x86, relocs: Remove an unused variable
[zen-stable.git] / fs / btrfs / compression.c
blobd02c27cd14c7073e05171150dc9b9d14bf78013c
1 /*
2 * Copyright (C) 2008 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/slab.h>
35 #include "compat.h"
36 #include "ctree.h"
37 #include "disk-io.h"
38 #include "transaction.h"
39 #include "btrfs_inode.h"
40 #include "volumes.h"
41 #include "ordered-data.h"
42 #include "compression.h"
43 #include "extent_io.h"
44 #include "extent_map.h"
46 struct compressed_bio {
47 /* number of bios pending for this compressed extent */
48 atomic_t pending_bios;
50 /* the pages with the compressed data on them */
51 struct page **compressed_pages;
53 /* inode that owns this data */
54 struct inode *inode;
56 /* starting offset in the inode for our pages */
57 u64 start;
59 /* number of bytes in the inode we're working on */
60 unsigned long len;
62 /* number of bytes on disk */
63 unsigned long compressed_len;
65 /* the compression algorithm for this bio */
66 int compress_type;
68 /* number of compressed pages in the array */
69 unsigned long nr_pages;
71 /* IO errors */
72 int errors;
73 int mirror_num;
75 /* for reads, this is the bio we are copying the data into */
76 struct bio *orig_bio;
79 * the start of a variable length array of checksums only
80 * used by reads
82 u32 sums;
85 static inline int compressed_bio_size(struct btrfs_root *root,
86 unsigned long disk_size)
88 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
90 return sizeof(struct compressed_bio) +
91 ((disk_size + root->sectorsize - 1) / root->sectorsize) *
92 csum_size;
95 static struct bio *compressed_bio_alloc(struct block_device *bdev,
96 u64 first_byte, gfp_t gfp_flags)
98 int nr_vecs;
100 nr_vecs = bio_get_nr_vecs(bdev);
101 return btrfs_bio_alloc(bdev, first_byte >> 9, nr_vecs, gfp_flags);
104 static int check_compressed_csum(struct inode *inode,
105 struct compressed_bio *cb,
106 u64 disk_start)
108 int ret;
109 struct btrfs_root *root = BTRFS_I(inode)->root;
110 struct page *page;
111 unsigned long i;
112 char *kaddr;
113 u32 csum;
114 u32 *cb_sum = &cb->sums;
116 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
117 return 0;
119 for (i = 0; i < cb->nr_pages; i++) {
120 page = cb->compressed_pages[i];
121 csum = ~(u32)0;
123 kaddr = kmap_atomic(page, KM_USER0);
124 csum = btrfs_csum_data(root, kaddr, csum, PAGE_CACHE_SIZE);
125 btrfs_csum_final(csum, (char *)&csum);
126 kunmap_atomic(kaddr, KM_USER0);
128 if (csum != *cb_sum) {
129 printk(KERN_INFO "btrfs csum failed ino %llu "
130 "extent %llu csum %u "
131 "wanted %u mirror %d\n",
132 (unsigned long long)btrfs_ino(inode),
133 (unsigned long long)disk_start,
134 csum, *cb_sum, cb->mirror_num);
135 ret = -EIO;
136 goto fail;
138 cb_sum++;
141 ret = 0;
142 fail:
143 return ret;
146 /* when we finish reading compressed pages from the disk, we
147 * decompress them and then run the bio end_io routines on the
148 * decompressed pages (in the inode address space).
150 * This allows the checksumming and other IO error handling routines
151 * to work normally
153 * The compressed pages are freed here, and it must be run
154 * in process context
156 static void end_compressed_bio_read(struct bio *bio, int err)
158 struct compressed_bio *cb = bio->bi_private;
159 struct inode *inode;
160 struct page *page;
161 unsigned long index;
162 int ret;
164 if (err)
165 cb->errors = 1;
167 /* if there are more bios still pending for this compressed
168 * extent, just exit
170 if (!atomic_dec_and_test(&cb->pending_bios))
171 goto out;
173 inode = cb->inode;
174 ret = check_compressed_csum(inode, cb, (u64)bio->bi_sector << 9);
175 if (ret)
176 goto csum_failed;
178 /* ok, we're the last bio for this extent, lets start
179 * the decompression.
181 ret = btrfs_decompress_biovec(cb->compress_type,
182 cb->compressed_pages,
183 cb->start,
184 cb->orig_bio->bi_io_vec,
185 cb->orig_bio->bi_vcnt,
186 cb->compressed_len);
187 csum_failed:
188 if (ret)
189 cb->errors = 1;
191 /* release the compressed pages */
192 index = 0;
193 for (index = 0; index < cb->nr_pages; index++) {
194 page = cb->compressed_pages[index];
195 page->mapping = NULL;
196 page_cache_release(page);
199 /* do io completion on the original bio */
200 if (cb->errors) {
201 bio_io_error(cb->orig_bio);
202 } else {
203 int bio_index = 0;
204 struct bio_vec *bvec = cb->orig_bio->bi_io_vec;
207 * we have verified the checksum already, set page
208 * checked so the end_io handlers know about it
210 while (bio_index < cb->orig_bio->bi_vcnt) {
211 SetPageChecked(bvec->bv_page);
212 bvec++;
213 bio_index++;
215 bio_endio(cb->orig_bio, 0);
218 /* finally free the cb struct */
219 kfree(cb->compressed_pages);
220 kfree(cb);
221 out:
222 bio_put(bio);
226 * Clear the writeback bits on all of the file
227 * pages for a compressed write
229 static noinline int end_compressed_writeback(struct inode *inode, u64 start,
230 unsigned long ram_size)
232 unsigned long index = start >> PAGE_CACHE_SHIFT;
233 unsigned long end_index = (start + ram_size - 1) >> PAGE_CACHE_SHIFT;
234 struct page *pages[16];
235 unsigned long nr_pages = end_index - index + 1;
236 int i;
237 int ret;
239 while (nr_pages > 0) {
240 ret = find_get_pages_contig(inode->i_mapping, index,
241 min_t(unsigned long,
242 nr_pages, ARRAY_SIZE(pages)), pages);
243 if (ret == 0) {
244 nr_pages -= 1;
245 index += 1;
246 continue;
248 for (i = 0; i < ret; i++) {
249 end_page_writeback(pages[i]);
250 page_cache_release(pages[i]);
252 nr_pages -= ret;
253 index += ret;
255 /* the inode may be gone now */
256 return 0;
260 * do the cleanup once all the compressed pages hit the disk.
261 * This will clear writeback on the file pages and free the compressed
262 * pages.
264 * This also calls the writeback end hooks for the file pages so that
265 * metadata and checksums can be updated in the file.
267 static void end_compressed_bio_write(struct bio *bio, int err)
269 struct extent_io_tree *tree;
270 struct compressed_bio *cb = bio->bi_private;
271 struct inode *inode;
272 struct page *page;
273 unsigned long index;
275 if (err)
276 cb->errors = 1;
278 /* if there are more bios still pending for this compressed
279 * extent, just exit
281 if (!atomic_dec_and_test(&cb->pending_bios))
282 goto out;
284 /* ok, we're the last bio for this extent, step one is to
285 * call back into the FS and do all the end_io operations
287 inode = cb->inode;
288 tree = &BTRFS_I(inode)->io_tree;
289 cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
290 tree->ops->writepage_end_io_hook(cb->compressed_pages[0],
291 cb->start,
292 cb->start + cb->len - 1,
293 NULL, 1);
294 cb->compressed_pages[0]->mapping = NULL;
296 end_compressed_writeback(inode, cb->start, cb->len);
297 /* note, our inode could be gone now */
300 * release the compressed pages, these came from alloc_page and
301 * are not attached to the inode at all
303 index = 0;
304 for (index = 0; index < cb->nr_pages; index++) {
305 page = cb->compressed_pages[index];
306 page->mapping = NULL;
307 page_cache_release(page);
310 /* finally free the cb struct */
311 kfree(cb->compressed_pages);
312 kfree(cb);
313 out:
314 bio_put(bio);
318 * worker function to build and submit bios for previously compressed pages.
319 * The corresponding pages in the inode should be marked for writeback
320 * and the compressed pages should have a reference on them for dropping
321 * when the IO is complete.
323 * This also checksums the file bytes and gets things ready for
324 * the end io hooks.
326 int btrfs_submit_compressed_write(struct inode *inode, u64 start,
327 unsigned long len, u64 disk_start,
328 unsigned long compressed_len,
329 struct page **compressed_pages,
330 unsigned long nr_pages)
332 struct bio *bio = NULL;
333 struct btrfs_root *root = BTRFS_I(inode)->root;
334 struct compressed_bio *cb;
335 unsigned long bytes_left;
336 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
337 int pg_index = 0;
338 struct page *page;
339 u64 first_byte = disk_start;
340 struct block_device *bdev;
341 int ret;
342 int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
344 WARN_ON(start & ((u64)PAGE_CACHE_SIZE - 1));
345 cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS);
346 if (!cb)
347 return -ENOMEM;
348 atomic_set(&cb->pending_bios, 0);
349 cb->errors = 0;
350 cb->inode = inode;
351 cb->start = start;
352 cb->len = len;
353 cb->mirror_num = 0;
354 cb->compressed_pages = compressed_pages;
355 cb->compressed_len = compressed_len;
356 cb->orig_bio = NULL;
357 cb->nr_pages = nr_pages;
359 bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
361 bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
362 if(!bio) {
363 kfree(cb);
364 return -ENOMEM;
366 bio->bi_private = cb;
367 bio->bi_end_io = end_compressed_bio_write;
368 atomic_inc(&cb->pending_bios);
370 /* create and submit bios for the compressed pages */
371 bytes_left = compressed_len;
372 for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
373 page = compressed_pages[pg_index];
374 page->mapping = inode->i_mapping;
375 if (bio->bi_size)
376 ret = io_tree->ops->merge_bio_hook(page, 0,
377 PAGE_CACHE_SIZE,
378 bio, 0);
379 else
380 ret = 0;
382 page->mapping = NULL;
383 if (ret || bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) <
384 PAGE_CACHE_SIZE) {
385 bio_get(bio);
388 * inc the count before we submit the bio so
389 * we know the end IO handler won't happen before
390 * we inc the count. Otherwise, the cb might get
391 * freed before we're done setting it up
393 atomic_inc(&cb->pending_bios);
394 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
395 BUG_ON(ret);
397 if (!skip_sum) {
398 ret = btrfs_csum_one_bio(root, inode, bio,
399 start, 1);
400 BUG_ON(ret);
403 ret = btrfs_map_bio(root, WRITE, bio, 0, 1);
404 BUG_ON(ret);
406 bio_put(bio);
408 bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
409 bio->bi_private = cb;
410 bio->bi_end_io = end_compressed_bio_write;
411 bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
413 if (bytes_left < PAGE_CACHE_SIZE) {
414 printk("bytes left %lu compress len %lu nr %lu\n",
415 bytes_left, cb->compressed_len, cb->nr_pages);
417 bytes_left -= PAGE_CACHE_SIZE;
418 first_byte += PAGE_CACHE_SIZE;
419 cond_resched();
421 bio_get(bio);
423 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
424 BUG_ON(ret);
426 if (!skip_sum) {
427 ret = btrfs_csum_one_bio(root, inode, bio, start, 1);
428 BUG_ON(ret);
431 ret = btrfs_map_bio(root, WRITE, bio, 0, 1);
432 BUG_ON(ret);
434 bio_put(bio);
435 return 0;
438 static noinline int add_ra_bio_pages(struct inode *inode,
439 u64 compressed_end,
440 struct compressed_bio *cb)
442 unsigned long end_index;
443 unsigned long pg_index;
444 u64 last_offset;
445 u64 isize = i_size_read(inode);
446 int ret;
447 struct page *page;
448 unsigned long nr_pages = 0;
449 struct extent_map *em;
450 struct address_space *mapping = inode->i_mapping;
451 struct extent_map_tree *em_tree;
452 struct extent_io_tree *tree;
453 u64 end;
454 int misses = 0;
456 page = cb->orig_bio->bi_io_vec[cb->orig_bio->bi_vcnt - 1].bv_page;
457 last_offset = (page_offset(page) + PAGE_CACHE_SIZE);
458 em_tree = &BTRFS_I(inode)->extent_tree;
459 tree = &BTRFS_I(inode)->io_tree;
461 if (isize == 0)
462 return 0;
464 end_index = (i_size_read(inode) - 1) >> PAGE_CACHE_SHIFT;
466 while (last_offset < compressed_end) {
467 pg_index = last_offset >> PAGE_CACHE_SHIFT;
469 if (pg_index > end_index)
470 break;
472 rcu_read_lock();
473 page = radix_tree_lookup(&mapping->page_tree, pg_index);
474 rcu_read_unlock();
475 if (page) {
476 misses++;
477 if (misses > 4)
478 break;
479 goto next;
482 page = __page_cache_alloc(mapping_gfp_mask(mapping) &
483 ~__GFP_FS);
484 if (!page)
485 break;
487 if (add_to_page_cache_lru(page, mapping, pg_index,
488 GFP_NOFS)) {
489 page_cache_release(page);
490 goto next;
493 end = last_offset + PAGE_CACHE_SIZE - 1;
495 * at this point, we have a locked page in the page cache
496 * for these bytes in the file. But, we have to make
497 * sure they map to this compressed extent on disk.
499 set_page_extent_mapped(page);
500 lock_extent(tree, last_offset, end, GFP_NOFS);
501 read_lock(&em_tree->lock);
502 em = lookup_extent_mapping(em_tree, last_offset,
503 PAGE_CACHE_SIZE);
504 read_unlock(&em_tree->lock);
506 if (!em || last_offset < em->start ||
507 (last_offset + PAGE_CACHE_SIZE > extent_map_end(em)) ||
508 (em->block_start >> 9) != cb->orig_bio->bi_sector) {
509 free_extent_map(em);
510 unlock_extent(tree, last_offset, end, GFP_NOFS);
511 unlock_page(page);
512 page_cache_release(page);
513 break;
515 free_extent_map(em);
517 if (page->index == end_index) {
518 char *userpage;
519 size_t zero_offset = isize & (PAGE_CACHE_SIZE - 1);
521 if (zero_offset) {
522 int zeros;
523 zeros = PAGE_CACHE_SIZE - zero_offset;
524 userpage = kmap_atomic(page, KM_USER0);
525 memset(userpage + zero_offset, 0, zeros);
526 flush_dcache_page(page);
527 kunmap_atomic(userpage, KM_USER0);
531 ret = bio_add_page(cb->orig_bio, page,
532 PAGE_CACHE_SIZE, 0);
534 if (ret == PAGE_CACHE_SIZE) {
535 nr_pages++;
536 page_cache_release(page);
537 } else {
538 unlock_extent(tree, last_offset, end, GFP_NOFS);
539 unlock_page(page);
540 page_cache_release(page);
541 break;
543 next:
544 last_offset += PAGE_CACHE_SIZE;
546 return 0;
550 * for a compressed read, the bio we get passed has all the inode pages
551 * in it. We don't actually do IO on those pages but allocate new ones
552 * to hold the compressed pages on disk.
554 * bio->bi_sector points to the compressed extent on disk
555 * bio->bi_io_vec points to all of the inode pages
556 * bio->bi_vcnt is a count of pages
558 * After the compressed pages are read, we copy the bytes into the
559 * bio we were passed and then call the bio end_io calls
561 int btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
562 int mirror_num, unsigned long bio_flags)
564 struct extent_io_tree *tree;
565 struct extent_map_tree *em_tree;
566 struct compressed_bio *cb;
567 struct btrfs_root *root = BTRFS_I(inode)->root;
568 unsigned long uncompressed_len = bio->bi_vcnt * PAGE_CACHE_SIZE;
569 unsigned long compressed_len;
570 unsigned long nr_pages;
571 unsigned long pg_index;
572 struct page *page;
573 struct block_device *bdev;
574 struct bio *comp_bio;
575 u64 cur_disk_byte = (u64)bio->bi_sector << 9;
576 u64 em_len;
577 u64 em_start;
578 struct extent_map *em;
579 int ret = -ENOMEM;
580 u32 *sums;
582 tree = &BTRFS_I(inode)->io_tree;
583 em_tree = &BTRFS_I(inode)->extent_tree;
585 /* we need the actual starting offset of this extent in the file */
586 read_lock(&em_tree->lock);
587 em = lookup_extent_mapping(em_tree,
588 page_offset(bio->bi_io_vec->bv_page),
589 PAGE_CACHE_SIZE);
590 read_unlock(&em_tree->lock);
591 if (!em)
592 return -EIO;
594 compressed_len = em->block_len;
595 cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS);
596 if (!cb)
597 goto out;
599 atomic_set(&cb->pending_bios, 0);
600 cb->errors = 0;
601 cb->inode = inode;
602 cb->mirror_num = mirror_num;
603 sums = &cb->sums;
605 cb->start = em->orig_start;
606 em_len = em->len;
607 em_start = em->start;
609 free_extent_map(em);
610 em = NULL;
612 cb->len = uncompressed_len;
613 cb->compressed_len = compressed_len;
614 cb->compress_type = extent_compress_type(bio_flags);
615 cb->orig_bio = bio;
617 nr_pages = (compressed_len + PAGE_CACHE_SIZE - 1) /
618 PAGE_CACHE_SIZE;
619 cb->compressed_pages = kzalloc(sizeof(struct page *) * nr_pages,
620 GFP_NOFS);
621 if (!cb->compressed_pages)
622 goto fail1;
624 bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
626 for (pg_index = 0; pg_index < nr_pages; pg_index++) {
627 cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
628 __GFP_HIGHMEM);
629 if (!cb->compressed_pages[pg_index])
630 goto fail2;
632 cb->nr_pages = nr_pages;
634 add_ra_bio_pages(inode, em_start + em_len, cb);
636 /* include any pages we added in add_ra-bio_pages */
637 uncompressed_len = bio->bi_vcnt * PAGE_CACHE_SIZE;
638 cb->len = uncompressed_len;
640 comp_bio = compressed_bio_alloc(bdev, cur_disk_byte, GFP_NOFS);
641 if (!comp_bio)
642 goto fail2;
643 comp_bio->bi_private = cb;
644 comp_bio->bi_end_io = end_compressed_bio_read;
645 atomic_inc(&cb->pending_bios);
647 for (pg_index = 0; pg_index < nr_pages; pg_index++) {
648 page = cb->compressed_pages[pg_index];
649 page->mapping = inode->i_mapping;
650 page->index = em_start >> PAGE_CACHE_SHIFT;
652 if (comp_bio->bi_size)
653 ret = tree->ops->merge_bio_hook(page, 0,
654 PAGE_CACHE_SIZE,
655 comp_bio, 0);
656 else
657 ret = 0;
659 page->mapping = NULL;
660 if (ret || bio_add_page(comp_bio, page, PAGE_CACHE_SIZE, 0) <
661 PAGE_CACHE_SIZE) {
662 bio_get(comp_bio);
664 ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio, 0);
665 BUG_ON(ret);
668 * inc the count before we submit the bio so
669 * we know the end IO handler won't happen before
670 * we inc the count. Otherwise, the cb might get
671 * freed before we're done setting it up
673 atomic_inc(&cb->pending_bios);
675 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
676 ret = btrfs_lookup_bio_sums(root, inode,
677 comp_bio, sums);
678 BUG_ON(ret);
680 sums += (comp_bio->bi_size + root->sectorsize - 1) /
681 root->sectorsize;
683 ret = btrfs_map_bio(root, READ, comp_bio,
684 mirror_num, 0);
685 BUG_ON(ret);
687 bio_put(comp_bio);
689 comp_bio = compressed_bio_alloc(bdev, cur_disk_byte,
690 GFP_NOFS);
691 comp_bio->bi_private = cb;
692 comp_bio->bi_end_io = end_compressed_bio_read;
694 bio_add_page(comp_bio, page, PAGE_CACHE_SIZE, 0);
696 cur_disk_byte += PAGE_CACHE_SIZE;
698 bio_get(comp_bio);
700 ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio, 0);
701 BUG_ON(ret);
703 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
704 ret = btrfs_lookup_bio_sums(root, inode, comp_bio, sums);
705 BUG_ON(ret);
708 ret = btrfs_map_bio(root, READ, comp_bio, mirror_num, 0);
709 BUG_ON(ret);
711 bio_put(comp_bio);
712 return 0;
714 fail2:
715 for (pg_index = 0; pg_index < nr_pages; pg_index++)
716 free_page((unsigned long)cb->compressed_pages[pg_index]);
718 kfree(cb->compressed_pages);
719 fail1:
720 kfree(cb);
721 out:
722 free_extent_map(em);
723 return ret;
726 static struct list_head comp_idle_workspace[BTRFS_COMPRESS_TYPES];
727 static spinlock_t comp_workspace_lock[BTRFS_COMPRESS_TYPES];
728 static int comp_num_workspace[BTRFS_COMPRESS_TYPES];
729 static atomic_t comp_alloc_workspace[BTRFS_COMPRESS_TYPES];
730 static wait_queue_head_t comp_workspace_wait[BTRFS_COMPRESS_TYPES];
732 struct btrfs_compress_op *btrfs_compress_op[] = {
733 &btrfs_zlib_compress,
734 &btrfs_lzo_compress,
737 int __init btrfs_init_compress(void)
739 int i;
741 for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
742 INIT_LIST_HEAD(&comp_idle_workspace[i]);
743 spin_lock_init(&comp_workspace_lock[i]);
744 atomic_set(&comp_alloc_workspace[i], 0);
745 init_waitqueue_head(&comp_workspace_wait[i]);
747 return 0;
751 * this finds an available workspace or allocates a new one
752 * ERR_PTR is returned if things go bad.
754 static struct list_head *find_workspace(int type)
756 struct list_head *workspace;
757 int cpus = num_online_cpus();
758 int idx = type - 1;
760 struct list_head *idle_workspace = &comp_idle_workspace[idx];
761 spinlock_t *workspace_lock = &comp_workspace_lock[idx];
762 atomic_t *alloc_workspace = &comp_alloc_workspace[idx];
763 wait_queue_head_t *workspace_wait = &comp_workspace_wait[idx];
764 int *num_workspace = &comp_num_workspace[idx];
765 again:
766 spin_lock(workspace_lock);
767 if (!list_empty(idle_workspace)) {
768 workspace = idle_workspace->next;
769 list_del(workspace);
770 (*num_workspace)--;
771 spin_unlock(workspace_lock);
772 return workspace;
775 if (atomic_read(alloc_workspace) > cpus) {
776 DEFINE_WAIT(wait);
778 spin_unlock(workspace_lock);
779 prepare_to_wait(workspace_wait, &wait, TASK_UNINTERRUPTIBLE);
780 if (atomic_read(alloc_workspace) > cpus && !*num_workspace)
781 schedule();
782 finish_wait(workspace_wait, &wait);
783 goto again;
785 atomic_inc(alloc_workspace);
786 spin_unlock(workspace_lock);
788 workspace = btrfs_compress_op[idx]->alloc_workspace();
789 if (IS_ERR(workspace)) {
790 atomic_dec(alloc_workspace);
791 wake_up(workspace_wait);
793 return workspace;
797 * put a workspace struct back on the list or free it if we have enough
798 * idle ones sitting around
800 static void free_workspace(int type, struct list_head *workspace)
802 int idx = type - 1;
803 struct list_head *idle_workspace = &comp_idle_workspace[idx];
804 spinlock_t *workspace_lock = &comp_workspace_lock[idx];
805 atomic_t *alloc_workspace = &comp_alloc_workspace[idx];
806 wait_queue_head_t *workspace_wait = &comp_workspace_wait[idx];
807 int *num_workspace = &comp_num_workspace[idx];
809 spin_lock(workspace_lock);
810 if (*num_workspace < num_online_cpus()) {
811 list_add_tail(workspace, idle_workspace);
812 (*num_workspace)++;
813 spin_unlock(workspace_lock);
814 goto wake;
816 spin_unlock(workspace_lock);
818 btrfs_compress_op[idx]->free_workspace(workspace);
819 atomic_dec(alloc_workspace);
820 wake:
821 if (waitqueue_active(workspace_wait))
822 wake_up(workspace_wait);
826 * cleanup function for module exit
828 static void free_workspaces(void)
830 struct list_head *workspace;
831 int i;
833 for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
834 while (!list_empty(&comp_idle_workspace[i])) {
835 workspace = comp_idle_workspace[i].next;
836 list_del(workspace);
837 btrfs_compress_op[i]->free_workspace(workspace);
838 atomic_dec(&comp_alloc_workspace[i]);
844 * given an address space and start/len, compress the bytes.
846 * pages are allocated to hold the compressed result and stored
847 * in 'pages'
849 * out_pages is used to return the number of pages allocated. There
850 * may be pages allocated even if we return an error
852 * total_in is used to return the number of bytes actually read. It
853 * may be smaller then len if we had to exit early because we
854 * ran out of room in the pages array or because we cross the
855 * max_out threshold.
857 * total_out is used to return the total number of compressed bytes
859 * max_out tells us the max number of bytes that we're allowed to
860 * stuff into pages
862 int btrfs_compress_pages(int type, struct address_space *mapping,
863 u64 start, unsigned long len,
864 struct page **pages,
865 unsigned long nr_dest_pages,
866 unsigned long *out_pages,
867 unsigned long *total_in,
868 unsigned long *total_out,
869 unsigned long max_out)
871 struct list_head *workspace;
872 int ret;
874 workspace = find_workspace(type);
875 if (IS_ERR(workspace))
876 return -1;
878 ret = btrfs_compress_op[type-1]->compress_pages(workspace, mapping,
879 start, len, pages,
880 nr_dest_pages, out_pages,
881 total_in, total_out,
882 max_out);
883 free_workspace(type, workspace);
884 return ret;
888 * pages_in is an array of pages with compressed data.
890 * disk_start is the starting logical offset of this array in the file
892 * bvec is a bio_vec of pages from the file that we want to decompress into
894 * vcnt is the count of pages in the biovec
896 * srclen is the number of bytes in pages_in
898 * The basic idea is that we have a bio that was created by readpages.
899 * The pages in the bio are for the uncompressed data, and they may not
900 * be contiguous. They all correspond to the range of bytes covered by
901 * the compressed extent.
903 int btrfs_decompress_biovec(int type, struct page **pages_in, u64 disk_start,
904 struct bio_vec *bvec, int vcnt, size_t srclen)
906 struct list_head *workspace;
907 int ret;
909 workspace = find_workspace(type);
910 if (IS_ERR(workspace))
911 return -ENOMEM;
913 ret = btrfs_compress_op[type-1]->decompress_biovec(workspace, pages_in,
914 disk_start,
915 bvec, vcnt, srclen);
916 free_workspace(type, workspace);
917 return ret;
921 * a less complex decompression routine. Our compressed data fits in a
922 * single page, and we want to read a single page out of it.
923 * start_byte tells us the offset into the compressed data we're interested in
925 int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
926 unsigned long start_byte, size_t srclen, size_t destlen)
928 struct list_head *workspace;
929 int ret;
931 workspace = find_workspace(type);
932 if (IS_ERR(workspace))
933 return -ENOMEM;
935 ret = btrfs_compress_op[type-1]->decompress(workspace, data_in,
936 dest_page, start_byte,
937 srclen, destlen);
939 free_workspace(type, workspace);
940 return ret;
943 void btrfs_exit_compress(void)
945 free_workspaces();
949 * Copy uncompressed data from working buffer to pages.
951 * buf_start is the byte offset we're of the start of our workspace buffer.
953 * total_out is the last byte of the buffer
955 int btrfs_decompress_buf2page(char *buf, unsigned long buf_start,
956 unsigned long total_out, u64 disk_start,
957 struct bio_vec *bvec, int vcnt,
958 unsigned long *pg_index,
959 unsigned long *pg_offset)
961 unsigned long buf_offset;
962 unsigned long current_buf_start;
963 unsigned long start_byte;
964 unsigned long working_bytes = total_out - buf_start;
965 unsigned long bytes;
966 char *kaddr;
967 struct page *page_out = bvec[*pg_index].bv_page;
970 * start byte is the first byte of the page we're currently
971 * copying into relative to the start of the compressed data.
973 start_byte = page_offset(page_out) - disk_start;
975 /* we haven't yet hit data corresponding to this page */
976 if (total_out <= start_byte)
977 return 1;
980 * the start of the data we care about is offset into
981 * the middle of our working buffer
983 if (total_out > start_byte && buf_start < start_byte) {
984 buf_offset = start_byte - buf_start;
985 working_bytes -= buf_offset;
986 } else {
987 buf_offset = 0;
989 current_buf_start = buf_start;
991 /* copy bytes from the working buffer into the pages */
992 while (working_bytes > 0) {
993 bytes = min(PAGE_CACHE_SIZE - *pg_offset,
994 PAGE_CACHE_SIZE - buf_offset);
995 bytes = min(bytes, working_bytes);
996 kaddr = kmap_atomic(page_out, KM_USER0);
997 memcpy(kaddr + *pg_offset, buf + buf_offset, bytes);
998 kunmap_atomic(kaddr, KM_USER0);
999 flush_dcache_page(page_out);
1001 *pg_offset += bytes;
1002 buf_offset += bytes;
1003 working_bytes -= bytes;
1004 current_buf_start += bytes;
1006 /* check if we need to pick another page */
1007 if (*pg_offset == PAGE_CACHE_SIZE) {
1008 (*pg_index)++;
1009 if (*pg_index >= vcnt)
1010 return 0;
1012 page_out = bvec[*pg_index].bv_page;
1013 *pg_offset = 0;
1014 start_byte = page_offset(page_out) - disk_start;
1017 * make sure our new page is covered by this
1018 * working buffer
1020 if (total_out <= start_byte)
1021 return 1;
1024 * the next page in the biovec might not be adjacent
1025 * to the last page, but it might still be found
1026 * inside this working buffer. bump our offset pointer
1028 if (total_out > start_byte &&
1029 current_buf_start < start_byte) {
1030 buf_offset = start_byte - buf_start;
1031 working_bytes = total_out - start_byte;
1032 current_buf_start = buf_start + buf_offset;
1037 return 1;