2 * xHCI host controller driver
4 * Copyright (C) 2008 Intel Corp.
7 * Some code borrowed from the Linux EHCI driver.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 #include <linux/usb.h>
24 #include <linux/pci.h>
25 #include <linux/slab.h>
26 #include <linux/dmapool.h>
31 * Allocates a generic ring segment from the ring pool, sets the dma address,
32 * initializes the segment to zero, and sets the private next pointer to NULL.
35 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
37 static struct xhci_segment
*xhci_segment_alloc(struct xhci_hcd
*xhci
, gfp_t flags
)
39 struct xhci_segment
*seg
;
42 seg
= kzalloc(sizeof *seg
, flags
);
45 xhci_dbg(xhci
, "Allocating priv segment structure at %p\n", seg
);
47 seg
->trbs
= dma_pool_alloc(xhci
->segment_pool
, flags
, &dma
);
52 xhci_dbg(xhci
, "// Allocating segment at %p (virtual) 0x%llx (DMA)\n",
53 seg
->trbs
, (unsigned long long)dma
);
55 memset(seg
->trbs
, 0, SEGMENT_SIZE
);
62 static void xhci_segment_free(struct xhci_hcd
*xhci
, struct xhci_segment
*seg
)
67 xhci_dbg(xhci
, "Freeing DMA segment at %p (virtual) 0x%llx (DMA)\n",
68 seg
->trbs
, (unsigned long long)seg
->dma
);
69 dma_pool_free(xhci
->segment_pool
, seg
->trbs
, seg
->dma
);
72 xhci_dbg(xhci
, "Freeing priv segment structure at %p\n", seg
);
77 * Make the prev segment point to the next segment.
79 * Change the last TRB in the prev segment to be a Link TRB which points to the
80 * DMA address of the next segment. The caller needs to set any Link TRB
81 * related flags, such as End TRB, Toggle Cycle, and no snoop.
83 static void xhci_link_segments(struct xhci_hcd
*xhci
, struct xhci_segment
*prev
,
84 struct xhci_segment
*next
, bool link_trbs
)
92 prev
->trbs
[TRBS_PER_SEGMENT
-1].link
.segment_ptr
=
93 cpu_to_le64(next
->dma
);
95 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
96 val
= le32_to_cpu(prev
->trbs
[TRBS_PER_SEGMENT
-1].link
.control
);
97 val
&= ~TRB_TYPE_BITMASK
;
98 val
|= TRB_TYPE(TRB_LINK
);
99 /* Always set the chain bit with 0.95 hardware */
100 if (xhci_link_trb_quirk(xhci
))
102 prev
->trbs
[TRBS_PER_SEGMENT
-1].link
.control
= cpu_to_le32(val
);
104 xhci_dbg(xhci
, "Linking segment 0x%llx to segment 0x%llx (DMA)\n",
105 (unsigned long long)prev
->dma
,
106 (unsigned long long)next
->dma
);
109 /* XXX: Do we need the hcd structure in all these functions? */
110 void xhci_ring_free(struct xhci_hcd
*xhci
, struct xhci_ring
*ring
)
112 struct xhci_segment
*seg
;
113 struct xhci_segment
*first_seg
;
115 if (!ring
|| !ring
->first_seg
)
117 first_seg
= ring
->first_seg
;
118 seg
= first_seg
->next
;
119 xhci_dbg(xhci
, "Freeing ring at %p\n", ring
);
120 while (seg
!= first_seg
) {
121 struct xhci_segment
*next
= seg
->next
;
122 xhci_segment_free(xhci
, seg
);
125 xhci_segment_free(xhci
, first_seg
);
126 ring
->first_seg
= NULL
;
130 static void xhci_initialize_ring_info(struct xhci_ring
*ring
)
132 /* The ring is empty, so the enqueue pointer == dequeue pointer */
133 ring
->enqueue
= ring
->first_seg
->trbs
;
134 ring
->enq_seg
= ring
->first_seg
;
135 ring
->dequeue
= ring
->enqueue
;
136 ring
->deq_seg
= ring
->first_seg
;
137 /* The ring is initialized to 0. The producer must write 1 to the cycle
138 * bit to handover ownership of the TRB, so PCS = 1. The consumer must
139 * compare CCS to the cycle bit to check ownership, so CCS = 1.
141 ring
->cycle_state
= 1;
142 /* Not necessary for new rings, but needed for re-initialized rings */
143 ring
->enq_updates
= 0;
144 ring
->deq_updates
= 0;
148 * Create a new ring with zero or more segments.
150 * Link each segment together into a ring.
151 * Set the end flag and the cycle toggle bit on the last segment.
152 * See section 4.9.1 and figures 15 and 16.
154 static struct xhci_ring
*xhci_ring_alloc(struct xhci_hcd
*xhci
,
155 unsigned int num_segs
, bool link_trbs
, gfp_t flags
)
157 struct xhci_ring
*ring
;
158 struct xhci_segment
*prev
;
160 ring
= kzalloc(sizeof *(ring
), flags
);
161 xhci_dbg(xhci
, "Allocating ring at %p\n", ring
);
165 INIT_LIST_HEAD(&ring
->td_list
);
169 ring
->first_seg
= xhci_segment_alloc(xhci
, flags
);
170 if (!ring
->first_seg
)
174 prev
= ring
->first_seg
;
175 while (num_segs
> 0) {
176 struct xhci_segment
*next
;
178 next
= xhci_segment_alloc(xhci
, flags
);
181 xhci_link_segments(xhci
, prev
, next
, link_trbs
);
186 xhci_link_segments(xhci
, prev
, ring
->first_seg
, link_trbs
);
189 /* See section 4.9.2.1 and 6.4.4.1 */
190 prev
->trbs
[TRBS_PER_SEGMENT
-1].link
.control
|=
191 cpu_to_le32(LINK_TOGGLE
);
192 xhci_dbg(xhci
, "Wrote link toggle flag to"
193 " segment %p (virtual), 0x%llx (DMA)\n",
194 prev
, (unsigned long long)prev
->dma
);
196 xhci_initialize_ring_info(ring
);
200 xhci_ring_free(xhci
, ring
);
204 void xhci_free_or_cache_endpoint_ring(struct xhci_hcd
*xhci
,
205 struct xhci_virt_device
*virt_dev
,
206 unsigned int ep_index
)
210 rings_cached
= virt_dev
->num_rings_cached
;
211 if (rings_cached
< XHCI_MAX_RINGS_CACHED
) {
212 virt_dev
->ring_cache
[rings_cached
] =
213 virt_dev
->eps
[ep_index
].ring
;
214 virt_dev
->num_rings_cached
++;
215 xhci_dbg(xhci
, "Cached old ring, "
216 "%d ring%s cached\n",
217 virt_dev
->num_rings_cached
,
218 (virt_dev
->num_rings_cached
> 1) ? "s" : "");
220 xhci_ring_free(xhci
, virt_dev
->eps
[ep_index
].ring
);
221 xhci_dbg(xhci
, "Ring cache full (%d rings), "
223 virt_dev
->num_rings_cached
);
225 virt_dev
->eps
[ep_index
].ring
= NULL
;
228 /* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue
229 * pointers to the beginning of the ring.
231 static void xhci_reinit_cached_ring(struct xhci_hcd
*xhci
,
232 struct xhci_ring
*ring
)
234 struct xhci_segment
*seg
= ring
->first_seg
;
237 sizeof(union xhci_trb
)*TRBS_PER_SEGMENT
);
238 /* All endpoint rings have link TRBs */
239 xhci_link_segments(xhci
, seg
, seg
->next
, 1);
241 } while (seg
!= ring
->first_seg
);
242 xhci_initialize_ring_info(ring
);
243 /* td list should be empty since all URBs have been cancelled,
244 * but just in case...
246 INIT_LIST_HEAD(&ring
->td_list
);
249 #define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32)
251 static struct xhci_container_ctx
*xhci_alloc_container_ctx(struct xhci_hcd
*xhci
,
252 int type
, gfp_t flags
)
254 struct xhci_container_ctx
*ctx
= kzalloc(sizeof(*ctx
), flags
);
258 BUG_ON((type
!= XHCI_CTX_TYPE_DEVICE
) && (type
!= XHCI_CTX_TYPE_INPUT
));
260 ctx
->size
= HCC_64BYTE_CONTEXT(xhci
->hcc_params
) ? 2048 : 1024;
261 if (type
== XHCI_CTX_TYPE_INPUT
)
262 ctx
->size
+= CTX_SIZE(xhci
->hcc_params
);
264 ctx
->bytes
= dma_pool_alloc(xhci
->device_pool
, flags
, &ctx
->dma
);
265 memset(ctx
->bytes
, 0, ctx
->size
);
269 static void xhci_free_container_ctx(struct xhci_hcd
*xhci
,
270 struct xhci_container_ctx
*ctx
)
274 dma_pool_free(xhci
->device_pool
, ctx
->bytes
, ctx
->dma
);
278 struct xhci_input_control_ctx
*xhci_get_input_control_ctx(struct xhci_hcd
*xhci
,
279 struct xhci_container_ctx
*ctx
)
281 BUG_ON(ctx
->type
!= XHCI_CTX_TYPE_INPUT
);
282 return (struct xhci_input_control_ctx
*)ctx
->bytes
;
285 struct xhci_slot_ctx
*xhci_get_slot_ctx(struct xhci_hcd
*xhci
,
286 struct xhci_container_ctx
*ctx
)
288 if (ctx
->type
== XHCI_CTX_TYPE_DEVICE
)
289 return (struct xhci_slot_ctx
*)ctx
->bytes
;
291 return (struct xhci_slot_ctx
*)
292 (ctx
->bytes
+ CTX_SIZE(xhci
->hcc_params
));
295 struct xhci_ep_ctx
*xhci_get_ep_ctx(struct xhci_hcd
*xhci
,
296 struct xhci_container_ctx
*ctx
,
297 unsigned int ep_index
)
299 /* increment ep index by offset of start of ep ctx array */
301 if (ctx
->type
== XHCI_CTX_TYPE_INPUT
)
304 return (struct xhci_ep_ctx
*)
305 (ctx
->bytes
+ (ep_index
* CTX_SIZE(xhci
->hcc_params
)));
309 /***************** Streams structures manipulation *************************/
311 static void xhci_free_stream_ctx(struct xhci_hcd
*xhci
,
312 unsigned int num_stream_ctxs
,
313 struct xhci_stream_ctx
*stream_ctx
, dma_addr_t dma
)
315 struct pci_dev
*pdev
= to_pci_dev(xhci_to_hcd(xhci
)->self
.controller
);
317 if (num_stream_ctxs
> MEDIUM_STREAM_ARRAY_SIZE
)
318 pci_free_consistent(pdev
,
319 sizeof(struct xhci_stream_ctx
)*num_stream_ctxs
,
321 else if (num_stream_ctxs
<= SMALL_STREAM_ARRAY_SIZE
)
322 return dma_pool_free(xhci
->small_streams_pool
,
325 return dma_pool_free(xhci
->medium_streams_pool
,
330 * The stream context array for each endpoint with bulk streams enabled can
331 * vary in size, based on:
332 * - how many streams the endpoint supports,
333 * - the maximum primary stream array size the host controller supports,
334 * - and how many streams the device driver asks for.
336 * The stream context array must be a power of 2, and can be as small as
337 * 64 bytes or as large as 1MB.
339 static struct xhci_stream_ctx
*xhci_alloc_stream_ctx(struct xhci_hcd
*xhci
,
340 unsigned int num_stream_ctxs
, dma_addr_t
*dma
,
343 struct pci_dev
*pdev
= to_pci_dev(xhci_to_hcd(xhci
)->self
.controller
);
345 if (num_stream_ctxs
> MEDIUM_STREAM_ARRAY_SIZE
)
346 return pci_alloc_consistent(pdev
,
347 sizeof(struct xhci_stream_ctx
)*num_stream_ctxs
,
349 else if (num_stream_ctxs
<= SMALL_STREAM_ARRAY_SIZE
)
350 return dma_pool_alloc(xhci
->small_streams_pool
,
353 return dma_pool_alloc(xhci
->medium_streams_pool
,
357 struct xhci_ring
*xhci_dma_to_transfer_ring(
358 struct xhci_virt_ep
*ep
,
361 if (ep
->ep_state
& EP_HAS_STREAMS
)
362 return radix_tree_lookup(&ep
->stream_info
->trb_address_map
,
363 address
>> SEGMENT_SHIFT
);
367 /* Only use this when you know stream_info is valid */
368 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
369 static struct xhci_ring
*dma_to_stream_ring(
370 struct xhci_stream_info
*stream_info
,
373 return radix_tree_lookup(&stream_info
->trb_address_map
,
374 address
>> SEGMENT_SHIFT
);
376 #endif /* CONFIG_USB_XHCI_HCD_DEBUGGING */
378 struct xhci_ring
*xhci_stream_id_to_ring(
379 struct xhci_virt_device
*dev
,
380 unsigned int ep_index
,
381 unsigned int stream_id
)
383 struct xhci_virt_ep
*ep
= &dev
->eps
[ep_index
];
387 if (!ep
->stream_info
)
390 if (stream_id
> ep
->stream_info
->num_streams
)
392 return ep
->stream_info
->stream_rings
[stream_id
];
395 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
396 static int xhci_test_radix_tree(struct xhci_hcd
*xhci
,
397 unsigned int num_streams
,
398 struct xhci_stream_info
*stream_info
)
401 struct xhci_ring
*cur_ring
;
404 for (cur_stream
= 1; cur_stream
< num_streams
; cur_stream
++) {
405 struct xhci_ring
*mapped_ring
;
406 int trb_size
= sizeof(union xhci_trb
);
408 cur_ring
= stream_info
->stream_rings
[cur_stream
];
409 for (addr
= cur_ring
->first_seg
->dma
;
410 addr
< cur_ring
->first_seg
->dma
+ SEGMENT_SIZE
;
412 mapped_ring
= dma_to_stream_ring(stream_info
, addr
);
413 if (cur_ring
!= mapped_ring
) {
414 xhci_warn(xhci
, "WARN: DMA address 0x%08llx "
415 "didn't map to stream ID %u; "
416 "mapped to ring %p\n",
417 (unsigned long long) addr
,
423 /* One TRB after the end of the ring segment shouldn't return a
424 * pointer to the current ring (although it may be a part of a
427 mapped_ring
= dma_to_stream_ring(stream_info
, addr
);
428 if (mapped_ring
!= cur_ring
) {
429 /* One TRB before should also fail */
430 addr
= cur_ring
->first_seg
->dma
- trb_size
;
431 mapped_ring
= dma_to_stream_ring(stream_info
, addr
);
433 if (mapped_ring
== cur_ring
) {
434 xhci_warn(xhci
, "WARN: Bad DMA address 0x%08llx "
435 "mapped to valid stream ID %u; "
436 "mapped ring = %p\n",
437 (unsigned long long) addr
,
445 #endif /* CONFIG_USB_XHCI_HCD_DEBUGGING */
448 * Change an endpoint's internal structure so it supports stream IDs. The
449 * number of requested streams includes stream 0, which cannot be used by device
452 * The number of stream contexts in the stream context array may be bigger than
453 * the number of streams the driver wants to use. This is because the number of
454 * stream context array entries must be a power of two.
456 * We need a radix tree for mapping physical addresses of TRBs to which stream
457 * ID they belong to. We need to do this because the host controller won't tell
458 * us which stream ring the TRB came from. We could store the stream ID in an
459 * event data TRB, but that doesn't help us for the cancellation case, since the
460 * endpoint may stop before it reaches that event data TRB.
462 * The radix tree maps the upper portion of the TRB DMA address to a ring
463 * segment that has the same upper portion of DMA addresses. For example, say I
464 * have segments of size 1KB, that are always 64-byte aligned. A segment may
465 * start at 0x10c91000 and end at 0x10c913f0. If I use the upper 10 bits, the
466 * key to the stream ID is 0x43244. I can use the DMA address of the TRB to
467 * pass the radix tree a key to get the right stream ID:
469 * 0x10c90fff >> 10 = 0x43243
470 * 0x10c912c0 >> 10 = 0x43244
471 * 0x10c91400 >> 10 = 0x43245
473 * Obviously, only those TRBs with DMA addresses that are within the segment
474 * will make the radix tree return the stream ID for that ring.
476 * Caveats for the radix tree:
478 * The radix tree uses an unsigned long as a key pair. On 32-bit systems, an
479 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
480 * 64-bits. Since we only request 32-bit DMA addresses, we can use that as the
481 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
482 * PCI DMA addresses on a 64-bit system). There might be a problem on 32-bit
483 * extended systems (where the DMA address can be bigger than 32-bits),
484 * if we allow the PCI dma mask to be bigger than 32-bits. So don't do that.
486 struct xhci_stream_info
*xhci_alloc_stream_info(struct xhci_hcd
*xhci
,
487 unsigned int num_stream_ctxs
,
488 unsigned int num_streams
, gfp_t mem_flags
)
490 struct xhci_stream_info
*stream_info
;
492 struct xhci_ring
*cur_ring
;
497 xhci_dbg(xhci
, "Allocating %u streams and %u "
498 "stream context array entries.\n",
499 num_streams
, num_stream_ctxs
);
500 if (xhci
->cmd_ring_reserved_trbs
== MAX_RSVD_CMD_TRBS
) {
501 xhci_dbg(xhci
, "Command ring has no reserved TRBs available\n");
504 xhci
->cmd_ring_reserved_trbs
++;
506 stream_info
= kzalloc(sizeof(struct xhci_stream_info
), mem_flags
);
510 stream_info
->num_streams
= num_streams
;
511 stream_info
->num_stream_ctxs
= num_stream_ctxs
;
513 /* Initialize the array of virtual pointers to stream rings. */
514 stream_info
->stream_rings
= kzalloc(
515 sizeof(struct xhci_ring
*)*num_streams
,
517 if (!stream_info
->stream_rings
)
520 /* Initialize the array of DMA addresses for stream rings for the HW. */
521 stream_info
->stream_ctx_array
= xhci_alloc_stream_ctx(xhci
,
522 num_stream_ctxs
, &stream_info
->ctx_array_dma
,
524 if (!stream_info
->stream_ctx_array
)
526 memset(stream_info
->stream_ctx_array
, 0,
527 sizeof(struct xhci_stream_ctx
)*num_stream_ctxs
);
529 /* Allocate everything needed to free the stream rings later */
530 stream_info
->free_streams_command
=
531 xhci_alloc_command(xhci
, true, true, mem_flags
);
532 if (!stream_info
->free_streams_command
)
535 INIT_RADIX_TREE(&stream_info
->trb_address_map
, GFP_ATOMIC
);
537 /* Allocate rings for all the streams that the driver will use,
538 * and add their segment DMA addresses to the radix tree.
539 * Stream 0 is reserved.
541 for (cur_stream
= 1; cur_stream
< num_streams
; cur_stream
++) {
542 stream_info
->stream_rings
[cur_stream
] =
543 xhci_ring_alloc(xhci
, 1, true, mem_flags
);
544 cur_ring
= stream_info
->stream_rings
[cur_stream
];
547 cur_ring
->stream_id
= cur_stream
;
548 /* Set deq ptr, cycle bit, and stream context type */
549 addr
= cur_ring
->first_seg
->dma
|
550 SCT_FOR_CTX(SCT_PRI_TR
) |
551 cur_ring
->cycle_state
;
552 stream_info
->stream_ctx_array
[cur_stream
].stream_ring
=
554 xhci_dbg(xhci
, "Setting stream %d ring ptr to 0x%08llx\n",
555 cur_stream
, (unsigned long long) addr
);
557 key
= (unsigned long)
558 (cur_ring
->first_seg
->dma
>> SEGMENT_SHIFT
);
559 ret
= radix_tree_insert(&stream_info
->trb_address_map
,
562 xhci_ring_free(xhci
, cur_ring
);
563 stream_info
->stream_rings
[cur_stream
] = NULL
;
567 /* Leave the other unused stream ring pointers in the stream context
568 * array initialized to zero. This will cause the xHC to give us an
569 * error if the device asks for a stream ID we don't have setup (if it
570 * was any other way, the host controller would assume the ring is
571 * "empty" and wait forever for data to be queued to that stream ID).
574 /* Do a little test on the radix tree to make sure it returns the
577 if (xhci_test_radix_tree(xhci
, num_streams
, stream_info
))
584 for (cur_stream
= 1; cur_stream
< num_streams
; cur_stream
++) {
585 cur_ring
= stream_info
->stream_rings
[cur_stream
];
587 addr
= cur_ring
->first_seg
->dma
;
588 radix_tree_delete(&stream_info
->trb_address_map
,
589 addr
>> SEGMENT_SHIFT
);
590 xhci_ring_free(xhci
, cur_ring
);
591 stream_info
->stream_rings
[cur_stream
] = NULL
;
594 xhci_free_command(xhci
, stream_info
->free_streams_command
);
596 kfree(stream_info
->stream_rings
);
600 xhci
->cmd_ring_reserved_trbs
--;
604 * Sets the MaxPStreams field and the Linear Stream Array field.
605 * Sets the dequeue pointer to the stream context array.
607 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd
*xhci
,
608 struct xhci_ep_ctx
*ep_ctx
,
609 struct xhci_stream_info
*stream_info
)
611 u32 max_primary_streams
;
612 /* MaxPStreams is the number of stream context array entries, not the
613 * number we're actually using. Must be in 2^(MaxPstreams + 1) format.
614 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
616 max_primary_streams
= fls(stream_info
->num_stream_ctxs
) - 2;
617 xhci_dbg(xhci
, "Setting number of stream ctx array entries to %u\n",
618 1 << (max_primary_streams
+ 1));
619 ep_ctx
->ep_info
&= cpu_to_le32(~EP_MAXPSTREAMS_MASK
);
620 ep_ctx
->ep_info
|= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams
)
622 ep_ctx
->deq
= cpu_to_le64(stream_info
->ctx_array_dma
);
626 * Sets the MaxPStreams field and the Linear Stream Array field to 0.
627 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
628 * not at the beginning of the ring).
630 void xhci_setup_no_streams_ep_input_ctx(struct xhci_hcd
*xhci
,
631 struct xhci_ep_ctx
*ep_ctx
,
632 struct xhci_virt_ep
*ep
)
635 ep_ctx
->ep_info
&= cpu_to_le32(~(EP_MAXPSTREAMS_MASK
| EP_HAS_LSA
));
636 addr
= xhci_trb_virt_to_dma(ep
->ring
->deq_seg
, ep
->ring
->dequeue
);
637 ep_ctx
->deq
= cpu_to_le64(addr
| ep
->ring
->cycle_state
);
640 /* Frees all stream contexts associated with the endpoint,
642 * Caller should fix the endpoint context streams fields.
644 void xhci_free_stream_info(struct xhci_hcd
*xhci
,
645 struct xhci_stream_info
*stream_info
)
648 struct xhci_ring
*cur_ring
;
654 for (cur_stream
= 1; cur_stream
< stream_info
->num_streams
;
656 cur_ring
= stream_info
->stream_rings
[cur_stream
];
658 addr
= cur_ring
->first_seg
->dma
;
659 radix_tree_delete(&stream_info
->trb_address_map
,
660 addr
>> SEGMENT_SHIFT
);
661 xhci_ring_free(xhci
, cur_ring
);
662 stream_info
->stream_rings
[cur_stream
] = NULL
;
665 xhci_free_command(xhci
, stream_info
->free_streams_command
);
666 xhci
->cmd_ring_reserved_trbs
--;
667 if (stream_info
->stream_ctx_array
)
668 xhci_free_stream_ctx(xhci
,
669 stream_info
->num_stream_ctxs
,
670 stream_info
->stream_ctx_array
,
671 stream_info
->ctx_array_dma
);
674 kfree(stream_info
->stream_rings
);
679 /***************** Device context manipulation *************************/
681 static void xhci_init_endpoint_timer(struct xhci_hcd
*xhci
,
682 struct xhci_virt_ep
*ep
)
684 init_timer(&ep
->stop_cmd_timer
);
685 ep
->stop_cmd_timer
.data
= (unsigned long) ep
;
686 ep
->stop_cmd_timer
.function
= xhci_stop_endpoint_command_watchdog
;
690 static void xhci_free_tt_info(struct xhci_hcd
*xhci
,
691 struct xhci_virt_device
*virt_dev
,
694 struct list_head
*tt
;
695 struct list_head
*tt_list_head
;
696 struct list_head
*tt_next
;
697 struct xhci_tt_bw_info
*tt_info
;
699 /* If the device never made it past the Set Address stage,
700 * it may not have the real_port set correctly.
702 if (virt_dev
->real_port
== 0 ||
703 virt_dev
->real_port
> HCS_MAX_PORTS(xhci
->hcs_params1
)) {
704 xhci_dbg(xhci
, "Bad real port.\n");
708 tt_list_head
= &(xhci
->rh_bw
[virt_dev
->real_port
- 1].tts
);
709 if (list_empty(tt_list_head
))
712 list_for_each(tt
, tt_list_head
) {
713 tt_info
= list_entry(tt
, struct xhci_tt_bw_info
, tt_list
);
714 if (tt_info
->slot_id
== slot_id
)
717 /* Cautionary measure in case the hub was disconnected before we
718 * stored the TT information.
720 if (tt_info
->slot_id
!= slot_id
)
724 tt_info
= list_entry(tt
, struct xhci_tt_bw_info
,
726 /* Multi-TT hubs will have more than one entry */
731 if (list_empty(tt_list_head
))
734 tt_info
= list_entry(tt
, struct xhci_tt_bw_info
,
736 } while (tt_info
->slot_id
== slot_id
);
739 int xhci_alloc_tt_info(struct xhci_hcd
*xhci
,
740 struct xhci_virt_device
*virt_dev
,
741 struct usb_device
*hdev
,
742 struct usb_tt
*tt
, gfp_t mem_flags
)
744 struct xhci_tt_bw_info
*tt_info
;
745 unsigned int num_ports
;
751 num_ports
= hdev
->maxchild
;
753 for (i
= 0; i
< num_ports
; i
++, tt_info
++) {
754 struct xhci_interval_bw_table
*bw_table
;
756 tt_info
= kzalloc(sizeof(*tt_info
), mem_flags
);
759 INIT_LIST_HEAD(&tt_info
->tt_list
);
760 list_add(&tt_info
->tt_list
,
761 &xhci
->rh_bw
[virt_dev
->real_port
- 1].tts
);
762 tt_info
->slot_id
= virt_dev
->udev
->slot_id
;
764 tt_info
->ttport
= i
+1;
765 bw_table
= &tt_info
->bw_table
;
766 for (j
= 0; j
< XHCI_MAX_INTERVAL
; j
++)
767 INIT_LIST_HEAD(&bw_table
->interval_bw
[j
].endpoints
);
772 xhci_free_tt_info(xhci
, virt_dev
, virt_dev
->udev
->slot_id
);
777 /* All the xhci_tds in the ring's TD list should be freed at this point.
778 * Should be called with xhci->lock held if there is any chance the TT lists
779 * will be manipulated by the configure endpoint, allocate device, or update
780 * hub functions while this function is removing the TT entries from the list.
782 void xhci_free_virt_device(struct xhci_hcd
*xhci
, int slot_id
)
784 struct xhci_virt_device
*dev
;
786 int old_active_eps
= 0;
788 /* Slot ID 0 is reserved */
789 if (slot_id
== 0 || !xhci
->devs
[slot_id
])
792 dev
= xhci
->devs
[slot_id
];
793 xhci
->dcbaa
->dev_context_ptrs
[slot_id
] = 0;
798 old_active_eps
= dev
->tt_info
->active_eps
;
800 for (i
= 0; i
< 31; ++i
) {
801 if (dev
->eps
[i
].ring
)
802 xhci_ring_free(xhci
, dev
->eps
[i
].ring
);
803 if (dev
->eps
[i
].stream_info
)
804 xhci_free_stream_info(xhci
,
805 dev
->eps
[i
].stream_info
);
806 /* Endpoints on the TT/root port lists should have been removed
807 * when usb_disable_device() was called for the device.
808 * We can't drop them anyway, because the udev might have gone
809 * away by this point, and we can't tell what speed it was.
811 if (!list_empty(&dev
->eps
[i
].bw_endpoint_list
))
812 xhci_warn(xhci
, "Slot %u endpoint %u "
813 "not removed from BW list!\n",
816 /* If this is a hub, free the TT(s) from the TT list */
817 xhci_free_tt_info(xhci
, dev
, slot_id
);
818 /* If necessary, update the number of active TTs on this root port */
819 xhci_update_tt_active_eps(xhci
, dev
, old_active_eps
);
821 if (dev
->ring_cache
) {
822 for (i
= 0; i
< dev
->num_rings_cached
; i
++)
823 xhci_ring_free(xhci
, dev
->ring_cache
[i
]);
824 kfree(dev
->ring_cache
);
828 xhci_free_container_ctx(xhci
, dev
->in_ctx
);
830 xhci_free_container_ctx(xhci
, dev
->out_ctx
);
832 kfree(xhci
->devs
[slot_id
]);
833 xhci
->devs
[slot_id
] = NULL
;
836 int xhci_alloc_virt_device(struct xhci_hcd
*xhci
, int slot_id
,
837 struct usb_device
*udev
, gfp_t flags
)
839 struct xhci_virt_device
*dev
;
842 /* Slot ID 0 is reserved */
843 if (slot_id
== 0 || xhci
->devs
[slot_id
]) {
844 xhci_warn(xhci
, "Bad Slot ID %d\n", slot_id
);
848 xhci
->devs
[slot_id
] = kzalloc(sizeof(*xhci
->devs
[slot_id
]), flags
);
849 if (!xhci
->devs
[slot_id
])
851 dev
= xhci
->devs
[slot_id
];
853 /* Allocate the (output) device context that will be used in the HC. */
854 dev
->out_ctx
= xhci_alloc_container_ctx(xhci
, XHCI_CTX_TYPE_DEVICE
, flags
);
858 xhci_dbg(xhci
, "Slot %d output ctx = 0x%llx (dma)\n", slot_id
,
859 (unsigned long long)dev
->out_ctx
->dma
);
861 /* Allocate the (input) device context for address device command */
862 dev
->in_ctx
= xhci_alloc_container_ctx(xhci
, XHCI_CTX_TYPE_INPUT
, flags
);
866 xhci_dbg(xhci
, "Slot %d input ctx = 0x%llx (dma)\n", slot_id
,
867 (unsigned long long)dev
->in_ctx
->dma
);
869 /* Initialize the cancellation list and watchdog timers for each ep */
870 for (i
= 0; i
< 31; i
++) {
871 xhci_init_endpoint_timer(xhci
, &dev
->eps
[i
]);
872 INIT_LIST_HEAD(&dev
->eps
[i
].cancelled_td_list
);
873 INIT_LIST_HEAD(&dev
->eps
[i
].bw_endpoint_list
);
876 /* Allocate endpoint 0 ring */
877 dev
->eps
[0].ring
= xhci_ring_alloc(xhci
, 1, true, flags
);
878 if (!dev
->eps
[0].ring
)
881 /* Allocate pointers to the ring cache */
882 dev
->ring_cache
= kzalloc(
883 sizeof(struct xhci_ring
*)*XHCI_MAX_RINGS_CACHED
,
885 if (!dev
->ring_cache
)
887 dev
->num_rings_cached
= 0;
889 init_completion(&dev
->cmd_completion
);
890 INIT_LIST_HEAD(&dev
->cmd_list
);
893 /* Point to output device context in dcbaa. */
894 xhci
->dcbaa
->dev_context_ptrs
[slot_id
] = cpu_to_le64(dev
->out_ctx
->dma
);
895 xhci_dbg(xhci
, "Set slot id %d dcbaa entry %p to 0x%llx\n",
897 &xhci
->dcbaa
->dev_context_ptrs
[slot_id
],
898 le64_to_cpu(xhci
->dcbaa
->dev_context_ptrs
[slot_id
]));
902 xhci_free_virt_device(xhci
, slot_id
);
906 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd
*xhci
,
907 struct usb_device
*udev
)
909 struct xhci_virt_device
*virt_dev
;
910 struct xhci_ep_ctx
*ep0_ctx
;
911 struct xhci_ring
*ep_ring
;
913 virt_dev
= xhci
->devs
[udev
->slot_id
];
914 ep0_ctx
= xhci_get_ep_ctx(xhci
, virt_dev
->in_ctx
, 0);
915 ep_ring
= virt_dev
->eps
[0].ring
;
917 * FIXME we don't keep track of the dequeue pointer very well after a
918 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
919 * host to our enqueue pointer. This should only be called after a
920 * configured device has reset, so all control transfers should have
921 * been completed or cancelled before the reset.
923 ep0_ctx
->deq
= cpu_to_le64(xhci_trb_virt_to_dma(ep_ring
->enq_seg
,
925 | ep_ring
->cycle_state
);
929 * The xHCI roothub may have ports of differing speeds in any order in the port
930 * status registers. xhci->port_array provides an array of the port speed for
931 * each offset into the port status registers.
933 * The xHCI hardware wants to know the roothub port number that the USB device
934 * is attached to (or the roothub port its ancestor hub is attached to). All we
935 * know is the index of that port under either the USB 2.0 or the USB 3.0
936 * roothub, but that doesn't give us the real index into the HW port status
937 * registers. Scan through the xHCI roothub port array, looking for the Nth
938 * entry of the correct port speed. Return the port number of that entry.
940 static u32
xhci_find_real_port_number(struct xhci_hcd
*xhci
,
941 struct usb_device
*udev
)
943 struct usb_device
*top_dev
;
944 unsigned int num_similar_speed_ports
;
945 unsigned int faked_port_num
;
948 for (top_dev
= udev
; top_dev
->parent
&& top_dev
->parent
->parent
;
949 top_dev
= top_dev
->parent
)
950 /* Found device below root hub */;
951 faked_port_num
= top_dev
->portnum
;
952 for (i
= 0, num_similar_speed_ports
= 0;
953 i
< HCS_MAX_PORTS(xhci
->hcs_params1
); i
++) {
954 u8 port_speed
= xhci
->port_array
[i
];
957 * Skip ports that don't have known speeds, or have duplicate
958 * Extended Capabilities port speed entries.
960 if (port_speed
== 0 || port_speed
== DUPLICATE_ENTRY
)
964 * USB 3.0 ports are always under a USB 3.0 hub. USB 2.0 and
965 * 1.1 ports are under the USB 2.0 hub. If the port speed
966 * matches the device speed, it's a similar speed port.
968 if ((port_speed
== 0x03) == (udev
->speed
== USB_SPEED_SUPER
))
969 num_similar_speed_ports
++;
970 if (num_similar_speed_ports
== faked_port_num
)
971 /* Roothub ports are numbered from 1 to N */
977 /* Setup an xHCI virtual device for a Set Address command */
978 int xhci_setup_addressable_virt_dev(struct xhci_hcd
*xhci
, struct usb_device
*udev
)
980 struct xhci_virt_device
*dev
;
981 struct xhci_ep_ctx
*ep0_ctx
;
982 struct xhci_slot_ctx
*slot_ctx
;
983 struct xhci_input_control_ctx
*ctrl_ctx
;
985 struct usb_device
*top_dev
;
987 dev
= xhci
->devs
[udev
->slot_id
];
988 /* Slot ID 0 is reserved */
989 if (udev
->slot_id
== 0 || !dev
) {
990 xhci_warn(xhci
, "Slot ID %d is not assigned to this device\n",
994 ep0_ctx
= xhci_get_ep_ctx(xhci
, dev
->in_ctx
, 0);
995 ctrl_ctx
= xhci_get_input_control_ctx(xhci
, dev
->in_ctx
);
996 slot_ctx
= xhci_get_slot_ctx(xhci
, dev
->in_ctx
);
998 /* 2) New slot context and endpoint 0 context are valid*/
999 ctrl_ctx
->add_flags
= cpu_to_le32(SLOT_FLAG
| EP0_FLAG
);
1001 /* 3) Only the control endpoint is valid - one endpoint context */
1002 slot_ctx
->dev_info
|= cpu_to_le32(LAST_CTX(1) | udev
->route
);
1003 switch (udev
->speed
) {
1004 case USB_SPEED_SUPER
:
1005 slot_ctx
->dev_info
|= cpu_to_le32(SLOT_SPEED_SS
);
1007 case USB_SPEED_HIGH
:
1008 slot_ctx
->dev_info
|= cpu_to_le32(SLOT_SPEED_HS
);
1010 case USB_SPEED_FULL
:
1011 slot_ctx
->dev_info
|= cpu_to_le32(SLOT_SPEED_FS
);
1014 slot_ctx
->dev_info
|= cpu_to_le32(SLOT_SPEED_LS
);
1016 case USB_SPEED_WIRELESS
:
1017 xhci_dbg(xhci
, "FIXME xHCI doesn't support wireless speeds\n");
1021 /* Speed was set earlier, this shouldn't happen. */
1024 /* Find the root hub port this device is under */
1025 port_num
= xhci_find_real_port_number(xhci
, udev
);
1028 slot_ctx
->dev_info2
|= cpu_to_le32(ROOT_HUB_PORT(port_num
));
1029 /* Set the port number in the virtual_device to the faked port number */
1030 for (top_dev
= udev
; top_dev
->parent
&& top_dev
->parent
->parent
;
1031 top_dev
= top_dev
->parent
)
1032 /* Found device below root hub */;
1033 dev
->fake_port
= top_dev
->portnum
;
1034 dev
->real_port
= port_num
;
1035 xhci_dbg(xhci
, "Set root hub portnum to %d\n", port_num
);
1036 xhci_dbg(xhci
, "Set fake root hub portnum to %d\n", dev
->fake_port
);
1038 /* Find the right bandwidth table that this device will be a part of.
1039 * If this is a full speed device attached directly to a root port (or a
1040 * decendent of one), it counts as a primary bandwidth domain, not a
1041 * secondary bandwidth domain under a TT. An xhci_tt_info structure
1042 * will never be created for the HS root hub.
1044 if (!udev
->tt
|| !udev
->tt
->hub
->parent
) {
1045 dev
->bw_table
= &xhci
->rh_bw
[port_num
- 1].bw_table
;
1047 struct xhci_root_port_bw_info
*rh_bw
;
1048 struct xhci_tt_bw_info
*tt_bw
;
1050 rh_bw
= &xhci
->rh_bw
[port_num
- 1];
1051 /* Find the right TT. */
1052 list_for_each_entry(tt_bw
, &rh_bw
->tts
, tt_list
) {
1053 if (tt_bw
->slot_id
!= udev
->tt
->hub
->slot_id
)
1056 if (!dev
->udev
->tt
->multi
||
1058 tt_bw
->ttport
== dev
->udev
->ttport
)) {
1059 dev
->bw_table
= &tt_bw
->bw_table
;
1060 dev
->tt_info
= tt_bw
;
1065 xhci_warn(xhci
, "WARN: Didn't find a matching TT\n");
1068 /* Is this a LS/FS device under an external HS hub? */
1069 if (udev
->tt
&& udev
->tt
->hub
->parent
) {
1070 slot_ctx
->tt_info
= cpu_to_le32(udev
->tt
->hub
->slot_id
|
1071 (udev
->ttport
<< 8));
1072 if (udev
->tt
->multi
)
1073 slot_ctx
->dev_info
|= cpu_to_le32(DEV_MTT
);
1075 xhci_dbg(xhci
, "udev->tt = %p\n", udev
->tt
);
1076 xhci_dbg(xhci
, "udev->ttport = 0x%x\n", udev
->ttport
);
1078 /* Step 4 - ring already allocated */
1080 ep0_ctx
->ep_info2
= cpu_to_le32(EP_TYPE(CTRL_EP
));
1082 * XXX: Not sure about wireless USB devices.
1084 switch (udev
->speed
) {
1085 case USB_SPEED_SUPER
:
1086 ep0_ctx
->ep_info2
|= cpu_to_le32(MAX_PACKET(512));
1088 case USB_SPEED_HIGH
:
1089 /* USB core guesses at a 64-byte max packet first for FS devices */
1090 case USB_SPEED_FULL
:
1091 ep0_ctx
->ep_info2
|= cpu_to_le32(MAX_PACKET(64));
1094 ep0_ctx
->ep_info2
|= cpu_to_le32(MAX_PACKET(8));
1096 case USB_SPEED_WIRELESS
:
1097 xhci_dbg(xhci
, "FIXME xHCI doesn't support wireless speeds\n");
1104 /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1105 ep0_ctx
->ep_info2
|= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3));
1107 ep0_ctx
->deq
= cpu_to_le64(dev
->eps
[0].ring
->first_seg
->dma
|
1108 dev
->eps
[0].ring
->cycle_state
);
1110 /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1116 * Convert interval expressed as 2^(bInterval - 1) == interval into
1117 * straight exponent value 2^n == interval.
1120 static unsigned int xhci_parse_exponent_interval(struct usb_device
*udev
,
1121 struct usb_host_endpoint
*ep
)
1123 unsigned int interval
;
1125 interval
= clamp_val(ep
->desc
.bInterval
, 1, 16) - 1;
1126 if (interval
!= ep
->desc
.bInterval
- 1)
1127 dev_warn(&udev
->dev
,
1128 "ep %#x - rounding interval to %d %sframes\n",
1129 ep
->desc
.bEndpointAddress
,
1131 udev
->speed
== USB_SPEED_FULL
? "" : "micro");
1133 if (udev
->speed
== USB_SPEED_FULL
) {
1135 * Full speed isoc endpoints specify interval in frames,
1136 * not microframes. We are using microframes everywhere,
1137 * so adjust accordingly.
1139 interval
+= 3; /* 1 frame = 2^3 uframes */
1146 * Convert bInterval expressed in frames (in 1-255 range) to exponent of
1147 * microframes, rounded down to nearest power of 2.
1149 static unsigned int xhci_parse_frame_interval(struct usb_device
*udev
,
1150 struct usb_host_endpoint
*ep
)
1152 unsigned int interval
;
1154 interval
= fls(8 * ep
->desc
.bInterval
) - 1;
1155 interval
= clamp_val(interval
, 3, 10);
1156 if ((1 << interval
) != 8 * ep
->desc
.bInterval
)
1157 dev_warn(&udev
->dev
,
1158 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1159 ep
->desc
.bEndpointAddress
,
1161 8 * ep
->desc
.bInterval
);
1166 /* Return the polling or NAK interval.
1168 * The polling interval is expressed in "microframes". If xHCI's Interval field
1169 * is set to N, it will service the endpoint every 2^(Interval)*125us.
1171 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1174 static unsigned int xhci_get_endpoint_interval(struct usb_device
*udev
,
1175 struct usb_host_endpoint
*ep
)
1177 unsigned int interval
= 0;
1179 switch (udev
->speed
) {
1180 case USB_SPEED_HIGH
:
1182 if (usb_endpoint_xfer_control(&ep
->desc
) ||
1183 usb_endpoint_xfer_bulk(&ep
->desc
)) {
1184 interval
= ep
->desc
.bInterval
;
1187 /* Fall through - SS and HS isoc/int have same decoding */
1189 case USB_SPEED_SUPER
:
1190 if (usb_endpoint_xfer_int(&ep
->desc
) ||
1191 usb_endpoint_xfer_isoc(&ep
->desc
)) {
1192 interval
= xhci_parse_exponent_interval(udev
, ep
);
1196 case USB_SPEED_FULL
:
1197 if (usb_endpoint_xfer_isoc(&ep
->desc
)) {
1198 interval
= xhci_parse_exponent_interval(udev
, ep
);
1202 * Fall through for interrupt endpoint interval decoding
1203 * since it uses the same rules as low speed interrupt
1208 if (usb_endpoint_xfer_int(&ep
->desc
) ||
1209 usb_endpoint_xfer_isoc(&ep
->desc
)) {
1211 interval
= xhci_parse_frame_interval(udev
, ep
);
1218 return EP_INTERVAL(interval
);
1221 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1222 * High speed endpoint descriptors can define "the number of additional
1223 * transaction opportunities per microframe", but that goes in the Max Burst
1224 * endpoint context field.
1226 static u32
xhci_get_endpoint_mult(struct usb_device
*udev
,
1227 struct usb_host_endpoint
*ep
)
1229 if (udev
->speed
!= USB_SPEED_SUPER
||
1230 !usb_endpoint_xfer_isoc(&ep
->desc
))
1232 return ep
->ss_ep_comp
.bmAttributes
;
1235 static u32
xhci_get_endpoint_type(struct usb_device
*udev
,
1236 struct usb_host_endpoint
*ep
)
1241 in
= usb_endpoint_dir_in(&ep
->desc
);
1242 if (usb_endpoint_xfer_control(&ep
->desc
)) {
1243 type
= EP_TYPE(CTRL_EP
);
1244 } else if (usb_endpoint_xfer_bulk(&ep
->desc
)) {
1246 type
= EP_TYPE(BULK_IN_EP
);
1248 type
= EP_TYPE(BULK_OUT_EP
);
1249 } else if (usb_endpoint_xfer_isoc(&ep
->desc
)) {
1251 type
= EP_TYPE(ISOC_IN_EP
);
1253 type
= EP_TYPE(ISOC_OUT_EP
);
1254 } else if (usb_endpoint_xfer_int(&ep
->desc
)) {
1256 type
= EP_TYPE(INT_IN_EP
);
1258 type
= EP_TYPE(INT_OUT_EP
);
1265 /* Return the maximum endpoint service interval time (ESIT) payload.
1266 * Basically, this is the maxpacket size, multiplied by the burst size
1269 static u32
xhci_get_max_esit_payload(struct xhci_hcd
*xhci
,
1270 struct usb_device
*udev
,
1271 struct usb_host_endpoint
*ep
)
1276 /* Only applies for interrupt or isochronous endpoints */
1277 if (usb_endpoint_xfer_control(&ep
->desc
) ||
1278 usb_endpoint_xfer_bulk(&ep
->desc
))
1281 if (udev
->speed
== USB_SPEED_SUPER
)
1282 return le16_to_cpu(ep
->ss_ep_comp
.wBytesPerInterval
);
1284 max_packet
= GET_MAX_PACKET(usb_endpoint_maxp(&ep
->desc
));
1285 max_burst
= (usb_endpoint_maxp(&ep
->desc
) & 0x1800) >> 11;
1286 /* A 0 in max burst means 1 transfer per ESIT */
1287 return max_packet
* (max_burst
+ 1);
1290 /* Set up an endpoint with one ring segment. Do not allocate stream rings.
1291 * Drivers will have to call usb_alloc_streams() to do that.
1293 int xhci_endpoint_init(struct xhci_hcd
*xhci
,
1294 struct xhci_virt_device
*virt_dev
,
1295 struct usb_device
*udev
,
1296 struct usb_host_endpoint
*ep
,
1299 unsigned int ep_index
;
1300 struct xhci_ep_ctx
*ep_ctx
;
1301 struct xhci_ring
*ep_ring
;
1302 unsigned int max_packet
;
1303 unsigned int max_burst
;
1304 u32 max_esit_payload
;
1306 ep_index
= xhci_get_endpoint_index(&ep
->desc
);
1307 ep_ctx
= xhci_get_ep_ctx(xhci
, virt_dev
->in_ctx
, ep_index
);
1309 /* Set up the endpoint ring */
1311 * Isochronous endpoint ring needs bigger size because one isoc URB
1312 * carries multiple packets and it will insert multiple tds to the
1314 * This should be replaced with dynamic ring resizing in the future.
1316 if (usb_endpoint_xfer_isoc(&ep
->desc
))
1317 virt_dev
->eps
[ep_index
].new_ring
=
1318 xhci_ring_alloc(xhci
, 8, true, mem_flags
);
1320 virt_dev
->eps
[ep_index
].new_ring
=
1321 xhci_ring_alloc(xhci
, 1, true, mem_flags
);
1322 if (!virt_dev
->eps
[ep_index
].new_ring
) {
1323 /* Attempt to use the ring cache */
1324 if (virt_dev
->num_rings_cached
== 0)
1326 virt_dev
->eps
[ep_index
].new_ring
=
1327 virt_dev
->ring_cache
[virt_dev
->num_rings_cached
];
1328 virt_dev
->ring_cache
[virt_dev
->num_rings_cached
] = NULL
;
1329 virt_dev
->num_rings_cached
--;
1330 xhci_reinit_cached_ring(xhci
, virt_dev
->eps
[ep_index
].new_ring
);
1332 virt_dev
->eps
[ep_index
].skip
= false;
1333 ep_ring
= virt_dev
->eps
[ep_index
].new_ring
;
1334 ep_ctx
->deq
= cpu_to_le64(ep_ring
->first_seg
->dma
| ep_ring
->cycle_state
);
1336 ep_ctx
->ep_info
= cpu_to_le32(xhci_get_endpoint_interval(udev
, ep
)
1337 | EP_MULT(xhci_get_endpoint_mult(udev
, ep
)));
1339 /* FIXME dig Mult and streams info out of ep companion desc */
1341 /* Allow 3 retries for everything but isoc;
1342 * CErr shall be set to 0 for Isoch endpoints.
1344 if (!usb_endpoint_xfer_isoc(&ep
->desc
))
1345 ep_ctx
->ep_info2
= cpu_to_le32(ERROR_COUNT(3));
1347 ep_ctx
->ep_info2
= cpu_to_le32(ERROR_COUNT(0));
1349 ep_ctx
->ep_info2
|= cpu_to_le32(xhci_get_endpoint_type(udev
, ep
));
1351 /* Set the max packet size and max burst */
1352 switch (udev
->speed
) {
1353 case USB_SPEED_SUPER
:
1354 max_packet
= usb_endpoint_maxp(&ep
->desc
);
1355 ep_ctx
->ep_info2
|= cpu_to_le32(MAX_PACKET(max_packet
));
1356 /* dig out max burst from ep companion desc */
1357 max_packet
= ep
->ss_ep_comp
.bMaxBurst
;
1358 ep_ctx
->ep_info2
|= cpu_to_le32(MAX_BURST(max_packet
));
1360 case USB_SPEED_HIGH
:
1361 /* bits 11:12 specify the number of additional transaction
1362 * opportunities per microframe (USB 2.0, section 9.6.6)
1364 if (usb_endpoint_xfer_isoc(&ep
->desc
) ||
1365 usb_endpoint_xfer_int(&ep
->desc
)) {
1366 max_burst
= (usb_endpoint_maxp(&ep
->desc
)
1368 ep_ctx
->ep_info2
|= cpu_to_le32(MAX_BURST(max_burst
));
1371 case USB_SPEED_FULL
:
1373 max_packet
= GET_MAX_PACKET(usb_endpoint_maxp(&ep
->desc
));
1374 ep_ctx
->ep_info2
|= cpu_to_le32(MAX_PACKET(max_packet
));
1379 max_esit_payload
= xhci_get_max_esit_payload(xhci
, udev
, ep
);
1380 ep_ctx
->tx_info
= cpu_to_le32(MAX_ESIT_PAYLOAD_FOR_EP(max_esit_payload
));
1383 * XXX no idea how to calculate the average TRB buffer length for bulk
1384 * endpoints, as the driver gives us no clue how big each scatter gather
1385 * list entry (or buffer) is going to be.
1387 * For isochronous and interrupt endpoints, we set it to the max
1388 * available, until we have new API in the USB core to allow drivers to
1389 * declare how much bandwidth they actually need.
1391 * Normally, it would be calculated by taking the total of the buffer
1392 * lengths in the TD and then dividing by the number of TRBs in a TD,
1393 * including link TRBs, No-op TRBs, and Event data TRBs. Since we don't
1394 * use Event Data TRBs, and we don't chain in a link TRB on short
1395 * transfers, we're basically dividing by 1.
1397 * xHCI 1.0 specification indicates that the Average TRB Length should
1398 * be set to 8 for control endpoints.
1400 if (usb_endpoint_xfer_control(&ep
->desc
) && xhci
->hci_version
== 0x100)
1401 ep_ctx
->tx_info
|= cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(8));
1404 cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(max_esit_payload
));
1406 /* FIXME Debug endpoint context */
1410 void xhci_endpoint_zero(struct xhci_hcd
*xhci
,
1411 struct xhci_virt_device
*virt_dev
,
1412 struct usb_host_endpoint
*ep
)
1414 unsigned int ep_index
;
1415 struct xhci_ep_ctx
*ep_ctx
;
1417 ep_index
= xhci_get_endpoint_index(&ep
->desc
);
1418 ep_ctx
= xhci_get_ep_ctx(xhci
, virt_dev
->in_ctx
, ep_index
);
1420 ep_ctx
->ep_info
= 0;
1421 ep_ctx
->ep_info2
= 0;
1423 ep_ctx
->tx_info
= 0;
1424 /* Don't free the endpoint ring until the set interface or configuration
1429 void xhci_clear_endpoint_bw_info(struct xhci_bw_info
*bw_info
)
1431 bw_info
->ep_interval
= 0;
1433 bw_info
->num_packets
= 0;
1434 bw_info
->max_packet_size
= 0;
1436 bw_info
->max_esit_payload
= 0;
1439 void xhci_update_bw_info(struct xhci_hcd
*xhci
,
1440 struct xhci_container_ctx
*in_ctx
,
1441 struct xhci_input_control_ctx
*ctrl_ctx
,
1442 struct xhci_virt_device
*virt_dev
)
1444 struct xhci_bw_info
*bw_info
;
1445 struct xhci_ep_ctx
*ep_ctx
;
1446 unsigned int ep_type
;
1449 for (i
= 1; i
< 31; ++i
) {
1450 bw_info
= &virt_dev
->eps
[i
].bw_info
;
1452 /* We can't tell what endpoint type is being dropped, but
1453 * unconditionally clearing the bandwidth info for non-periodic
1454 * endpoints should be harmless because the info will never be
1455 * set in the first place.
1457 if (!EP_IS_ADDED(ctrl_ctx
, i
) && EP_IS_DROPPED(ctrl_ctx
, i
)) {
1458 /* Dropped endpoint */
1459 xhci_clear_endpoint_bw_info(bw_info
);
1463 if (EP_IS_ADDED(ctrl_ctx
, i
)) {
1464 ep_ctx
= xhci_get_ep_ctx(xhci
, in_ctx
, i
);
1465 ep_type
= CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx
->ep_info2
));
1467 /* Ignore non-periodic endpoints */
1468 if (ep_type
!= ISOC_OUT_EP
&& ep_type
!= INT_OUT_EP
&&
1469 ep_type
!= ISOC_IN_EP
&&
1470 ep_type
!= INT_IN_EP
)
1473 /* Added or changed endpoint */
1474 bw_info
->ep_interval
= CTX_TO_EP_INTERVAL(
1475 le32_to_cpu(ep_ctx
->ep_info
));
1476 bw_info
->mult
= CTX_TO_EP_MULT(
1477 le32_to_cpu(ep_ctx
->ep_info
));
1478 /* Number of packets is zero-based in the input context,
1479 * but we want one-based for the interval table.
1481 bw_info
->num_packets
= CTX_TO_MAX_BURST(
1482 le32_to_cpu(ep_ctx
->ep_info2
)) + 1;
1483 bw_info
->max_packet_size
= MAX_PACKET_DECODED(
1484 le32_to_cpu(ep_ctx
->ep_info2
));
1485 bw_info
->type
= ep_type
;
1486 bw_info
->max_esit_payload
= CTX_TO_MAX_ESIT_PAYLOAD(
1487 le32_to_cpu(ep_ctx
->tx_info
));
1492 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1493 * Useful when you want to change one particular aspect of the endpoint and then
1494 * issue a configure endpoint command.
1496 void xhci_endpoint_copy(struct xhci_hcd
*xhci
,
1497 struct xhci_container_ctx
*in_ctx
,
1498 struct xhci_container_ctx
*out_ctx
,
1499 unsigned int ep_index
)
1501 struct xhci_ep_ctx
*out_ep_ctx
;
1502 struct xhci_ep_ctx
*in_ep_ctx
;
1504 out_ep_ctx
= xhci_get_ep_ctx(xhci
, out_ctx
, ep_index
);
1505 in_ep_ctx
= xhci_get_ep_ctx(xhci
, in_ctx
, ep_index
);
1507 in_ep_ctx
->ep_info
= out_ep_ctx
->ep_info
;
1508 in_ep_ctx
->ep_info2
= out_ep_ctx
->ep_info2
;
1509 in_ep_ctx
->deq
= out_ep_ctx
->deq
;
1510 in_ep_ctx
->tx_info
= out_ep_ctx
->tx_info
;
1513 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1514 * Useful when you want to change one particular aspect of the endpoint and then
1515 * issue a configure endpoint command. Only the context entries field matters,
1516 * but we'll copy the whole thing anyway.
1518 void xhci_slot_copy(struct xhci_hcd
*xhci
,
1519 struct xhci_container_ctx
*in_ctx
,
1520 struct xhci_container_ctx
*out_ctx
)
1522 struct xhci_slot_ctx
*in_slot_ctx
;
1523 struct xhci_slot_ctx
*out_slot_ctx
;
1525 in_slot_ctx
= xhci_get_slot_ctx(xhci
, in_ctx
);
1526 out_slot_ctx
= xhci_get_slot_ctx(xhci
, out_ctx
);
1528 in_slot_ctx
->dev_info
= out_slot_ctx
->dev_info
;
1529 in_slot_ctx
->dev_info2
= out_slot_ctx
->dev_info2
;
1530 in_slot_ctx
->tt_info
= out_slot_ctx
->tt_info
;
1531 in_slot_ctx
->dev_state
= out_slot_ctx
->dev_state
;
1534 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1535 static int scratchpad_alloc(struct xhci_hcd
*xhci
, gfp_t flags
)
1538 struct device
*dev
= xhci_to_hcd(xhci
)->self
.controller
;
1539 int num_sp
= HCS_MAX_SCRATCHPAD(xhci
->hcs_params2
);
1541 xhci_dbg(xhci
, "Allocating %d scratchpad buffers\n", num_sp
);
1546 xhci
->scratchpad
= kzalloc(sizeof(*xhci
->scratchpad
), flags
);
1547 if (!xhci
->scratchpad
)
1550 xhci
->scratchpad
->sp_array
=
1551 pci_alloc_consistent(to_pci_dev(dev
),
1552 num_sp
* sizeof(u64
),
1553 &xhci
->scratchpad
->sp_dma
);
1554 if (!xhci
->scratchpad
->sp_array
)
1557 xhci
->scratchpad
->sp_buffers
= kzalloc(sizeof(void *) * num_sp
, flags
);
1558 if (!xhci
->scratchpad
->sp_buffers
)
1561 xhci
->scratchpad
->sp_dma_buffers
=
1562 kzalloc(sizeof(dma_addr_t
) * num_sp
, flags
);
1564 if (!xhci
->scratchpad
->sp_dma_buffers
)
1567 xhci
->dcbaa
->dev_context_ptrs
[0] = cpu_to_le64(xhci
->scratchpad
->sp_dma
);
1568 for (i
= 0; i
< num_sp
; i
++) {
1570 void *buf
= pci_alloc_consistent(to_pci_dev(dev
),
1571 xhci
->page_size
, &dma
);
1575 xhci
->scratchpad
->sp_array
[i
] = dma
;
1576 xhci
->scratchpad
->sp_buffers
[i
] = buf
;
1577 xhci
->scratchpad
->sp_dma_buffers
[i
] = dma
;
1583 for (i
= i
- 1; i
>= 0; i
--) {
1584 pci_free_consistent(to_pci_dev(dev
), xhci
->page_size
,
1585 xhci
->scratchpad
->sp_buffers
[i
],
1586 xhci
->scratchpad
->sp_dma_buffers
[i
]);
1588 kfree(xhci
->scratchpad
->sp_dma_buffers
);
1591 kfree(xhci
->scratchpad
->sp_buffers
);
1594 pci_free_consistent(to_pci_dev(dev
), num_sp
* sizeof(u64
),
1595 xhci
->scratchpad
->sp_array
,
1596 xhci
->scratchpad
->sp_dma
);
1599 kfree(xhci
->scratchpad
);
1600 xhci
->scratchpad
= NULL
;
1606 static void scratchpad_free(struct xhci_hcd
*xhci
)
1610 struct pci_dev
*pdev
= to_pci_dev(xhci_to_hcd(xhci
)->self
.controller
);
1612 if (!xhci
->scratchpad
)
1615 num_sp
= HCS_MAX_SCRATCHPAD(xhci
->hcs_params2
);
1617 for (i
= 0; i
< num_sp
; i
++) {
1618 pci_free_consistent(pdev
, xhci
->page_size
,
1619 xhci
->scratchpad
->sp_buffers
[i
],
1620 xhci
->scratchpad
->sp_dma_buffers
[i
]);
1622 kfree(xhci
->scratchpad
->sp_dma_buffers
);
1623 kfree(xhci
->scratchpad
->sp_buffers
);
1624 pci_free_consistent(pdev
, num_sp
* sizeof(u64
),
1625 xhci
->scratchpad
->sp_array
,
1626 xhci
->scratchpad
->sp_dma
);
1627 kfree(xhci
->scratchpad
);
1628 xhci
->scratchpad
= NULL
;
1631 struct xhci_command
*xhci_alloc_command(struct xhci_hcd
*xhci
,
1632 bool allocate_in_ctx
, bool allocate_completion
,
1635 struct xhci_command
*command
;
1637 command
= kzalloc(sizeof(*command
), mem_flags
);
1641 if (allocate_in_ctx
) {
1643 xhci_alloc_container_ctx(xhci
, XHCI_CTX_TYPE_INPUT
,
1645 if (!command
->in_ctx
) {
1651 if (allocate_completion
) {
1652 command
->completion
=
1653 kzalloc(sizeof(struct completion
), mem_flags
);
1654 if (!command
->completion
) {
1655 xhci_free_container_ctx(xhci
, command
->in_ctx
);
1659 init_completion(command
->completion
);
1662 command
->status
= 0;
1663 INIT_LIST_HEAD(&command
->cmd_list
);
1667 void xhci_urb_free_priv(struct xhci_hcd
*xhci
, struct urb_priv
*urb_priv
)
1670 kfree(urb_priv
->td
[0]);
1675 void xhci_free_command(struct xhci_hcd
*xhci
,
1676 struct xhci_command
*command
)
1678 xhci_free_container_ctx(xhci
,
1680 kfree(command
->completion
);
1684 void xhci_mem_cleanup(struct xhci_hcd
*xhci
)
1686 struct pci_dev
*pdev
= to_pci_dev(xhci_to_hcd(xhci
)->self
.controller
);
1690 /* Free the Event Ring Segment Table and the actual Event Ring */
1692 xhci_writel(xhci
, 0, &xhci
->ir_set
->erst_size
);
1693 xhci_write_64(xhci
, 0, &xhci
->ir_set
->erst_base
);
1694 xhci_write_64(xhci
, 0, &xhci
->ir_set
->erst_dequeue
);
1696 size
= sizeof(struct xhci_erst_entry
)*(xhci
->erst
.num_entries
);
1697 if (xhci
->erst
.entries
)
1698 pci_free_consistent(pdev
, size
,
1699 xhci
->erst
.entries
, xhci
->erst
.erst_dma_addr
);
1700 xhci
->erst
.entries
= NULL
;
1701 xhci_dbg(xhci
, "Freed ERST\n");
1702 if (xhci
->event_ring
)
1703 xhci_ring_free(xhci
, xhci
->event_ring
);
1704 xhci
->event_ring
= NULL
;
1705 xhci_dbg(xhci
, "Freed event ring\n");
1707 xhci_write_64(xhci
, 0, &xhci
->op_regs
->cmd_ring
);
1709 xhci_ring_free(xhci
, xhci
->cmd_ring
);
1710 xhci
->cmd_ring
= NULL
;
1711 xhci_dbg(xhci
, "Freed command ring\n");
1713 for (i
= 1; i
< MAX_HC_SLOTS
; ++i
)
1714 xhci_free_virt_device(xhci
, i
);
1716 if (xhci
->segment_pool
)
1717 dma_pool_destroy(xhci
->segment_pool
);
1718 xhci
->segment_pool
= NULL
;
1719 xhci_dbg(xhci
, "Freed segment pool\n");
1721 if (xhci
->device_pool
)
1722 dma_pool_destroy(xhci
->device_pool
);
1723 xhci
->device_pool
= NULL
;
1724 xhci_dbg(xhci
, "Freed device context pool\n");
1726 if (xhci
->small_streams_pool
)
1727 dma_pool_destroy(xhci
->small_streams_pool
);
1728 xhci
->small_streams_pool
= NULL
;
1729 xhci_dbg(xhci
, "Freed small stream array pool\n");
1731 if (xhci
->medium_streams_pool
)
1732 dma_pool_destroy(xhci
->medium_streams_pool
);
1733 xhci
->medium_streams_pool
= NULL
;
1734 xhci_dbg(xhci
, "Freed medium stream array pool\n");
1736 xhci_write_64(xhci
, 0, &xhci
->op_regs
->dcbaa_ptr
);
1738 pci_free_consistent(pdev
, sizeof(*xhci
->dcbaa
),
1739 xhci
->dcbaa
, xhci
->dcbaa
->dma
);
1742 scratchpad_free(xhci
);
1744 xhci
->num_usb2_ports
= 0;
1745 xhci
->num_usb3_ports
= 0;
1746 kfree(xhci
->usb2_ports
);
1747 kfree(xhci
->usb3_ports
);
1748 kfree(xhci
->port_array
);
1751 xhci
->page_size
= 0;
1752 xhci
->page_shift
= 0;
1753 xhci
->bus_state
[0].bus_suspended
= 0;
1754 xhci
->bus_state
[1].bus_suspended
= 0;
1757 static int xhci_test_trb_in_td(struct xhci_hcd
*xhci
,
1758 struct xhci_segment
*input_seg
,
1759 union xhci_trb
*start_trb
,
1760 union xhci_trb
*end_trb
,
1761 dma_addr_t input_dma
,
1762 struct xhci_segment
*result_seg
,
1763 char *test_name
, int test_number
)
1765 unsigned long long start_dma
;
1766 unsigned long long end_dma
;
1767 struct xhci_segment
*seg
;
1769 start_dma
= xhci_trb_virt_to_dma(input_seg
, start_trb
);
1770 end_dma
= xhci_trb_virt_to_dma(input_seg
, end_trb
);
1772 seg
= trb_in_td(input_seg
, start_trb
, end_trb
, input_dma
);
1773 if (seg
!= result_seg
) {
1774 xhci_warn(xhci
, "WARN: %s TRB math test %d failed!\n",
1775 test_name
, test_number
);
1776 xhci_warn(xhci
, "Tested TRB math w/ seg %p and "
1777 "input DMA 0x%llx\n",
1779 (unsigned long long) input_dma
);
1780 xhci_warn(xhci
, "starting TRB %p (0x%llx DMA), "
1781 "ending TRB %p (0x%llx DMA)\n",
1782 start_trb
, start_dma
,
1784 xhci_warn(xhci
, "Expected seg %p, got seg %p\n",
1791 /* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1792 static int xhci_check_trb_in_td_math(struct xhci_hcd
*xhci
, gfp_t mem_flags
)
1795 dma_addr_t input_dma
;
1796 struct xhci_segment
*result_seg
;
1797 } simple_test_vector
[] = {
1798 /* A zeroed DMA field should fail */
1800 /* One TRB before the ring start should fail */
1801 { xhci
->event_ring
->first_seg
->dma
- 16, NULL
},
1802 /* One byte before the ring start should fail */
1803 { xhci
->event_ring
->first_seg
->dma
- 1, NULL
},
1804 /* Starting TRB should succeed */
1805 { xhci
->event_ring
->first_seg
->dma
, xhci
->event_ring
->first_seg
},
1806 /* Ending TRB should succeed */
1807 { xhci
->event_ring
->first_seg
->dma
+ (TRBS_PER_SEGMENT
- 1)*16,
1808 xhci
->event_ring
->first_seg
},
1809 /* One byte after the ring end should fail */
1810 { xhci
->event_ring
->first_seg
->dma
+ (TRBS_PER_SEGMENT
- 1)*16 + 1, NULL
},
1811 /* One TRB after the ring end should fail */
1812 { xhci
->event_ring
->first_seg
->dma
+ (TRBS_PER_SEGMENT
)*16, NULL
},
1813 /* An address of all ones should fail */
1814 { (dma_addr_t
) (~0), NULL
},
1817 struct xhci_segment
*input_seg
;
1818 union xhci_trb
*start_trb
;
1819 union xhci_trb
*end_trb
;
1820 dma_addr_t input_dma
;
1821 struct xhci_segment
*result_seg
;
1822 } complex_test_vector
[] = {
1823 /* Test feeding a valid DMA address from a different ring */
1824 { .input_seg
= xhci
->event_ring
->first_seg
,
1825 .start_trb
= xhci
->event_ring
->first_seg
->trbs
,
1826 .end_trb
= &xhci
->event_ring
->first_seg
->trbs
[TRBS_PER_SEGMENT
- 1],
1827 .input_dma
= xhci
->cmd_ring
->first_seg
->dma
,
1830 /* Test feeding a valid end TRB from a different ring */
1831 { .input_seg
= xhci
->event_ring
->first_seg
,
1832 .start_trb
= xhci
->event_ring
->first_seg
->trbs
,
1833 .end_trb
= &xhci
->cmd_ring
->first_seg
->trbs
[TRBS_PER_SEGMENT
- 1],
1834 .input_dma
= xhci
->cmd_ring
->first_seg
->dma
,
1837 /* Test feeding a valid start and end TRB from a different ring */
1838 { .input_seg
= xhci
->event_ring
->first_seg
,
1839 .start_trb
= xhci
->cmd_ring
->first_seg
->trbs
,
1840 .end_trb
= &xhci
->cmd_ring
->first_seg
->trbs
[TRBS_PER_SEGMENT
- 1],
1841 .input_dma
= xhci
->cmd_ring
->first_seg
->dma
,
1844 /* TRB in this ring, but after this TD */
1845 { .input_seg
= xhci
->event_ring
->first_seg
,
1846 .start_trb
= &xhci
->event_ring
->first_seg
->trbs
[0],
1847 .end_trb
= &xhci
->event_ring
->first_seg
->trbs
[3],
1848 .input_dma
= xhci
->event_ring
->first_seg
->dma
+ 4*16,
1851 /* TRB in this ring, but before this TD */
1852 { .input_seg
= xhci
->event_ring
->first_seg
,
1853 .start_trb
= &xhci
->event_ring
->first_seg
->trbs
[3],
1854 .end_trb
= &xhci
->event_ring
->first_seg
->trbs
[6],
1855 .input_dma
= xhci
->event_ring
->first_seg
->dma
+ 2*16,
1858 /* TRB in this ring, but after this wrapped TD */
1859 { .input_seg
= xhci
->event_ring
->first_seg
,
1860 .start_trb
= &xhci
->event_ring
->first_seg
->trbs
[TRBS_PER_SEGMENT
- 3],
1861 .end_trb
= &xhci
->event_ring
->first_seg
->trbs
[1],
1862 .input_dma
= xhci
->event_ring
->first_seg
->dma
+ 2*16,
1865 /* TRB in this ring, but before this wrapped TD */
1866 { .input_seg
= xhci
->event_ring
->first_seg
,
1867 .start_trb
= &xhci
->event_ring
->first_seg
->trbs
[TRBS_PER_SEGMENT
- 3],
1868 .end_trb
= &xhci
->event_ring
->first_seg
->trbs
[1],
1869 .input_dma
= xhci
->event_ring
->first_seg
->dma
+ (TRBS_PER_SEGMENT
- 4)*16,
1872 /* TRB not in this ring, and we have a wrapped TD */
1873 { .input_seg
= xhci
->event_ring
->first_seg
,
1874 .start_trb
= &xhci
->event_ring
->first_seg
->trbs
[TRBS_PER_SEGMENT
- 3],
1875 .end_trb
= &xhci
->event_ring
->first_seg
->trbs
[1],
1876 .input_dma
= xhci
->cmd_ring
->first_seg
->dma
+ 2*16,
1881 unsigned int num_tests
;
1884 num_tests
= ARRAY_SIZE(simple_test_vector
);
1885 for (i
= 0; i
< num_tests
; i
++) {
1886 ret
= xhci_test_trb_in_td(xhci
,
1887 xhci
->event_ring
->first_seg
,
1888 xhci
->event_ring
->first_seg
->trbs
,
1889 &xhci
->event_ring
->first_seg
->trbs
[TRBS_PER_SEGMENT
- 1],
1890 simple_test_vector
[i
].input_dma
,
1891 simple_test_vector
[i
].result_seg
,
1897 num_tests
= ARRAY_SIZE(complex_test_vector
);
1898 for (i
= 0; i
< num_tests
; i
++) {
1899 ret
= xhci_test_trb_in_td(xhci
,
1900 complex_test_vector
[i
].input_seg
,
1901 complex_test_vector
[i
].start_trb
,
1902 complex_test_vector
[i
].end_trb
,
1903 complex_test_vector
[i
].input_dma
,
1904 complex_test_vector
[i
].result_seg
,
1909 xhci_dbg(xhci
, "TRB math tests passed.\n");
1913 static void xhci_set_hc_event_deq(struct xhci_hcd
*xhci
)
1918 deq
= xhci_trb_virt_to_dma(xhci
->event_ring
->deq_seg
,
1919 xhci
->event_ring
->dequeue
);
1920 if (deq
== 0 && !in_interrupt())
1921 xhci_warn(xhci
, "WARN something wrong with SW event ring "
1923 /* Update HC event ring dequeue pointer */
1924 temp
= xhci_read_64(xhci
, &xhci
->ir_set
->erst_dequeue
);
1925 temp
&= ERST_PTR_MASK
;
1926 /* Don't clear the EHB bit (which is RW1C) because
1927 * there might be more events to service.
1930 xhci_dbg(xhci
, "// Write event ring dequeue pointer, "
1931 "preserving EHB bit\n");
1932 xhci_write_64(xhci
, ((u64
) deq
& (u64
) ~ERST_PTR_MASK
) | temp
,
1933 &xhci
->ir_set
->erst_dequeue
);
1936 static void xhci_add_in_port(struct xhci_hcd
*xhci
, unsigned int num_ports
,
1937 __le32 __iomem
*addr
, u8 major_revision
)
1939 u32 temp
, port_offset
, port_count
;
1942 if (major_revision
> 0x03) {
1943 xhci_warn(xhci
, "Ignoring unknown port speed, "
1944 "Ext Cap %p, revision = 0x%x\n",
1945 addr
, major_revision
);
1946 /* Ignoring port protocol we can't understand. FIXME */
1950 /* Port offset and count in the third dword, see section 7.2 */
1951 temp
= xhci_readl(xhci
, addr
+ 2);
1952 port_offset
= XHCI_EXT_PORT_OFF(temp
);
1953 port_count
= XHCI_EXT_PORT_COUNT(temp
);
1954 xhci_dbg(xhci
, "Ext Cap %p, port offset = %u, "
1955 "count = %u, revision = 0x%x\n",
1956 addr
, port_offset
, port_count
, major_revision
);
1957 /* Port count includes the current port offset */
1958 if (port_offset
== 0 || (port_offset
+ port_count
- 1) > num_ports
)
1959 /* WTF? "Valid values are ‘1’ to MaxPorts" */
1962 for (i
= port_offset
; i
< (port_offset
+ port_count
); i
++) {
1963 /* Duplicate entry. Ignore the port if the revisions differ. */
1964 if (xhci
->port_array
[i
] != 0) {
1965 xhci_warn(xhci
, "Duplicate port entry, Ext Cap %p,"
1966 " port %u\n", addr
, i
);
1967 xhci_warn(xhci
, "Port was marked as USB %u, "
1968 "duplicated as USB %u\n",
1969 xhci
->port_array
[i
], major_revision
);
1970 /* Only adjust the roothub port counts if we haven't
1971 * found a similar duplicate.
1973 if (xhci
->port_array
[i
] != major_revision
&&
1974 xhci
->port_array
[i
] != DUPLICATE_ENTRY
) {
1975 if (xhci
->port_array
[i
] == 0x03)
1976 xhci
->num_usb3_ports
--;
1978 xhci
->num_usb2_ports
--;
1979 xhci
->port_array
[i
] = DUPLICATE_ENTRY
;
1981 /* FIXME: Should we disable the port? */
1984 xhci
->port_array
[i
] = major_revision
;
1985 if (major_revision
== 0x03)
1986 xhci
->num_usb3_ports
++;
1988 xhci
->num_usb2_ports
++;
1990 /* FIXME: Should we disable ports not in the Extended Capabilities? */
1994 * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
1995 * specify what speeds each port is supposed to be. We can't count on the port
1996 * speed bits in the PORTSC register being correct until a device is connected,
1997 * but we need to set up the two fake roothubs with the correct number of USB
1998 * 3.0 and USB 2.0 ports at host controller initialization time.
2000 static int xhci_setup_port_arrays(struct xhci_hcd
*xhci
, gfp_t flags
)
2002 __le32 __iomem
*addr
;
2004 unsigned int num_ports
;
2005 int i
, j
, port_index
;
2007 addr
= &xhci
->cap_regs
->hcc_params
;
2008 offset
= XHCI_HCC_EXT_CAPS(xhci_readl(xhci
, addr
));
2010 xhci_err(xhci
, "No Extended Capability registers, "
2011 "unable to set up roothub.\n");
2015 num_ports
= HCS_MAX_PORTS(xhci
->hcs_params1
);
2016 xhci
->port_array
= kzalloc(sizeof(*xhci
->port_array
)*num_ports
, flags
);
2017 if (!xhci
->port_array
)
2020 xhci
->rh_bw
= kzalloc(sizeof(*xhci
->rh_bw
)*num_ports
, flags
);
2023 for (i
= 0; i
< num_ports
; i
++) {
2024 struct xhci_interval_bw_table
*bw_table
;
2026 INIT_LIST_HEAD(&xhci
->rh_bw
[i
].tts
);
2027 bw_table
= &xhci
->rh_bw
[i
].bw_table
;
2028 for (j
= 0; j
< XHCI_MAX_INTERVAL
; j
++)
2029 INIT_LIST_HEAD(&bw_table
->interval_bw
[j
].endpoints
);
2033 * For whatever reason, the first capability offset is from the
2034 * capability register base, not from the HCCPARAMS register.
2035 * See section 5.3.6 for offset calculation.
2037 addr
= &xhci
->cap_regs
->hc_capbase
+ offset
;
2041 cap_id
= xhci_readl(xhci
, addr
);
2042 if (XHCI_EXT_CAPS_ID(cap_id
) == XHCI_EXT_CAPS_PROTOCOL
)
2043 xhci_add_in_port(xhci
, num_ports
, addr
,
2044 (u8
) XHCI_EXT_PORT_MAJOR(cap_id
));
2045 offset
= XHCI_EXT_CAPS_NEXT(cap_id
);
2046 if (!offset
|| (xhci
->num_usb2_ports
+ xhci
->num_usb3_ports
)
2050 * Once you're into the Extended Capabilities, the offset is
2051 * always relative to the register holding the offset.
2056 if (xhci
->num_usb2_ports
== 0 && xhci
->num_usb3_ports
== 0) {
2057 xhci_warn(xhci
, "No ports on the roothubs?\n");
2060 xhci_dbg(xhci
, "Found %u USB 2.0 ports and %u USB 3.0 ports.\n",
2061 xhci
->num_usb2_ports
, xhci
->num_usb3_ports
);
2063 /* Place limits on the number of roothub ports so that the hub
2064 * descriptors aren't longer than the USB core will allocate.
2066 if (xhci
->num_usb3_ports
> 15) {
2067 xhci_dbg(xhci
, "Limiting USB 3.0 roothub ports to 15.\n");
2068 xhci
->num_usb3_ports
= 15;
2070 if (xhci
->num_usb2_ports
> USB_MAXCHILDREN
) {
2071 xhci_dbg(xhci
, "Limiting USB 2.0 roothub ports to %u.\n",
2073 xhci
->num_usb2_ports
= USB_MAXCHILDREN
;
2077 * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
2078 * Not sure how the USB core will handle a hub with no ports...
2080 if (xhci
->num_usb2_ports
) {
2081 xhci
->usb2_ports
= kmalloc(sizeof(*xhci
->usb2_ports
)*
2082 xhci
->num_usb2_ports
, flags
);
2083 if (!xhci
->usb2_ports
)
2087 for (i
= 0; i
< num_ports
; i
++) {
2088 if (xhci
->port_array
[i
] == 0x03 ||
2089 xhci
->port_array
[i
] == 0 ||
2090 xhci
->port_array
[i
] == DUPLICATE_ENTRY
)
2093 xhci
->usb2_ports
[port_index
] =
2094 &xhci
->op_regs
->port_status_base
+
2096 xhci_dbg(xhci
, "USB 2.0 port at index %u, "
2098 xhci
->usb2_ports
[port_index
]);
2100 if (port_index
== xhci
->num_usb2_ports
)
2104 if (xhci
->num_usb3_ports
) {
2105 xhci
->usb3_ports
= kmalloc(sizeof(*xhci
->usb3_ports
)*
2106 xhci
->num_usb3_ports
, flags
);
2107 if (!xhci
->usb3_ports
)
2111 for (i
= 0; i
< num_ports
; i
++)
2112 if (xhci
->port_array
[i
] == 0x03) {
2113 xhci
->usb3_ports
[port_index
] =
2114 &xhci
->op_regs
->port_status_base
+
2116 xhci_dbg(xhci
, "USB 3.0 port at index %u, "
2118 xhci
->usb3_ports
[port_index
]);
2120 if (port_index
== xhci
->num_usb3_ports
)
2127 int xhci_mem_init(struct xhci_hcd
*xhci
, gfp_t flags
)
2130 struct device
*dev
= xhci_to_hcd(xhci
)->self
.controller
;
2131 unsigned int val
, val2
;
2133 struct xhci_segment
*seg
;
2137 page_size
= xhci_readl(xhci
, &xhci
->op_regs
->page_size
);
2138 xhci_dbg(xhci
, "Supported page size register = 0x%x\n", page_size
);
2139 for (i
= 0; i
< 16; i
++) {
2140 if ((0x1 & page_size
) != 0)
2142 page_size
= page_size
>> 1;
2145 xhci_dbg(xhci
, "Supported page size of %iK\n", (1 << (i
+12)) / 1024);
2147 xhci_warn(xhci
, "WARN: no supported page size\n");
2148 /* Use 4K pages, since that's common and the minimum the HC supports */
2149 xhci
->page_shift
= 12;
2150 xhci
->page_size
= 1 << xhci
->page_shift
;
2151 xhci_dbg(xhci
, "HCD page size set to %iK\n", xhci
->page_size
/ 1024);
2154 * Program the Number of Device Slots Enabled field in the CONFIG
2155 * register with the max value of slots the HC can handle.
2157 val
= HCS_MAX_SLOTS(xhci_readl(xhci
, &xhci
->cap_regs
->hcs_params1
));
2158 xhci_dbg(xhci
, "// xHC can handle at most %d device slots.\n",
2159 (unsigned int) val
);
2160 val2
= xhci_readl(xhci
, &xhci
->op_regs
->config_reg
);
2161 val
|= (val2
& ~HCS_SLOTS_MASK
);
2162 xhci_dbg(xhci
, "// Setting Max device slots reg = 0x%x.\n",
2163 (unsigned int) val
);
2164 xhci_writel(xhci
, val
, &xhci
->op_regs
->config_reg
);
2167 * Section 5.4.8 - doorbell array must be
2168 * "physically contiguous and 64-byte (cache line) aligned".
2170 xhci
->dcbaa
= pci_alloc_consistent(to_pci_dev(dev
),
2171 sizeof(*xhci
->dcbaa
), &dma
);
2174 memset(xhci
->dcbaa
, 0, sizeof *(xhci
->dcbaa
));
2175 xhci
->dcbaa
->dma
= dma
;
2176 xhci_dbg(xhci
, "// Device context base array address = 0x%llx (DMA), %p (virt)\n",
2177 (unsigned long long)xhci
->dcbaa
->dma
, xhci
->dcbaa
);
2178 xhci_write_64(xhci
, dma
, &xhci
->op_regs
->dcbaa_ptr
);
2181 * Initialize the ring segment pool. The ring must be a contiguous
2182 * structure comprised of TRBs. The TRBs must be 16 byte aligned,
2183 * however, the command ring segment needs 64-byte aligned segments,
2184 * so we pick the greater alignment need.
2186 xhci
->segment_pool
= dma_pool_create("xHCI ring segments", dev
,
2187 SEGMENT_SIZE
, 64, xhci
->page_size
);
2189 /* See Table 46 and Note on Figure 55 */
2190 xhci
->device_pool
= dma_pool_create("xHCI input/output contexts", dev
,
2191 2112, 64, xhci
->page_size
);
2192 if (!xhci
->segment_pool
|| !xhci
->device_pool
)
2195 /* Linear stream context arrays don't have any boundary restrictions,
2196 * and only need to be 16-byte aligned.
2198 xhci
->small_streams_pool
=
2199 dma_pool_create("xHCI 256 byte stream ctx arrays",
2200 dev
, SMALL_STREAM_ARRAY_SIZE
, 16, 0);
2201 xhci
->medium_streams_pool
=
2202 dma_pool_create("xHCI 1KB stream ctx arrays",
2203 dev
, MEDIUM_STREAM_ARRAY_SIZE
, 16, 0);
2204 /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2205 * will be allocated with pci_alloc_consistent()
2208 if (!xhci
->small_streams_pool
|| !xhci
->medium_streams_pool
)
2211 /* Set up the command ring to have one segments for now. */
2212 xhci
->cmd_ring
= xhci_ring_alloc(xhci
, 1, true, flags
);
2213 if (!xhci
->cmd_ring
)
2215 xhci_dbg(xhci
, "Allocated command ring at %p\n", xhci
->cmd_ring
);
2216 xhci_dbg(xhci
, "First segment DMA is 0x%llx\n",
2217 (unsigned long long)xhci
->cmd_ring
->first_seg
->dma
);
2219 /* Set the address in the Command Ring Control register */
2220 val_64
= xhci_read_64(xhci
, &xhci
->op_regs
->cmd_ring
);
2221 val_64
= (val_64
& (u64
) CMD_RING_RSVD_BITS
) |
2222 (xhci
->cmd_ring
->first_seg
->dma
& (u64
) ~CMD_RING_RSVD_BITS
) |
2223 xhci
->cmd_ring
->cycle_state
;
2224 xhci_dbg(xhci
, "// Setting command ring address to 0x%x\n", val
);
2225 xhci_write_64(xhci
, val_64
, &xhci
->op_regs
->cmd_ring
);
2226 xhci_dbg_cmd_ptrs(xhci
);
2228 val
= xhci_readl(xhci
, &xhci
->cap_regs
->db_off
);
2230 xhci_dbg(xhci
, "// Doorbell array is located at offset 0x%x"
2231 " from cap regs base addr\n", val
);
2232 xhci
->dba
= (void __iomem
*) xhci
->cap_regs
+ val
;
2233 xhci_dbg_regs(xhci
);
2234 xhci_print_run_regs(xhci
);
2235 /* Set ir_set to interrupt register set 0 */
2236 xhci
->ir_set
= &xhci
->run_regs
->ir_set
[0];
2239 * Event ring setup: Allocate a normal ring, but also setup
2240 * the event ring segment table (ERST). Section 4.9.3.
2242 xhci_dbg(xhci
, "// Allocating event ring\n");
2243 xhci
->event_ring
= xhci_ring_alloc(xhci
, ERST_NUM_SEGS
, false, flags
);
2244 if (!xhci
->event_ring
)
2246 if (xhci_check_trb_in_td_math(xhci
, flags
) < 0)
2249 xhci
->erst
.entries
= pci_alloc_consistent(to_pci_dev(dev
),
2250 sizeof(struct xhci_erst_entry
)*ERST_NUM_SEGS
, &dma
);
2251 if (!xhci
->erst
.entries
)
2253 xhci_dbg(xhci
, "// Allocated event ring segment table at 0x%llx\n",
2254 (unsigned long long)dma
);
2256 memset(xhci
->erst
.entries
, 0, sizeof(struct xhci_erst_entry
)*ERST_NUM_SEGS
);
2257 xhci
->erst
.num_entries
= ERST_NUM_SEGS
;
2258 xhci
->erst
.erst_dma_addr
= dma
;
2259 xhci_dbg(xhci
, "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx\n",
2260 xhci
->erst
.num_entries
,
2262 (unsigned long long)xhci
->erst
.erst_dma_addr
);
2264 /* set ring base address and size for each segment table entry */
2265 for (val
= 0, seg
= xhci
->event_ring
->first_seg
; val
< ERST_NUM_SEGS
; val
++) {
2266 struct xhci_erst_entry
*entry
= &xhci
->erst
.entries
[val
];
2267 entry
->seg_addr
= cpu_to_le64(seg
->dma
);
2268 entry
->seg_size
= cpu_to_le32(TRBS_PER_SEGMENT
);
2273 /* set ERST count with the number of entries in the segment table */
2274 val
= xhci_readl(xhci
, &xhci
->ir_set
->erst_size
);
2275 val
&= ERST_SIZE_MASK
;
2276 val
|= ERST_NUM_SEGS
;
2277 xhci_dbg(xhci
, "// Write ERST size = %i to ir_set 0 (some bits preserved)\n",
2279 xhci_writel(xhci
, val
, &xhci
->ir_set
->erst_size
);
2281 xhci_dbg(xhci
, "// Set ERST entries to point to event ring.\n");
2282 /* set the segment table base address */
2283 xhci_dbg(xhci
, "// Set ERST base address for ir_set 0 = 0x%llx\n",
2284 (unsigned long long)xhci
->erst
.erst_dma_addr
);
2285 val_64
= xhci_read_64(xhci
, &xhci
->ir_set
->erst_base
);
2286 val_64
&= ERST_PTR_MASK
;
2287 val_64
|= (xhci
->erst
.erst_dma_addr
& (u64
) ~ERST_PTR_MASK
);
2288 xhci_write_64(xhci
, val_64
, &xhci
->ir_set
->erst_base
);
2290 /* Set the event ring dequeue address */
2291 xhci_set_hc_event_deq(xhci
);
2292 xhci_dbg(xhci
, "Wrote ERST address to ir_set 0.\n");
2293 xhci_print_ir_set(xhci
, 0);
2296 * XXX: Might need to set the Interrupter Moderation Register to
2297 * something other than the default (~1ms minimum between interrupts).
2298 * See section 5.5.1.2.
2300 init_completion(&xhci
->addr_dev
);
2301 for (i
= 0; i
< MAX_HC_SLOTS
; ++i
)
2302 xhci
->devs
[i
] = NULL
;
2303 for (i
= 0; i
< USB_MAXCHILDREN
; ++i
) {
2304 xhci
->bus_state
[0].resume_done
[i
] = 0;
2305 xhci
->bus_state
[1].resume_done
[i
] = 0;
2308 if (scratchpad_alloc(xhci
, flags
))
2310 if (xhci_setup_port_arrays(xhci
, flags
))
2316 xhci_warn(xhci
, "Couldn't initialize memory\n");
2317 xhci_mem_cleanup(xhci
);