aufs: policies for multiple writable branches, from aufs2.2-3.0
[zen-stable.git] / drivers / rtc / rtc-mxc.c
blob5e1d64ee52289b9e7a47990f8c7de0b41c7fccaf
1 /*
2 * Copyright 2004-2008 Freescale Semiconductor, Inc. All Rights Reserved.
4 * The code contained herein is licensed under the GNU General Public
5 * License. You may obtain a copy of the GNU General Public License
6 * Version 2 or later at the following locations:
8 * http://www.opensource.org/licenses/gpl-license.html
9 * http://www.gnu.org/copyleft/gpl.html
12 #include <linux/io.h>
13 #include <linux/rtc.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
16 #include <linux/interrupt.h>
17 #include <linux/platform_device.h>
18 #include <linux/clk.h>
20 #include <mach/hardware.h>
22 #define RTC_INPUT_CLK_32768HZ (0x00 << 5)
23 #define RTC_INPUT_CLK_32000HZ (0x01 << 5)
24 #define RTC_INPUT_CLK_38400HZ (0x02 << 5)
26 #define RTC_SW_BIT (1 << 0)
27 #define RTC_ALM_BIT (1 << 2)
28 #define RTC_1HZ_BIT (1 << 4)
29 #define RTC_2HZ_BIT (1 << 7)
30 #define RTC_SAM0_BIT (1 << 8)
31 #define RTC_SAM1_BIT (1 << 9)
32 #define RTC_SAM2_BIT (1 << 10)
33 #define RTC_SAM3_BIT (1 << 11)
34 #define RTC_SAM4_BIT (1 << 12)
35 #define RTC_SAM5_BIT (1 << 13)
36 #define RTC_SAM6_BIT (1 << 14)
37 #define RTC_SAM7_BIT (1 << 15)
38 #define PIT_ALL_ON (RTC_2HZ_BIT | RTC_SAM0_BIT | RTC_SAM1_BIT | \
39 RTC_SAM2_BIT | RTC_SAM3_BIT | RTC_SAM4_BIT | \
40 RTC_SAM5_BIT | RTC_SAM6_BIT | RTC_SAM7_BIT)
42 #define RTC_ENABLE_BIT (1 << 7)
44 #define MAX_PIE_NUM 9
45 #define MAX_PIE_FREQ 512
46 static const u32 PIE_BIT_DEF[MAX_PIE_NUM][2] = {
47 { 2, RTC_2HZ_BIT },
48 { 4, RTC_SAM0_BIT },
49 { 8, RTC_SAM1_BIT },
50 { 16, RTC_SAM2_BIT },
51 { 32, RTC_SAM3_BIT },
52 { 64, RTC_SAM4_BIT },
53 { 128, RTC_SAM5_BIT },
54 { 256, RTC_SAM6_BIT },
55 { MAX_PIE_FREQ, RTC_SAM7_BIT },
58 #define MXC_RTC_TIME 0
59 #define MXC_RTC_ALARM 1
61 #define RTC_HOURMIN 0x00 /* 32bit rtc hour/min counter reg */
62 #define RTC_SECOND 0x04 /* 32bit rtc seconds counter reg */
63 #define RTC_ALRM_HM 0x08 /* 32bit rtc alarm hour/min reg */
64 #define RTC_ALRM_SEC 0x0C /* 32bit rtc alarm seconds reg */
65 #define RTC_RTCCTL 0x10 /* 32bit rtc control reg */
66 #define RTC_RTCISR 0x14 /* 32bit rtc interrupt status reg */
67 #define RTC_RTCIENR 0x18 /* 32bit rtc interrupt enable reg */
68 #define RTC_STPWCH 0x1C /* 32bit rtc stopwatch min reg */
69 #define RTC_DAYR 0x20 /* 32bit rtc days counter reg */
70 #define RTC_DAYALARM 0x24 /* 32bit rtc day alarm reg */
71 #define RTC_TEST1 0x28 /* 32bit rtc test reg 1 */
72 #define RTC_TEST2 0x2C /* 32bit rtc test reg 2 */
73 #define RTC_TEST3 0x30 /* 32bit rtc test reg 3 */
75 struct rtc_plat_data {
76 struct rtc_device *rtc;
77 void __iomem *ioaddr;
78 int irq;
79 struct clk *clk;
80 struct rtc_time g_rtc_alarm;
84 * This function is used to obtain the RTC time or the alarm value in
85 * second.
87 static u32 get_alarm_or_time(struct device *dev, int time_alarm)
89 struct platform_device *pdev = to_platform_device(dev);
90 struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
91 void __iomem *ioaddr = pdata->ioaddr;
92 u32 day = 0, hr = 0, min = 0, sec = 0, hr_min = 0;
94 switch (time_alarm) {
95 case MXC_RTC_TIME:
96 day = readw(ioaddr + RTC_DAYR);
97 hr_min = readw(ioaddr + RTC_HOURMIN);
98 sec = readw(ioaddr + RTC_SECOND);
99 break;
100 case MXC_RTC_ALARM:
101 day = readw(ioaddr + RTC_DAYALARM);
102 hr_min = readw(ioaddr + RTC_ALRM_HM) & 0xffff;
103 sec = readw(ioaddr + RTC_ALRM_SEC);
104 break;
107 hr = hr_min >> 8;
108 min = hr_min & 0xff;
110 return (((day * 24 + hr) * 60) + min) * 60 + sec;
114 * This function sets the RTC alarm value or the time value.
116 static void set_alarm_or_time(struct device *dev, int time_alarm, u32 time)
118 u32 day, hr, min, sec, temp;
119 struct platform_device *pdev = to_platform_device(dev);
120 struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
121 void __iomem *ioaddr = pdata->ioaddr;
123 day = time / 86400;
124 time -= day * 86400;
126 /* time is within a day now */
127 hr = time / 3600;
128 time -= hr * 3600;
130 /* time is within an hour now */
131 min = time / 60;
132 sec = time - min * 60;
134 temp = (hr << 8) + min;
136 switch (time_alarm) {
137 case MXC_RTC_TIME:
138 writew(day, ioaddr + RTC_DAYR);
139 writew(sec, ioaddr + RTC_SECOND);
140 writew(temp, ioaddr + RTC_HOURMIN);
141 break;
142 case MXC_RTC_ALARM:
143 writew(day, ioaddr + RTC_DAYALARM);
144 writew(sec, ioaddr + RTC_ALRM_SEC);
145 writew(temp, ioaddr + RTC_ALRM_HM);
146 break;
151 * This function updates the RTC alarm registers and then clears all the
152 * interrupt status bits.
154 static int rtc_update_alarm(struct device *dev, struct rtc_time *alrm)
156 struct rtc_time alarm_tm, now_tm;
157 unsigned long now, time;
158 struct platform_device *pdev = to_platform_device(dev);
159 struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
160 void __iomem *ioaddr = pdata->ioaddr;
162 now = get_alarm_or_time(dev, MXC_RTC_TIME);
163 rtc_time_to_tm(now, &now_tm);
164 alarm_tm.tm_year = now_tm.tm_year;
165 alarm_tm.tm_mon = now_tm.tm_mon;
166 alarm_tm.tm_mday = now_tm.tm_mday;
167 alarm_tm.tm_hour = alrm->tm_hour;
168 alarm_tm.tm_min = alrm->tm_min;
169 alarm_tm.tm_sec = alrm->tm_sec;
170 rtc_tm_to_time(&alarm_tm, &time);
172 /* clear all the interrupt status bits */
173 writew(readw(ioaddr + RTC_RTCISR), ioaddr + RTC_RTCISR);
174 set_alarm_or_time(dev, MXC_RTC_ALARM, time);
176 return 0;
179 static void mxc_rtc_irq_enable(struct device *dev, unsigned int bit,
180 unsigned int enabled)
182 struct platform_device *pdev = to_platform_device(dev);
183 struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
184 void __iomem *ioaddr = pdata->ioaddr;
185 u32 reg;
187 spin_lock_irq(&pdata->rtc->irq_lock);
188 reg = readw(ioaddr + RTC_RTCIENR);
190 if (enabled)
191 reg |= bit;
192 else
193 reg &= ~bit;
195 writew(reg, ioaddr + RTC_RTCIENR);
196 spin_unlock_irq(&pdata->rtc->irq_lock);
199 /* This function is the RTC interrupt service routine. */
200 static irqreturn_t mxc_rtc_interrupt(int irq, void *dev_id)
202 struct platform_device *pdev = dev_id;
203 struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
204 void __iomem *ioaddr = pdata->ioaddr;
205 u32 status;
206 u32 events = 0;
208 spin_lock_irq(&pdata->rtc->irq_lock);
209 status = readw(ioaddr + RTC_RTCISR) & readw(ioaddr + RTC_RTCIENR);
210 /* clear interrupt sources */
211 writew(status, ioaddr + RTC_RTCISR);
213 /* update irq data & counter */
214 if (status & RTC_ALM_BIT) {
215 events |= (RTC_AF | RTC_IRQF);
216 /* RTC alarm should be one-shot */
217 mxc_rtc_irq_enable(&pdev->dev, RTC_ALM_BIT, 0);
220 if (status & RTC_1HZ_BIT)
221 events |= (RTC_UF | RTC_IRQF);
223 if (status & PIT_ALL_ON)
224 events |= (RTC_PF | RTC_IRQF);
226 rtc_update_irq(pdata->rtc, 1, events);
227 spin_unlock_irq(&pdata->rtc->irq_lock);
229 return IRQ_HANDLED;
233 * Clear all interrupts and release the IRQ
235 static void mxc_rtc_release(struct device *dev)
237 struct platform_device *pdev = to_platform_device(dev);
238 struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
239 void __iomem *ioaddr = pdata->ioaddr;
241 spin_lock_irq(&pdata->rtc->irq_lock);
243 /* Disable all rtc interrupts */
244 writew(0, ioaddr + RTC_RTCIENR);
246 /* Clear all interrupt status */
247 writew(0xffffffff, ioaddr + RTC_RTCISR);
249 spin_unlock_irq(&pdata->rtc->irq_lock);
252 static int mxc_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
254 mxc_rtc_irq_enable(dev, RTC_ALM_BIT, enabled);
255 return 0;
259 * This function reads the current RTC time into tm in Gregorian date.
261 static int mxc_rtc_read_time(struct device *dev, struct rtc_time *tm)
263 u32 val;
265 /* Avoid roll-over from reading the different registers */
266 do {
267 val = get_alarm_or_time(dev, MXC_RTC_TIME);
268 } while (val != get_alarm_or_time(dev, MXC_RTC_TIME));
270 rtc_time_to_tm(val, tm);
272 return 0;
276 * This function sets the internal RTC time based on tm in Gregorian date.
278 static int mxc_rtc_set_mmss(struct device *dev, unsigned long time)
281 * TTC_DAYR register is 9-bit in MX1 SoC, save time and day of year only
283 if (cpu_is_mx1()) {
284 struct rtc_time tm;
286 rtc_time_to_tm(time, &tm);
287 tm.tm_year = 70;
288 rtc_tm_to_time(&tm, &time);
291 /* Avoid roll-over from reading the different registers */
292 do {
293 set_alarm_or_time(dev, MXC_RTC_TIME, time);
294 } while (time != get_alarm_or_time(dev, MXC_RTC_TIME));
296 return 0;
300 * This function reads the current alarm value into the passed in 'alrm'
301 * argument. It updates the alrm's pending field value based on the whether
302 * an alarm interrupt occurs or not.
304 static int mxc_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
306 struct platform_device *pdev = to_platform_device(dev);
307 struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
308 void __iomem *ioaddr = pdata->ioaddr;
310 rtc_time_to_tm(get_alarm_or_time(dev, MXC_RTC_ALARM), &alrm->time);
311 alrm->pending = ((readw(ioaddr + RTC_RTCISR) & RTC_ALM_BIT)) ? 1 : 0;
313 return 0;
317 * This function sets the RTC alarm based on passed in alrm.
319 static int mxc_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
321 struct platform_device *pdev = to_platform_device(dev);
322 struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
323 int ret;
325 ret = rtc_update_alarm(dev, &alrm->time);
326 if (ret)
327 return ret;
329 memcpy(&pdata->g_rtc_alarm, &alrm->time, sizeof(struct rtc_time));
330 mxc_rtc_irq_enable(dev, RTC_ALM_BIT, alrm->enabled);
332 return 0;
335 /* RTC layer */
336 static struct rtc_class_ops mxc_rtc_ops = {
337 .release = mxc_rtc_release,
338 .read_time = mxc_rtc_read_time,
339 .set_mmss = mxc_rtc_set_mmss,
340 .read_alarm = mxc_rtc_read_alarm,
341 .set_alarm = mxc_rtc_set_alarm,
342 .alarm_irq_enable = mxc_rtc_alarm_irq_enable,
345 static int __init mxc_rtc_probe(struct platform_device *pdev)
347 struct resource *res;
348 struct rtc_device *rtc;
349 struct rtc_plat_data *pdata = NULL;
350 u32 reg;
351 unsigned long rate;
352 int ret;
354 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
355 if (!res)
356 return -ENODEV;
358 pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
359 if (!pdata)
360 return -ENOMEM;
362 if (!devm_request_mem_region(&pdev->dev, res->start,
363 resource_size(res), pdev->name))
364 return -EBUSY;
366 pdata->ioaddr = devm_ioremap(&pdev->dev, res->start,
367 resource_size(res));
369 pdata->clk = clk_get(&pdev->dev, "rtc");
370 if (IS_ERR(pdata->clk)) {
371 dev_err(&pdev->dev, "unable to get clock!\n");
372 ret = PTR_ERR(pdata->clk);
373 goto exit_free_pdata;
376 clk_enable(pdata->clk);
377 rate = clk_get_rate(pdata->clk);
379 if (rate == 32768)
380 reg = RTC_INPUT_CLK_32768HZ;
381 else if (rate == 32000)
382 reg = RTC_INPUT_CLK_32000HZ;
383 else if (rate == 38400)
384 reg = RTC_INPUT_CLK_38400HZ;
385 else {
386 dev_err(&pdev->dev, "rtc clock is not valid (%lu)\n", rate);
387 ret = -EINVAL;
388 goto exit_put_clk;
391 reg |= RTC_ENABLE_BIT;
392 writew(reg, (pdata->ioaddr + RTC_RTCCTL));
393 if (((readw(pdata->ioaddr + RTC_RTCCTL)) & RTC_ENABLE_BIT) == 0) {
394 dev_err(&pdev->dev, "hardware module can't be enabled!\n");
395 ret = -EIO;
396 goto exit_put_clk;
399 platform_set_drvdata(pdev, pdata);
401 /* Configure and enable the RTC */
402 pdata->irq = platform_get_irq(pdev, 0);
404 if (pdata->irq >= 0 &&
405 devm_request_irq(&pdev->dev, pdata->irq, mxc_rtc_interrupt,
406 IRQF_SHARED, pdev->name, pdev) < 0) {
407 dev_warn(&pdev->dev, "interrupt not available.\n");
408 pdata->irq = -1;
411 if (pdata->irq >=0)
412 device_init_wakeup(&pdev->dev, 1);
414 rtc = rtc_device_register(pdev->name, &pdev->dev, &mxc_rtc_ops,
415 THIS_MODULE);
416 if (IS_ERR(rtc)) {
417 ret = PTR_ERR(rtc);
418 goto exit_clr_drvdata;
421 pdata->rtc = rtc;
423 return 0;
425 exit_clr_drvdata:
426 platform_set_drvdata(pdev, NULL);
427 exit_put_clk:
428 clk_disable(pdata->clk);
429 clk_put(pdata->clk);
431 exit_free_pdata:
433 return ret;
436 static int __exit mxc_rtc_remove(struct platform_device *pdev)
438 struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
440 rtc_device_unregister(pdata->rtc);
442 clk_disable(pdata->clk);
443 clk_put(pdata->clk);
444 platform_set_drvdata(pdev, NULL);
446 return 0;
449 #ifdef CONFIG_PM
450 static int mxc_rtc_suspend(struct device *dev)
452 struct rtc_plat_data *pdata = dev_get_drvdata(dev);
454 if (device_may_wakeup(dev))
455 enable_irq_wake(pdata->irq);
457 return 0;
460 static int mxc_rtc_resume(struct device *dev)
462 struct rtc_plat_data *pdata = dev_get_drvdata(dev);
464 if (device_may_wakeup(dev))
465 disable_irq_wake(pdata->irq);
467 return 0;
470 static struct dev_pm_ops mxc_rtc_pm_ops = {
471 .suspend = mxc_rtc_suspend,
472 .resume = mxc_rtc_resume,
474 #endif
476 static struct platform_driver mxc_rtc_driver = {
477 .driver = {
478 .name = "mxc_rtc",
479 #ifdef CONFIG_PM
480 .pm = &mxc_rtc_pm_ops,
481 #endif
482 .owner = THIS_MODULE,
484 .remove = __exit_p(mxc_rtc_remove),
487 static int __init mxc_rtc_init(void)
489 return platform_driver_probe(&mxc_rtc_driver, mxc_rtc_probe);
492 static void __exit mxc_rtc_exit(void)
494 platform_driver_unregister(&mxc_rtc_driver);
497 module_init(mxc_rtc_init);
498 module_exit(mxc_rtc_exit);
500 MODULE_AUTHOR("Daniel Mack <daniel@caiaq.de>");
501 MODULE_DESCRIPTION("RTC driver for Freescale MXC");
502 MODULE_LICENSE("GPL");