QE/FHCI: fixed the CONTROL bug
[zen-stable.git] / drivers / ata / sata_dwc_460ex.c
blob5c4237452f5072a97a82eca00e95d55c15ce2542
1 /*
2 * drivers/ata/sata_dwc_460ex.c
4 * Synopsys DesignWare Cores (DWC) SATA host driver
6 * Author: Mark Miesfeld <mmiesfeld@amcc.com>
8 * Ported from 2.6.19.2 to 2.6.25/26 by Stefan Roese <sr@denx.de>
9 * Copyright 2008 DENX Software Engineering
11 * Based on versions provided by AMCC and Synopsys which are:
12 * Copyright 2006 Applied Micro Circuits Corporation
13 * COPYRIGHT (C) 2005 SYNOPSYS, INC. ALL RIGHTS RESERVED
15 * This program is free software; you can redistribute it and/or modify it
16 * under the terms of the GNU General Public License as published by the
17 * Free Software Foundation; either version 2 of the License, or (at your
18 * option) any later version.
21 #ifdef CONFIG_SATA_DWC_DEBUG
22 #define DEBUG
23 #endif
25 #ifdef CONFIG_SATA_DWC_VDEBUG
26 #define VERBOSE_DEBUG
27 #define DEBUG_NCQ
28 #endif
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/init.h>
33 #include <linux/device.h>
34 #include <linux/of_platform.h>
35 #include <linux/platform_device.h>
36 #include <linux/libata.h>
37 #include <linux/slab.h>
38 #include "libata.h"
40 #include <scsi/scsi_host.h>
41 #include <scsi/scsi_cmnd.h>
43 /* These two are defined in "libata.h" */
44 #undef DRV_NAME
45 #undef DRV_VERSION
46 #define DRV_NAME "sata-dwc"
47 #define DRV_VERSION "1.3"
49 /* SATA DMA driver Globals */
50 #define DMA_NUM_CHANS 1
51 #define DMA_NUM_CHAN_REGS 8
53 /* SATA DMA Register definitions */
54 #define AHB_DMA_BRST_DFLT 64 /* 16 data items burst length*/
56 struct dmareg {
57 u32 low; /* Low bits 0-31 */
58 u32 high; /* High bits 32-63 */
61 /* DMA Per Channel registers */
62 struct dma_chan_regs {
63 struct dmareg sar; /* Source Address */
64 struct dmareg dar; /* Destination address */
65 struct dmareg llp; /* Linked List Pointer */
66 struct dmareg ctl; /* Control */
67 struct dmareg sstat; /* Source Status not implemented in core */
68 struct dmareg dstat; /* Destination Status not implemented in core*/
69 struct dmareg sstatar; /* Source Status Address not impl in core */
70 struct dmareg dstatar; /* Destination Status Address not implemente */
71 struct dmareg cfg; /* Config */
72 struct dmareg sgr; /* Source Gather */
73 struct dmareg dsr; /* Destination Scatter */
76 /* Generic Interrupt Registers */
77 struct dma_interrupt_regs {
78 struct dmareg tfr; /* Transfer Interrupt */
79 struct dmareg block; /* Block Interrupt */
80 struct dmareg srctran; /* Source Transfer Interrupt */
81 struct dmareg dsttran; /* Dest Transfer Interrupt */
82 struct dmareg error; /* Error */
85 struct ahb_dma_regs {
86 struct dma_chan_regs chan_regs[DMA_NUM_CHAN_REGS];
87 struct dma_interrupt_regs interrupt_raw; /* Raw Interrupt */
88 struct dma_interrupt_regs interrupt_status; /* Interrupt Status */
89 struct dma_interrupt_regs interrupt_mask; /* Interrupt Mask */
90 struct dma_interrupt_regs interrupt_clear; /* Interrupt Clear */
91 struct dmareg statusInt; /* Interrupt combined*/
92 struct dmareg rq_srcreg; /* Src Trans Req */
93 struct dmareg rq_dstreg; /* Dst Trans Req */
94 struct dmareg rq_sgl_srcreg; /* Sngl Src Trans Req*/
95 struct dmareg rq_sgl_dstreg; /* Sngl Dst Trans Req*/
96 struct dmareg rq_lst_srcreg; /* Last Src Trans Req*/
97 struct dmareg rq_lst_dstreg; /* Last Dst Trans Req*/
98 struct dmareg dma_cfg; /* DMA Config */
99 struct dmareg dma_chan_en; /* DMA Channel Enable*/
100 struct dmareg dma_id; /* DMA ID */
101 struct dmareg dma_test; /* DMA Test */
102 struct dmareg res1; /* reserved */
103 struct dmareg res2; /* reserved */
105 * DMA Comp Params
106 * Param 6 = dma_param[0], Param 5 = dma_param[1],
107 * Param 4 = dma_param[2] ...
109 struct dmareg dma_params[6];
112 /* Data structure for linked list item */
113 struct lli {
114 u32 sar; /* Source Address */
115 u32 dar; /* Destination address */
116 u32 llp; /* Linked List Pointer */
117 struct dmareg ctl; /* Control */
118 struct dmareg dstat; /* Destination Status */
121 enum {
122 SATA_DWC_DMAC_LLI_SZ = (sizeof(struct lli)),
123 SATA_DWC_DMAC_LLI_NUM = 256,
124 SATA_DWC_DMAC_LLI_TBL_SZ = (SATA_DWC_DMAC_LLI_SZ * \
125 SATA_DWC_DMAC_LLI_NUM),
126 SATA_DWC_DMAC_TWIDTH_BYTES = 4,
127 SATA_DWC_DMAC_CTRL_TSIZE_MAX = (0x00000800 * \
128 SATA_DWC_DMAC_TWIDTH_BYTES),
131 /* DMA Register Operation Bits */
132 enum {
133 DMA_EN = 0x00000001, /* Enable AHB DMA */
134 DMA_CTL_LLP_SRCEN = 0x10000000, /* Blk chain enable Src */
135 DMA_CTL_LLP_DSTEN = 0x08000000, /* Blk chain enable Dst */
138 #define DMA_CTL_BLK_TS(size) ((size) & 0x000000FFF) /* Blk Transfer size */
139 #define DMA_CHANNEL(ch) (0x00000001 << (ch)) /* Select channel */
140 /* Enable channel */
141 #define DMA_ENABLE_CHAN(ch) ((0x00000001 << (ch)) | \
142 ((0x000000001 << (ch)) << 8))
143 /* Disable channel */
144 #define DMA_DISABLE_CHAN(ch) (0x00000000 | ((0x000000001 << (ch)) << 8))
145 /* Transfer Type & Flow Controller */
146 #define DMA_CTL_TTFC(type) (((type) & 0x7) << 20)
147 #define DMA_CTL_SMS(num) (((num) & 0x3) << 25) /* Src Master Select */
148 #define DMA_CTL_DMS(num) (((num) & 0x3) << 23)/* Dst Master Select */
149 /* Src Burst Transaction Length */
150 #define DMA_CTL_SRC_MSIZE(size) (((size) & 0x7) << 14)
151 /* Dst Burst Transaction Length */
152 #define DMA_CTL_DST_MSIZE(size) (((size) & 0x7) << 11)
153 /* Source Transfer Width */
154 #define DMA_CTL_SRC_TRWID(size) (((size) & 0x7) << 4)
155 /* Destination Transfer Width */
156 #define DMA_CTL_DST_TRWID(size) (((size) & 0x7) << 1)
158 /* Assign HW handshaking interface (x) to destination / source peripheral */
159 #define DMA_CFG_HW_HS_DEST(int_num) (((int_num) & 0xF) << 11)
160 #define DMA_CFG_HW_HS_SRC(int_num) (((int_num) & 0xF) << 7)
161 #define DMA_LLP_LMS(addr, master) (((addr) & 0xfffffffc) | (master))
164 * This define is used to set block chaining disabled in the control low
165 * register. It is already in little endian format so it can be &'d dirctly.
166 * It is essentially: cpu_to_le32(~(DMA_CTL_LLP_SRCEN | DMA_CTL_LLP_DSTEN))
168 enum {
169 DMA_CTL_LLP_DISABLE_LE32 = 0xffffffe7,
170 DMA_CTL_TTFC_P2M_DMAC = 0x00000002, /* Per to mem, DMAC cntr */
171 DMA_CTL_TTFC_M2P_PER = 0x00000003, /* Mem to per, peripheral cntr */
172 DMA_CTL_SINC_INC = 0x00000000, /* Source Address Increment */
173 DMA_CTL_SINC_DEC = 0x00000200,
174 DMA_CTL_SINC_NOCHANGE = 0x00000400,
175 DMA_CTL_DINC_INC = 0x00000000, /* Destination Address Increment */
176 DMA_CTL_DINC_DEC = 0x00000080,
177 DMA_CTL_DINC_NOCHANGE = 0x00000100,
178 DMA_CTL_INT_EN = 0x00000001, /* Interrupt Enable */
180 /* Channel Configuration Register high bits */
181 DMA_CFG_FCMOD_REQ = 0x00000001, /* Flow Control - request based */
182 DMA_CFG_PROTCTL = (0x00000003 << 2),/* Protection Control */
184 /* Channel Configuration Register low bits */
185 DMA_CFG_RELD_DST = 0x80000000, /* Reload Dest / Src Addr */
186 DMA_CFG_RELD_SRC = 0x40000000,
187 DMA_CFG_HS_SELSRC = 0x00000800, /* Software handshake Src/ Dest */
188 DMA_CFG_HS_SELDST = 0x00000400,
189 DMA_CFG_FIFOEMPTY = (0x00000001 << 9), /* FIFO Empty bit */
191 /* Channel Linked List Pointer Register */
192 DMA_LLP_AHBMASTER1 = 0, /* List Master Select */
193 DMA_LLP_AHBMASTER2 = 1,
195 SATA_DWC_MAX_PORTS = 1,
197 SATA_DWC_SCR_OFFSET = 0x24,
198 SATA_DWC_REG_OFFSET = 0x64,
201 /* DWC SATA Registers */
202 struct sata_dwc_regs {
203 u32 fptagr; /* 1st party DMA tag */
204 u32 fpbor; /* 1st party DMA buffer offset */
205 u32 fptcr; /* 1st party DMA Xfr count */
206 u32 dmacr; /* DMA Control */
207 u32 dbtsr; /* DMA Burst Transac size */
208 u32 intpr; /* Interrupt Pending */
209 u32 intmr; /* Interrupt Mask */
210 u32 errmr; /* Error Mask */
211 u32 llcr; /* Link Layer Control */
212 u32 phycr; /* PHY Control */
213 u32 physr; /* PHY Status */
214 u32 rxbistpd; /* Recvd BIST pattern def register */
215 u32 rxbistpd1; /* Recvd BIST data dword1 */
216 u32 rxbistpd2; /* Recvd BIST pattern data dword2 */
217 u32 txbistpd; /* Trans BIST pattern def register */
218 u32 txbistpd1; /* Trans BIST data dword1 */
219 u32 txbistpd2; /* Trans BIST data dword2 */
220 u32 bistcr; /* BIST Control Register */
221 u32 bistfctr; /* BIST FIS Count Register */
222 u32 bistsr; /* BIST Status Register */
223 u32 bistdecr; /* BIST Dword Error count register */
224 u32 res[15]; /* Reserved locations */
225 u32 testr; /* Test Register */
226 u32 versionr; /* Version Register */
227 u32 idr; /* ID Register */
228 u32 unimpl[192]; /* Unimplemented */
229 u32 dmadr[256]; /* FIFO Locations in DMA Mode */
232 enum {
233 SCR_SCONTROL_DET_ENABLE = 0x00000001,
234 SCR_SSTATUS_DET_PRESENT = 0x00000001,
235 SCR_SERROR_DIAG_X = 0x04000000,
236 /* DWC SATA Register Operations */
237 SATA_DWC_TXFIFO_DEPTH = 0x01FF,
238 SATA_DWC_RXFIFO_DEPTH = 0x01FF,
239 SATA_DWC_DMACR_TMOD_TXCHEN = 0x00000004,
240 SATA_DWC_DMACR_TXCHEN = (0x00000001 | SATA_DWC_DMACR_TMOD_TXCHEN),
241 SATA_DWC_DMACR_RXCHEN = (0x00000002 | SATA_DWC_DMACR_TMOD_TXCHEN),
242 SATA_DWC_DMACR_TXRXCH_CLEAR = SATA_DWC_DMACR_TMOD_TXCHEN,
243 SATA_DWC_INTPR_DMAT = 0x00000001,
244 SATA_DWC_INTPR_NEWFP = 0x00000002,
245 SATA_DWC_INTPR_PMABRT = 0x00000004,
246 SATA_DWC_INTPR_ERR = 0x00000008,
247 SATA_DWC_INTPR_NEWBIST = 0x00000010,
248 SATA_DWC_INTPR_IPF = 0x10000000,
249 SATA_DWC_INTMR_DMATM = 0x00000001,
250 SATA_DWC_INTMR_NEWFPM = 0x00000002,
251 SATA_DWC_INTMR_PMABRTM = 0x00000004,
252 SATA_DWC_INTMR_ERRM = 0x00000008,
253 SATA_DWC_INTMR_NEWBISTM = 0x00000010,
254 SATA_DWC_LLCR_SCRAMEN = 0x00000001,
255 SATA_DWC_LLCR_DESCRAMEN = 0x00000002,
256 SATA_DWC_LLCR_RPDEN = 0x00000004,
257 /* This is all error bits, zero's are reserved fields. */
258 SATA_DWC_SERROR_ERR_BITS = 0x0FFF0F03
261 #define SATA_DWC_SCR0_SPD_GET(v) (((v) >> 4) & 0x0000000F)
262 #define SATA_DWC_DMACR_TX_CLEAR(v) (((v) & ~SATA_DWC_DMACR_TXCHEN) |\
263 SATA_DWC_DMACR_TMOD_TXCHEN)
264 #define SATA_DWC_DMACR_RX_CLEAR(v) (((v) & ~SATA_DWC_DMACR_RXCHEN) |\
265 SATA_DWC_DMACR_TMOD_TXCHEN)
266 #define SATA_DWC_DBTSR_MWR(size) (((size)/4) & SATA_DWC_TXFIFO_DEPTH)
267 #define SATA_DWC_DBTSR_MRD(size) ((((size)/4) & SATA_DWC_RXFIFO_DEPTH)\
268 << 16)
269 struct sata_dwc_device {
270 struct device *dev; /* generic device struct */
271 struct ata_probe_ent *pe; /* ptr to probe-ent */
272 struct ata_host *host;
273 u8 *reg_base;
274 struct sata_dwc_regs *sata_dwc_regs; /* DW Synopsys SATA specific */
275 int irq_dma;
278 #define SATA_DWC_QCMD_MAX 32
280 struct sata_dwc_device_port {
281 struct sata_dwc_device *hsdev;
282 int cmd_issued[SATA_DWC_QCMD_MAX];
283 struct lli *llit[SATA_DWC_QCMD_MAX]; /* DMA LLI table */
284 dma_addr_t llit_dma[SATA_DWC_QCMD_MAX];
285 u32 dma_chan[SATA_DWC_QCMD_MAX];
286 int dma_pending[SATA_DWC_QCMD_MAX];
290 * Commonly used DWC SATA driver Macros
292 #define HSDEV_FROM_HOST(host) ((struct sata_dwc_device *)\
293 (host)->private_data)
294 #define HSDEV_FROM_AP(ap) ((struct sata_dwc_device *)\
295 (ap)->host->private_data)
296 #define HSDEVP_FROM_AP(ap) ((struct sata_dwc_device_port *)\
297 (ap)->private_data)
298 #define HSDEV_FROM_QC(qc) ((struct sata_dwc_device *)\
299 (qc)->ap->host->private_data)
300 #define HSDEV_FROM_HSDEVP(p) ((struct sata_dwc_device *)\
301 (hsdevp)->hsdev)
303 enum {
304 SATA_DWC_CMD_ISSUED_NOT = 0,
305 SATA_DWC_CMD_ISSUED_PEND = 1,
306 SATA_DWC_CMD_ISSUED_EXEC = 2,
307 SATA_DWC_CMD_ISSUED_NODATA = 3,
309 SATA_DWC_DMA_PENDING_NONE = 0,
310 SATA_DWC_DMA_PENDING_TX = 1,
311 SATA_DWC_DMA_PENDING_RX = 2,
314 struct sata_dwc_host_priv {
315 void __iomem *scr_addr_sstatus;
316 u32 sata_dwc_sactive_issued ;
317 u32 sata_dwc_sactive_queued ;
318 u32 dma_interrupt_count;
319 struct ahb_dma_regs *sata_dma_regs;
320 struct device *dwc_dev;
322 struct sata_dwc_host_priv host_pvt;
324 * Prototypes
326 static void sata_dwc_bmdma_start_by_tag(struct ata_queued_cmd *qc, u8 tag);
327 static int sata_dwc_qc_complete(struct ata_port *ap, struct ata_queued_cmd *qc,
328 u32 check_status);
329 static void sata_dwc_dma_xfer_complete(struct ata_port *ap, u32 check_status);
330 static void sata_dwc_port_stop(struct ata_port *ap);
331 static void sata_dwc_clear_dmacr(struct sata_dwc_device_port *hsdevp, u8 tag);
332 static int dma_dwc_init(struct sata_dwc_device *hsdev, int irq);
333 static void dma_dwc_exit(struct sata_dwc_device *hsdev);
334 static int dma_dwc_xfer_setup(struct scatterlist *sg, int num_elems,
335 struct lli *lli, dma_addr_t dma_lli,
336 void __iomem *addr, int dir);
337 static void dma_dwc_xfer_start(int dma_ch);
339 static const char *get_prot_descript(u8 protocol)
341 switch ((enum ata_tf_protocols)protocol) {
342 case ATA_PROT_NODATA:
343 return "ATA no data";
344 case ATA_PROT_PIO:
345 return "ATA PIO";
346 case ATA_PROT_DMA:
347 return "ATA DMA";
348 case ATA_PROT_NCQ:
349 return "ATA NCQ";
350 case ATAPI_PROT_NODATA:
351 return "ATAPI no data";
352 case ATAPI_PROT_PIO:
353 return "ATAPI PIO";
354 case ATAPI_PROT_DMA:
355 return "ATAPI DMA";
356 default:
357 return "unknown";
361 static const char *get_dma_dir_descript(int dma_dir)
363 switch ((enum dma_data_direction)dma_dir) {
364 case DMA_BIDIRECTIONAL:
365 return "bidirectional";
366 case DMA_TO_DEVICE:
367 return "to device";
368 case DMA_FROM_DEVICE:
369 return "from device";
370 default:
371 return "none";
375 static void sata_dwc_tf_dump(struct ata_taskfile *tf)
377 dev_vdbg(host_pvt.dwc_dev, "taskfile cmd: 0x%02x protocol: %s flags:"
378 "0x%lx device: %x\n", tf->command,
379 get_prot_descript(tf->protocol), tf->flags, tf->device);
380 dev_vdbg(host_pvt.dwc_dev, "feature: 0x%02x nsect: 0x%x lbal: 0x%x "
381 "lbam: 0x%x lbah: 0x%x\n", tf->feature, tf->nsect, tf->lbal,
382 tf->lbam, tf->lbah);
383 dev_vdbg(host_pvt.dwc_dev, "hob_feature: 0x%02x hob_nsect: 0x%x "
384 "hob_lbal: 0x%x hob_lbam: 0x%x hob_lbah: 0x%x\n",
385 tf->hob_feature, tf->hob_nsect, tf->hob_lbal, tf->hob_lbam,
386 tf->hob_lbah);
390 * Function: get_burst_length_encode
391 * arguments: datalength: length in bytes of data
392 * returns value to be programmed in register corresponding to data length
393 * This value is effectively the log(base 2) of the length
395 static int get_burst_length_encode(int datalength)
397 int items = datalength >> 2; /* div by 4 to get lword count */
399 if (items >= 64)
400 return 5;
402 if (items >= 32)
403 return 4;
405 if (items >= 16)
406 return 3;
408 if (items >= 8)
409 return 2;
411 if (items >= 4)
412 return 1;
414 return 0;
417 static void clear_chan_interrupts(int c)
419 out_le32(&(host_pvt.sata_dma_regs->interrupt_clear.tfr.low),
420 DMA_CHANNEL(c));
421 out_le32(&(host_pvt.sata_dma_regs->interrupt_clear.block.low),
422 DMA_CHANNEL(c));
423 out_le32(&(host_pvt.sata_dma_regs->interrupt_clear.srctran.low),
424 DMA_CHANNEL(c));
425 out_le32(&(host_pvt.sata_dma_regs->interrupt_clear.dsttran.low),
426 DMA_CHANNEL(c));
427 out_le32(&(host_pvt.sata_dma_regs->interrupt_clear.error.low),
428 DMA_CHANNEL(c));
432 * Function: dma_request_channel
433 * arguments: None
434 * returns channel number if available else -1
435 * This function assigns the next available DMA channel from the list to the
436 * requester
438 static int dma_request_channel(void)
440 int i;
442 for (i = 0; i < DMA_NUM_CHANS; i++) {
443 if (!(in_le32(&(host_pvt.sata_dma_regs->dma_chan_en.low)) &\
444 DMA_CHANNEL(i)))
445 return i;
447 dev_err(host_pvt.dwc_dev, "%s NO channel chan_en: 0x%08x\n", __func__,
448 in_le32(&(host_pvt.sata_dma_regs->dma_chan_en.low)));
449 return -1;
453 * Function: dma_dwc_interrupt
454 * arguments: irq, dev_id, pt_regs
455 * returns channel number if available else -1
456 * Interrupt Handler for DW AHB SATA DMA
458 static irqreturn_t dma_dwc_interrupt(int irq, void *hsdev_instance)
460 int chan;
461 u32 tfr_reg, err_reg;
462 unsigned long flags;
463 struct sata_dwc_device *hsdev =
464 (struct sata_dwc_device *)hsdev_instance;
465 struct ata_host *host = (struct ata_host *)hsdev->host;
466 struct ata_port *ap;
467 struct sata_dwc_device_port *hsdevp;
468 u8 tag = 0;
469 unsigned int port = 0;
471 spin_lock_irqsave(&host->lock, flags);
472 ap = host->ports[port];
473 hsdevp = HSDEVP_FROM_AP(ap);
474 tag = ap->link.active_tag;
476 tfr_reg = in_le32(&(host_pvt.sata_dma_regs->interrupt_status.tfr\
477 .low));
478 err_reg = in_le32(&(host_pvt.sata_dma_regs->interrupt_status.error\
479 .low));
481 dev_dbg(ap->dev, "eot=0x%08x err=0x%08x pending=%d active port=%d\n",
482 tfr_reg, err_reg, hsdevp->dma_pending[tag], port);
484 for (chan = 0; chan < DMA_NUM_CHANS; chan++) {
485 /* Check for end-of-transfer interrupt. */
486 if (tfr_reg & DMA_CHANNEL(chan)) {
488 * Each DMA command produces 2 interrupts. Only
489 * complete the command after both interrupts have been
490 * seen. (See sata_dwc_isr())
492 host_pvt.dma_interrupt_count++;
493 sata_dwc_clear_dmacr(hsdevp, tag);
495 if (hsdevp->dma_pending[tag] ==
496 SATA_DWC_DMA_PENDING_NONE) {
497 dev_err(ap->dev, "DMA not pending eot=0x%08x "
498 "err=0x%08x tag=0x%02x pending=%d\n",
499 tfr_reg, err_reg, tag,
500 hsdevp->dma_pending[tag]);
503 if ((host_pvt.dma_interrupt_count % 2) == 0)
504 sata_dwc_dma_xfer_complete(ap, 1);
506 /* Clear the interrupt */
507 out_le32(&(host_pvt.sata_dma_regs->interrupt_clear\
508 .tfr.low),
509 DMA_CHANNEL(chan));
512 /* Check for error interrupt. */
513 if (err_reg & DMA_CHANNEL(chan)) {
514 /* TODO Need error handler ! */
515 dev_err(ap->dev, "error interrupt err_reg=0x%08x\n",
516 err_reg);
518 /* Clear the interrupt. */
519 out_le32(&(host_pvt.sata_dma_regs->interrupt_clear\
520 .error.low),
521 DMA_CHANNEL(chan));
524 spin_unlock_irqrestore(&host->lock, flags);
525 return IRQ_HANDLED;
529 * Function: dma_request_interrupts
530 * arguments: hsdev
531 * returns status
532 * This function registers ISR for a particular DMA channel interrupt
534 static int dma_request_interrupts(struct sata_dwc_device *hsdev, int irq)
536 int retval = 0;
537 int chan;
539 for (chan = 0; chan < DMA_NUM_CHANS; chan++) {
540 /* Unmask error interrupt */
541 out_le32(&(host_pvt.sata_dma_regs)->interrupt_mask.error.low,
542 DMA_ENABLE_CHAN(chan));
544 /* Unmask end-of-transfer interrupt */
545 out_le32(&(host_pvt.sata_dma_regs)->interrupt_mask.tfr.low,
546 DMA_ENABLE_CHAN(chan));
549 retval = request_irq(irq, dma_dwc_interrupt, 0, "SATA DMA", hsdev);
550 if (retval) {
551 dev_err(host_pvt.dwc_dev, "%s: could not get IRQ %d\n",
552 __func__, irq);
553 return -ENODEV;
556 /* Mark this interrupt as requested */
557 hsdev->irq_dma = irq;
558 return 0;
562 * Function: map_sg_to_lli
563 * The Synopsis driver has a comment proposing that better performance
564 * is possible by only enabling interrupts on the last item in the linked list.
565 * However, it seems that could be a problem if an error happened on one of the
566 * first items. The transfer would halt, but no error interrupt would occur.
567 * Currently this function sets interrupts enabled for each linked list item:
568 * DMA_CTL_INT_EN.
570 static int map_sg_to_lli(struct scatterlist *sg, int num_elems,
571 struct lli *lli, dma_addr_t dma_lli,
572 void __iomem *dmadr_addr, int dir)
574 int i, idx = 0;
575 int fis_len = 0;
576 dma_addr_t next_llp;
577 int bl;
579 dev_dbg(host_pvt.dwc_dev, "%s: sg=%p nelem=%d lli=%p dma_lli=0x%08x"
580 " dmadr=0x%08x\n", __func__, sg, num_elems, lli, (u32)dma_lli,
581 (u32)dmadr_addr);
583 bl = get_burst_length_encode(AHB_DMA_BRST_DFLT);
585 for (i = 0; i < num_elems; i++, sg++) {
586 u32 addr, offset;
587 u32 sg_len, len;
589 addr = (u32) sg_dma_address(sg);
590 sg_len = sg_dma_len(sg);
592 dev_dbg(host_pvt.dwc_dev, "%s: elem=%d sg_addr=0x%x sg_len"
593 "=%d\n", __func__, i, addr, sg_len);
595 while (sg_len) {
596 if (idx >= SATA_DWC_DMAC_LLI_NUM) {
597 /* The LLI table is not large enough. */
598 dev_err(host_pvt.dwc_dev, "LLI table overrun "
599 "(idx=%d)\n", idx);
600 break;
602 len = (sg_len > SATA_DWC_DMAC_CTRL_TSIZE_MAX) ?
603 SATA_DWC_DMAC_CTRL_TSIZE_MAX : sg_len;
605 offset = addr & 0xffff;
606 if ((offset + sg_len) > 0x10000)
607 len = 0x10000 - offset;
610 * Make sure a LLI block is not created that will span
611 * 8K max FIS boundary. If the block spans such a FIS
612 * boundary, there is a chance that a DMA burst will
613 * cross that boundary -- this results in an error in
614 * the host controller.
616 if (fis_len + len > 8192) {
617 dev_dbg(host_pvt.dwc_dev, "SPLITTING: fis_len="
618 "%d(0x%x) len=%d(0x%x)\n", fis_len,
619 fis_len, len, len);
620 len = 8192 - fis_len;
621 fis_len = 0;
622 } else {
623 fis_len += len;
625 if (fis_len == 8192)
626 fis_len = 0;
629 * Set DMA addresses and lower half of control register
630 * based on direction.
632 if (dir == DMA_FROM_DEVICE) {
633 lli[idx].dar = cpu_to_le32(addr);
634 lli[idx].sar = cpu_to_le32((u32)dmadr_addr);
636 lli[idx].ctl.low = cpu_to_le32(
637 DMA_CTL_TTFC(DMA_CTL_TTFC_P2M_DMAC) |
638 DMA_CTL_SMS(0) |
639 DMA_CTL_DMS(1) |
640 DMA_CTL_SRC_MSIZE(bl) |
641 DMA_CTL_DST_MSIZE(bl) |
642 DMA_CTL_SINC_NOCHANGE |
643 DMA_CTL_SRC_TRWID(2) |
644 DMA_CTL_DST_TRWID(2) |
645 DMA_CTL_INT_EN |
646 DMA_CTL_LLP_SRCEN |
647 DMA_CTL_LLP_DSTEN);
648 } else { /* DMA_TO_DEVICE */
649 lli[idx].sar = cpu_to_le32(addr);
650 lli[idx].dar = cpu_to_le32((u32)dmadr_addr);
652 lli[idx].ctl.low = cpu_to_le32(
653 DMA_CTL_TTFC(DMA_CTL_TTFC_M2P_PER) |
654 DMA_CTL_SMS(1) |
655 DMA_CTL_DMS(0) |
656 DMA_CTL_SRC_MSIZE(bl) |
657 DMA_CTL_DST_MSIZE(bl) |
658 DMA_CTL_DINC_NOCHANGE |
659 DMA_CTL_SRC_TRWID(2) |
660 DMA_CTL_DST_TRWID(2) |
661 DMA_CTL_INT_EN |
662 DMA_CTL_LLP_SRCEN |
663 DMA_CTL_LLP_DSTEN);
666 dev_dbg(host_pvt.dwc_dev, "%s setting ctl.high len: "
667 "0x%08x val: 0x%08x\n", __func__,
668 len, DMA_CTL_BLK_TS(len / 4));
670 /* Program the LLI CTL high register */
671 lli[idx].ctl.high = cpu_to_le32(DMA_CTL_BLK_TS\
672 (len / 4));
674 /* Program the next pointer. The next pointer must be
675 * the physical address, not the virtual address.
677 next_llp = (dma_lli + ((idx + 1) * sizeof(struct \
678 lli)));
680 /* The last 2 bits encode the list master select. */
681 next_llp = DMA_LLP_LMS(next_llp, DMA_LLP_AHBMASTER2);
683 lli[idx].llp = cpu_to_le32(next_llp);
684 idx++;
685 sg_len -= len;
686 addr += len;
691 * The last next ptr has to be zero and the last control low register
692 * has to have LLP_SRC_EN and LLP_DST_EN (linked list pointer source
693 * and destination enable) set back to 0 (disabled.) This is what tells
694 * the core that this is the last item in the linked list.
696 if (idx) {
697 lli[idx-1].llp = 0x00000000;
698 lli[idx-1].ctl.low &= DMA_CTL_LLP_DISABLE_LE32;
700 /* Flush cache to memory */
701 dma_cache_sync(NULL, lli, (sizeof(struct lli) * idx),
702 DMA_BIDIRECTIONAL);
705 return idx;
709 * Function: dma_dwc_xfer_start
710 * arguments: Channel number
711 * Return : None
712 * Enables the DMA channel
714 static void dma_dwc_xfer_start(int dma_ch)
716 /* Enable the DMA channel */
717 out_le32(&(host_pvt.sata_dma_regs->dma_chan_en.low),
718 in_le32(&(host_pvt.sata_dma_regs->dma_chan_en.low)) |
719 DMA_ENABLE_CHAN(dma_ch));
722 static int dma_dwc_xfer_setup(struct scatterlist *sg, int num_elems,
723 struct lli *lli, dma_addr_t dma_lli,
724 void __iomem *addr, int dir)
726 int dma_ch;
727 int num_lli;
728 /* Acquire DMA channel */
729 dma_ch = dma_request_channel();
730 if (dma_ch == -1) {
731 dev_err(host_pvt.dwc_dev, "%s: dma channel unavailable\n",
732 __func__);
733 return -EAGAIN;
736 /* Convert SG list to linked list of items (LLIs) for AHB DMA */
737 num_lli = map_sg_to_lli(sg, num_elems, lli, dma_lli, addr, dir);
739 dev_dbg(host_pvt.dwc_dev, "%s sg: 0x%p, count: %d lli: %p dma_lli:"
740 " 0x%0xlx addr: %p lli count: %d\n", __func__, sg, num_elems,
741 lli, (u32)dma_lli, addr, num_lli);
743 clear_chan_interrupts(dma_ch);
745 /* Program the CFG register. */
746 out_le32(&(host_pvt.sata_dma_regs->chan_regs[dma_ch].cfg.high),
747 DMA_CFG_PROTCTL | DMA_CFG_FCMOD_REQ);
748 out_le32(&(host_pvt.sata_dma_regs->chan_regs[dma_ch].cfg.low), 0);
750 /* Program the address of the linked list */
751 out_le32(&(host_pvt.sata_dma_regs->chan_regs[dma_ch].llp.low),
752 DMA_LLP_LMS(dma_lli, DMA_LLP_AHBMASTER2));
754 /* Program the CTL register with src enable / dst enable */
755 out_le32(&(host_pvt.sata_dma_regs->chan_regs[dma_ch].ctl.low),
756 DMA_CTL_LLP_SRCEN | DMA_CTL_LLP_DSTEN);
757 return dma_ch;
761 * Function: dma_dwc_exit
762 * arguments: None
763 * returns status
764 * This function exits the SATA DMA driver
766 static void dma_dwc_exit(struct sata_dwc_device *hsdev)
768 dev_dbg(host_pvt.dwc_dev, "%s:\n", __func__);
769 if (host_pvt.sata_dma_regs) {
770 iounmap(host_pvt.sata_dma_regs);
771 host_pvt.sata_dma_regs = NULL;
774 if (hsdev->irq_dma) {
775 free_irq(hsdev->irq_dma, hsdev);
776 hsdev->irq_dma = 0;
781 * Function: dma_dwc_init
782 * arguments: hsdev
783 * returns status
784 * This function initializes the SATA DMA driver
786 static int dma_dwc_init(struct sata_dwc_device *hsdev, int irq)
788 int err;
790 err = dma_request_interrupts(hsdev, irq);
791 if (err) {
792 dev_err(host_pvt.dwc_dev, "%s: dma_request_interrupts returns"
793 " %d\n", __func__, err);
794 goto error_out;
797 /* Enabe DMA */
798 out_le32(&(host_pvt.sata_dma_regs->dma_cfg.low), DMA_EN);
800 dev_notice(host_pvt.dwc_dev, "DMA initialized\n");
801 dev_dbg(host_pvt.dwc_dev, "SATA DMA registers=0x%p\n", host_pvt.\
802 sata_dma_regs);
804 return 0;
806 error_out:
807 dma_dwc_exit(hsdev);
809 return err;
812 static int sata_dwc_scr_read(struct ata_link *link, unsigned int scr, u32 *val)
814 if (scr > SCR_NOTIFICATION) {
815 dev_err(link->ap->dev, "%s: Incorrect SCR offset 0x%02x\n",
816 __func__, scr);
817 return -EINVAL;
820 *val = in_le32((void *)link->ap->ioaddr.scr_addr + (scr * 4));
821 dev_dbg(link->ap->dev, "%s: id=%d reg=%d val=val=0x%08x\n",
822 __func__, link->ap->print_id, scr, *val);
824 return 0;
827 static int sata_dwc_scr_write(struct ata_link *link, unsigned int scr, u32 val)
829 dev_dbg(link->ap->dev, "%s: id=%d reg=%d val=val=0x%08x\n",
830 __func__, link->ap->print_id, scr, val);
831 if (scr > SCR_NOTIFICATION) {
832 dev_err(link->ap->dev, "%s: Incorrect SCR offset 0x%02x\n",
833 __func__, scr);
834 return -EINVAL;
836 out_le32((void *)link->ap->ioaddr.scr_addr + (scr * 4), val);
838 return 0;
841 static u32 core_scr_read(unsigned int scr)
843 return in_le32((void __iomem *)(host_pvt.scr_addr_sstatus) +\
844 (scr * 4));
847 static void core_scr_write(unsigned int scr, u32 val)
849 out_le32((void __iomem *)(host_pvt.scr_addr_sstatus) + (scr * 4),
850 val);
853 static void clear_serror(void)
855 u32 val;
856 val = core_scr_read(SCR_ERROR);
857 core_scr_write(SCR_ERROR, val);
861 static void clear_interrupt_bit(struct sata_dwc_device *hsdev, u32 bit)
863 out_le32(&hsdev->sata_dwc_regs->intpr,
864 in_le32(&hsdev->sata_dwc_regs->intpr));
867 static u32 qcmd_tag_to_mask(u8 tag)
869 return 0x00000001 << (tag & 0x1f);
872 /* See ahci.c */
873 static void sata_dwc_error_intr(struct ata_port *ap,
874 struct sata_dwc_device *hsdev, uint intpr)
876 struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap);
877 struct ata_eh_info *ehi = &ap->link.eh_info;
878 unsigned int err_mask = 0, action = 0;
879 struct ata_queued_cmd *qc;
880 u32 serror;
881 u8 status, tag;
882 u32 err_reg;
884 ata_ehi_clear_desc(ehi);
886 serror = core_scr_read(SCR_ERROR);
887 status = ap->ops->sff_check_status(ap);
889 err_reg = in_le32(&(host_pvt.sata_dma_regs->interrupt_status.error.\
890 low));
891 tag = ap->link.active_tag;
893 dev_err(ap->dev, "%s SCR_ERROR=0x%08x intpr=0x%08x status=0x%08x "
894 "dma_intp=%d pending=%d issued=%d dma_err_status=0x%08x\n",
895 __func__, serror, intpr, status, host_pvt.dma_interrupt_count,
896 hsdevp->dma_pending[tag], hsdevp->cmd_issued[tag], err_reg);
898 /* Clear error register and interrupt bit */
899 clear_serror();
900 clear_interrupt_bit(hsdev, SATA_DWC_INTPR_ERR);
902 /* This is the only error happening now. TODO check for exact error */
904 err_mask |= AC_ERR_HOST_BUS;
905 action |= ATA_EH_RESET;
907 /* Pass this on to EH */
908 ehi->serror |= serror;
909 ehi->action |= action;
911 qc = ata_qc_from_tag(ap, tag);
912 if (qc)
913 qc->err_mask |= err_mask;
914 else
915 ehi->err_mask |= err_mask;
917 ata_port_abort(ap);
921 * Function : sata_dwc_isr
922 * arguments : irq, void *dev_instance, struct pt_regs *regs
923 * Return value : irqreturn_t - status of IRQ
924 * This Interrupt handler called via port ops registered function.
925 * .irq_handler = sata_dwc_isr
927 static irqreturn_t sata_dwc_isr(int irq, void *dev_instance)
929 struct ata_host *host = (struct ata_host *)dev_instance;
930 struct sata_dwc_device *hsdev = HSDEV_FROM_HOST(host);
931 struct ata_port *ap;
932 struct ata_queued_cmd *qc;
933 unsigned long flags;
934 u8 status, tag;
935 int handled, num_processed, port = 0;
936 uint intpr, sactive, sactive2, tag_mask;
937 struct sata_dwc_device_port *hsdevp;
938 host_pvt.sata_dwc_sactive_issued = 0;
940 spin_lock_irqsave(&host->lock, flags);
942 /* Read the interrupt register */
943 intpr = in_le32(&hsdev->sata_dwc_regs->intpr);
945 ap = host->ports[port];
946 hsdevp = HSDEVP_FROM_AP(ap);
948 dev_dbg(ap->dev, "%s intpr=0x%08x active_tag=%d\n", __func__, intpr,
949 ap->link.active_tag);
951 /* Check for error interrupt */
952 if (intpr & SATA_DWC_INTPR_ERR) {
953 sata_dwc_error_intr(ap, hsdev, intpr);
954 handled = 1;
955 goto DONE;
958 /* Check for DMA SETUP FIS (FP DMA) interrupt */
959 if (intpr & SATA_DWC_INTPR_NEWFP) {
960 clear_interrupt_bit(hsdev, SATA_DWC_INTPR_NEWFP);
962 tag = (u8)(in_le32(&hsdev->sata_dwc_regs->fptagr));
963 dev_dbg(ap->dev, "%s: NEWFP tag=%d\n", __func__, tag);
964 if (hsdevp->cmd_issued[tag] != SATA_DWC_CMD_ISSUED_PEND)
965 dev_warn(ap->dev, "CMD tag=%d not pending?\n", tag);
967 host_pvt.sata_dwc_sactive_issued |= qcmd_tag_to_mask(tag);
969 qc = ata_qc_from_tag(ap, tag);
971 * Start FP DMA for NCQ command. At this point the tag is the
972 * active tag. It is the tag that matches the command about to
973 * be completed.
975 qc->ap->link.active_tag = tag;
976 sata_dwc_bmdma_start_by_tag(qc, tag);
978 handled = 1;
979 goto DONE;
981 sactive = core_scr_read(SCR_ACTIVE);
982 tag_mask = (host_pvt.sata_dwc_sactive_issued | sactive) ^ sactive;
984 /* If no sactive issued and tag_mask is zero then this is not NCQ */
985 if (host_pvt.sata_dwc_sactive_issued == 0 && tag_mask == 0) {
986 if (ap->link.active_tag == ATA_TAG_POISON)
987 tag = 0;
988 else
989 tag = ap->link.active_tag;
990 qc = ata_qc_from_tag(ap, tag);
992 /* DEV interrupt w/ no active qc? */
993 if (unlikely(!qc || (qc->tf.flags & ATA_TFLAG_POLLING))) {
994 dev_err(ap->dev, "%s interrupt with no active qc "
995 "qc=%p\n", __func__, qc);
996 ap->ops->sff_check_status(ap);
997 handled = 1;
998 goto DONE;
1000 status = ap->ops->sff_check_status(ap);
1002 qc->ap->link.active_tag = tag;
1003 hsdevp->cmd_issued[tag] = SATA_DWC_CMD_ISSUED_NOT;
1005 if (status & ATA_ERR) {
1006 dev_dbg(ap->dev, "interrupt ATA_ERR (0x%x)\n", status);
1007 sata_dwc_qc_complete(ap, qc, 1);
1008 handled = 1;
1009 goto DONE;
1012 dev_dbg(ap->dev, "%s non-NCQ cmd interrupt, protocol: %s\n",
1013 __func__, get_prot_descript(qc->tf.protocol));
1014 DRVSTILLBUSY:
1015 if (ata_is_dma(qc->tf.protocol)) {
1017 * Each DMA transaction produces 2 interrupts. The DMAC
1018 * transfer complete interrupt and the SATA controller
1019 * operation done interrupt. The command should be
1020 * completed only after both interrupts are seen.
1022 host_pvt.dma_interrupt_count++;
1023 if (hsdevp->dma_pending[tag] == \
1024 SATA_DWC_DMA_PENDING_NONE) {
1025 dev_err(ap->dev, "%s: DMA not pending "
1026 "intpr=0x%08x status=0x%08x pending"
1027 "=%d\n", __func__, intpr, status,
1028 hsdevp->dma_pending[tag]);
1031 if ((host_pvt.dma_interrupt_count % 2) == 0)
1032 sata_dwc_dma_xfer_complete(ap, 1);
1033 } else if (ata_is_pio(qc->tf.protocol)) {
1034 ata_sff_hsm_move(ap, qc, status, 0);
1035 handled = 1;
1036 goto DONE;
1037 } else {
1038 if (unlikely(sata_dwc_qc_complete(ap, qc, 1)))
1039 goto DRVSTILLBUSY;
1042 handled = 1;
1043 goto DONE;
1047 * This is a NCQ command. At this point we need to figure out for which
1048 * tags we have gotten a completion interrupt. One interrupt may serve
1049 * as completion for more than one operation when commands are queued
1050 * (NCQ). We need to process each completed command.
1053 /* process completed commands */
1054 sactive = core_scr_read(SCR_ACTIVE);
1055 tag_mask = (host_pvt.sata_dwc_sactive_issued | sactive) ^ sactive;
1057 if (sactive != 0 || (host_pvt.sata_dwc_sactive_issued) > 1 || \
1058 tag_mask > 1) {
1059 dev_dbg(ap->dev, "%s NCQ:sactive=0x%08x sactive_issued=0x%08x"
1060 "tag_mask=0x%08x\n", __func__, sactive,
1061 host_pvt.sata_dwc_sactive_issued, tag_mask);
1064 if ((tag_mask | (host_pvt.sata_dwc_sactive_issued)) != \
1065 (host_pvt.sata_dwc_sactive_issued)) {
1066 dev_warn(ap->dev, "Bad tag mask? sactive=0x%08x "
1067 "(host_pvt.sata_dwc_sactive_issued)=0x%08x tag_mask"
1068 "=0x%08x\n", sactive, host_pvt.sata_dwc_sactive_issued,
1069 tag_mask);
1072 /* read just to clear ... not bad if currently still busy */
1073 status = ap->ops->sff_check_status(ap);
1074 dev_dbg(ap->dev, "%s ATA status register=0x%x\n", __func__, status);
1076 tag = 0;
1077 num_processed = 0;
1078 while (tag_mask) {
1079 num_processed++;
1080 while (!(tag_mask & 0x00000001)) {
1081 tag++;
1082 tag_mask <<= 1;
1085 tag_mask &= (~0x00000001);
1086 qc = ata_qc_from_tag(ap, tag);
1088 /* To be picked up by completion functions */
1089 qc->ap->link.active_tag = tag;
1090 hsdevp->cmd_issued[tag] = SATA_DWC_CMD_ISSUED_NOT;
1092 /* Let libata/scsi layers handle error */
1093 if (status & ATA_ERR) {
1094 dev_dbg(ap->dev, "%s ATA_ERR (0x%x)\n", __func__,
1095 status);
1096 sata_dwc_qc_complete(ap, qc, 1);
1097 handled = 1;
1098 goto DONE;
1101 /* Process completed command */
1102 dev_dbg(ap->dev, "%s NCQ command, protocol: %s\n", __func__,
1103 get_prot_descript(qc->tf.protocol));
1104 if (ata_is_dma(qc->tf.protocol)) {
1105 host_pvt.dma_interrupt_count++;
1106 if (hsdevp->dma_pending[tag] == \
1107 SATA_DWC_DMA_PENDING_NONE)
1108 dev_warn(ap->dev, "%s: DMA not pending?\n",
1109 __func__);
1110 if ((host_pvt.dma_interrupt_count % 2) == 0)
1111 sata_dwc_dma_xfer_complete(ap, 1);
1112 } else {
1113 if (unlikely(sata_dwc_qc_complete(ap, qc, 1)))
1114 goto STILLBUSY;
1116 continue;
1118 STILLBUSY:
1119 ap->stats.idle_irq++;
1120 dev_warn(ap->dev, "STILL BUSY IRQ ata%d: irq trap\n",
1121 ap->print_id);
1122 } /* while tag_mask */
1125 * Check to see if any commands completed while we were processing our
1126 * initial set of completed commands (read status clears interrupts,
1127 * so we might miss a completed command interrupt if one came in while
1128 * we were processing --we read status as part of processing a completed
1129 * command).
1131 sactive2 = core_scr_read(SCR_ACTIVE);
1132 if (sactive2 != sactive) {
1133 dev_dbg(ap->dev, "More completed - sactive=0x%x sactive2"
1134 "=0x%x\n", sactive, sactive2);
1136 handled = 1;
1138 DONE:
1139 spin_unlock_irqrestore(&host->lock, flags);
1140 return IRQ_RETVAL(handled);
1143 static void sata_dwc_clear_dmacr(struct sata_dwc_device_port *hsdevp, u8 tag)
1145 struct sata_dwc_device *hsdev = HSDEV_FROM_HSDEVP(hsdevp);
1147 if (hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_RX) {
1148 out_le32(&(hsdev->sata_dwc_regs->dmacr),
1149 SATA_DWC_DMACR_RX_CLEAR(
1150 in_le32(&(hsdev->sata_dwc_regs->dmacr))));
1151 } else if (hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_TX) {
1152 out_le32(&(hsdev->sata_dwc_regs->dmacr),
1153 SATA_DWC_DMACR_TX_CLEAR(
1154 in_le32(&(hsdev->sata_dwc_regs->dmacr))));
1155 } else {
1157 * This should not happen, it indicates the driver is out of
1158 * sync. If it does happen, clear dmacr anyway.
1160 dev_err(host_pvt.dwc_dev, "%s DMA protocol RX and"
1161 "TX DMA not pending tag=0x%02x pending=%d"
1162 " dmacr: 0x%08x\n", __func__, tag,
1163 hsdevp->dma_pending[tag],
1164 in_le32(&(hsdev->sata_dwc_regs->dmacr)));
1165 out_le32(&(hsdev->sata_dwc_regs->dmacr),
1166 SATA_DWC_DMACR_TXRXCH_CLEAR);
1170 static void sata_dwc_dma_xfer_complete(struct ata_port *ap, u32 check_status)
1172 struct ata_queued_cmd *qc;
1173 struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap);
1174 struct sata_dwc_device *hsdev = HSDEV_FROM_AP(ap);
1175 u8 tag = 0;
1177 tag = ap->link.active_tag;
1178 qc = ata_qc_from_tag(ap, tag);
1179 if (!qc) {
1180 dev_err(ap->dev, "failed to get qc");
1181 return;
1184 #ifdef DEBUG_NCQ
1185 if (tag > 0) {
1186 dev_info(ap->dev, "%s tag=%u cmd=0x%02x dma dir=%s proto=%s "
1187 "dmacr=0x%08x\n", __func__, qc->tag, qc->tf.command,
1188 get_dma_dir_descript(qc->dma_dir),
1189 get_prot_descript(qc->tf.protocol),
1190 in_le32(&(hsdev->sata_dwc_regs->dmacr)));
1192 #endif
1194 if (ata_is_dma(qc->tf.protocol)) {
1195 if (hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_NONE) {
1196 dev_err(ap->dev, "%s DMA protocol RX and TX DMA not "
1197 "pending dmacr: 0x%08x\n", __func__,
1198 in_le32(&(hsdev->sata_dwc_regs->dmacr)));
1201 hsdevp->dma_pending[tag] = SATA_DWC_DMA_PENDING_NONE;
1202 sata_dwc_qc_complete(ap, qc, check_status);
1203 ap->link.active_tag = ATA_TAG_POISON;
1204 } else {
1205 sata_dwc_qc_complete(ap, qc, check_status);
1209 static int sata_dwc_qc_complete(struct ata_port *ap, struct ata_queued_cmd *qc,
1210 u32 check_status)
1212 u8 status = 0;
1213 u32 mask = 0x0;
1214 u8 tag = qc->tag;
1215 struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap);
1216 host_pvt.sata_dwc_sactive_queued = 0;
1217 dev_dbg(ap->dev, "%s checkstatus? %x\n", __func__, check_status);
1219 if (hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_TX)
1220 dev_err(ap->dev, "TX DMA PENDING\n");
1221 else if (hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_RX)
1222 dev_err(ap->dev, "RX DMA PENDING\n");
1223 dev_dbg(ap->dev, "QC complete cmd=0x%02x status=0x%02x ata%u:"
1224 " protocol=%d\n", qc->tf.command, status, ap->print_id,
1225 qc->tf.protocol);
1227 /* clear active bit */
1228 mask = (~(qcmd_tag_to_mask(tag)));
1229 host_pvt.sata_dwc_sactive_queued = (host_pvt.sata_dwc_sactive_queued) \
1230 & mask;
1231 host_pvt.sata_dwc_sactive_issued = (host_pvt.sata_dwc_sactive_issued) \
1232 & mask;
1233 ata_qc_complete(qc);
1234 return 0;
1237 static void sata_dwc_enable_interrupts(struct sata_dwc_device *hsdev)
1239 /* Enable selective interrupts by setting the interrupt maskregister*/
1240 out_le32(&hsdev->sata_dwc_regs->intmr,
1241 SATA_DWC_INTMR_ERRM |
1242 SATA_DWC_INTMR_NEWFPM |
1243 SATA_DWC_INTMR_PMABRTM |
1244 SATA_DWC_INTMR_DMATM);
1246 * Unmask the error bits that should trigger an error interrupt by
1247 * setting the error mask register.
1249 out_le32(&hsdev->sata_dwc_regs->errmr, SATA_DWC_SERROR_ERR_BITS);
1251 dev_dbg(host_pvt.dwc_dev, "%s: INTMR = 0x%08x, ERRMR = 0x%08x\n",
1252 __func__, in_le32(&hsdev->sata_dwc_regs->intmr),
1253 in_le32(&hsdev->sata_dwc_regs->errmr));
1256 static void sata_dwc_setup_port(struct ata_ioports *port, unsigned long base)
1258 port->cmd_addr = (void *)base + 0x00;
1259 port->data_addr = (void *)base + 0x00;
1261 port->error_addr = (void *)base + 0x04;
1262 port->feature_addr = (void *)base + 0x04;
1264 port->nsect_addr = (void *)base + 0x08;
1266 port->lbal_addr = (void *)base + 0x0c;
1267 port->lbam_addr = (void *)base + 0x10;
1268 port->lbah_addr = (void *)base + 0x14;
1270 port->device_addr = (void *)base + 0x18;
1271 port->command_addr = (void *)base + 0x1c;
1272 port->status_addr = (void *)base + 0x1c;
1274 port->altstatus_addr = (void *)base + 0x20;
1275 port->ctl_addr = (void *)base + 0x20;
1279 * Function : sata_dwc_port_start
1280 * arguments : struct ata_ioports *port
1281 * Return value : returns 0 if success, error code otherwise
1282 * This function allocates the scatter gather LLI table for AHB DMA
1284 static int sata_dwc_port_start(struct ata_port *ap)
1286 int err = 0;
1287 struct sata_dwc_device *hsdev;
1288 struct sata_dwc_device_port *hsdevp = NULL;
1289 struct device *pdev;
1290 int i;
1292 hsdev = HSDEV_FROM_AP(ap);
1294 dev_dbg(ap->dev, "%s: port_no=%d\n", __func__, ap->port_no);
1296 hsdev->host = ap->host;
1297 pdev = ap->host->dev;
1298 if (!pdev) {
1299 dev_err(ap->dev, "%s: no ap->host->dev\n", __func__);
1300 err = -ENODEV;
1301 goto CLEANUP;
1304 /* Allocate Port Struct */
1305 hsdevp = kzalloc(sizeof(*hsdevp), GFP_KERNEL);
1306 if (!hsdevp) {
1307 dev_err(ap->dev, "%s: kmalloc failed for hsdevp\n", __func__);
1308 err = -ENOMEM;
1309 goto CLEANUP;
1311 hsdevp->hsdev = hsdev;
1313 for (i = 0; i < SATA_DWC_QCMD_MAX; i++)
1314 hsdevp->cmd_issued[i] = SATA_DWC_CMD_ISSUED_NOT;
1316 ap->bmdma_prd = 0; /* set these so libata doesn't use them */
1317 ap->bmdma_prd_dma = 0;
1320 * DMA - Assign scatter gather LLI table. We can't use the libata
1321 * version since it's PRD is IDE PCI specific.
1323 for (i = 0; i < SATA_DWC_QCMD_MAX; i++) {
1324 hsdevp->llit[i] = dma_alloc_coherent(pdev,
1325 SATA_DWC_DMAC_LLI_TBL_SZ,
1326 &(hsdevp->llit_dma[i]),
1327 GFP_ATOMIC);
1328 if (!hsdevp->llit[i]) {
1329 dev_err(ap->dev, "%s: dma_alloc_coherent failed\n",
1330 __func__);
1331 err = -ENOMEM;
1332 goto CLEANUP_ALLOC;
1336 if (ap->port_no == 0) {
1337 dev_dbg(ap->dev, "%s: clearing TXCHEN, RXCHEN in DMAC\n",
1338 __func__);
1339 out_le32(&hsdev->sata_dwc_regs->dmacr,
1340 SATA_DWC_DMACR_TXRXCH_CLEAR);
1342 dev_dbg(ap->dev, "%s: setting burst size in DBTSR\n",
1343 __func__);
1344 out_le32(&hsdev->sata_dwc_regs->dbtsr,
1345 (SATA_DWC_DBTSR_MWR(AHB_DMA_BRST_DFLT) |
1346 SATA_DWC_DBTSR_MRD(AHB_DMA_BRST_DFLT)));
1349 /* Clear any error bits before libata starts issuing commands */
1350 clear_serror();
1351 ap->private_data = hsdevp;
1352 dev_dbg(ap->dev, "%s: done\n", __func__);
1353 return 0;
1355 CLEANUP_ALLOC:
1356 kfree(hsdevp);
1357 CLEANUP:
1358 dev_dbg(ap->dev, "%s: fail. ap->id = %d\n", __func__, ap->print_id);
1359 return err;
1362 static void sata_dwc_port_stop(struct ata_port *ap)
1364 int i;
1365 struct sata_dwc_device *hsdev = HSDEV_FROM_AP(ap);
1366 struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap);
1368 dev_dbg(ap->dev, "%s: ap->id = %d\n", __func__, ap->print_id);
1370 if (hsdevp && hsdev) {
1371 /* deallocate LLI table */
1372 for (i = 0; i < SATA_DWC_QCMD_MAX; i++) {
1373 dma_free_coherent(ap->host->dev,
1374 SATA_DWC_DMAC_LLI_TBL_SZ,
1375 hsdevp->llit[i], hsdevp->llit_dma[i]);
1378 kfree(hsdevp);
1380 ap->private_data = NULL;
1384 * Function : sata_dwc_exec_command_by_tag
1385 * arguments : ata_port *ap, ata_taskfile *tf, u8 tag, u32 cmd_issued
1386 * Return value : None
1387 * This function keeps track of individual command tag ids and calls
1388 * ata_exec_command in libata
1390 static void sata_dwc_exec_command_by_tag(struct ata_port *ap,
1391 struct ata_taskfile *tf,
1392 u8 tag, u32 cmd_issued)
1394 unsigned long flags;
1395 struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap);
1397 dev_dbg(ap->dev, "%s cmd(0x%02x): %s tag=%d\n", __func__, tf->command,
1398 ata_get_cmd_descript(tf->command), tag);
1400 spin_lock_irqsave(&ap->host->lock, flags);
1401 hsdevp->cmd_issued[tag] = cmd_issued;
1402 spin_unlock_irqrestore(&ap->host->lock, flags);
1404 * Clear SError before executing a new command.
1405 * sata_dwc_scr_write and read can not be used here. Clearing the PM
1406 * managed SError register for the disk needs to be done before the
1407 * task file is loaded.
1409 clear_serror();
1410 ata_sff_exec_command(ap, tf);
1413 static void sata_dwc_bmdma_setup_by_tag(struct ata_queued_cmd *qc, u8 tag)
1415 sata_dwc_exec_command_by_tag(qc->ap, &qc->tf, tag,
1416 SATA_DWC_CMD_ISSUED_PEND);
1419 static void sata_dwc_bmdma_setup(struct ata_queued_cmd *qc)
1421 u8 tag = qc->tag;
1423 if (ata_is_ncq(qc->tf.protocol)) {
1424 dev_dbg(qc->ap->dev, "%s: ap->link.sactive=0x%08x tag=%d\n",
1425 __func__, qc->ap->link.sactive, tag);
1426 } else {
1427 tag = 0;
1429 sata_dwc_bmdma_setup_by_tag(qc, tag);
1432 static void sata_dwc_bmdma_start_by_tag(struct ata_queued_cmd *qc, u8 tag)
1434 int start_dma;
1435 u32 reg, dma_chan;
1436 struct sata_dwc_device *hsdev = HSDEV_FROM_QC(qc);
1437 struct ata_port *ap = qc->ap;
1438 struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap);
1439 int dir = qc->dma_dir;
1440 dma_chan = hsdevp->dma_chan[tag];
1442 if (hsdevp->cmd_issued[tag] != SATA_DWC_CMD_ISSUED_NOT) {
1443 start_dma = 1;
1444 if (dir == DMA_TO_DEVICE)
1445 hsdevp->dma_pending[tag] = SATA_DWC_DMA_PENDING_TX;
1446 else
1447 hsdevp->dma_pending[tag] = SATA_DWC_DMA_PENDING_RX;
1448 } else {
1449 dev_err(ap->dev, "%s: Command not pending cmd_issued=%d "
1450 "(tag=%d) DMA NOT started\n", __func__,
1451 hsdevp->cmd_issued[tag], tag);
1452 start_dma = 0;
1455 dev_dbg(ap->dev, "%s qc=%p tag: %x cmd: 0x%02x dma_dir: %s "
1456 "start_dma? %x\n", __func__, qc, tag, qc->tf.command,
1457 get_dma_dir_descript(qc->dma_dir), start_dma);
1458 sata_dwc_tf_dump(&(qc->tf));
1460 if (start_dma) {
1461 reg = core_scr_read(SCR_ERROR);
1462 if (reg & SATA_DWC_SERROR_ERR_BITS) {
1463 dev_err(ap->dev, "%s: ****** SError=0x%08x ******\n",
1464 __func__, reg);
1467 if (dir == DMA_TO_DEVICE)
1468 out_le32(&hsdev->sata_dwc_regs->dmacr,
1469 SATA_DWC_DMACR_TXCHEN);
1470 else
1471 out_le32(&hsdev->sata_dwc_regs->dmacr,
1472 SATA_DWC_DMACR_RXCHEN);
1474 /* Enable AHB DMA transfer on the specified channel */
1475 dma_dwc_xfer_start(dma_chan);
1479 static void sata_dwc_bmdma_start(struct ata_queued_cmd *qc)
1481 u8 tag = qc->tag;
1483 if (ata_is_ncq(qc->tf.protocol)) {
1484 dev_dbg(qc->ap->dev, "%s: ap->link.sactive=0x%08x tag=%d\n",
1485 __func__, qc->ap->link.sactive, tag);
1486 } else {
1487 tag = 0;
1489 dev_dbg(qc->ap->dev, "%s\n", __func__);
1490 sata_dwc_bmdma_start_by_tag(qc, tag);
1494 * Function : sata_dwc_qc_prep_by_tag
1495 * arguments : ata_queued_cmd *qc, u8 tag
1496 * Return value : None
1497 * qc_prep for a particular queued command based on tag
1499 static void sata_dwc_qc_prep_by_tag(struct ata_queued_cmd *qc, u8 tag)
1501 struct scatterlist *sg = qc->sg;
1502 struct ata_port *ap = qc->ap;
1503 int dma_chan;
1504 struct sata_dwc_device *hsdev = HSDEV_FROM_AP(ap);
1505 struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap);
1507 dev_dbg(ap->dev, "%s: port=%d dma dir=%s n_elem=%d\n",
1508 __func__, ap->port_no, get_dma_dir_descript(qc->dma_dir),
1509 qc->n_elem);
1511 dma_chan = dma_dwc_xfer_setup(sg, qc->n_elem, hsdevp->llit[tag],
1512 hsdevp->llit_dma[tag],
1513 (void *__iomem)(&hsdev->sata_dwc_regs->\
1514 dmadr), qc->dma_dir);
1515 if (dma_chan < 0) {
1516 dev_err(ap->dev, "%s: dma_dwc_xfer_setup returns err %d\n",
1517 __func__, dma_chan);
1518 return;
1520 hsdevp->dma_chan[tag] = dma_chan;
1523 static unsigned int sata_dwc_qc_issue(struct ata_queued_cmd *qc)
1525 u32 sactive;
1526 u8 tag = qc->tag;
1527 struct ata_port *ap = qc->ap;
1529 #ifdef DEBUG_NCQ
1530 if (qc->tag > 0 || ap->link.sactive > 1)
1531 dev_info(ap->dev, "%s ap id=%d cmd(0x%02x)=%s qc tag=%d "
1532 "prot=%s ap active_tag=0x%08x ap sactive=0x%08x\n",
1533 __func__, ap->print_id, qc->tf.command,
1534 ata_get_cmd_descript(qc->tf.command),
1535 qc->tag, get_prot_descript(qc->tf.protocol),
1536 ap->link.active_tag, ap->link.sactive);
1537 #endif
1539 if (!ata_is_ncq(qc->tf.protocol))
1540 tag = 0;
1541 sata_dwc_qc_prep_by_tag(qc, tag);
1543 if (ata_is_ncq(qc->tf.protocol)) {
1544 sactive = core_scr_read(SCR_ACTIVE);
1545 sactive |= (0x00000001 << tag);
1546 core_scr_write(SCR_ACTIVE, sactive);
1548 dev_dbg(qc->ap->dev, "%s: tag=%d ap->link.sactive = 0x%08x "
1549 "sactive=0x%08x\n", __func__, tag, qc->ap->link.sactive,
1550 sactive);
1552 ap->ops->sff_tf_load(ap, &qc->tf);
1553 sata_dwc_exec_command_by_tag(ap, &qc->tf, qc->tag,
1554 SATA_DWC_CMD_ISSUED_PEND);
1555 } else {
1556 ata_sff_qc_issue(qc);
1558 return 0;
1562 * Function : sata_dwc_qc_prep
1563 * arguments : ata_queued_cmd *qc
1564 * Return value : None
1565 * qc_prep for a particular queued command
1568 static void sata_dwc_qc_prep(struct ata_queued_cmd *qc)
1570 if ((qc->dma_dir == DMA_NONE) || (qc->tf.protocol == ATA_PROT_PIO))
1571 return;
1573 #ifdef DEBUG_NCQ
1574 if (qc->tag > 0)
1575 dev_info(qc->ap->dev, "%s: qc->tag=%d ap->active_tag=0x%08x\n",
1576 __func__, qc->tag, qc->ap->link.active_tag);
1578 return ;
1579 #endif
1582 static void sata_dwc_error_handler(struct ata_port *ap)
1584 ap->link.flags |= ATA_LFLAG_NO_HRST;
1585 ata_sff_error_handler(ap);
1589 * scsi mid-layer and libata interface structures
1591 static struct scsi_host_template sata_dwc_sht = {
1592 ATA_NCQ_SHT(DRV_NAME),
1594 * test-only: Currently this driver doesn't handle NCQ
1595 * correctly. We enable NCQ but set the queue depth to a
1596 * max of 1. This will get fixed in in a future release.
1598 .sg_tablesize = LIBATA_MAX_PRD,
1599 .can_queue = ATA_DEF_QUEUE, /* ATA_MAX_QUEUE */
1600 .dma_boundary = ATA_DMA_BOUNDARY,
1603 static struct ata_port_operations sata_dwc_ops = {
1604 .inherits = &ata_sff_port_ops,
1606 .error_handler = sata_dwc_error_handler,
1608 .qc_prep = sata_dwc_qc_prep,
1609 .qc_issue = sata_dwc_qc_issue,
1611 .scr_read = sata_dwc_scr_read,
1612 .scr_write = sata_dwc_scr_write,
1614 .port_start = sata_dwc_port_start,
1615 .port_stop = sata_dwc_port_stop,
1617 .bmdma_setup = sata_dwc_bmdma_setup,
1618 .bmdma_start = sata_dwc_bmdma_start,
1621 static const struct ata_port_info sata_dwc_port_info[] = {
1623 .flags = ATA_FLAG_SATA | ATA_FLAG_NCQ,
1624 .pio_mask = ATA_PIO4,
1625 .udma_mask = ATA_UDMA6,
1626 .port_ops = &sata_dwc_ops,
1630 static int sata_dwc_probe(struct platform_device *ofdev)
1632 struct sata_dwc_device *hsdev;
1633 u32 idr, versionr;
1634 char *ver = (char *)&versionr;
1635 u8 *base = NULL;
1636 int err = 0;
1637 int irq, rc;
1638 struct ata_host *host;
1639 struct ata_port_info pi = sata_dwc_port_info[0];
1640 const struct ata_port_info *ppi[] = { &pi, NULL };
1642 /* Allocate DWC SATA device */
1643 hsdev = kzalloc(sizeof(*hsdev), GFP_KERNEL);
1644 if (hsdev == NULL) {
1645 dev_err(&ofdev->dev, "kmalloc failed for hsdev\n");
1646 err = -ENOMEM;
1647 goto error;
1650 /* Ioremap SATA registers */
1651 base = of_iomap(ofdev->dev.of_node, 0);
1652 if (!base) {
1653 dev_err(&ofdev->dev, "ioremap failed for SATA register"
1654 " address\n");
1655 err = -ENODEV;
1656 goto error_kmalloc;
1658 hsdev->reg_base = base;
1659 dev_dbg(&ofdev->dev, "ioremap done for SATA register address\n");
1661 /* Synopsys DWC SATA specific Registers */
1662 hsdev->sata_dwc_regs = (void *__iomem)(base + SATA_DWC_REG_OFFSET);
1664 /* Allocate and fill host */
1665 host = ata_host_alloc_pinfo(&ofdev->dev, ppi, SATA_DWC_MAX_PORTS);
1666 if (!host) {
1667 dev_err(&ofdev->dev, "ata_host_alloc_pinfo failed\n");
1668 err = -ENOMEM;
1669 goto error_iomap;
1672 host->private_data = hsdev;
1674 /* Setup port */
1675 host->ports[0]->ioaddr.cmd_addr = base;
1676 host->ports[0]->ioaddr.scr_addr = base + SATA_DWC_SCR_OFFSET;
1677 host_pvt.scr_addr_sstatus = base + SATA_DWC_SCR_OFFSET;
1678 sata_dwc_setup_port(&host->ports[0]->ioaddr, (unsigned long)base);
1680 /* Read the ID and Version Registers */
1681 idr = in_le32(&hsdev->sata_dwc_regs->idr);
1682 versionr = in_le32(&hsdev->sata_dwc_regs->versionr);
1683 dev_notice(&ofdev->dev, "id %d, controller version %c.%c%c\n",
1684 idr, ver[0], ver[1], ver[2]);
1686 /* Get SATA DMA interrupt number */
1687 irq = irq_of_parse_and_map(ofdev->dev.of_node, 1);
1688 if (irq == NO_IRQ) {
1689 dev_err(&ofdev->dev, "no SATA DMA irq\n");
1690 err = -ENODEV;
1691 goto error_out;
1694 /* Get physical SATA DMA register base address */
1695 host_pvt.sata_dma_regs = of_iomap(ofdev->dev.of_node, 1);
1696 if (!(host_pvt.sata_dma_regs)) {
1697 dev_err(&ofdev->dev, "ioremap failed for AHBDMA register"
1698 " address\n");
1699 err = -ENODEV;
1700 goto error_out;
1703 /* Save dev for later use in dev_xxx() routines */
1704 host_pvt.dwc_dev = &ofdev->dev;
1706 /* Initialize AHB DMAC */
1707 dma_dwc_init(hsdev, irq);
1709 /* Enable SATA Interrupts */
1710 sata_dwc_enable_interrupts(hsdev);
1712 /* Get SATA interrupt number */
1713 irq = irq_of_parse_and_map(ofdev->dev.of_node, 0);
1714 if (irq == NO_IRQ) {
1715 dev_err(&ofdev->dev, "no SATA DMA irq\n");
1716 err = -ENODEV;
1717 goto error_out;
1721 * Now, register with libATA core, this will also initiate the
1722 * device discovery process, invoking our port_start() handler &
1723 * error_handler() to execute a dummy Softreset EH session
1725 rc = ata_host_activate(host, irq, sata_dwc_isr, 0, &sata_dwc_sht);
1727 if (rc != 0)
1728 dev_err(&ofdev->dev, "failed to activate host");
1730 dev_set_drvdata(&ofdev->dev, host);
1731 return 0;
1733 error_out:
1734 /* Free SATA DMA resources */
1735 dma_dwc_exit(hsdev);
1737 error_iomap:
1738 iounmap(base);
1739 error_kmalloc:
1740 kfree(hsdev);
1741 error:
1742 return err;
1745 static int sata_dwc_remove(struct platform_device *ofdev)
1747 struct device *dev = &ofdev->dev;
1748 struct ata_host *host = dev_get_drvdata(dev);
1749 struct sata_dwc_device *hsdev = host->private_data;
1751 ata_host_detach(host);
1752 dev_set_drvdata(dev, NULL);
1754 /* Free SATA DMA resources */
1755 dma_dwc_exit(hsdev);
1757 iounmap(hsdev->reg_base);
1758 kfree(hsdev);
1759 kfree(host);
1760 dev_dbg(&ofdev->dev, "done\n");
1761 return 0;
1764 static const struct of_device_id sata_dwc_match[] = {
1765 { .compatible = "amcc,sata-460ex", },
1768 MODULE_DEVICE_TABLE(of, sata_dwc_match);
1770 static struct platform_driver sata_dwc_driver = {
1771 .driver = {
1772 .name = DRV_NAME,
1773 .owner = THIS_MODULE,
1774 .of_match_table = sata_dwc_match,
1776 .probe = sata_dwc_probe,
1777 .remove = sata_dwc_remove,
1780 static int __init sata_dwc_init(void)
1782 return platform_driver_register(&sata_dwc_driver);
1785 static void __exit sata_dwc_exit(void)
1787 platform_driver_unregister(&sata_dwc_driver);
1790 module_init(sata_dwc_init);
1791 module_exit(sata_dwc_exit);
1793 MODULE_LICENSE("GPL");
1794 MODULE_AUTHOR("Mark Miesfeld <mmiesfeld@amcc.com>");
1795 MODULE_DESCRIPTION("DesignWare Cores SATA controller low lever driver");
1796 MODULE_VERSION(DRV_VERSION);