xHCI: refine td allocation
[zen-stable.git] / drivers / usb / host / xhci-mem.c
blobc4b8959e01e72b9663ebaf52ac14755bd8e4606f
1 /*
2 * xHCI host controller driver
4 * Copyright (C) 2008 Intel Corp.
6 * Author: Sarah Sharp
7 * Some code borrowed from the Linux EHCI driver.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 * for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 #include <linux/usb.h>
24 #include <linux/pci.h>
25 #include <linux/slab.h>
26 #include <linux/dmapool.h>
28 #include "xhci.h"
31 * Allocates a generic ring segment from the ring pool, sets the dma address,
32 * initializes the segment to zero, and sets the private next pointer to NULL.
34 * Section 4.11.1.1:
35 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
37 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci, gfp_t flags)
39 struct xhci_segment *seg;
40 dma_addr_t dma;
42 seg = kzalloc(sizeof *seg, flags);
43 if (!seg)
44 return NULL;
45 xhci_dbg(xhci, "Allocating priv segment structure at %p\n", seg);
47 seg->trbs = dma_pool_alloc(xhci->segment_pool, flags, &dma);
48 if (!seg->trbs) {
49 kfree(seg);
50 return NULL;
52 xhci_dbg(xhci, "// Allocating segment at %p (virtual) 0x%llx (DMA)\n",
53 seg->trbs, (unsigned long long)dma);
55 memset(seg->trbs, 0, SEGMENT_SIZE);
56 seg->dma = dma;
57 seg->next = NULL;
59 return seg;
62 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
64 if (!seg)
65 return;
66 if (seg->trbs) {
67 xhci_dbg(xhci, "Freeing DMA segment at %p (virtual) 0x%llx (DMA)\n",
68 seg->trbs, (unsigned long long)seg->dma);
69 dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
70 seg->trbs = NULL;
72 xhci_dbg(xhci, "Freeing priv segment structure at %p\n", seg);
73 kfree(seg);
77 * Make the prev segment point to the next segment.
79 * Change the last TRB in the prev segment to be a Link TRB which points to the
80 * DMA address of the next segment. The caller needs to set any Link TRB
81 * related flags, such as End TRB, Toggle Cycle, and no snoop.
83 static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
84 struct xhci_segment *next, bool link_trbs)
86 u32 val;
88 if (!prev || !next)
89 return;
90 prev->next = next;
91 if (link_trbs) {
92 prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
93 cpu_to_le64(next->dma);
95 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
96 val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
97 val &= ~TRB_TYPE_BITMASK;
98 val |= TRB_TYPE(TRB_LINK);
99 /* Always set the chain bit with 0.95 hardware */
100 if (xhci_link_trb_quirk(xhci))
101 val |= TRB_CHAIN;
102 prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
104 xhci_dbg(xhci, "Linking segment 0x%llx to segment 0x%llx (DMA)\n",
105 (unsigned long long)prev->dma,
106 (unsigned long long)next->dma);
109 /* XXX: Do we need the hcd structure in all these functions? */
110 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
112 struct xhci_segment *seg;
113 struct xhci_segment *first_seg;
115 if (!ring || !ring->first_seg)
116 return;
117 first_seg = ring->first_seg;
118 seg = first_seg->next;
119 xhci_dbg(xhci, "Freeing ring at %p\n", ring);
120 while (seg != first_seg) {
121 struct xhci_segment *next = seg->next;
122 xhci_segment_free(xhci, seg);
123 seg = next;
125 xhci_segment_free(xhci, first_seg);
126 ring->first_seg = NULL;
127 kfree(ring);
130 static void xhci_initialize_ring_info(struct xhci_ring *ring)
132 /* The ring is empty, so the enqueue pointer == dequeue pointer */
133 ring->enqueue = ring->first_seg->trbs;
134 ring->enq_seg = ring->first_seg;
135 ring->dequeue = ring->enqueue;
136 ring->deq_seg = ring->first_seg;
137 /* The ring is initialized to 0. The producer must write 1 to the cycle
138 * bit to handover ownership of the TRB, so PCS = 1. The consumer must
139 * compare CCS to the cycle bit to check ownership, so CCS = 1.
141 ring->cycle_state = 1;
142 /* Not necessary for new rings, but needed for re-initialized rings */
143 ring->enq_updates = 0;
144 ring->deq_updates = 0;
148 * Create a new ring with zero or more segments.
150 * Link each segment together into a ring.
151 * Set the end flag and the cycle toggle bit on the last segment.
152 * See section 4.9.1 and figures 15 and 16.
154 static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
155 unsigned int num_segs, bool link_trbs, gfp_t flags)
157 struct xhci_ring *ring;
158 struct xhci_segment *prev;
160 ring = kzalloc(sizeof *(ring), flags);
161 xhci_dbg(xhci, "Allocating ring at %p\n", ring);
162 if (!ring)
163 return NULL;
165 INIT_LIST_HEAD(&ring->td_list);
166 if (num_segs == 0)
167 return ring;
169 ring->first_seg = xhci_segment_alloc(xhci, flags);
170 if (!ring->first_seg)
171 goto fail;
172 num_segs--;
174 prev = ring->first_seg;
175 while (num_segs > 0) {
176 struct xhci_segment *next;
178 next = xhci_segment_alloc(xhci, flags);
179 if (!next)
180 goto fail;
181 xhci_link_segments(xhci, prev, next, link_trbs);
183 prev = next;
184 num_segs--;
186 xhci_link_segments(xhci, prev, ring->first_seg, link_trbs);
188 if (link_trbs) {
189 /* See section 4.9.2.1 and 6.4.4.1 */
190 prev->trbs[TRBS_PER_SEGMENT-1].link.control |=
191 cpu_to_le32(LINK_TOGGLE);
192 xhci_dbg(xhci, "Wrote link toggle flag to"
193 " segment %p (virtual), 0x%llx (DMA)\n",
194 prev, (unsigned long long)prev->dma);
196 xhci_initialize_ring_info(ring);
197 return ring;
199 fail:
200 xhci_ring_free(xhci, ring);
201 return NULL;
204 void xhci_free_or_cache_endpoint_ring(struct xhci_hcd *xhci,
205 struct xhci_virt_device *virt_dev,
206 unsigned int ep_index)
208 int rings_cached;
210 rings_cached = virt_dev->num_rings_cached;
211 if (rings_cached < XHCI_MAX_RINGS_CACHED) {
212 virt_dev->ring_cache[rings_cached] =
213 virt_dev->eps[ep_index].ring;
214 virt_dev->num_rings_cached++;
215 xhci_dbg(xhci, "Cached old ring, "
216 "%d ring%s cached\n",
217 virt_dev->num_rings_cached,
218 (virt_dev->num_rings_cached > 1) ? "s" : "");
219 } else {
220 xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
221 xhci_dbg(xhci, "Ring cache full (%d rings), "
222 "freeing ring\n",
223 virt_dev->num_rings_cached);
225 virt_dev->eps[ep_index].ring = NULL;
228 /* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue
229 * pointers to the beginning of the ring.
231 static void xhci_reinit_cached_ring(struct xhci_hcd *xhci,
232 struct xhci_ring *ring)
234 struct xhci_segment *seg = ring->first_seg;
235 do {
236 memset(seg->trbs, 0,
237 sizeof(union xhci_trb)*TRBS_PER_SEGMENT);
238 /* All endpoint rings have link TRBs */
239 xhci_link_segments(xhci, seg, seg->next, 1);
240 seg = seg->next;
241 } while (seg != ring->first_seg);
242 xhci_initialize_ring_info(ring);
243 /* td list should be empty since all URBs have been cancelled,
244 * but just in case...
246 INIT_LIST_HEAD(&ring->td_list);
249 #define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32)
251 static struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
252 int type, gfp_t flags)
254 struct xhci_container_ctx *ctx = kzalloc(sizeof(*ctx), flags);
255 if (!ctx)
256 return NULL;
258 BUG_ON((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT));
259 ctx->type = type;
260 ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
261 if (type == XHCI_CTX_TYPE_INPUT)
262 ctx->size += CTX_SIZE(xhci->hcc_params);
264 ctx->bytes = dma_pool_alloc(xhci->device_pool, flags, &ctx->dma);
265 memset(ctx->bytes, 0, ctx->size);
266 return ctx;
269 static void xhci_free_container_ctx(struct xhci_hcd *xhci,
270 struct xhci_container_ctx *ctx)
272 if (!ctx)
273 return;
274 dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
275 kfree(ctx);
278 struct xhci_input_control_ctx *xhci_get_input_control_ctx(struct xhci_hcd *xhci,
279 struct xhci_container_ctx *ctx)
281 BUG_ON(ctx->type != XHCI_CTX_TYPE_INPUT);
282 return (struct xhci_input_control_ctx *)ctx->bytes;
285 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
286 struct xhci_container_ctx *ctx)
288 if (ctx->type == XHCI_CTX_TYPE_DEVICE)
289 return (struct xhci_slot_ctx *)ctx->bytes;
291 return (struct xhci_slot_ctx *)
292 (ctx->bytes + CTX_SIZE(xhci->hcc_params));
295 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
296 struct xhci_container_ctx *ctx,
297 unsigned int ep_index)
299 /* increment ep index by offset of start of ep ctx array */
300 ep_index++;
301 if (ctx->type == XHCI_CTX_TYPE_INPUT)
302 ep_index++;
304 return (struct xhci_ep_ctx *)
305 (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
309 /***************** Streams structures manipulation *************************/
311 static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
312 unsigned int num_stream_ctxs,
313 struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
315 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
317 if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
318 pci_free_consistent(pdev,
319 sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
320 stream_ctx, dma);
321 else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
322 return dma_pool_free(xhci->small_streams_pool,
323 stream_ctx, dma);
324 else
325 return dma_pool_free(xhci->medium_streams_pool,
326 stream_ctx, dma);
330 * The stream context array for each endpoint with bulk streams enabled can
331 * vary in size, based on:
332 * - how many streams the endpoint supports,
333 * - the maximum primary stream array size the host controller supports,
334 * - and how many streams the device driver asks for.
336 * The stream context array must be a power of 2, and can be as small as
337 * 64 bytes or as large as 1MB.
339 static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
340 unsigned int num_stream_ctxs, dma_addr_t *dma,
341 gfp_t mem_flags)
343 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
345 if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
346 return pci_alloc_consistent(pdev,
347 sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
348 dma);
349 else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
350 return dma_pool_alloc(xhci->small_streams_pool,
351 mem_flags, dma);
352 else
353 return dma_pool_alloc(xhci->medium_streams_pool,
354 mem_flags, dma);
357 struct xhci_ring *xhci_dma_to_transfer_ring(
358 struct xhci_virt_ep *ep,
359 u64 address)
361 if (ep->ep_state & EP_HAS_STREAMS)
362 return radix_tree_lookup(&ep->stream_info->trb_address_map,
363 address >> SEGMENT_SHIFT);
364 return ep->ring;
367 /* Only use this when you know stream_info is valid */
368 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
369 static struct xhci_ring *dma_to_stream_ring(
370 struct xhci_stream_info *stream_info,
371 u64 address)
373 return radix_tree_lookup(&stream_info->trb_address_map,
374 address >> SEGMENT_SHIFT);
376 #endif /* CONFIG_USB_XHCI_HCD_DEBUGGING */
378 struct xhci_ring *xhci_stream_id_to_ring(
379 struct xhci_virt_device *dev,
380 unsigned int ep_index,
381 unsigned int stream_id)
383 struct xhci_virt_ep *ep = &dev->eps[ep_index];
385 if (stream_id == 0)
386 return ep->ring;
387 if (!ep->stream_info)
388 return NULL;
390 if (stream_id > ep->stream_info->num_streams)
391 return NULL;
392 return ep->stream_info->stream_rings[stream_id];
395 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
396 static int xhci_test_radix_tree(struct xhci_hcd *xhci,
397 unsigned int num_streams,
398 struct xhci_stream_info *stream_info)
400 u32 cur_stream;
401 struct xhci_ring *cur_ring;
402 u64 addr;
404 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
405 struct xhci_ring *mapped_ring;
406 int trb_size = sizeof(union xhci_trb);
408 cur_ring = stream_info->stream_rings[cur_stream];
409 for (addr = cur_ring->first_seg->dma;
410 addr < cur_ring->first_seg->dma + SEGMENT_SIZE;
411 addr += trb_size) {
412 mapped_ring = dma_to_stream_ring(stream_info, addr);
413 if (cur_ring != mapped_ring) {
414 xhci_warn(xhci, "WARN: DMA address 0x%08llx "
415 "didn't map to stream ID %u; "
416 "mapped to ring %p\n",
417 (unsigned long long) addr,
418 cur_stream,
419 mapped_ring);
420 return -EINVAL;
423 /* One TRB after the end of the ring segment shouldn't return a
424 * pointer to the current ring (although it may be a part of a
425 * different ring).
427 mapped_ring = dma_to_stream_ring(stream_info, addr);
428 if (mapped_ring != cur_ring) {
429 /* One TRB before should also fail */
430 addr = cur_ring->first_seg->dma - trb_size;
431 mapped_ring = dma_to_stream_ring(stream_info, addr);
433 if (mapped_ring == cur_ring) {
434 xhci_warn(xhci, "WARN: Bad DMA address 0x%08llx "
435 "mapped to valid stream ID %u; "
436 "mapped ring = %p\n",
437 (unsigned long long) addr,
438 cur_stream,
439 mapped_ring);
440 return -EINVAL;
443 return 0;
445 #endif /* CONFIG_USB_XHCI_HCD_DEBUGGING */
448 * Change an endpoint's internal structure so it supports stream IDs. The
449 * number of requested streams includes stream 0, which cannot be used by device
450 * drivers.
452 * The number of stream contexts in the stream context array may be bigger than
453 * the number of streams the driver wants to use. This is because the number of
454 * stream context array entries must be a power of two.
456 * We need a radix tree for mapping physical addresses of TRBs to which stream
457 * ID they belong to. We need to do this because the host controller won't tell
458 * us which stream ring the TRB came from. We could store the stream ID in an
459 * event data TRB, but that doesn't help us for the cancellation case, since the
460 * endpoint may stop before it reaches that event data TRB.
462 * The radix tree maps the upper portion of the TRB DMA address to a ring
463 * segment that has the same upper portion of DMA addresses. For example, say I
464 * have segments of size 1KB, that are always 64-byte aligned. A segment may
465 * start at 0x10c91000 and end at 0x10c913f0. If I use the upper 10 bits, the
466 * key to the stream ID is 0x43244. I can use the DMA address of the TRB to
467 * pass the radix tree a key to get the right stream ID:
469 * 0x10c90fff >> 10 = 0x43243
470 * 0x10c912c0 >> 10 = 0x43244
471 * 0x10c91400 >> 10 = 0x43245
473 * Obviously, only those TRBs with DMA addresses that are within the segment
474 * will make the radix tree return the stream ID for that ring.
476 * Caveats for the radix tree:
478 * The radix tree uses an unsigned long as a key pair. On 32-bit systems, an
479 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
480 * 64-bits. Since we only request 32-bit DMA addresses, we can use that as the
481 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
482 * PCI DMA addresses on a 64-bit system). There might be a problem on 32-bit
483 * extended systems (where the DMA address can be bigger than 32-bits),
484 * if we allow the PCI dma mask to be bigger than 32-bits. So don't do that.
486 struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
487 unsigned int num_stream_ctxs,
488 unsigned int num_streams, gfp_t mem_flags)
490 struct xhci_stream_info *stream_info;
491 u32 cur_stream;
492 struct xhci_ring *cur_ring;
493 unsigned long key;
494 u64 addr;
495 int ret;
497 xhci_dbg(xhci, "Allocating %u streams and %u "
498 "stream context array entries.\n",
499 num_streams, num_stream_ctxs);
500 if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
501 xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
502 return NULL;
504 xhci->cmd_ring_reserved_trbs++;
506 stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags);
507 if (!stream_info)
508 goto cleanup_trbs;
510 stream_info->num_streams = num_streams;
511 stream_info->num_stream_ctxs = num_stream_ctxs;
513 /* Initialize the array of virtual pointers to stream rings. */
514 stream_info->stream_rings = kzalloc(
515 sizeof(struct xhci_ring *)*num_streams,
516 mem_flags);
517 if (!stream_info->stream_rings)
518 goto cleanup_info;
520 /* Initialize the array of DMA addresses for stream rings for the HW. */
521 stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
522 num_stream_ctxs, &stream_info->ctx_array_dma,
523 mem_flags);
524 if (!stream_info->stream_ctx_array)
525 goto cleanup_ctx;
526 memset(stream_info->stream_ctx_array, 0,
527 sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
529 /* Allocate everything needed to free the stream rings later */
530 stream_info->free_streams_command =
531 xhci_alloc_command(xhci, true, true, mem_flags);
532 if (!stream_info->free_streams_command)
533 goto cleanup_ctx;
535 INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
537 /* Allocate rings for all the streams that the driver will use,
538 * and add their segment DMA addresses to the radix tree.
539 * Stream 0 is reserved.
541 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
542 stream_info->stream_rings[cur_stream] =
543 xhci_ring_alloc(xhci, 1, true, mem_flags);
544 cur_ring = stream_info->stream_rings[cur_stream];
545 if (!cur_ring)
546 goto cleanup_rings;
547 cur_ring->stream_id = cur_stream;
548 /* Set deq ptr, cycle bit, and stream context type */
549 addr = cur_ring->first_seg->dma |
550 SCT_FOR_CTX(SCT_PRI_TR) |
551 cur_ring->cycle_state;
552 stream_info->stream_ctx_array[cur_stream].stream_ring =
553 cpu_to_le64(addr);
554 xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
555 cur_stream, (unsigned long long) addr);
557 key = (unsigned long)
558 (cur_ring->first_seg->dma >> SEGMENT_SHIFT);
559 ret = radix_tree_insert(&stream_info->trb_address_map,
560 key, cur_ring);
561 if (ret) {
562 xhci_ring_free(xhci, cur_ring);
563 stream_info->stream_rings[cur_stream] = NULL;
564 goto cleanup_rings;
567 /* Leave the other unused stream ring pointers in the stream context
568 * array initialized to zero. This will cause the xHC to give us an
569 * error if the device asks for a stream ID we don't have setup (if it
570 * was any other way, the host controller would assume the ring is
571 * "empty" and wait forever for data to be queued to that stream ID).
573 #if XHCI_DEBUG
574 /* Do a little test on the radix tree to make sure it returns the
575 * correct values.
577 if (xhci_test_radix_tree(xhci, num_streams, stream_info))
578 goto cleanup_rings;
579 #endif
581 return stream_info;
583 cleanup_rings:
584 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
585 cur_ring = stream_info->stream_rings[cur_stream];
586 if (cur_ring) {
587 addr = cur_ring->first_seg->dma;
588 radix_tree_delete(&stream_info->trb_address_map,
589 addr >> SEGMENT_SHIFT);
590 xhci_ring_free(xhci, cur_ring);
591 stream_info->stream_rings[cur_stream] = NULL;
594 xhci_free_command(xhci, stream_info->free_streams_command);
595 cleanup_ctx:
596 kfree(stream_info->stream_rings);
597 cleanup_info:
598 kfree(stream_info);
599 cleanup_trbs:
600 xhci->cmd_ring_reserved_trbs--;
601 return NULL;
604 * Sets the MaxPStreams field and the Linear Stream Array field.
605 * Sets the dequeue pointer to the stream context array.
607 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
608 struct xhci_ep_ctx *ep_ctx,
609 struct xhci_stream_info *stream_info)
611 u32 max_primary_streams;
612 /* MaxPStreams is the number of stream context array entries, not the
613 * number we're actually using. Must be in 2^(MaxPstreams + 1) format.
614 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
616 max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
617 xhci_dbg(xhci, "Setting number of stream ctx array entries to %u\n",
618 1 << (max_primary_streams + 1));
619 ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
620 ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
621 | EP_HAS_LSA);
622 ep_ctx->deq = cpu_to_le64(stream_info->ctx_array_dma);
626 * Sets the MaxPStreams field and the Linear Stream Array field to 0.
627 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
628 * not at the beginning of the ring).
630 void xhci_setup_no_streams_ep_input_ctx(struct xhci_hcd *xhci,
631 struct xhci_ep_ctx *ep_ctx,
632 struct xhci_virt_ep *ep)
634 dma_addr_t addr;
635 ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
636 addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
637 ep_ctx->deq = cpu_to_le64(addr | ep->ring->cycle_state);
640 /* Frees all stream contexts associated with the endpoint,
642 * Caller should fix the endpoint context streams fields.
644 void xhci_free_stream_info(struct xhci_hcd *xhci,
645 struct xhci_stream_info *stream_info)
647 int cur_stream;
648 struct xhci_ring *cur_ring;
649 dma_addr_t addr;
651 if (!stream_info)
652 return;
654 for (cur_stream = 1; cur_stream < stream_info->num_streams;
655 cur_stream++) {
656 cur_ring = stream_info->stream_rings[cur_stream];
657 if (cur_ring) {
658 addr = cur_ring->first_seg->dma;
659 radix_tree_delete(&stream_info->trb_address_map,
660 addr >> SEGMENT_SHIFT);
661 xhci_ring_free(xhci, cur_ring);
662 stream_info->stream_rings[cur_stream] = NULL;
665 xhci_free_command(xhci, stream_info->free_streams_command);
666 xhci->cmd_ring_reserved_trbs--;
667 if (stream_info->stream_ctx_array)
668 xhci_free_stream_ctx(xhci,
669 stream_info->num_stream_ctxs,
670 stream_info->stream_ctx_array,
671 stream_info->ctx_array_dma);
673 if (stream_info)
674 kfree(stream_info->stream_rings);
675 kfree(stream_info);
679 /***************** Device context manipulation *************************/
681 static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
682 struct xhci_virt_ep *ep)
684 init_timer(&ep->stop_cmd_timer);
685 ep->stop_cmd_timer.data = (unsigned long) ep;
686 ep->stop_cmd_timer.function = xhci_stop_endpoint_command_watchdog;
687 ep->xhci = xhci;
690 static void xhci_free_tt_info(struct xhci_hcd *xhci,
691 struct xhci_virt_device *virt_dev,
692 int slot_id)
694 struct list_head *tt;
695 struct list_head *tt_list_head;
696 struct list_head *tt_next;
697 struct xhci_tt_bw_info *tt_info;
699 /* If the device never made it past the Set Address stage,
700 * it may not have the real_port set correctly.
702 if (virt_dev->real_port == 0 ||
703 virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
704 xhci_dbg(xhci, "Bad real port.\n");
705 return;
708 tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
709 if (list_empty(tt_list_head))
710 return;
712 list_for_each(tt, tt_list_head) {
713 tt_info = list_entry(tt, struct xhci_tt_bw_info, tt_list);
714 if (tt_info->slot_id == slot_id)
715 break;
717 /* Cautionary measure in case the hub was disconnected before we
718 * stored the TT information.
720 if (tt_info->slot_id != slot_id)
721 return;
723 tt_next = tt->next;
724 tt_info = list_entry(tt, struct xhci_tt_bw_info,
725 tt_list);
726 /* Multi-TT hubs will have more than one entry */
727 do {
728 list_del(tt);
729 kfree(tt_info);
730 tt = tt_next;
731 if (list_empty(tt_list_head))
732 break;
733 tt_next = tt->next;
734 tt_info = list_entry(tt, struct xhci_tt_bw_info,
735 tt_list);
736 } while (tt_info->slot_id == slot_id);
739 int xhci_alloc_tt_info(struct xhci_hcd *xhci,
740 struct xhci_virt_device *virt_dev,
741 struct usb_device *hdev,
742 struct usb_tt *tt, gfp_t mem_flags)
744 struct xhci_tt_bw_info *tt_info;
745 unsigned int num_ports;
746 int i, j;
748 if (!tt->multi)
749 num_ports = 1;
750 else
751 num_ports = hdev->maxchild;
753 for (i = 0; i < num_ports; i++, tt_info++) {
754 struct xhci_interval_bw_table *bw_table;
756 tt_info = kzalloc(sizeof(*tt_info), mem_flags);
757 if (!tt_info)
758 goto free_tts;
759 INIT_LIST_HEAD(&tt_info->tt_list);
760 list_add(&tt_info->tt_list,
761 &xhci->rh_bw[virt_dev->real_port - 1].tts);
762 tt_info->slot_id = virt_dev->udev->slot_id;
763 if (tt->multi)
764 tt_info->ttport = i+1;
765 bw_table = &tt_info->bw_table;
766 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
767 INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
769 return 0;
771 free_tts:
772 xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
773 return -ENOMEM;
777 /* All the xhci_tds in the ring's TD list should be freed at this point.
778 * Should be called with xhci->lock held if there is any chance the TT lists
779 * will be manipulated by the configure endpoint, allocate device, or update
780 * hub functions while this function is removing the TT entries from the list.
782 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
784 struct xhci_virt_device *dev;
785 int i;
786 int old_active_eps = 0;
788 /* Slot ID 0 is reserved */
789 if (slot_id == 0 || !xhci->devs[slot_id])
790 return;
792 dev = xhci->devs[slot_id];
793 xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
794 if (!dev)
795 return;
797 if (dev->tt_info)
798 old_active_eps = dev->tt_info->active_eps;
800 for (i = 0; i < 31; ++i) {
801 if (dev->eps[i].ring)
802 xhci_ring_free(xhci, dev->eps[i].ring);
803 if (dev->eps[i].stream_info)
804 xhci_free_stream_info(xhci,
805 dev->eps[i].stream_info);
806 /* Endpoints on the TT/root port lists should have been removed
807 * when usb_disable_device() was called for the device.
808 * We can't drop them anyway, because the udev might have gone
809 * away by this point, and we can't tell what speed it was.
811 if (!list_empty(&dev->eps[i].bw_endpoint_list))
812 xhci_warn(xhci, "Slot %u endpoint %u "
813 "not removed from BW list!\n",
814 slot_id, i);
816 /* If this is a hub, free the TT(s) from the TT list */
817 xhci_free_tt_info(xhci, dev, slot_id);
818 /* If necessary, update the number of active TTs on this root port */
819 xhci_update_tt_active_eps(xhci, dev, old_active_eps);
821 if (dev->ring_cache) {
822 for (i = 0; i < dev->num_rings_cached; i++)
823 xhci_ring_free(xhci, dev->ring_cache[i]);
824 kfree(dev->ring_cache);
827 if (dev->in_ctx)
828 xhci_free_container_ctx(xhci, dev->in_ctx);
829 if (dev->out_ctx)
830 xhci_free_container_ctx(xhci, dev->out_ctx);
832 kfree(xhci->devs[slot_id]);
833 xhci->devs[slot_id] = NULL;
836 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
837 struct usb_device *udev, gfp_t flags)
839 struct xhci_virt_device *dev;
840 int i;
842 /* Slot ID 0 is reserved */
843 if (slot_id == 0 || xhci->devs[slot_id]) {
844 xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
845 return 0;
848 xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags);
849 if (!xhci->devs[slot_id])
850 return 0;
851 dev = xhci->devs[slot_id];
853 /* Allocate the (output) device context that will be used in the HC. */
854 dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
855 if (!dev->out_ctx)
856 goto fail;
858 xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
859 (unsigned long long)dev->out_ctx->dma);
861 /* Allocate the (input) device context for address device command */
862 dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
863 if (!dev->in_ctx)
864 goto fail;
866 xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
867 (unsigned long long)dev->in_ctx->dma);
869 /* Initialize the cancellation list and watchdog timers for each ep */
870 for (i = 0; i < 31; i++) {
871 xhci_init_endpoint_timer(xhci, &dev->eps[i]);
872 INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
873 INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
876 /* Allocate endpoint 0 ring */
877 dev->eps[0].ring = xhci_ring_alloc(xhci, 1, true, flags);
878 if (!dev->eps[0].ring)
879 goto fail;
881 /* Allocate pointers to the ring cache */
882 dev->ring_cache = kzalloc(
883 sizeof(struct xhci_ring *)*XHCI_MAX_RINGS_CACHED,
884 flags);
885 if (!dev->ring_cache)
886 goto fail;
887 dev->num_rings_cached = 0;
889 init_completion(&dev->cmd_completion);
890 INIT_LIST_HEAD(&dev->cmd_list);
891 dev->udev = udev;
893 /* Point to output device context in dcbaa. */
894 xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
895 xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
896 slot_id,
897 &xhci->dcbaa->dev_context_ptrs[slot_id],
898 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
900 return 1;
901 fail:
902 xhci_free_virt_device(xhci, slot_id);
903 return 0;
906 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
907 struct usb_device *udev)
909 struct xhci_virt_device *virt_dev;
910 struct xhci_ep_ctx *ep0_ctx;
911 struct xhci_ring *ep_ring;
913 virt_dev = xhci->devs[udev->slot_id];
914 ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
915 ep_ring = virt_dev->eps[0].ring;
917 * FIXME we don't keep track of the dequeue pointer very well after a
918 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
919 * host to our enqueue pointer. This should only be called after a
920 * configured device has reset, so all control transfers should have
921 * been completed or cancelled before the reset.
923 ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
924 ep_ring->enqueue)
925 | ep_ring->cycle_state);
929 * The xHCI roothub may have ports of differing speeds in any order in the port
930 * status registers. xhci->port_array provides an array of the port speed for
931 * each offset into the port status registers.
933 * The xHCI hardware wants to know the roothub port number that the USB device
934 * is attached to (or the roothub port its ancestor hub is attached to). All we
935 * know is the index of that port under either the USB 2.0 or the USB 3.0
936 * roothub, but that doesn't give us the real index into the HW port status
937 * registers. Scan through the xHCI roothub port array, looking for the Nth
938 * entry of the correct port speed. Return the port number of that entry.
940 static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
941 struct usb_device *udev)
943 struct usb_device *top_dev;
944 unsigned int num_similar_speed_ports;
945 unsigned int faked_port_num;
946 int i;
948 for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
949 top_dev = top_dev->parent)
950 /* Found device below root hub */;
951 faked_port_num = top_dev->portnum;
952 for (i = 0, num_similar_speed_ports = 0;
953 i < HCS_MAX_PORTS(xhci->hcs_params1); i++) {
954 u8 port_speed = xhci->port_array[i];
957 * Skip ports that don't have known speeds, or have duplicate
958 * Extended Capabilities port speed entries.
960 if (port_speed == 0 || port_speed == DUPLICATE_ENTRY)
961 continue;
964 * USB 3.0 ports are always under a USB 3.0 hub. USB 2.0 and
965 * 1.1 ports are under the USB 2.0 hub. If the port speed
966 * matches the device speed, it's a similar speed port.
968 if ((port_speed == 0x03) == (udev->speed == USB_SPEED_SUPER))
969 num_similar_speed_ports++;
970 if (num_similar_speed_ports == faked_port_num)
971 /* Roothub ports are numbered from 1 to N */
972 return i+1;
974 return 0;
977 /* Setup an xHCI virtual device for a Set Address command */
978 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
980 struct xhci_virt_device *dev;
981 struct xhci_ep_ctx *ep0_ctx;
982 struct xhci_slot_ctx *slot_ctx;
983 struct xhci_input_control_ctx *ctrl_ctx;
984 u32 port_num;
985 struct usb_device *top_dev;
987 dev = xhci->devs[udev->slot_id];
988 /* Slot ID 0 is reserved */
989 if (udev->slot_id == 0 || !dev) {
990 xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
991 udev->slot_id);
992 return -EINVAL;
994 ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
995 ctrl_ctx = xhci_get_input_control_ctx(xhci, dev->in_ctx);
996 slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
998 /* 2) New slot context and endpoint 0 context are valid*/
999 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
1001 /* 3) Only the control endpoint is valid - one endpoint context */
1002 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1003 switch (udev->speed) {
1004 case USB_SPEED_SUPER:
1005 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1006 break;
1007 case USB_SPEED_HIGH:
1008 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1009 break;
1010 case USB_SPEED_FULL:
1011 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1012 break;
1013 case USB_SPEED_LOW:
1014 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1015 break;
1016 case USB_SPEED_WIRELESS:
1017 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1018 return -EINVAL;
1019 break;
1020 default:
1021 /* Speed was set earlier, this shouldn't happen. */
1022 BUG();
1024 /* Find the root hub port this device is under */
1025 port_num = xhci_find_real_port_number(xhci, udev);
1026 if (!port_num)
1027 return -EINVAL;
1028 slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
1029 /* Set the port number in the virtual_device to the faked port number */
1030 for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1031 top_dev = top_dev->parent)
1032 /* Found device below root hub */;
1033 dev->fake_port = top_dev->portnum;
1034 dev->real_port = port_num;
1035 xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
1036 xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
1038 /* Find the right bandwidth table that this device will be a part of.
1039 * If this is a full speed device attached directly to a root port (or a
1040 * decendent of one), it counts as a primary bandwidth domain, not a
1041 * secondary bandwidth domain under a TT. An xhci_tt_info structure
1042 * will never be created for the HS root hub.
1044 if (!udev->tt || !udev->tt->hub->parent) {
1045 dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
1046 } else {
1047 struct xhci_root_port_bw_info *rh_bw;
1048 struct xhci_tt_bw_info *tt_bw;
1050 rh_bw = &xhci->rh_bw[port_num - 1];
1051 /* Find the right TT. */
1052 list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1053 if (tt_bw->slot_id != udev->tt->hub->slot_id)
1054 continue;
1056 if (!dev->udev->tt->multi ||
1057 (udev->tt->multi &&
1058 tt_bw->ttport == dev->udev->ttport)) {
1059 dev->bw_table = &tt_bw->bw_table;
1060 dev->tt_info = tt_bw;
1061 break;
1064 if (!dev->tt_info)
1065 xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1068 /* Is this a LS/FS device under an external HS hub? */
1069 if (udev->tt && udev->tt->hub->parent) {
1070 slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1071 (udev->ttport << 8));
1072 if (udev->tt->multi)
1073 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1075 xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1076 xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1078 /* Step 4 - ring already allocated */
1079 /* Step 5 */
1080 ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1082 * XXX: Not sure about wireless USB devices.
1084 switch (udev->speed) {
1085 case USB_SPEED_SUPER:
1086 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(512));
1087 break;
1088 case USB_SPEED_HIGH:
1089 /* USB core guesses at a 64-byte max packet first for FS devices */
1090 case USB_SPEED_FULL:
1091 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(64));
1092 break;
1093 case USB_SPEED_LOW:
1094 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(8));
1095 break;
1096 case USB_SPEED_WIRELESS:
1097 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1098 return -EINVAL;
1099 break;
1100 default:
1101 /* New speed? */
1102 BUG();
1104 /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1105 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3));
1107 ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1108 dev->eps[0].ring->cycle_state);
1110 /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1112 return 0;
1116 * Convert interval expressed as 2^(bInterval - 1) == interval into
1117 * straight exponent value 2^n == interval.
1120 static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1121 struct usb_host_endpoint *ep)
1123 unsigned int interval;
1125 interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1126 if (interval != ep->desc.bInterval - 1)
1127 dev_warn(&udev->dev,
1128 "ep %#x - rounding interval to %d %sframes\n",
1129 ep->desc.bEndpointAddress,
1130 1 << interval,
1131 udev->speed == USB_SPEED_FULL ? "" : "micro");
1133 if (udev->speed == USB_SPEED_FULL) {
1135 * Full speed isoc endpoints specify interval in frames,
1136 * not microframes. We are using microframes everywhere,
1137 * so adjust accordingly.
1139 interval += 3; /* 1 frame = 2^3 uframes */
1142 return interval;
1146 * Convert bInterval expressed in frames (in 1-255 range) to exponent of
1147 * microframes, rounded down to nearest power of 2.
1149 static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1150 struct usb_host_endpoint *ep)
1152 unsigned int interval;
1154 interval = fls(8 * ep->desc.bInterval) - 1;
1155 interval = clamp_val(interval, 3, 10);
1156 if ((1 << interval) != 8 * ep->desc.bInterval)
1157 dev_warn(&udev->dev,
1158 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1159 ep->desc.bEndpointAddress,
1160 1 << interval,
1161 8 * ep->desc.bInterval);
1163 return interval;
1166 /* Return the polling or NAK interval.
1168 * The polling interval is expressed in "microframes". If xHCI's Interval field
1169 * is set to N, it will service the endpoint every 2^(Interval)*125us.
1171 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1172 * is set to 0.
1174 static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1175 struct usb_host_endpoint *ep)
1177 unsigned int interval = 0;
1179 switch (udev->speed) {
1180 case USB_SPEED_HIGH:
1181 /* Max NAK rate */
1182 if (usb_endpoint_xfer_control(&ep->desc) ||
1183 usb_endpoint_xfer_bulk(&ep->desc)) {
1184 interval = ep->desc.bInterval;
1185 break;
1187 /* Fall through - SS and HS isoc/int have same decoding */
1189 case USB_SPEED_SUPER:
1190 if (usb_endpoint_xfer_int(&ep->desc) ||
1191 usb_endpoint_xfer_isoc(&ep->desc)) {
1192 interval = xhci_parse_exponent_interval(udev, ep);
1194 break;
1196 case USB_SPEED_FULL:
1197 if (usb_endpoint_xfer_isoc(&ep->desc)) {
1198 interval = xhci_parse_exponent_interval(udev, ep);
1199 break;
1202 * Fall through for interrupt endpoint interval decoding
1203 * since it uses the same rules as low speed interrupt
1204 * endpoints.
1207 case USB_SPEED_LOW:
1208 if (usb_endpoint_xfer_int(&ep->desc) ||
1209 usb_endpoint_xfer_isoc(&ep->desc)) {
1211 interval = xhci_parse_frame_interval(udev, ep);
1213 break;
1215 default:
1216 BUG();
1218 return EP_INTERVAL(interval);
1221 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1222 * High speed endpoint descriptors can define "the number of additional
1223 * transaction opportunities per microframe", but that goes in the Max Burst
1224 * endpoint context field.
1226 static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1227 struct usb_host_endpoint *ep)
1229 if (udev->speed != USB_SPEED_SUPER ||
1230 !usb_endpoint_xfer_isoc(&ep->desc))
1231 return 0;
1232 return ep->ss_ep_comp.bmAttributes;
1235 static u32 xhci_get_endpoint_type(struct usb_device *udev,
1236 struct usb_host_endpoint *ep)
1238 int in;
1239 u32 type;
1241 in = usb_endpoint_dir_in(&ep->desc);
1242 if (usb_endpoint_xfer_control(&ep->desc)) {
1243 type = EP_TYPE(CTRL_EP);
1244 } else if (usb_endpoint_xfer_bulk(&ep->desc)) {
1245 if (in)
1246 type = EP_TYPE(BULK_IN_EP);
1247 else
1248 type = EP_TYPE(BULK_OUT_EP);
1249 } else if (usb_endpoint_xfer_isoc(&ep->desc)) {
1250 if (in)
1251 type = EP_TYPE(ISOC_IN_EP);
1252 else
1253 type = EP_TYPE(ISOC_OUT_EP);
1254 } else if (usb_endpoint_xfer_int(&ep->desc)) {
1255 if (in)
1256 type = EP_TYPE(INT_IN_EP);
1257 else
1258 type = EP_TYPE(INT_OUT_EP);
1259 } else {
1260 BUG();
1262 return type;
1265 /* Return the maximum endpoint service interval time (ESIT) payload.
1266 * Basically, this is the maxpacket size, multiplied by the burst size
1267 * and mult size.
1269 static u32 xhci_get_max_esit_payload(struct xhci_hcd *xhci,
1270 struct usb_device *udev,
1271 struct usb_host_endpoint *ep)
1273 int max_burst;
1274 int max_packet;
1276 /* Only applies for interrupt or isochronous endpoints */
1277 if (usb_endpoint_xfer_control(&ep->desc) ||
1278 usb_endpoint_xfer_bulk(&ep->desc))
1279 return 0;
1281 if (udev->speed == USB_SPEED_SUPER)
1282 return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1284 max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
1285 max_burst = (usb_endpoint_maxp(&ep->desc) & 0x1800) >> 11;
1286 /* A 0 in max burst means 1 transfer per ESIT */
1287 return max_packet * (max_burst + 1);
1290 /* Set up an endpoint with one ring segment. Do not allocate stream rings.
1291 * Drivers will have to call usb_alloc_streams() to do that.
1293 int xhci_endpoint_init(struct xhci_hcd *xhci,
1294 struct xhci_virt_device *virt_dev,
1295 struct usb_device *udev,
1296 struct usb_host_endpoint *ep,
1297 gfp_t mem_flags)
1299 unsigned int ep_index;
1300 struct xhci_ep_ctx *ep_ctx;
1301 struct xhci_ring *ep_ring;
1302 unsigned int max_packet;
1303 unsigned int max_burst;
1304 u32 max_esit_payload;
1306 ep_index = xhci_get_endpoint_index(&ep->desc);
1307 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1309 /* Set up the endpoint ring */
1311 * Isochronous endpoint ring needs bigger size because one isoc URB
1312 * carries multiple packets and it will insert multiple tds to the
1313 * ring.
1314 * This should be replaced with dynamic ring resizing in the future.
1316 if (usb_endpoint_xfer_isoc(&ep->desc))
1317 virt_dev->eps[ep_index].new_ring =
1318 xhci_ring_alloc(xhci, 8, true, mem_flags);
1319 else
1320 virt_dev->eps[ep_index].new_ring =
1321 xhci_ring_alloc(xhci, 1, true, mem_flags);
1322 if (!virt_dev->eps[ep_index].new_ring) {
1323 /* Attempt to use the ring cache */
1324 if (virt_dev->num_rings_cached == 0)
1325 return -ENOMEM;
1326 virt_dev->eps[ep_index].new_ring =
1327 virt_dev->ring_cache[virt_dev->num_rings_cached];
1328 virt_dev->ring_cache[virt_dev->num_rings_cached] = NULL;
1329 virt_dev->num_rings_cached--;
1330 xhci_reinit_cached_ring(xhci, virt_dev->eps[ep_index].new_ring);
1332 virt_dev->eps[ep_index].skip = false;
1333 ep_ring = virt_dev->eps[ep_index].new_ring;
1334 ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma | ep_ring->cycle_state);
1336 ep_ctx->ep_info = cpu_to_le32(xhci_get_endpoint_interval(udev, ep)
1337 | EP_MULT(xhci_get_endpoint_mult(udev, ep)));
1339 /* FIXME dig Mult and streams info out of ep companion desc */
1341 /* Allow 3 retries for everything but isoc;
1342 * CErr shall be set to 0 for Isoch endpoints.
1344 if (!usb_endpoint_xfer_isoc(&ep->desc))
1345 ep_ctx->ep_info2 = cpu_to_le32(ERROR_COUNT(3));
1346 else
1347 ep_ctx->ep_info2 = cpu_to_le32(ERROR_COUNT(0));
1349 ep_ctx->ep_info2 |= cpu_to_le32(xhci_get_endpoint_type(udev, ep));
1351 /* Set the max packet size and max burst */
1352 switch (udev->speed) {
1353 case USB_SPEED_SUPER:
1354 max_packet = usb_endpoint_maxp(&ep->desc);
1355 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet));
1356 /* dig out max burst from ep companion desc */
1357 max_packet = ep->ss_ep_comp.bMaxBurst;
1358 ep_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(max_packet));
1359 break;
1360 case USB_SPEED_HIGH:
1361 /* bits 11:12 specify the number of additional transaction
1362 * opportunities per microframe (USB 2.0, section 9.6.6)
1364 if (usb_endpoint_xfer_isoc(&ep->desc) ||
1365 usb_endpoint_xfer_int(&ep->desc)) {
1366 max_burst = (usb_endpoint_maxp(&ep->desc)
1367 & 0x1800) >> 11;
1368 ep_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(max_burst));
1370 /* Fall through */
1371 case USB_SPEED_FULL:
1372 case USB_SPEED_LOW:
1373 max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
1374 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet));
1375 break;
1376 default:
1377 BUG();
1379 max_esit_payload = xhci_get_max_esit_payload(xhci, udev, ep);
1380 ep_ctx->tx_info = cpu_to_le32(MAX_ESIT_PAYLOAD_FOR_EP(max_esit_payload));
1383 * XXX no idea how to calculate the average TRB buffer length for bulk
1384 * endpoints, as the driver gives us no clue how big each scatter gather
1385 * list entry (or buffer) is going to be.
1387 * For isochronous and interrupt endpoints, we set it to the max
1388 * available, until we have new API in the USB core to allow drivers to
1389 * declare how much bandwidth they actually need.
1391 * Normally, it would be calculated by taking the total of the buffer
1392 * lengths in the TD and then dividing by the number of TRBs in a TD,
1393 * including link TRBs, No-op TRBs, and Event data TRBs. Since we don't
1394 * use Event Data TRBs, and we don't chain in a link TRB on short
1395 * transfers, we're basically dividing by 1.
1397 * xHCI 1.0 specification indicates that the Average TRB Length should
1398 * be set to 8 for control endpoints.
1400 if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version == 0x100)
1401 ep_ctx->tx_info |= cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(8));
1402 else
1403 ep_ctx->tx_info |=
1404 cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(max_esit_payload));
1406 /* FIXME Debug endpoint context */
1407 return 0;
1410 void xhci_endpoint_zero(struct xhci_hcd *xhci,
1411 struct xhci_virt_device *virt_dev,
1412 struct usb_host_endpoint *ep)
1414 unsigned int ep_index;
1415 struct xhci_ep_ctx *ep_ctx;
1417 ep_index = xhci_get_endpoint_index(&ep->desc);
1418 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1420 ep_ctx->ep_info = 0;
1421 ep_ctx->ep_info2 = 0;
1422 ep_ctx->deq = 0;
1423 ep_ctx->tx_info = 0;
1424 /* Don't free the endpoint ring until the set interface or configuration
1425 * request succeeds.
1429 void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1431 bw_info->ep_interval = 0;
1432 bw_info->mult = 0;
1433 bw_info->num_packets = 0;
1434 bw_info->max_packet_size = 0;
1435 bw_info->type = 0;
1436 bw_info->max_esit_payload = 0;
1439 void xhci_update_bw_info(struct xhci_hcd *xhci,
1440 struct xhci_container_ctx *in_ctx,
1441 struct xhci_input_control_ctx *ctrl_ctx,
1442 struct xhci_virt_device *virt_dev)
1444 struct xhci_bw_info *bw_info;
1445 struct xhci_ep_ctx *ep_ctx;
1446 unsigned int ep_type;
1447 int i;
1449 for (i = 1; i < 31; ++i) {
1450 bw_info = &virt_dev->eps[i].bw_info;
1452 /* We can't tell what endpoint type is being dropped, but
1453 * unconditionally clearing the bandwidth info for non-periodic
1454 * endpoints should be harmless because the info will never be
1455 * set in the first place.
1457 if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1458 /* Dropped endpoint */
1459 xhci_clear_endpoint_bw_info(bw_info);
1460 continue;
1463 if (EP_IS_ADDED(ctrl_ctx, i)) {
1464 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1465 ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1467 /* Ignore non-periodic endpoints */
1468 if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1469 ep_type != ISOC_IN_EP &&
1470 ep_type != INT_IN_EP)
1471 continue;
1473 /* Added or changed endpoint */
1474 bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1475 le32_to_cpu(ep_ctx->ep_info));
1476 bw_info->mult = CTX_TO_EP_MULT(
1477 le32_to_cpu(ep_ctx->ep_info));
1478 /* Number of packets is zero-based in the input context,
1479 * but we want one-based for the interval table.
1481 bw_info->num_packets = CTX_TO_MAX_BURST(
1482 le32_to_cpu(ep_ctx->ep_info2)) + 1;
1483 bw_info->max_packet_size = MAX_PACKET_DECODED(
1484 le32_to_cpu(ep_ctx->ep_info2));
1485 bw_info->type = ep_type;
1486 bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1487 le32_to_cpu(ep_ctx->tx_info));
1492 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1493 * Useful when you want to change one particular aspect of the endpoint and then
1494 * issue a configure endpoint command.
1496 void xhci_endpoint_copy(struct xhci_hcd *xhci,
1497 struct xhci_container_ctx *in_ctx,
1498 struct xhci_container_ctx *out_ctx,
1499 unsigned int ep_index)
1501 struct xhci_ep_ctx *out_ep_ctx;
1502 struct xhci_ep_ctx *in_ep_ctx;
1504 out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1505 in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1507 in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1508 in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1509 in_ep_ctx->deq = out_ep_ctx->deq;
1510 in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1513 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1514 * Useful when you want to change one particular aspect of the endpoint and then
1515 * issue a configure endpoint command. Only the context entries field matters,
1516 * but we'll copy the whole thing anyway.
1518 void xhci_slot_copy(struct xhci_hcd *xhci,
1519 struct xhci_container_ctx *in_ctx,
1520 struct xhci_container_ctx *out_ctx)
1522 struct xhci_slot_ctx *in_slot_ctx;
1523 struct xhci_slot_ctx *out_slot_ctx;
1525 in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1526 out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1528 in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1529 in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1530 in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1531 in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1534 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1535 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1537 int i;
1538 struct device *dev = xhci_to_hcd(xhci)->self.controller;
1539 int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1541 xhci_dbg(xhci, "Allocating %d scratchpad buffers\n", num_sp);
1543 if (!num_sp)
1544 return 0;
1546 xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
1547 if (!xhci->scratchpad)
1548 goto fail_sp;
1550 xhci->scratchpad->sp_array =
1551 pci_alloc_consistent(to_pci_dev(dev),
1552 num_sp * sizeof(u64),
1553 &xhci->scratchpad->sp_dma);
1554 if (!xhci->scratchpad->sp_array)
1555 goto fail_sp2;
1557 xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
1558 if (!xhci->scratchpad->sp_buffers)
1559 goto fail_sp3;
1561 xhci->scratchpad->sp_dma_buffers =
1562 kzalloc(sizeof(dma_addr_t) * num_sp, flags);
1564 if (!xhci->scratchpad->sp_dma_buffers)
1565 goto fail_sp4;
1567 xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1568 for (i = 0; i < num_sp; i++) {
1569 dma_addr_t dma;
1570 void *buf = pci_alloc_consistent(to_pci_dev(dev),
1571 xhci->page_size, &dma);
1572 if (!buf)
1573 goto fail_sp5;
1575 xhci->scratchpad->sp_array[i] = dma;
1576 xhci->scratchpad->sp_buffers[i] = buf;
1577 xhci->scratchpad->sp_dma_buffers[i] = dma;
1580 return 0;
1582 fail_sp5:
1583 for (i = i - 1; i >= 0; i--) {
1584 pci_free_consistent(to_pci_dev(dev), xhci->page_size,
1585 xhci->scratchpad->sp_buffers[i],
1586 xhci->scratchpad->sp_dma_buffers[i]);
1588 kfree(xhci->scratchpad->sp_dma_buffers);
1590 fail_sp4:
1591 kfree(xhci->scratchpad->sp_buffers);
1593 fail_sp3:
1594 pci_free_consistent(to_pci_dev(dev), num_sp * sizeof(u64),
1595 xhci->scratchpad->sp_array,
1596 xhci->scratchpad->sp_dma);
1598 fail_sp2:
1599 kfree(xhci->scratchpad);
1600 xhci->scratchpad = NULL;
1602 fail_sp:
1603 return -ENOMEM;
1606 static void scratchpad_free(struct xhci_hcd *xhci)
1608 int num_sp;
1609 int i;
1610 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
1612 if (!xhci->scratchpad)
1613 return;
1615 num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1617 for (i = 0; i < num_sp; i++) {
1618 pci_free_consistent(pdev, xhci->page_size,
1619 xhci->scratchpad->sp_buffers[i],
1620 xhci->scratchpad->sp_dma_buffers[i]);
1622 kfree(xhci->scratchpad->sp_dma_buffers);
1623 kfree(xhci->scratchpad->sp_buffers);
1624 pci_free_consistent(pdev, num_sp * sizeof(u64),
1625 xhci->scratchpad->sp_array,
1626 xhci->scratchpad->sp_dma);
1627 kfree(xhci->scratchpad);
1628 xhci->scratchpad = NULL;
1631 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1632 bool allocate_in_ctx, bool allocate_completion,
1633 gfp_t mem_flags)
1635 struct xhci_command *command;
1637 command = kzalloc(sizeof(*command), mem_flags);
1638 if (!command)
1639 return NULL;
1641 if (allocate_in_ctx) {
1642 command->in_ctx =
1643 xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1644 mem_flags);
1645 if (!command->in_ctx) {
1646 kfree(command);
1647 return NULL;
1651 if (allocate_completion) {
1652 command->completion =
1653 kzalloc(sizeof(struct completion), mem_flags);
1654 if (!command->completion) {
1655 xhci_free_container_ctx(xhci, command->in_ctx);
1656 kfree(command);
1657 return NULL;
1659 init_completion(command->completion);
1662 command->status = 0;
1663 INIT_LIST_HEAD(&command->cmd_list);
1664 return command;
1667 void xhci_urb_free_priv(struct xhci_hcd *xhci, struct urb_priv *urb_priv)
1669 if (urb_priv) {
1670 kfree(urb_priv->td[0]);
1671 kfree(urb_priv);
1675 void xhci_free_command(struct xhci_hcd *xhci,
1676 struct xhci_command *command)
1678 xhci_free_container_ctx(xhci,
1679 command->in_ctx);
1680 kfree(command->completion);
1681 kfree(command);
1684 void xhci_mem_cleanup(struct xhci_hcd *xhci)
1686 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
1687 int size;
1688 int i;
1690 /* Free the Event Ring Segment Table and the actual Event Ring */
1691 if (xhci->ir_set) {
1692 xhci_writel(xhci, 0, &xhci->ir_set->erst_size);
1693 xhci_write_64(xhci, 0, &xhci->ir_set->erst_base);
1694 xhci_write_64(xhci, 0, &xhci->ir_set->erst_dequeue);
1696 size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
1697 if (xhci->erst.entries)
1698 pci_free_consistent(pdev, size,
1699 xhci->erst.entries, xhci->erst.erst_dma_addr);
1700 xhci->erst.entries = NULL;
1701 xhci_dbg(xhci, "Freed ERST\n");
1702 if (xhci->event_ring)
1703 xhci_ring_free(xhci, xhci->event_ring);
1704 xhci->event_ring = NULL;
1705 xhci_dbg(xhci, "Freed event ring\n");
1707 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
1708 if (xhci->cmd_ring)
1709 xhci_ring_free(xhci, xhci->cmd_ring);
1710 xhci->cmd_ring = NULL;
1711 xhci_dbg(xhci, "Freed command ring\n");
1713 for (i = 1; i < MAX_HC_SLOTS; ++i)
1714 xhci_free_virt_device(xhci, i);
1716 if (xhci->segment_pool)
1717 dma_pool_destroy(xhci->segment_pool);
1718 xhci->segment_pool = NULL;
1719 xhci_dbg(xhci, "Freed segment pool\n");
1721 if (xhci->device_pool)
1722 dma_pool_destroy(xhci->device_pool);
1723 xhci->device_pool = NULL;
1724 xhci_dbg(xhci, "Freed device context pool\n");
1726 if (xhci->small_streams_pool)
1727 dma_pool_destroy(xhci->small_streams_pool);
1728 xhci->small_streams_pool = NULL;
1729 xhci_dbg(xhci, "Freed small stream array pool\n");
1731 if (xhci->medium_streams_pool)
1732 dma_pool_destroy(xhci->medium_streams_pool);
1733 xhci->medium_streams_pool = NULL;
1734 xhci_dbg(xhci, "Freed medium stream array pool\n");
1736 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
1737 if (xhci->dcbaa)
1738 pci_free_consistent(pdev, sizeof(*xhci->dcbaa),
1739 xhci->dcbaa, xhci->dcbaa->dma);
1740 xhci->dcbaa = NULL;
1742 scratchpad_free(xhci);
1744 xhci->num_usb2_ports = 0;
1745 xhci->num_usb3_ports = 0;
1746 kfree(xhci->usb2_ports);
1747 kfree(xhci->usb3_ports);
1748 kfree(xhci->port_array);
1749 kfree(xhci->rh_bw);
1751 xhci->page_size = 0;
1752 xhci->page_shift = 0;
1753 xhci->bus_state[0].bus_suspended = 0;
1754 xhci->bus_state[1].bus_suspended = 0;
1757 static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1758 struct xhci_segment *input_seg,
1759 union xhci_trb *start_trb,
1760 union xhci_trb *end_trb,
1761 dma_addr_t input_dma,
1762 struct xhci_segment *result_seg,
1763 char *test_name, int test_number)
1765 unsigned long long start_dma;
1766 unsigned long long end_dma;
1767 struct xhci_segment *seg;
1769 start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1770 end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1772 seg = trb_in_td(input_seg, start_trb, end_trb, input_dma);
1773 if (seg != result_seg) {
1774 xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1775 test_name, test_number);
1776 xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1777 "input DMA 0x%llx\n",
1778 input_seg,
1779 (unsigned long long) input_dma);
1780 xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1781 "ending TRB %p (0x%llx DMA)\n",
1782 start_trb, start_dma,
1783 end_trb, end_dma);
1784 xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1785 result_seg, seg);
1786 return -1;
1788 return 0;
1791 /* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1792 static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci, gfp_t mem_flags)
1794 struct {
1795 dma_addr_t input_dma;
1796 struct xhci_segment *result_seg;
1797 } simple_test_vector [] = {
1798 /* A zeroed DMA field should fail */
1799 { 0, NULL },
1800 /* One TRB before the ring start should fail */
1801 { xhci->event_ring->first_seg->dma - 16, NULL },
1802 /* One byte before the ring start should fail */
1803 { xhci->event_ring->first_seg->dma - 1, NULL },
1804 /* Starting TRB should succeed */
1805 { xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
1806 /* Ending TRB should succeed */
1807 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
1808 xhci->event_ring->first_seg },
1809 /* One byte after the ring end should fail */
1810 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
1811 /* One TRB after the ring end should fail */
1812 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
1813 /* An address of all ones should fail */
1814 { (dma_addr_t) (~0), NULL },
1816 struct {
1817 struct xhci_segment *input_seg;
1818 union xhci_trb *start_trb;
1819 union xhci_trb *end_trb;
1820 dma_addr_t input_dma;
1821 struct xhci_segment *result_seg;
1822 } complex_test_vector [] = {
1823 /* Test feeding a valid DMA address from a different ring */
1824 { .input_seg = xhci->event_ring->first_seg,
1825 .start_trb = xhci->event_ring->first_seg->trbs,
1826 .end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1827 .input_dma = xhci->cmd_ring->first_seg->dma,
1828 .result_seg = NULL,
1830 /* Test feeding a valid end TRB from a different ring */
1831 { .input_seg = xhci->event_ring->first_seg,
1832 .start_trb = xhci->event_ring->first_seg->trbs,
1833 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1834 .input_dma = xhci->cmd_ring->first_seg->dma,
1835 .result_seg = NULL,
1837 /* Test feeding a valid start and end TRB from a different ring */
1838 { .input_seg = xhci->event_ring->first_seg,
1839 .start_trb = xhci->cmd_ring->first_seg->trbs,
1840 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1841 .input_dma = xhci->cmd_ring->first_seg->dma,
1842 .result_seg = NULL,
1844 /* TRB in this ring, but after this TD */
1845 { .input_seg = xhci->event_ring->first_seg,
1846 .start_trb = &xhci->event_ring->first_seg->trbs[0],
1847 .end_trb = &xhci->event_ring->first_seg->trbs[3],
1848 .input_dma = xhci->event_ring->first_seg->dma + 4*16,
1849 .result_seg = NULL,
1851 /* TRB in this ring, but before this TD */
1852 { .input_seg = xhci->event_ring->first_seg,
1853 .start_trb = &xhci->event_ring->first_seg->trbs[3],
1854 .end_trb = &xhci->event_ring->first_seg->trbs[6],
1855 .input_dma = xhci->event_ring->first_seg->dma + 2*16,
1856 .result_seg = NULL,
1858 /* TRB in this ring, but after this wrapped TD */
1859 { .input_seg = xhci->event_ring->first_seg,
1860 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1861 .end_trb = &xhci->event_ring->first_seg->trbs[1],
1862 .input_dma = xhci->event_ring->first_seg->dma + 2*16,
1863 .result_seg = NULL,
1865 /* TRB in this ring, but before this wrapped TD */
1866 { .input_seg = xhci->event_ring->first_seg,
1867 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1868 .end_trb = &xhci->event_ring->first_seg->trbs[1],
1869 .input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
1870 .result_seg = NULL,
1872 /* TRB not in this ring, and we have a wrapped TD */
1873 { .input_seg = xhci->event_ring->first_seg,
1874 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1875 .end_trb = &xhci->event_ring->first_seg->trbs[1],
1876 .input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
1877 .result_seg = NULL,
1881 unsigned int num_tests;
1882 int i, ret;
1884 num_tests = ARRAY_SIZE(simple_test_vector);
1885 for (i = 0; i < num_tests; i++) {
1886 ret = xhci_test_trb_in_td(xhci,
1887 xhci->event_ring->first_seg,
1888 xhci->event_ring->first_seg->trbs,
1889 &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1890 simple_test_vector[i].input_dma,
1891 simple_test_vector[i].result_seg,
1892 "Simple", i);
1893 if (ret < 0)
1894 return ret;
1897 num_tests = ARRAY_SIZE(complex_test_vector);
1898 for (i = 0; i < num_tests; i++) {
1899 ret = xhci_test_trb_in_td(xhci,
1900 complex_test_vector[i].input_seg,
1901 complex_test_vector[i].start_trb,
1902 complex_test_vector[i].end_trb,
1903 complex_test_vector[i].input_dma,
1904 complex_test_vector[i].result_seg,
1905 "Complex", i);
1906 if (ret < 0)
1907 return ret;
1909 xhci_dbg(xhci, "TRB math tests passed.\n");
1910 return 0;
1913 static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
1915 u64 temp;
1916 dma_addr_t deq;
1918 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
1919 xhci->event_ring->dequeue);
1920 if (deq == 0 && !in_interrupt())
1921 xhci_warn(xhci, "WARN something wrong with SW event ring "
1922 "dequeue ptr.\n");
1923 /* Update HC event ring dequeue pointer */
1924 temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
1925 temp &= ERST_PTR_MASK;
1926 /* Don't clear the EHB bit (which is RW1C) because
1927 * there might be more events to service.
1929 temp &= ~ERST_EHB;
1930 xhci_dbg(xhci, "// Write event ring dequeue pointer, "
1931 "preserving EHB bit\n");
1932 xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
1933 &xhci->ir_set->erst_dequeue);
1936 static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
1937 __le32 __iomem *addr, u8 major_revision)
1939 u32 temp, port_offset, port_count;
1940 int i;
1942 if (major_revision > 0x03) {
1943 xhci_warn(xhci, "Ignoring unknown port speed, "
1944 "Ext Cap %p, revision = 0x%x\n",
1945 addr, major_revision);
1946 /* Ignoring port protocol we can't understand. FIXME */
1947 return;
1950 /* Port offset and count in the third dword, see section 7.2 */
1951 temp = xhci_readl(xhci, addr + 2);
1952 port_offset = XHCI_EXT_PORT_OFF(temp);
1953 port_count = XHCI_EXT_PORT_COUNT(temp);
1954 xhci_dbg(xhci, "Ext Cap %p, port offset = %u, "
1955 "count = %u, revision = 0x%x\n",
1956 addr, port_offset, port_count, major_revision);
1957 /* Port count includes the current port offset */
1958 if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
1959 /* WTF? "Valid values are ‘1’ to MaxPorts" */
1960 return;
1961 port_offset--;
1962 for (i = port_offset; i < (port_offset + port_count); i++) {
1963 /* Duplicate entry. Ignore the port if the revisions differ. */
1964 if (xhci->port_array[i] != 0) {
1965 xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
1966 " port %u\n", addr, i);
1967 xhci_warn(xhci, "Port was marked as USB %u, "
1968 "duplicated as USB %u\n",
1969 xhci->port_array[i], major_revision);
1970 /* Only adjust the roothub port counts if we haven't
1971 * found a similar duplicate.
1973 if (xhci->port_array[i] != major_revision &&
1974 xhci->port_array[i] != DUPLICATE_ENTRY) {
1975 if (xhci->port_array[i] == 0x03)
1976 xhci->num_usb3_ports--;
1977 else
1978 xhci->num_usb2_ports--;
1979 xhci->port_array[i] = DUPLICATE_ENTRY;
1981 /* FIXME: Should we disable the port? */
1982 continue;
1984 xhci->port_array[i] = major_revision;
1985 if (major_revision == 0x03)
1986 xhci->num_usb3_ports++;
1987 else
1988 xhci->num_usb2_ports++;
1990 /* FIXME: Should we disable ports not in the Extended Capabilities? */
1994 * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
1995 * specify what speeds each port is supposed to be. We can't count on the port
1996 * speed bits in the PORTSC register being correct until a device is connected,
1997 * but we need to set up the two fake roothubs with the correct number of USB
1998 * 3.0 and USB 2.0 ports at host controller initialization time.
2000 static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2002 __le32 __iomem *addr;
2003 u32 offset;
2004 unsigned int num_ports;
2005 int i, j, port_index;
2007 addr = &xhci->cap_regs->hcc_params;
2008 offset = XHCI_HCC_EXT_CAPS(xhci_readl(xhci, addr));
2009 if (offset == 0) {
2010 xhci_err(xhci, "No Extended Capability registers, "
2011 "unable to set up roothub.\n");
2012 return -ENODEV;
2015 num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2016 xhci->port_array = kzalloc(sizeof(*xhci->port_array)*num_ports, flags);
2017 if (!xhci->port_array)
2018 return -ENOMEM;
2020 xhci->rh_bw = kzalloc(sizeof(*xhci->rh_bw)*num_ports, flags);
2021 if (!xhci->rh_bw)
2022 return -ENOMEM;
2023 for (i = 0; i < num_ports; i++) {
2024 struct xhci_interval_bw_table *bw_table;
2026 INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2027 bw_table = &xhci->rh_bw[i].bw_table;
2028 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2029 INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2033 * For whatever reason, the first capability offset is from the
2034 * capability register base, not from the HCCPARAMS register.
2035 * See section 5.3.6 for offset calculation.
2037 addr = &xhci->cap_regs->hc_capbase + offset;
2038 while (1) {
2039 u32 cap_id;
2041 cap_id = xhci_readl(xhci, addr);
2042 if (XHCI_EXT_CAPS_ID(cap_id) == XHCI_EXT_CAPS_PROTOCOL)
2043 xhci_add_in_port(xhci, num_ports, addr,
2044 (u8) XHCI_EXT_PORT_MAJOR(cap_id));
2045 offset = XHCI_EXT_CAPS_NEXT(cap_id);
2046 if (!offset || (xhci->num_usb2_ports + xhci->num_usb3_ports)
2047 == num_ports)
2048 break;
2050 * Once you're into the Extended Capabilities, the offset is
2051 * always relative to the register holding the offset.
2053 addr += offset;
2056 if (xhci->num_usb2_ports == 0 && xhci->num_usb3_ports == 0) {
2057 xhci_warn(xhci, "No ports on the roothubs?\n");
2058 return -ENODEV;
2060 xhci_dbg(xhci, "Found %u USB 2.0 ports and %u USB 3.0 ports.\n",
2061 xhci->num_usb2_ports, xhci->num_usb3_ports);
2063 /* Place limits on the number of roothub ports so that the hub
2064 * descriptors aren't longer than the USB core will allocate.
2066 if (xhci->num_usb3_ports > 15) {
2067 xhci_dbg(xhci, "Limiting USB 3.0 roothub ports to 15.\n");
2068 xhci->num_usb3_ports = 15;
2070 if (xhci->num_usb2_ports > USB_MAXCHILDREN) {
2071 xhci_dbg(xhci, "Limiting USB 2.0 roothub ports to %u.\n",
2072 USB_MAXCHILDREN);
2073 xhci->num_usb2_ports = USB_MAXCHILDREN;
2077 * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
2078 * Not sure how the USB core will handle a hub with no ports...
2080 if (xhci->num_usb2_ports) {
2081 xhci->usb2_ports = kmalloc(sizeof(*xhci->usb2_ports)*
2082 xhci->num_usb2_ports, flags);
2083 if (!xhci->usb2_ports)
2084 return -ENOMEM;
2086 port_index = 0;
2087 for (i = 0; i < num_ports; i++) {
2088 if (xhci->port_array[i] == 0x03 ||
2089 xhci->port_array[i] == 0 ||
2090 xhci->port_array[i] == DUPLICATE_ENTRY)
2091 continue;
2093 xhci->usb2_ports[port_index] =
2094 &xhci->op_regs->port_status_base +
2095 NUM_PORT_REGS*i;
2096 xhci_dbg(xhci, "USB 2.0 port at index %u, "
2097 "addr = %p\n", i,
2098 xhci->usb2_ports[port_index]);
2099 port_index++;
2100 if (port_index == xhci->num_usb2_ports)
2101 break;
2104 if (xhci->num_usb3_ports) {
2105 xhci->usb3_ports = kmalloc(sizeof(*xhci->usb3_ports)*
2106 xhci->num_usb3_ports, flags);
2107 if (!xhci->usb3_ports)
2108 return -ENOMEM;
2110 port_index = 0;
2111 for (i = 0; i < num_ports; i++)
2112 if (xhci->port_array[i] == 0x03) {
2113 xhci->usb3_ports[port_index] =
2114 &xhci->op_regs->port_status_base +
2115 NUM_PORT_REGS*i;
2116 xhci_dbg(xhci, "USB 3.0 port at index %u, "
2117 "addr = %p\n", i,
2118 xhci->usb3_ports[port_index]);
2119 port_index++;
2120 if (port_index == xhci->num_usb3_ports)
2121 break;
2124 return 0;
2127 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2129 dma_addr_t dma;
2130 struct device *dev = xhci_to_hcd(xhci)->self.controller;
2131 unsigned int val, val2;
2132 u64 val_64;
2133 struct xhci_segment *seg;
2134 u32 page_size;
2135 int i;
2137 page_size = xhci_readl(xhci, &xhci->op_regs->page_size);
2138 xhci_dbg(xhci, "Supported page size register = 0x%x\n", page_size);
2139 for (i = 0; i < 16; i++) {
2140 if ((0x1 & page_size) != 0)
2141 break;
2142 page_size = page_size >> 1;
2144 if (i < 16)
2145 xhci_dbg(xhci, "Supported page size of %iK\n", (1 << (i+12)) / 1024);
2146 else
2147 xhci_warn(xhci, "WARN: no supported page size\n");
2148 /* Use 4K pages, since that's common and the minimum the HC supports */
2149 xhci->page_shift = 12;
2150 xhci->page_size = 1 << xhci->page_shift;
2151 xhci_dbg(xhci, "HCD page size set to %iK\n", xhci->page_size / 1024);
2154 * Program the Number of Device Slots Enabled field in the CONFIG
2155 * register with the max value of slots the HC can handle.
2157 val = HCS_MAX_SLOTS(xhci_readl(xhci, &xhci->cap_regs->hcs_params1));
2158 xhci_dbg(xhci, "// xHC can handle at most %d device slots.\n",
2159 (unsigned int) val);
2160 val2 = xhci_readl(xhci, &xhci->op_regs->config_reg);
2161 val |= (val2 & ~HCS_SLOTS_MASK);
2162 xhci_dbg(xhci, "// Setting Max device slots reg = 0x%x.\n",
2163 (unsigned int) val);
2164 xhci_writel(xhci, val, &xhci->op_regs->config_reg);
2167 * Section 5.4.8 - doorbell array must be
2168 * "physically contiguous and 64-byte (cache line) aligned".
2170 xhci->dcbaa = pci_alloc_consistent(to_pci_dev(dev),
2171 sizeof(*xhci->dcbaa), &dma);
2172 if (!xhci->dcbaa)
2173 goto fail;
2174 memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
2175 xhci->dcbaa->dma = dma;
2176 xhci_dbg(xhci, "// Device context base array address = 0x%llx (DMA), %p (virt)\n",
2177 (unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
2178 xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
2181 * Initialize the ring segment pool. The ring must be a contiguous
2182 * structure comprised of TRBs. The TRBs must be 16 byte aligned,
2183 * however, the command ring segment needs 64-byte aligned segments,
2184 * so we pick the greater alignment need.
2186 xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2187 SEGMENT_SIZE, 64, xhci->page_size);
2189 /* See Table 46 and Note on Figure 55 */
2190 xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2191 2112, 64, xhci->page_size);
2192 if (!xhci->segment_pool || !xhci->device_pool)
2193 goto fail;
2195 /* Linear stream context arrays don't have any boundary restrictions,
2196 * and only need to be 16-byte aligned.
2198 xhci->small_streams_pool =
2199 dma_pool_create("xHCI 256 byte stream ctx arrays",
2200 dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2201 xhci->medium_streams_pool =
2202 dma_pool_create("xHCI 1KB stream ctx arrays",
2203 dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2204 /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2205 * will be allocated with pci_alloc_consistent()
2208 if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2209 goto fail;
2211 /* Set up the command ring to have one segments for now. */
2212 xhci->cmd_ring = xhci_ring_alloc(xhci, 1, true, flags);
2213 if (!xhci->cmd_ring)
2214 goto fail;
2215 xhci_dbg(xhci, "Allocated command ring at %p\n", xhci->cmd_ring);
2216 xhci_dbg(xhci, "First segment DMA is 0x%llx\n",
2217 (unsigned long long)xhci->cmd_ring->first_seg->dma);
2219 /* Set the address in the Command Ring Control register */
2220 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2221 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2222 (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2223 xhci->cmd_ring->cycle_state;
2224 xhci_dbg(xhci, "// Setting command ring address to 0x%x\n", val);
2225 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2226 xhci_dbg_cmd_ptrs(xhci);
2228 val = xhci_readl(xhci, &xhci->cap_regs->db_off);
2229 val &= DBOFF_MASK;
2230 xhci_dbg(xhci, "// Doorbell array is located at offset 0x%x"
2231 " from cap regs base addr\n", val);
2232 xhci->dba = (void __iomem *) xhci->cap_regs + val;
2233 xhci_dbg_regs(xhci);
2234 xhci_print_run_regs(xhci);
2235 /* Set ir_set to interrupt register set 0 */
2236 xhci->ir_set = &xhci->run_regs->ir_set[0];
2239 * Event ring setup: Allocate a normal ring, but also setup
2240 * the event ring segment table (ERST). Section 4.9.3.
2242 xhci_dbg(xhci, "// Allocating event ring\n");
2243 xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, false, flags);
2244 if (!xhci->event_ring)
2245 goto fail;
2246 if (xhci_check_trb_in_td_math(xhci, flags) < 0)
2247 goto fail;
2249 xhci->erst.entries = pci_alloc_consistent(to_pci_dev(dev),
2250 sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS, &dma);
2251 if (!xhci->erst.entries)
2252 goto fail;
2253 xhci_dbg(xhci, "// Allocated event ring segment table at 0x%llx\n",
2254 (unsigned long long)dma);
2256 memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
2257 xhci->erst.num_entries = ERST_NUM_SEGS;
2258 xhci->erst.erst_dma_addr = dma;
2259 xhci_dbg(xhci, "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx\n",
2260 xhci->erst.num_entries,
2261 xhci->erst.entries,
2262 (unsigned long long)xhci->erst.erst_dma_addr);
2264 /* set ring base address and size for each segment table entry */
2265 for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
2266 struct xhci_erst_entry *entry = &xhci->erst.entries[val];
2267 entry->seg_addr = cpu_to_le64(seg->dma);
2268 entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
2269 entry->rsvd = 0;
2270 seg = seg->next;
2273 /* set ERST count with the number of entries in the segment table */
2274 val = xhci_readl(xhci, &xhci->ir_set->erst_size);
2275 val &= ERST_SIZE_MASK;
2276 val |= ERST_NUM_SEGS;
2277 xhci_dbg(xhci, "// Write ERST size = %i to ir_set 0 (some bits preserved)\n",
2278 val);
2279 xhci_writel(xhci, val, &xhci->ir_set->erst_size);
2281 xhci_dbg(xhci, "// Set ERST entries to point to event ring.\n");
2282 /* set the segment table base address */
2283 xhci_dbg(xhci, "// Set ERST base address for ir_set 0 = 0x%llx\n",
2284 (unsigned long long)xhci->erst.erst_dma_addr);
2285 val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
2286 val_64 &= ERST_PTR_MASK;
2287 val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
2288 xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
2290 /* Set the event ring dequeue address */
2291 xhci_set_hc_event_deq(xhci);
2292 xhci_dbg(xhci, "Wrote ERST address to ir_set 0.\n");
2293 xhci_print_ir_set(xhci, 0);
2296 * XXX: Might need to set the Interrupter Moderation Register to
2297 * something other than the default (~1ms minimum between interrupts).
2298 * See section 5.5.1.2.
2300 init_completion(&xhci->addr_dev);
2301 for (i = 0; i < MAX_HC_SLOTS; ++i)
2302 xhci->devs[i] = NULL;
2303 for (i = 0; i < USB_MAXCHILDREN; ++i) {
2304 xhci->bus_state[0].resume_done[i] = 0;
2305 xhci->bus_state[1].resume_done[i] = 0;
2308 if (scratchpad_alloc(xhci, flags))
2309 goto fail;
2310 if (xhci_setup_port_arrays(xhci, flags))
2311 goto fail;
2313 return 0;
2315 fail:
2316 xhci_warn(xhci, "Couldn't initialize memory\n");
2317 xhci_mem_cleanup(xhci);
2318 return -ENOMEM;