt Service Routine for the driver.
4475 * @irq: the IRQ on which the interrupt was received.
4476 * @dev_id: device-specific info (here a pointer to a net_device struct)
4478 * Returns a value indicating if the interrupt was handled.
4480 irqreturn_t et131x_isr(int irq, void *dev_id)
4482 bool handled = true;
4483 struct net_device *netdev = (struct net_device *)dev_id;
4484 struct et131x_adapter *adapter = NULL;
4485 u32 status;
4487 if (!netif_device_present(netdev)) {
4488 handled = false;
4489 goto out;
4492 adapter = netdev_priv(netdev);
4494 /* If the adapter is in low power state, then it should not
4495 * recognize any interrupt
4498 /* Disable Device Interrupts */
4499 et131x_disable_interrupts(adapter);
4501 /* Get a copy of the value in the interrupt status register
4502 * so we can process the interrupting section
4504 status = readl(&adapter->regs->global.int_status);
4506 if (adapter->flowcontrol == FLOW_TXONLY ||
4507 adapter->flowcontrol == FLOW_BOTH) {
4508 status &= ~INT_MASK_ENABLE;
4509 } else {
4510 status &= ~INT_MASK_ENABLE_NO_FLOW;
4513 /* Make sure this is our interrupt */
4514 if (!status) {
4515 handled = false;
4516 et131x_enable_interrupts(adapter);
4517 goto out;
4520 /* This is our interrupt, so process accordingly */
4522 if (status & ET_INTR_WATCHDOG) {
4523 struct tcb *tcb = adapter->tx_ring.send_head;
4525 if (tcb)
4526 if (++tcb->stale > 1)
4527 status |= ET_INTR_TXDMA_ISR;
4529 if (adapter->rx_ring.unfinished_receives)
4530 status |= ET_INTR_RXDMA_XFR_DONE;
4531 else if (tcb == NULL)
4532 writel(0, &adapter->regs->global.watchdog_timer);
4534 status &= ~ET_INTR_WATCHDOG;
4537 if (status == 0) {
4538 /* This interrupt has in some way been "handled" by
4539 * the ISR. Either it was a spurious Rx interrupt, or
4540 * it was a Tx interrupt that has been filtered by
4541 * the ISR.
4543 et131x_enable_interrupts(adapter);
4544 goto out;
4547 /* We need to save the interrupt status value for use in our
4548 * DPC. We will clear the software copy of that in that
4549 * routine.
4551 adapter->stats.interrupt_status = status;
4553 /* Schedule the ISR handler as a bottom-half task in the
4554 * kernel's tq_immediate queue, and mark the queue for
4555 * execution
4557 schedule_work(&adapter->task);
4558 out:
4559 return IRQ_RETVAL(handled);
4563 * et131x_isr_handler - The ISR handler
4564 * @p_adapter, a pointer to the device's private adapter structure
4566 * scheduled to run in a deferred context by the ISR. This is where the ISR's
4567 * work actually gets done.
4569 void et131x_isr_handler(struct work_struct *work)
4571 struct et131x_adapter *adapter =
4572 container_of(work, struct et131x_adapter, task);
4573 u32 status = adapter->stats.interrupt_status;
4574 struct address_map __iomem *iomem = adapter->regs;
4577 * These first two are by far the most common. Once handled, we clear
4578 * their two bits in the status word. If the word is now zero, we
4579 * exit.
4581 /* Handle all the completed Transmit interrupts */
4582 if (status & ET_INTR_TXDMA_ISR)
4583 et131x_handle_send_interrupt(adapter);
4585 /* Handle all the completed Receives interrupts */
4586 if (status & ET_INTR_RXDMA_XFR_DONE)
4587 et131x_handle_recv_interrupt(adapter);
4589 status &= 0xffffffd7;
4591 if (status) {
4592 /* Handle the TXDMA Error interrupt */
4593 if (status & ET_INTR_TXDMA_ERR) {
4594 u32 txdma_err;
4596 /* Following read also clears the register (COR) */
4597 txdma_err = readl(&iomem->txdma.tx_dma_error);
4599 dev_warn(&adapter->pdev->dev,
4600 "TXDMA_ERR interrupt, error = %d\n",
4601 txdma_err);
4604 /* Handle Free Buffer Ring 0 and 1 Low interrupt */
4605 if (status &
4606 (ET_INTR_RXDMA_FB_R0_LOW | ET_INTR_RXDMA_FB_R1_LOW)) {
4608 * This indicates the number of unused buffers in
4609 * RXDMA free buffer ring 0 is <= the limit you
4610 * programmed. Free buffer resources need to be
4611 * returned. Free buffers are consumed as packets
4612 * are passed from the network to the host. The host
4613 * becomes aware of the packets from the contents of
4614 * the packet status ring. This ring is queried when
4615 * the packet done interrupt occurs. Packets are then
4616 * passed to the OS. When the OS is done with the
4617 * packets the resources can be returned to the
4618 * ET1310 for re-use. This interrupt is one method of
4619 * returning resources.
4622 /* If the user has flow control on, then we will
4623 * send a pause packet, otherwise just exit
4625 if (adapter->flowcontrol == FLOW_TXONLY ||
4626 adapter->flowcontrol == FLOW_BOTH) {
4627 u32 pm_csr;
4629 /* Tell the device to send a pause packet via
4630 * the back pressure register (bp req and
4631 * bp xon/xoff)
4633 pm_csr = readl(&iomem->global.pm_csr);
4634 if (!et1310_in_phy_coma(adapter))
4635 writel(3, &iomem->txmac.bp_ctrl);
4639 /* Handle Packet Status Ring Low Interrupt */
4640 if (status & ET_INTR_RXDMA_STAT_LOW) {
4643 * Same idea as with the two Free Buffer Rings.
4644 * Packets going from the network to the host each
4645 * consume a free buffer resource and a packet status
4646 * resource. These resoures are passed to the OS.
4647 * When the OS is done with the resources, they need
4648 * to be returned to the ET1310. This is one method
4649 * of returning the resources.
4653 /* Handle RXDMA Error Interrupt */
4654 if (status & ET_INTR_RXDMA_ERR) {
4656 * The rxdma_error interrupt is sent when a time-out
4657 * on a request issued by the JAGCore has occurred or
4658 * a completion is returned with an un-successful
4659 * status. In both cases the request is considered
4660 * complete. The JAGCore will automatically re-try the
4661 * request in question. Normally information on events
4662 * like these are sent to the host using the "Advanced
4663 * Error Reporting" capability. This interrupt is
4664 * another way of getting similar information. The
4665 * only thing required is to clear the interrupt by
4666 * reading the ISR in the global resources. The
4667 * JAGCore will do a re-try on the request. Normally
4668 * you should never see this interrupt. If you start
4669 * to see this interrupt occurring frequently then
4670 * something bad has occurred. A reset might be the
4671 * thing to do.
4673 /* TRAP();*/
4675 dev_warn(&adapter->pdev->dev,
4676 "RxDMA_ERR interrupt, error %x\n",
4677 readl(&iomem->txmac.tx_test));
4680 /* Handle the Wake on LAN Event */
4681 if (status & ET_INTR_WOL) {
4683 * This is a secondary interrupt for wake on LAN.
4684 * The driver should never see this, if it does,
4685 * something serious is wrong. We will TRAP the
4686 * message when we are in DBG mode, otherwise we
4687 * will ignore it.
4689 dev_err(&adapter->pdev->dev, "WAKE_ON_LAN interrupt\n");
4692 /* Let's move on to the TxMac */
4693 if (status & ET_INTR_TXMAC) {
4694 u32 err = readl(&iomem->txmac.err);
4697 * When any of the errors occur and TXMAC generates
4698 * an interrupt to report these errors, it usually
4699 * means that TXMAC has detected an error in the data
4700 * stream retrieved from the on-chip Tx Q. All of
4701 * these errors are catastrophic and TXMAC won't be
4702 * able to recover data when these errors occur. In
4703 * a nutshell, the whole Tx path will have to be reset
4704 * and re-configured afterwards.
4706 dev_warn(&adapter->pdev->dev,
4707 "TXMAC interrupt, error 0x%08x\n",
4708 err);
4710 /* If we are debugging, we want to see this error,
4711 * otherwise we just want the device to be reset and
4712 * continue
4716 /* Handle RXMAC Interrupt */
4717 if (status & ET_INTR_RXMAC) {
4719 * These interrupts are catastrophic to the device,
4720 * what we need to do is disable the interrupts and
4721 * set the flag to cause us to reset so we can solve
4722 * this issue.
4724 /* MP_SET_FLAG( adapter,
4725 fMP_ADAPTER_HARDWARE_ERROR); */
4727 dev_warn(&adapter->pdev->dev,
4728 "RXMAC interrupt, error 0x%08x. Requesting reset\n",
4729 readl(&iomem->rxmac.err_reg));
4731 dev_warn(&adapter->pdev->dev,
4732 "Enable 0x%08x, Diag 0x%08x\n",
4733 readl(&iomem->rxmac.ctrl),
4734 readl(&iomem->rxmac.rxq_diag));
4737 * If we are debugging, we want to see this error,
4738 * otherwise we just want the device to be reset and
4739 * continue
4743 /* Handle MAC_STAT Interrupt */
4744 if (status & ET_INTR_MAC_STAT) {
4746 * This means at least one of the un-masked counters
4747 * in the MAC_STAT block has rolled over. Use this
4748 * to maintain the top, software managed bits of the
4749 * counter(s).
4751 et1310_handle_macstat_interrupt(adapter);
4754 /* Handle SLV Timeout Interrupt */
4755 if (status & ET_INTR_SLV_TIMEOUT) {
4757 * This means a timeout has occurred on a read or
4758 * write request to one of the JAGCore registers. The
4759 * Global Resources block has terminated the request
4760 * and on a read request, returned a "fake" value.
4761 * The most likely reasons are: Bad Address or the
4762 * addressed module is in a power-down state and
4763 * can't respond.
4767 et131x_enable_interrupts(adapter);
4770 /* NETDEV functions */
4773 * et131x_stats - Return the current device statistics.
4774 * @netdev: device whose stats are being queried
4776 * Returns 0 on success, errno on failure (as defined in errno.h)
4778 static struct net_device_stats *et131x_stats(struct net_device *netdev)
4780 struct et131x_adapter *adapter = netdev_priv(netdev);
4781 struct net_device_stats *stats = &adapter->net_stats;
4782 struct ce_stats *devstat = &adapter->stats;
4784 stats->rx_errors = devstat->rx_length_errs +
4785 devstat->rx_align_errs +
4786 devstat->rx_crc_errs +
4787 devstat->rx_code_violations +
4788 devstat->rx_other_errs;
4789 stats->tx_errors = devstat->tx_max_pkt_errs;
4790 stats->multicast = devstat->multicast_pkts_rcvd;
4791 stats->collisions = devstat->tx_collisions;
4793 stats->rx_length_errors = devstat->rx_length_errs;
4794 stats->rx_over_errors = devstat->rx_overflows;
4795 stats->rx_crc_errors = devstat->rx_crc_errs;
4797 /* NOTE: These stats don't have corresponding values in CE_STATS,
4798 * so we're going to have to update these directly from within the
4799 * TX/RX code
4801 /* stats->rx_bytes = 20; devstat->; */
4802 /* stats->tx_bytes = 20; devstat->; */
4803 /* stats->rx_dropped = devstat->; */
4804 /* stats->tx_dropped = devstat->; */
4806 /* NOTE: Not used, can't find analogous statistics */
4807 /* stats->rx_frame_errors = devstat->; */
4808 /* stats->rx_fifo_errors = devstat->; */
4809 /* stats->rx_missed_errors = devstat->; */
4811 /* stats->tx_aborted_errors = devstat->; */
4812 /* stats->tx_carrier_errors = devstat->; */
4813 /* stats->tx_fifo_errors = devstat->; */
4814 /* stats->tx_heartbeat_errors = devstat->; */
4815 /* stats->tx_window_errors = devstat->; */
4816 return stats;
4820 * et131x_open - Open the device for use.
4821 * @netdev: device to be opened
4823 * Returns 0 on success, errno on failure (as defined in errno.h)
4825 int et131x_open(struct net_device *netdev)
4827 int result = 0;
4828 struct et131x_adapter *adapter = netdev_priv(netdev);
4830 /* Start the timer to track NIC errors */
4831 init_timer(&adapter->error_timer);
4832 adapter->error_timer.expires = jiffies + TX_ERROR_PERIOD * HZ / 1000;
4833 adapter->error_timer.function = et131x_error_timer_handler;
4834 adapter->error_timer.data = (unsigned long)adapter;
4835 add_timer(&adapter->error_timer);
4837 /* Register our IRQ */
4838 result = request_irq(netdev->irq, et131x_isr, IRQF_SHARED,
4839 netdev->name, netdev);
4840 if (result) {
4841 dev_err(&adapter->pdev->dev, "could not register IRQ %d\n",
4842 netdev->irq);
4843 return result;
4846 adapter->flags |= fMP_ADAPTER_INTERRUPT_IN_USE;
4848 et131x_up(netdev);
4850 return result;
4854 * et131x_close - Close the device
4855 * @netdev: device to be closed
4857 * Returns 0 on success, errno on failure (as defined in errno.h)
4859 int et131x_close(struct net_device *netdev)
4861 struct et131x_adapter *adapter = netdev_priv(netdev);
4863 et131x_down(netdev);
4865 adapter->flags &= ~fMP_ADAPTER_INTERRUPT_IN_USE;
4866 free_irq(netdev->irq, netdev);
4868 /* Stop the error timer */
4869 return del_timer_sync(&adapter->error_timer);
4873 * et131x_ioctl - The I/O Control handler for the driver
4874 * @netdev: device on which the control request is being made
4875 * @reqbuf: a pointer to the IOCTL request buffer
4876 * @cmd: the IOCTL command code
4878 * Returns 0 on success, errno on failure (as defined in errno.h)
4880 static int et131x_ioctl(struct net_device *netdev, struct ifreq *reqbuf, int cmd)
4882 struct et131x_adapter *adapter = netdev_priv(netdev);
4884 if (!adapter->phydev)
4885 return -EINVAL;
4887 return phy_mii_ioctl(adapter->phydev, reqbuf, cmd);
4891 * et131x_set_packet_filter - Configures the Rx Packet filtering on the device
4892 * @adapter: pointer to our private adapter structure
4894 * FIXME: lot of dups with MAC code
4896 * Returns 0 on success, errno on failure
4898 static int et131x_set_packet_filter(struct et131x_adapter *adapter)
4900 int status = 0;
4901 uint32_t filter = adapter->packet_filter;
4902 u32 ctrl;
4903 u32 pf_ctrl;
4905 ctrl = readl(&adapter->regs->rxmac.ctrl);
4906 pf_ctrl = readl(&adapter->regs->rxmac.pf_ctrl);
4908 /* Default to disabled packet filtering. Enable it in the individual
4909 * case statements that require the device to filter something
4911 ctrl |= 0x04;
4913 /* Set us to be in promiscuous mode so we receive everything, this
4914 * is also true when we get a packet filter of 0
4916 if ((filter & ET131X_PACKET_TYPE_PROMISCUOUS) || filter == 0)
4917 pf_ctrl &= ~7; /* Clear filter bits */
4918 else {
4920 * Set us up with Multicast packet filtering. Three cases are
4921 * possible - (1) we have a multi-cast list, (2) we receive ALL
4922 * multicast entries or (3) we receive none.
4924 if (filter & ET131X_PACKET_TYPE_ALL_MULTICAST)
4925 pf_ctrl &= ~2; /* Multicast filter bit */
4926 else {
4927 et1310_setup_device_for_multicast(adapter);
4928 pf_ctrl |= 2;
4929 ctrl &= ~0x04;
4932 /* Set us up with Unicast packet filtering */
4933 if (filter & ET131X_PACKET_TYPE_DIRECTED) {
4934 et1310_setup_device_for_unicast(adapter);
4935 pf_ctrl |= 4;
4936 ctrl &= ~0x04;
4939 /* Set us up with Broadcast packet filtering */
4940 if (filter & ET131X_PACKET_TYPE_BROADCAST) {
4941 pf_ctrl |= 1; /* Broadcast filter bit */
4942 ctrl &= ~0x04;
4943 } else
4944 pf_ctrl &= ~1;
4946 /* Setup the receive mac configuration registers - Packet
4947 * Filter control + the enable / disable for packet filter
4948 * in the control reg.
4950 writel(pf_ctrl, &adapter->regs->rxmac.pf_ctrl);
4951 writel(ctrl, &adapter->regs->rxmac.ctrl);
4953 return status;
4957 * et131x_multicast - The handler to configure multicasting on the interface
4958 * @netdev: a pointer to a net_device struct representing the device
4960 static void et131x_multicast(struct net_device *netdev)
4962 struct et131x_adapter *adapter = netdev_priv(netdev);
4963 uint32_t packet_filter = 0;
4964 unsigned long flags;
4965 struct netdev_hw_addr *ha;
4966 int i;
4968 spin_lock_irqsave(&adapter->lock, flags);
4970 /* Before we modify the platform-independent filter flags, store them
4971 * locally. This allows us to determine if anything's changed and if
4972 * we even need to bother the hardware
4974 packet_filter = adapter->packet_filter;
4976 /* Clear the 'multicast' flag locally; because we only have a single
4977 * flag to check multicast, and multiple multicast addresses can be
4978 * set, this is the easiest way to determine if more than one
4979 * multicast address is being set.
4981 packet_filter &= ~ET131X_PACKET_TYPE_MULTICAST;
4983 /* Check the net_device flags and set the device independent flags
4984 * accordingly
4987 if (netdev->flags & IFF_PROMISC)
4988 adapter->packet_filter |= ET131X_PACKET_TYPE_PROMISCUOUS;
4989 else
4990 adapter->packet_filter &= ~ET131X_PACKET_TYPE_PROMISCUOUS;
4992 if (netdev->flags & IFF_ALLMULTI)
4993 adapter->packet_filter |= ET131X_PACKET_TYPE_ALL_MULTICAST;
4995 if (netdev_mc_count(netdev) > NIC_MAX_MCAST_LIST)
4996 adapter->packet_filter |= ET131X_PACKET_TYPE_ALL_MULTICAST;
4998 if (netdev_mc_count(netdev) < 1) {
4999 adapter->packet_filter &= ~ET131X_PACKET_TYPE_ALL_MULTICAST;
5000 adapter->packet_filter &= ~ET131X_PACKET_TYPE_MULTICAST;
5001 } else
5002 adapter->packet_filter |= ET131X_PACKET_TYPE_MULTICAST;
5004 /* Set values in the private adapter struct */
5005 i = 0;
5006 netdev_for_each_mc_addr(ha, netdev) {
5007 if (i == NIC_MAX_MCAST_LIST)
5008 break;
5009 memcpy(adapter->multicast_list[i++], ha->addr, ETH_ALEN);
5011 adapter->multicast_addr_count = i;
5013 /* Are the new flags different from the previous ones? If not, then no
5014 * action is required
5016 * NOTE - This block will always update the multicast_list with the
5017 * hardware, even if the addresses aren't the same.
5019 if (packet_filter != adapter->packet_filter) {
5020 /* Call the device's filter function */
5021 et131x_set_packet_filter(adapter);
5023 spin_unlock_irqrestore(&adapter->lock, flags);
5027 * et131x_tx - The handler to tx a packet on the device
5028 * @skb: data to be Tx'd
5029 * @netdev: device on which data is to be Tx'd
5031 * Returns 0 on success, errno on failure (as defined in errno.h)
5033 static int et131x_tx(struct sk_buff *skb, struct net_device *netdev)
5035 int status = 0;
5036 struct et131x_adapter *adapter = netdev_priv(netdev);
5038 /* stop the queue if it's getting full */
5039 if(adapter->tx_ring.used >= NUM_TCB - 1 && !netif_queue_stopped(netdev))
5040 netif_stop_queue(netdev);
5042 /* Save the timestamp for the TX timeout watchdog */
5043 netdev->trans_start = jiffies;
5045 /* Call the device-specific data Tx routine */
5046 status = et131x_send_packets(skb, netdev);
5048 /* Check status and manage the netif queue if necessary */
5049 if (status != 0) {
5050 if (status == -ENOMEM) {
5051 status = NETDEV_TX_BUSY;
5052 } else {
5053 status = NETDEV_TX_OK;
5056 return status;
5060 * et131x_tx_timeout - Timeout handler
5061 * @netdev: a pointer to a net_device struct representing the device
5063 * The handler called when a Tx request times out. The timeout period is
5064 * specified by the 'tx_timeo" element in the net_device structure (see
5065 * et131x_alloc_device() to see how this value is set).
5067 static void et131x_tx_timeout(struct net_device *netdev)
5069 struct et131x_adapter *adapter = netdev_priv(netdev);
5070 struct tcb *tcb;
5071 unsigned long flags;
5073 /* If the device is closed, ignore the timeout */
5074 if (~(adapter->flags & fMP_ADAPTER_INTERRUPT_IN_USE))
5075 return;
5077 /* Any nonrecoverable hardware error?
5078 * Checks adapter->flags for any failure in phy reading
5080 if (adapter->flags & fMP_ADAPTER_NON_RECOVER_ERROR)
5081 return;
5083 /* Hardware failure? */
5084 if (adapter->flags & fMP_ADAPTER_HARDWARE_ERROR) {
5085 dev_err(&adapter->pdev->dev, "hardware error - reset\n");
5086 return;
5089 /* Is send stuck? */
5090 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
5092 tcb = adapter->tx_ring.send_head;
5094 if (tcb != NULL) {
5095 tcb->count++;
5097 if (tcb->count > NIC_SEND_HANG_THRESHOLD) {
5098 spin_unlock_irqrestore(&adapter->tcb_send_qlock,
5099 flags);
5101 dev_warn(&adapter->pdev->dev,
5102 "Send stuck - reset. tcb->WrIndex %x, flags 0x%08x\n",
5103 tcb->index,
5104 tcb->flags);
5106 adapter->net_stats.tx_errors++;
5108 /* perform reset of tx/rx */
5109 et131x_disable_txrx(netdev);
5110 et131x_enable_txrx(netdev);
5111 return;
5115 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
5119 * et131x_change_mtu - The handler called to change the MTU for the device
5120 * @netdev: device whose MTU is to be changed
5121 * @new_mtu: the desired MTU
5123 * Returns 0 on success, errno on failure (as defined in errno.h)
5125 static int et131x_change_mtu(struct net_device *netdev, int new_mtu)
5127 int result = 0;
5128 struct et131x_adapter *adapter = netdev_priv(netdev);
5130 /* Make sure the requested MTU is valid */
5131 if (new_mtu < 64 || new_mtu > 9216)
5132 return -EINVAL;
5134 et131x_disable_txrx(netdev);
5135 et131x_handle_send_interrupt(adapter);
5136 et131x_handle_recv_interrupt(adapter);
5138 /* Set the new MTU */
5139 netdev->mtu = new_mtu;
5141 /* Free Rx DMA memory */
5142 et131x_adapter_memory_free(adapter);
5144 /* Set the config parameter for Jumbo Packet support */
5145 adapter->registry_jumbo_packet = new_mtu + 14;
5146 et131x_soft_reset(adapter);
5148 /* Alloc and init Rx DMA memory */
5149 result = et131x_adapter_memory_alloc(adapter);
5150 if (result != 0) {
5151 dev_warn(&adapter->pdev->dev,
5152 "Change MTU failed; couldn't re-alloc DMA memory\n");
5153 return result;
5156 et131x_init_send(adapter);
5158 et131x_hwaddr_init(adapter);
5159 memcpy(netdev->dev_addr, adapter->addr, ETH_ALEN);
5161 /* Init the device with the new settings */
5162 et131x_adapter_setup(adapter);
5164 et131x_enable_txrx(netdev);
5166 return result;
5170 * et131x_set_mac_addr - handler to change the MAC address for the device
5171 * @netdev: device whose MAC is to be changed
5172 * @new_mac: the desired MAC address
5174 * Returns 0 on success, errno on failure (as defined in errno.h)
5176 * IMPLEMENTED BY : blux http://berndlux.de 22.01.2007 21:14
5178 static int et131x_set_mac_addr(struct net_device *netdev, void *new_mac)
5180 int result = 0;
5181 struct et131x_adapter *adapter = netdev_priv(netdev);
5182 struct sockaddr *address = new_mac;
5184 /* begin blux */
5186 if (adapter == NULL)
5187 return -ENODEV;
5189 /* Make sure the requested MAC is valid */
5190 if (!is_valid_ether_addr(address->sa_data))
5191 return -EINVAL;
5193 et131x_disable_txrx(netdev);
5194 et131x_handle_send_interrupt(adapter);
5195 et131x_handle_recv_interrupt(adapter);
5197 /* Set the new MAC */
5198 /* netdev->set_mac_address = &new_mac; */
5200 memcpy(netdev->dev_addr, address->sa_data, netdev->addr_len);
5202 printk(KERN_INFO "%s: Setting MAC address to %pM\n",
5203 netdev->name, netdev->dev_addr);
5205 /* Free Rx DMA memory */
5206 et131x_adapter_memory_free(adapter);
5208 et131x_soft_reset(adapter);
5210 /* Alloc and init Rx DMA memory */
5211 result = et131x_adapter_memory_alloc(adapter);
5212 if (result != 0) {
5213 dev_err(&adapter->pdev->dev,
5214 "Change MAC failed; couldn't re-alloc DMA memory\n");
5215 return result;
5218 et131x_init_send(adapter);
5220 et131x_hwaddr_init(adapter);
5222 /* Init the device with the new settings */
5223 et131x_adapter_setup(adapter);
5225 et131x_enable_txrx(netdev);
5227 return result;
5230 static const struct net_device_ops et131x_netdev_ops = {
5231 .ndo_open = et131x_open,
5232 .ndo_stop = et131x_close,
5233 .ndo_start_xmit = et131x_tx,
5234 .ndo_set_multicast_list = et131x_multicast,
5235 .ndo_tx_timeout = et131x_tx_timeout,
5236 .ndo_change_mtu = et131x_change_mtu,
5237 .ndo_set_mac_address = et131x_set_mac_addr,
5238 .ndo_validate_addr = eth_validate_addr,
5239 .ndo_get_stats = et131x_stats,
5240 .ndo_do_ioctl = et131x_ioctl,
5244 * et131x_device_alloc
5246 * Returns pointer to the allocated and initialized net_device struct for
5247 * this device.
5249 * Create instances of net_device and wl_private for the new adapter and
5250 * register the device's entry points in the net_device structure.
5252 struct net_device *et131x_device_alloc(void)
5254 struct net_device *netdev;
5256 /* Alloc net_device and adapter structs */
5257 netdev = alloc_etherdev(sizeof(struct et131x_adapter));
5259 if (!netdev) {
5260 printk(KERN_ERR "et131x: Alloc of net_device struct failed\n");
5261 return NULL;
5265 * Setup the function registration table (and other data) for a
5266 * net_device
5268 netdev->watchdog_timeo = ET131X_TX_TIMEOUT;
5269 netdev->netdev_ops = &et131x_netdev_ops;
5271 /* Poll? */
5272 /* netdev->poll = &et131x_poll; */
5273 /* netdev->poll_controller = &et131x_poll_controller; */
5274 return netdev;
5278 * et131x_pci_setup - Perform device initialization
5279 * @pdev: a pointer to the device's pci_dev structure
5280 * @ent: this device's entry in the pci_device_id table
5282 * Returns 0 on success, errno on failure (as defined in errno.h)
5284 * Registered in the pci_driver structure, this function is called when the
5285 * PCI subsystem finds a new PCI device which matches the information
5286 * contained in the pci_device_id table. This routine is the equivalent to
5287 * a device insertion routine.
5289 static int __devinit et131x_pci_setup(struct pci_dev *pdev,
5290 const struct pci_device_id *ent)
5292 int result;
5293 struct net_device *netdev;
5294 struct et131x_adapter *adapter;
5295 int ii;
5297 result = pci_enable_device(pdev);
5298 if (result) {
5299 dev_err(&pdev->dev, "pci_enable_device() failed\n");
5300 goto err_out;
5303 /* Perform some basic PCI checks */
5304 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
5305 dev_err(&pdev->dev, "Can't find PCI device's base address\n");
5306 goto err_disable;
5309 if (pci_request_regions(pdev, DRIVER_NAME)) {
5310 dev_err(&pdev->dev, "Can't get PCI resources\n");
5311 goto err_disable;
5314 pci_set_master(pdev);
5316 /* Check the DMA addressing support of this device */
5317 if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(64))) {
5318 result = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
5319 if (result) {
5320 dev_err(&pdev->dev,
5321 "Unable to obtain 64 bit DMA for consistent allocations\n");
5322 goto err_release_res;
5324 } else if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(32))) {
5325 result = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
5326 if (result) {
5327 dev_err(&pdev->dev,
5328 "Unable to obtain 32 bit DMA for consistent allocations\n");
5329 goto err_release_res;
5331 } else {
5332 dev_err(&pdev->dev, "No usable DMA addressing method\n");
5333 result = -EIO;
5334 goto err_release_res;
5337 /* Allocate netdev and private adapter structs */
5338 netdev = et131x_device_alloc();
5339 if (!netdev) {
5340 dev_err(&pdev->dev, "Couldn't alloc netdev struct\n");
5341 result = -ENOMEM;
5342 goto err_release_res;
5345 SET_NETDEV_DEV(netdev, &pdev->dev);
5346 et131x_set_ethtool_ops(netdev);
5348 adapter = et131x_adapter_init(netdev, pdev);
5350 /* Initialise the PCI setup for the device */
5351 et131x_pci_init(adapter, pdev);
5353 /* Map the bus-relative registers to system virtual memory */
5354 adapter->regs = pci_ioremap_bar(pdev, 0);
5355 if (!adapter->regs) {
5356 dev_err(&pdev->dev, "Cannot map device registers\n");
5357 result = -ENOMEM;
5358 goto err_free_dev;
5361 /* If Phy COMA mode was enabled when we went down, disable it here. */
5362 writel(ET_PMCSR_INIT, &adapter->regs->global.pm_csr);
5364 /* Issue a global reset to the et1310 */
5365 et131x_soft_reset(adapter);
5367 /* Disable all interrupts (paranoid) */
5368 et131x_disable_interrupts(adapter);
5370 /* Allocate DMA memory */
5371 result = et131x_adapter_memory_alloc(adapter);
5372 if (result) {
5373 dev_err(&pdev->dev, "Could not alloc adapater memory (DMA)\n");
5374 goto err_iounmap;
5377 /* Init send data structures */
5378 et131x_init_send(adapter);
5380 /* Set up the task structure for the ISR's deferred handler */
5381 INIT_WORK(&adapter->task, et131x_isr_handler);
5383 /* Copy address into the net_device struct */
5384 memcpy(netdev->dev_addr, adapter->addr, ETH_ALEN);
5386 /* Init variable for counting how long we do not have link status */
5387 adapter->boot_coma = 0;
5388 et1310_disable_phy_coma(adapter);
5390 /* Setup the mii_bus struct */
5391 adapter->mii_bus = mdiobus_alloc();
5392 if (!adapter->mii_bus) {
5393 dev_err(&pdev->dev, "Alloc of mii_bus struct failed\n");
5394 goto err_mem_free;
5397 adapter->mii_bus->name = "et131x_eth_mii";
5398 snprintf(adapter->mii_bus->id, MII_BUS_ID_SIZE, "%x",
5399 (adapter->pdev->bus->number << 8) | adapter->pdev->devfn);
5400 adapter->mii_bus->priv = netdev;
5401 adapter->mii_bus->read = et131x_mdio_read;
5402 adapter->mii_bus->write = et131x_mdio_write;
5403 adapter->mii_bus->reset = et131x_mdio_reset;
5404 adapter->mii_bus->irq = kmalloc(sizeof(int)*PHY_MAX_ADDR, GFP_KERNEL);
5405 if (!adapter->mii_bus->irq) {
5406 dev_err(&pdev->dev, "mii_bus irq allocation failed\n");
5407 goto err_mdio_free;
5410 for (ii = 0; ii < PHY_MAX_ADDR; ii++)
5411 adapter->mii_bus->irq[ii] = PHY_POLL;
5413 if (mdiobus_register(adapter->mii_bus)) {
5414 dev_err(&pdev->dev, "failed to register MII bus\n");
5415 mdiobus_free(adapter->mii_bus);
5416 goto err_mdio_free_irq;
5419 if (et131x_mii_probe(netdev)) {
5420 dev_err(&pdev->dev, "failed to probe MII bus\n");
5421 goto err_mdio_unregister;
5424 /* Setup et1310 as per the documentation */
5425 et131x_adapter_setup(adapter);
5427 /* We can enable interrupts now
5429 * NOTE - Because registration of interrupt handler is done in the
5430 * device's open(), defer enabling device interrupts to that
5431 * point
5434 /* Register the net_device struct with the Linux network layer */
5435 result = register_netdev(netdev);
5436 if (result != 0) {
5437 dev_err(&pdev->dev, "register_netdev() failed\n");
5438 goto err_mdio_unregister;
5441 /* Register the net_device struct with the PCI subsystem. Save a copy
5442 * of the PCI config space for this device now that the device has
5443 * been initialized, just in case it needs to be quickly restored.
5445 pci_set_drvdata(pdev, netdev);
5446 pci_save_state(adapter->pdev);
5448 return result;
5450 err_mdio_unregister:
5451 mdiobus_unregister(adapter->mii_bus);
5452 err_mdio_free_irq:
5453 kfree(adapter->mii_bus->irq);
5454 err_mdio_free:
5455 mdiobus_free(adapter->mii_bus);
5456 err_mem_free:
5457 et131x_adapter_memory_free(adapter);
5458 err_iounmap:
5459 iounmap(adapter->regs);
5460 err_free_dev:
5461 pci_dev_put(pdev);
5462 free_netdev(netdev);
5463 err_release_res:
5464 pci_release_regions(pdev);
5465 err_disable:
5466 pci_disable_device(pdev);
5467 err_out:
5468 return result;
5471 static SIMPLE_DEV_PM_OPS(et131x_pm_ops, et131x_suspend, et131x_resume);
5472 #define ET131X_PM_OPS (&et131x_pm_ops)
5473 #else
5474 #define ET131X_PM_OPS NULL
5475 #endif
5477 static DEFINE_PCI_DEVICE_TABLE(et131x_pci_table) = {
5478 { PCI_VDEVICE(ATT, ET131X_PCI_DEVICE_ID_GIG), 0UL},
5479 { PCI_VDEVICE(ATT, ET131X_PCI_DEVICE_ID_FAST), 0UL},
5480 {0,}
5482 MODULE_DEVICE_TABLE(pci, et131x_pci_table);
5484 static struct pci_driver et131x_driver = {
5485 .name = DRIVER_NAME,
5486 .id_table = et131x_pci_table,
5487 .probe = et131x_pci_setup,
5488 .remove = __devexit_p(et131x_pci_remove),
5489 .driver.pm = ET131X_PM_OPS,
5493 * et131x_init_module - The "main" entry point called on driver initialization
5495 * Returns 0 on success, errno on failure (as defined in errno.h)
5497 static int __init et131x_init_module(void)
5499 return pci_register_driver(&et131x_driver);
5503 * et131x_cleanup_module - The entry point called on driver cleanup
5505 static void __exit et131x_cleanup_module(void)
5507 pci_unregister_driver(&et131x_driver);
5510 module_init(et131x_init_module);
5511 module_exit(et131x_cleanup_module);