2 * amd5536.c -- AMD 5536 UDC high/full speed USB device controller
4 * Copyright (C) 2005-2007 AMD (http://www.amd.com)
5 * Author: Thomas Dahlmann
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
14 * The AMD5536 UDC is part of the x86 southbridge AMD Geode CS5536.
15 * It is a USB Highspeed DMA capable USB device controller. Beside ep0 it
16 * provides 4 IN and 4 OUT endpoints (bulk or interrupt type).
18 * Make sure that UDC is assigned to port 4 by BIOS settings (port can also
19 * be used as host port) and UOC bits PAD_EN and APU are set (should be done
22 * UDC DMA requires 32-bit aligned buffers so DMA with gadget ether does not
23 * work without updating NET_IP_ALIGN. Or PIO mode (module param "use_dma=0")
24 * can be used with gadget ether.
28 /* #define UDC_VERBOSE */
31 #define UDC_MOD_DESCRIPTION "AMD 5536 UDC - USB Device Controller"
32 #define UDC_DRIVER_VERSION_STRING "01.00.0206 - $Revision: #3 $"
35 #include <linux/module.h>
36 #include <linux/pci.h>
37 #include <linux/kernel.h>
38 #include <linux/delay.h>
39 #include <linux/ioport.h>
40 #include <linux/sched.h>
41 #include <linux/slab.h>
42 #include <linux/errno.h>
43 #include <linux/init.h>
44 #include <linux/timer.h>
45 #include <linux/list.h>
46 #include <linux/interrupt.h>
47 #include <linux/ioctl.h>
49 #include <linux/dmapool.h>
50 #include <linux/moduleparam.h>
51 #include <linux/device.h>
53 #include <linux/irq.h>
54 #include <linux/prefetch.h>
56 #include <asm/byteorder.h>
57 #include <asm/system.h>
58 #include <asm/unaligned.h>
61 #include <linux/usb/ch9.h>
62 #include <linux/usb/gadget.h>
65 #include "amd5536udc.h"
68 static void udc_tasklet_disconnect(unsigned long);
69 static void empty_req_queue(struct udc_ep
*);
70 static int udc_probe(struct udc
*dev
);
71 static void udc_basic_init(struct udc
*dev
);
72 static void udc_setup_endpoints(struct udc
*dev
);
73 static void udc_soft_reset(struct udc
*dev
);
74 static struct udc_request
*udc_alloc_bna_dummy(struct udc_ep
*ep
);
75 static void udc_free_request(struct usb_ep
*usbep
, struct usb_request
*usbreq
);
76 static int udc_free_dma_chain(struct udc
*dev
, struct udc_request
*req
);
77 static int udc_create_dma_chain(struct udc_ep
*ep
, struct udc_request
*req
,
78 unsigned long buf_len
, gfp_t gfp_flags
);
79 static int udc_remote_wakeup(struct udc
*dev
);
80 static int udc_pci_probe(struct pci_dev
*pdev
, const struct pci_device_id
*id
);
81 static void udc_pci_remove(struct pci_dev
*pdev
);
84 static const char mod_desc
[] = UDC_MOD_DESCRIPTION
;
85 static const char name
[] = "amd5536udc";
87 /* structure to hold endpoint function pointers */
88 static const struct usb_ep_ops udc_ep_ops
;
90 /* received setup data */
91 static union udc_setup_data setup_data
;
93 /* pointer to device object */
94 static struct udc
*udc
;
96 /* irq spin lock for soft reset */
97 static DEFINE_SPINLOCK(udc_irq_spinlock
);
99 static DEFINE_SPINLOCK(udc_stall_spinlock
);
102 * slave mode: pending bytes in rx fifo after nyet,
103 * used if EPIN irq came but no req was available
105 static unsigned int udc_rxfifo_pending
;
107 /* count soft resets after suspend to avoid loop */
108 static int soft_reset_occured
;
109 static int soft_reset_after_usbreset_occured
;
112 static struct timer_list udc_timer
;
113 static int stop_timer
;
115 /* set_rde -- Is used to control enabling of RX DMA. Problem is
116 * that UDC has only one bit (RDE) to enable/disable RX DMA for
117 * all OUT endpoints. So we have to handle race conditions like
118 * when OUT data reaches the fifo but no request was queued yet.
119 * This cannot be solved by letting the RX DMA disabled until a
120 * request gets queued because there may be other OUT packets
121 * in the FIFO (important for not blocking control traffic).
122 * The value of set_rde controls the correspondig timer.
124 * set_rde -1 == not used, means it is alloed to be set to 0 or 1
125 * set_rde 0 == do not touch RDE, do no start the RDE timer
126 * set_rde 1 == timer function will look whether FIFO has data
127 * set_rde 2 == set by timer function to enable RX DMA on next call
129 static int set_rde
= -1;
131 static DECLARE_COMPLETION(on_exit
);
132 static struct timer_list udc_pollstall_timer
;
133 static int stop_pollstall_timer
;
134 static DECLARE_COMPLETION(on_pollstall_exit
);
136 /* tasklet for usb disconnect */
137 static DECLARE_TASKLET(disconnect_tasklet
, udc_tasklet_disconnect
,
138 (unsigned long) &udc
);
141 /* endpoint names used for print */
142 static const char ep0_string
[] = "ep0in";
143 static const char *ep_string
[] = {
145 "ep1in-int", "ep2in-bulk", "ep3in-bulk", "ep4in-bulk", "ep5in-bulk",
146 "ep6in-bulk", "ep7in-bulk", "ep8in-bulk", "ep9in-bulk", "ep10in-bulk",
147 "ep11in-bulk", "ep12in-bulk", "ep13in-bulk", "ep14in-bulk",
148 "ep15in-bulk", "ep0out", "ep1out-bulk", "ep2out-bulk", "ep3out-bulk",
149 "ep4out-bulk", "ep5out-bulk", "ep6out-bulk", "ep7out-bulk",
150 "ep8out-bulk", "ep9out-bulk", "ep10out-bulk", "ep11out-bulk",
151 "ep12out-bulk", "ep13out-bulk", "ep14out-bulk", "ep15out-bulk"
155 static int use_dma
= 1;
156 /* packet per buffer dma */
157 static int use_dma_ppb
= 1;
158 /* with per descr. update */
159 static int use_dma_ppb_du
;
160 /* buffer fill mode */
161 static int use_dma_bufferfill_mode
;
162 /* full speed only mode */
163 static int use_fullspeed
;
164 /* tx buffer size for high speed */
165 static unsigned long hs_tx_buf
= UDC_EPIN_BUFF_SIZE
;
167 /* module parameters */
168 module_param(use_dma
, bool, S_IRUGO
);
169 MODULE_PARM_DESC(use_dma
, "true for DMA");
170 module_param(use_dma_ppb
, bool, S_IRUGO
);
171 MODULE_PARM_DESC(use_dma_ppb
, "true for DMA in packet per buffer mode");
172 module_param(use_dma_ppb_du
, bool, S_IRUGO
);
173 MODULE_PARM_DESC(use_dma_ppb_du
,
174 "true for DMA in packet per buffer mode with descriptor update");
175 module_param(use_fullspeed
, bool, S_IRUGO
);
176 MODULE_PARM_DESC(use_fullspeed
, "true for fullspeed only");
178 /*---------------------------------------------------------------------------*/
179 /* Prints UDC device registers and endpoint irq registers */
180 static void print_regs(struct udc
*dev
)
182 DBG(dev
, "------- Device registers -------\n");
183 DBG(dev
, "dev config = %08x\n", readl(&dev
->regs
->cfg
));
184 DBG(dev
, "dev control = %08x\n", readl(&dev
->regs
->ctl
));
185 DBG(dev
, "dev status = %08x\n", readl(&dev
->regs
->sts
));
187 DBG(dev
, "dev int's = %08x\n", readl(&dev
->regs
->irqsts
));
188 DBG(dev
, "dev intmask = %08x\n", readl(&dev
->regs
->irqmsk
));
190 DBG(dev
, "dev ep int's = %08x\n", readl(&dev
->regs
->ep_irqsts
));
191 DBG(dev
, "dev ep intmask = %08x\n", readl(&dev
->regs
->ep_irqmsk
));
193 DBG(dev
, "USE DMA = %d\n", use_dma
);
194 if (use_dma
&& use_dma_ppb
&& !use_dma_ppb_du
) {
195 DBG(dev
, "DMA mode = PPBNDU (packet per buffer "
196 "WITHOUT desc. update)\n");
197 dev_info(&dev
->pdev
->dev
, "DMA mode (%s)\n", "PPBNDU");
198 } else if (use_dma
&& use_dma_ppb
&& use_dma_ppb_du
) {
199 DBG(dev
, "DMA mode = PPBDU (packet per buffer "
200 "WITH desc. update)\n");
201 dev_info(&dev
->pdev
->dev
, "DMA mode (%s)\n", "PPBDU");
203 if (use_dma
&& use_dma_bufferfill_mode
) {
204 DBG(dev
, "DMA mode = BF (buffer fill mode)\n");
205 dev_info(&dev
->pdev
->dev
, "DMA mode (%s)\n", "BF");
208 dev_info(&dev
->pdev
->dev
, "FIFO mode\n");
210 DBG(dev
, "-------------------------------------------------------\n");
213 /* Masks unused interrupts */
214 static int udc_mask_unused_interrupts(struct udc
*dev
)
218 /* mask all dev interrupts */
219 tmp
= AMD_BIT(UDC_DEVINT_SVC
) |
220 AMD_BIT(UDC_DEVINT_ENUM
) |
221 AMD_BIT(UDC_DEVINT_US
) |
222 AMD_BIT(UDC_DEVINT_UR
) |
223 AMD_BIT(UDC_DEVINT_ES
) |
224 AMD_BIT(UDC_DEVINT_SI
) |
225 AMD_BIT(UDC_DEVINT_SOF
)|
226 AMD_BIT(UDC_DEVINT_SC
);
227 writel(tmp
, &dev
->regs
->irqmsk
);
229 /* mask all ep interrupts */
230 writel(UDC_EPINT_MSK_DISABLE_ALL
, &dev
->regs
->ep_irqmsk
);
235 /* Enables endpoint 0 interrupts */
236 static int udc_enable_ep0_interrupts(struct udc
*dev
)
240 DBG(dev
, "udc_enable_ep0_interrupts()\n");
243 tmp
= readl(&dev
->regs
->ep_irqmsk
);
244 /* enable ep0 irq's */
245 tmp
&= AMD_UNMASK_BIT(UDC_EPINT_IN_EP0
)
246 & AMD_UNMASK_BIT(UDC_EPINT_OUT_EP0
);
247 writel(tmp
, &dev
->regs
->ep_irqmsk
);
252 /* Enables device interrupts for SET_INTF and SET_CONFIG */
253 static int udc_enable_dev_setup_interrupts(struct udc
*dev
)
257 DBG(dev
, "enable device interrupts for setup data\n");
260 tmp
= readl(&dev
->regs
->irqmsk
);
262 /* enable SET_INTERFACE, SET_CONFIG and other needed irq's */
263 tmp
&= AMD_UNMASK_BIT(UDC_DEVINT_SI
)
264 & AMD_UNMASK_BIT(UDC_DEVINT_SC
)
265 & AMD_UNMASK_BIT(UDC_DEVINT_UR
)
266 & AMD_UNMASK_BIT(UDC_DEVINT_SVC
)
267 & AMD_UNMASK_BIT(UDC_DEVINT_ENUM
);
268 writel(tmp
, &dev
->regs
->irqmsk
);
273 /* Calculates fifo start of endpoint based on preceding endpoints */
274 static int udc_set_txfifo_addr(struct udc_ep
*ep
)
280 if (!ep
|| !(ep
->in
))
284 ep
->txfifo
= dev
->txfifo
;
287 for (i
= 0; i
< ep
->num
; i
++) {
288 if (dev
->ep
[i
].regs
) {
290 tmp
= readl(&dev
->ep
[i
].regs
->bufin_framenum
);
291 tmp
= AMD_GETBITS(tmp
, UDC_EPIN_BUFF_SIZE
);
298 /* CNAK pending field: bit0 = ep0in, bit16 = ep0out */
299 static u32 cnak_pending
;
301 static void UDC_QUEUE_CNAK(struct udc_ep
*ep
, unsigned num
)
303 if (readl(&ep
->regs
->ctl
) & AMD_BIT(UDC_EPCTL_NAK
)) {
304 DBG(ep
->dev
, "NAK could not be cleared for ep%d\n", num
);
305 cnak_pending
|= 1 << (num
);
308 cnak_pending
= cnak_pending
& (~(1 << (num
)));
312 /* Enables endpoint, is called by gadget driver */
314 udc_ep_enable(struct usb_ep
*usbep
, const struct usb_endpoint_descriptor
*desc
)
319 unsigned long iflags
;
324 || usbep
->name
== ep0_string
326 || desc
->bDescriptorType
!= USB_DT_ENDPOINT
)
329 ep
= container_of(usbep
, struct udc_ep
, ep
);
332 DBG(dev
, "udc_ep_enable() ep %d\n", ep
->num
);
334 if (!dev
->driver
|| dev
->gadget
.speed
== USB_SPEED_UNKNOWN
)
337 spin_lock_irqsave(&dev
->lock
, iflags
);
342 /* set traffic type */
343 tmp
= readl(&dev
->ep
[ep
->num
].regs
->ctl
);
344 tmp
= AMD_ADDBITS(tmp
, desc
->bmAttributes
, UDC_EPCTL_ET
);
345 writel(tmp
, &dev
->ep
[ep
->num
].regs
->ctl
);
347 /* set max packet size */
348 maxpacket
= usb_endpoint_maxp(desc
);
349 tmp
= readl(&dev
->ep
[ep
->num
].regs
->bufout_maxpkt
);
350 tmp
= AMD_ADDBITS(tmp
, maxpacket
, UDC_EP_MAX_PKT_SIZE
);
351 ep
->ep
.maxpacket
= maxpacket
;
352 writel(tmp
, &dev
->ep
[ep
->num
].regs
->bufout_maxpkt
);
357 /* ep ix in UDC CSR register space */
358 udc_csr_epix
= ep
->num
;
360 /* set buffer size (tx fifo entries) */
361 tmp
= readl(&dev
->ep
[ep
->num
].regs
->bufin_framenum
);
362 /* double buffering: fifo size = 2 x max packet size */
365 maxpacket
* UDC_EPIN_BUFF_SIZE_MULT
368 writel(tmp
, &dev
->ep
[ep
->num
].regs
->bufin_framenum
);
370 /* calc. tx fifo base addr */
371 udc_set_txfifo_addr(ep
);
374 tmp
= readl(&ep
->regs
->ctl
);
375 tmp
|= AMD_BIT(UDC_EPCTL_F
);
376 writel(tmp
, &ep
->regs
->ctl
);
380 /* ep ix in UDC CSR register space */
381 udc_csr_epix
= ep
->num
- UDC_CSR_EP_OUT_IX_OFS
;
383 /* set max packet size UDC CSR */
384 tmp
= readl(&dev
->csr
->ne
[ep
->num
- UDC_CSR_EP_OUT_IX_OFS
]);
385 tmp
= AMD_ADDBITS(tmp
, maxpacket
,
387 writel(tmp
, &dev
->csr
->ne
[ep
->num
- UDC_CSR_EP_OUT_IX_OFS
]);
389 if (use_dma
&& !ep
->in
) {
390 /* alloc and init BNA dummy request */
391 ep
->bna_dummy_req
= udc_alloc_bna_dummy(ep
);
392 ep
->bna_occurred
= 0;
395 if (ep
->num
!= UDC_EP0OUT_IX
)
396 dev
->data_ep_enabled
= 1;
400 tmp
= readl(&dev
->csr
->ne
[udc_csr_epix
]);
402 tmp
= AMD_ADDBITS(tmp
, maxpacket
, UDC_CSR_NE_MAX_PKT
);
404 tmp
= AMD_ADDBITS(tmp
, desc
->bEndpointAddress
, UDC_CSR_NE_NUM
);
406 tmp
= AMD_ADDBITS(tmp
, ep
->in
, UDC_CSR_NE_DIR
);
408 tmp
= AMD_ADDBITS(tmp
, desc
->bmAttributes
, UDC_CSR_NE_TYPE
);
410 tmp
= AMD_ADDBITS(tmp
, ep
->dev
->cur_config
, UDC_CSR_NE_CFG
);
412 tmp
= AMD_ADDBITS(tmp
, ep
->dev
->cur_intf
, UDC_CSR_NE_INTF
);
414 tmp
= AMD_ADDBITS(tmp
, ep
->dev
->cur_alt
, UDC_CSR_NE_ALT
);
416 writel(tmp
, &dev
->csr
->ne
[udc_csr_epix
]);
419 tmp
= readl(&dev
->regs
->ep_irqmsk
);
420 tmp
&= AMD_UNMASK_BIT(ep
->num
);
421 writel(tmp
, &dev
->regs
->ep_irqmsk
);
424 * clear NAK by writing CNAK
425 * avoid BNA for OUT DMA, don't clear NAK until DMA desc. written
427 if (!use_dma
|| ep
->in
) {
428 tmp
= readl(&ep
->regs
->ctl
);
429 tmp
|= AMD_BIT(UDC_EPCTL_CNAK
);
430 writel(tmp
, &ep
->regs
->ctl
);
432 UDC_QUEUE_CNAK(ep
, ep
->num
);
434 tmp
= desc
->bEndpointAddress
;
435 DBG(dev
, "%s enabled\n", usbep
->name
);
437 spin_unlock_irqrestore(&dev
->lock
, iflags
);
441 /* Resets endpoint */
442 static void ep_init(struct udc_regs __iomem
*regs
, struct udc_ep
*ep
)
446 VDBG(ep
->dev
, "ep-%d reset\n", ep
->num
);
448 ep
->ep
.ops
= &udc_ep_ops
;
449 INIT_LIST_HEAD(&ep
->queue
);
451 ep
->ep
.maxpacket
= (u16
) ~0;
453 tmp
= readl(&ep
->regs
->ctl
);
454 tmp
|= AMD_BIT(UDC_EPCTL_SNAK
);
455 writel(tmp
, &ep
->regs
->ctl
);
458 /* disable interrupt */
459 tmp
= readl(®s
->ep_irqmsk
);
460 tmp
|= AMD_BIT(ep
->num
);
461 writel(tmp
, ®s
->ep_irqmsk
);
464 /* unset P and IN bit of potential former DMA */
465 tmp
= readl(&ep
->regs
->ctl
);
466 tmp
&= AMD_UNMASK_BIT(UDC_EPCTL_P
);
467 writel(tmp
, &ep
->regs
->ctl
);
469 tmp
= readl(&ep
->regs
->sts
);
470 tmp
|= AMD_BIT(UDC_EPSTS_IN
);
471 writel(tmp
, &ep
->regs
->sts
);
474 tmp
= readl(&ep
->regs
->ctl
);
475 tmp
|= AMD_BIT(UDC_EPCTL_F
);
476 writel(tmp
, &ep
->regs
->ctl
);
479 /* reset desc pointer */
480 writel(0, &ep
->regs
->desptr
);
483 /* Disables endpoint, is called by gadget driver */
484 static int udc_ep_disable(struct usb_ep
*usbep
)
486 struct udc_ep
*ep
= NULL
;
487 unsigned long iflags
;
492 ep
= container_of(usbep
, struct udc_ep
, ep
);
493 if (usbep
->name
== ep0_string
|| !ep
->desc
)
496 DBG(ep
->dev
, "Disable ep-%d\n", ep
->num
);
498 spin_lock_irqsave(&ep
->dev
->lock
, iflags
);
499 udc_free_request(&ep
->ep
, &ep
->bna_dummy_req
->req
);
501 ep_init(ep
->dev
->regs
, ep
);
502 spin_unlock_irqrestore(&ep
->dev
->lock
, iflags
);
507 /* Allocates request packet, called by gadget driver */
508 static struct usb_request
*
509 udc_alloc_request(struct usb_ep
*usbep
, gfp_t gfp
)
511 struct udc_request
*req
;
512 struct udc_data_dma
*dma_desc
;
518 ep
= container_of(usbep
, struct udc_ep
, ep
);
520 VDBG(ep
->dev
, "udc_alloc_req(): ep%d\n", ep
->num
);
521 req
= kzalloc(sizeof(struct udc_request
), gfp
);
525 req
->req
.dma
= DMA_DONT_USE
;
526 INIT_LIST_HEAD(&req
->queue
);
529 /* ep0 in requests are allocated from data pool here */
530 dma_desc
= pci_pool_alloc(ep
->dev
->data_requests
, gfp
,
537 VDBG(ep
->dev
, "udc_alloc_req: req = %p dma_desc = %p, "
540 (unsigned long)req
->td_phys
);
541 /* prevent from using desc. - set HOST BUSY */
542 dma_desc
->status
= AMD_ADDBITS(dma_desc
->status
,
543 UDC_DMA_STP_STS_BS_HOST_BUSY
,
545 dma_desc
->bufptr
= cpu_to_le32(DMA_DONT_USE
);
546 req
->td_data
= dma_desc
;
547 req
->td_data_last
= NULL
;
554 /* Frees request packet, called by gadget driver */
556 udc_free_request(struct usb_ep
*usbep
, struct usb_request
*usbreq
)
559 struct udc_request
*req
;
561 if (!usbep
|| !usbreq
)
564 ep
= container_of(usbep
, struct udc_ep
, ep
);
565 req
= container_of(usbreq
, struct udc_request
, req
);
566 VDBG(ep
->dev
, "free_req req=%p\n", req
);
567 BUG_ON(!list_empty(&req
->queue
));
569 VDBG(ep
->dev
, "req->td_data=%p\n", req
->td_data
);
571 /* free dma chain if created */
572 if (req
->chain_len
> 1) {
573 udc_free_dma_chain(ep
->dev
, req
);
576 pci_pool_free(ep
->dev
->data_requests
, req
->td_data
,
582 /* Init BNA dummy descriptor for HOST BUSY and pointing to itself */
583 static void udc_init_bna_dummy(struct udc_request
*req
)
587 req
->td_data
->status
|= AMD_BIT(UDC_DMA_IN_STS_L
);
588 /* set next pointer to itself */
589 req
->td_data
->next
= req
->td_phys
;
592 = AMD_ADDBITS(req
->td_data
->status
,
593 UDC_DMA_STP_STS_BS_DMA_DONE
,
596 pr_debug("bna desc = %p, sts = %08x\n",
597 req
->td_data
, req
->td_data
->status
);
602 /* Allocate BNA dummy descriptor */
603 static struct udc_request
*udc_alloc_bna_dummy(struct udc_ep
*ep
)
605 struct udc_request
*req
= NULL
;
606 struct usb_request
*_req
= NULL
;
608 /* alloc the dummy request */
609 _req
= udc_alloc_request(&ep
->ep
, GFP_ATOMIC
);
611 req
= container_of(_req
, struct udc_request
, req
);
612 ep
->bna_dummy_req
= req
;
613 udc_init_bna_dummy(req
);
618 /* Write data to TX fifo for IN packets */
620 udc_txfifo_write(struct udc_ep
*ep
, struct usb_request
*req
)
626 unsigned remaining
= 0;
631 req_buf
= req
->buf
+ req
->actual
;
633 remaining
= req
->length
- req
->actual
;
635 buf
= (u32
*) req_buf
;
637 bytes
= ep
->ep
.maxpacket
;
638 if (bytes
> remaining
)
642 for (i
= 0; i
< bytes
/ UDC_DWORD_BYTES
; i
++) {
643 writel(*(buf
+ i
), ep
->txfifo
);
646 /* remaining bytes must be written by byte access */
647 for (j
= 0; j
< bytes
% UDC_DWORD_BYTES
; j
++) {
648 writeb((u8
)(*(buf
+ i
) >> (j
<< UDC_BITS_PER_BYTE_SHIFT
)),
652 /* dummy write confirm */
653 writel(0, &ep
->regs
->confirm
);
656 /* Read dwords from RX fifo for OUT transfers */
657 static int udc_rxfifo_read_dwords(struct udc
*dev
, u32
*buf
, int dwords
)
661 VDBG(dev
, "udc_read_dwords(): %d dwords\n", dwords
);
663 for (i
= 0; i
< dwords
; i
++) {
664 *(buf
+ i
) = readl(dev
->rxfifo
);
669 /* Read bytes from RX fifo for OUT transfers */
670 static int udc_rxfifo_read_bytes(struct udc
*dev
, u8
*buf
, int bytes
)
675 VDBG(dev
, "udc_read_bytes(): %d bytes\n", bytes
);
678 for (i
= 0; i
< bytes
/ UDC_DWORD_BYTES
; i
++) {
679 *((u32
*)(buf
+ (i
<<2))) = readl(dev
->rxfifo
);
682 /* remaining bytes must be read by byte access */
683 if (bytes
% UDC_DWORD_BYTES
) {
684 tmp
= readl(dev
->rxfifo
);
685 for (j
= 0; j
< bytes
% UDC_DWORD_BYTES
; j
++) {
686 *(buf
+ (i
<<2) + j
) = (u8
)(tmp
& UDC_BYTE_MASK
);
687 tmp
= tmp
>> UDC_BITS_PER_BYTE
;
694 /* Read data from RX fifo for OUT transfers */
696 udc_rxfifo_read(struct udc_ep
*ep
, struct udc_request
*req
)
701 unsigned finished
= 0;
703 /* received number bytes */
704 bytes
= readl(&ep
->regs
->sts
);
705 bytes
= AMD_GETBITS(bytes
, UDC_EPSTS_RX_PKT_SIZE
);
707 buf_space
= req
->req
.length
- req
->req
.actual
;
708 buf
= req
->req
.buf
+ req
->req
.actual
;
709 if (bytes
> buf_space
) {
710 if ((buf_space
% ep
->ep
.maxpacket
) != 0) {
712 "%s: rx %d bytes, rx-buf space = %d bytesn\n",
713 ep
->ep
.name
, bytes
, buf_space
);
714 req
->req
.status
= -EOVERFLOW
;
718 req
->req
.actual
+= bytes
;
721 if (((bytes
% ep
->ep
.maxpacket
) != 0) || (!bytes
)
722 || ((req
->req
.actual
== req
->req
.length
) && !req
->req
.zero
))
725 /* read rx fifo bytes */
726 VDBG(ep
->dev
, "ep %s: rxfifo read %d bytes\n", ep
->ep
.name
, bytes
);
727 udc_rxfifo_read_bytes(ep
->dev
, buf
, bytes
);
732 /* create/re-init a DMA descriptor or a DMA descriptor chain */
733 static int prep_dma(struct udc_ep
*ep
, struct udc_request
*req
, gfp_t gfp
)
738 VDBG(ep
->dev
, "prep_dma\n");
739 VDBG(ep
->dev
, "prep_dma ep%d req->td_data=%p\n",
740 ep
->num
, req
->td_data
);
742 /* set buffer pointer */
743 req
->td_data
->bufptr
= req
->req
.dma
;
746 req
->td_data
->status
|= AMD_BIT(UDC_DMA_IN_STS_L
);
748 /* build/re-init dma chain if maxpkt scatter mode, not for EP0 */
751 retval
= udc_create_dma_chain(ep
, req
, ep
->ep
.maxpacket
, gfp
);
753 if (retval
== -ENOMEM
)
754 DBG(ep
->dev
, "Out of DMA memory\n");
758 if (req
->req
.length
== ep
->ep
.maxpacket
) {
760 req
->td_data
->status
=
761 AMD_ADDBITS(req
->td_data
->status
,
763 UDC_DMA_IN_STS_TXBYTES
);
771 VDBG(ep
->dev
, "IN: use_dma_ppb=%d req->req.len=%d "
772 "maxpacket=%d ep%d\n",
773 use_dma_ppb
, req
->req
.length
,
774 ep
->ep
.maxpacket
, ep
->num
);
776 * if bytes < max packet then tx bytes must
777 * be written in packet per buffer mode
779 if (!use_dma_ppb
|| req
->req
.length
< ep
->ep
.maxpacket
780 || ep
->num
== UDC_EP0OUT_IX
781 || ep
->num
== UDC_EP0IN_IX
) {
783 req
->td_data
->status
=
784 AMD_ADDBITS(req
->td_data
->status
,
786 UDC_DMA_IN_STS_TXBYTES
);
787 /* reset frame num */
788 req
->td_data
->status
=
789 AMD_ADDBITS(req
->td_data
->status
,
791 UDC_DMA_IN_STS_FRAMENUM
);
794 req
->td_data
->status
=
795 AMD_ADDBITS(req
->td_data
->status
,
796 UDC_DMA_STP_STS_BS_HOST_BUSY
,
799 VDBG(ep
->dev
, "OUT set host ready\n");
801 req
->td_data
->status
=
802 AMD_ADDBITS(req
->td_data
->status
,
803 UDC_DMA_STP_STS_BS_HOST_READY
,
807 /* clear NAK by writing CNAK */
809 tmp
= readl(&ep
->regs
->ctl
);
810 tmp
|= AMD_BIT(UDC_EPCTL_CNAK
);
811 writel(tmp
, &ep
->regs
->ctl
);
813 UDC_QUEUE_CNAK(ep
, ep
->num
);
821 /* Completes request packet ... caller MUST hold lock */
823 complete_req(struct udc_ep
*ep
, struct udc_request
*req
, int sts
)
824 __releases(ep
->dev
->lock
)
825 __acquires(ep
->dev
->lock
)
830 VDBG(ep
->dev
, "complete_req(): ep%d\n", ep
->num
);
834 if (req
->dma_mapping
) {
836 pci_unmap_single(dev
->pdev
,
841 pci_unmap_single(dev
->pdev
,
845 req
->dma_mapping
= 0;
846 req
->req
.dma
= DMA_DONT_USE
;
852 /* set new status if pending */
853 if (req
->req
.status
== -EINPROGRESS
)
854 req
->req
.status
= sts
;
856 /* remove from ep queue */
857 list_del_init(&req
->queue
);
859 VDBG(ep
->dev
, "req %p => complete %d bytes at %s with sts %d\n",
860 &req
->req
, req
->req
.length
, ep
->ep
.name
, sts
);
862 spin_unlock(&dev
->lock
);
863 req
->req
.complete(&ep
->ep
, &req
->req
);
864 spin_lock(&dev
->lock
);
868 /* frees pci pool descriptors of a DMA chain */
869 static int udc_free_dma_chain(struct udc
*dev
, struct udc_request
*req
)
873 struct udc_data_dma
*td
;
874 struct udc_data_dma
*td_last
= NULL
;
877 DBG(dev
, "free chain req = %p\n", req
);
879 /* do not free first desc., will be done by free for request */
880 td_last
= req
->td_data
;
881 td
= phys_to_virt(td_last
->next
);
883 for (i
= 1; i
< req
->chain_len
; i
++) {
885 pci_pool_free(dev
->data_requests
, td
,
886 (dma_addr_t
) td_last
->next
);
888 td
= phys_to_virt(td_last
->next
);
894 /* Iterates to the end of a DMA chain and returns last descriptor */
895 static struct udc_data_dma
*udc_get_last_dma_desc(struct udc_request
*req
)
897 struct udc_data_dma
*td
;
900 while (td
&& !(td
->status
& AMD_BIT(UDC_DMA_IN_STS_L
))) {
901 td
= phys_to_virt(td
->next
);
908 /* Iterates to the end of a DMA chain and counts bytes received */
909 static u32
udc_get_ppbdu_rxbytes(struct udc_request
*req
)
911 struct udc_data_dma
*td
;
915 /* received number bytes */
916 count
= AMD_GETBITS(td
->status
, UDC_DMA_OUT_STS_RXBYTES
);
918 while (td
&& !(td
->status
& AMD_BIT(UDC_DMA_IN_STS_L
))) {
919 td
= phys_to_virt(td
->next
);
920 /* received number bytes */
922 count
+= AMD_GETBITS(td
->status
,
923 UDC_DMA_OUT_STS_RXBYTES
);
931 /* Creates or re-inits a DMA chain */
932 static int udc_create_dma_chain(
934 struct udc_request
*req
,
935 unsigned long buf_len
, gfp_t gfp_flags
938 unsigned long bytes
= req
->req
.length
;
941 struct udc_data_dma
*td
= NULL
;
942 struct udc_data_dma
*last
= NULL
;
943 unsigned long txbytes
;
944 unsigned create_new_chain
= 0;
947 VDBG(ep
->dev
, "udc_create_dma_chain: bytes=%ld buf_len=%ld\n",
949 dma_addr
= DMA_DONT_USE
;
951 /* unset L bit in first desc for OUT */
953 req
->td_data
->status
&= AMD_CLEAR_BIT(UDC_DMA_IN_STS_L
);
956 /* alloc only new desc's if not already available */
957 len
= req
->req
.length
/ ep
->ep
.maxpacket
;
958 if (req
->req
.length
% ep
->ep
.maxpacket
) {
962 if (len
> req
->chain_len
) {
963 /* shorter chain already allocated before */
964 if (req
->chain_len
> 1) {
965 udc_free_dma_chain(ep
->dev
, req
);
967 req
->chain_len
= len
;
968 create_new_chain
= 1;
972 /* gen. required number of descriptors and buffers */
973 for (i
= buf_len
; i
< bytes
; i
+= buf_len
) {
974 /* create or determine next desc. */
975 if (create_new_chain
) {
977 td
= pci_pool_alloc(ep
->dev
->data_requests
,
978 gfp_flags
, &dma_addr
);
983 } else if (i
== buf_len
) {
985 td
= (struct udc_data_dma
*) phys_to_virt(
989 td
= (struct udc_data_dma
*) phys_to_virt(last
->next
);
995 td
->bufptr
= req
->req
.dma
+ i
; /* assign buffer */
1000 if ((bytes
- i
) >= buf_len
) {
1004 txbytes
= bytes
- i
;
1007 /* link td and assign tx bytes */
1009 if (create_new_chain
) {
1010 req
->td_data
->next
= dma_addr
;
1012 /* req->td_data->next = virt_to_phys(td); */
1014 /* write tx bytes */
1017 req
->td_data
->status
=
1018 AMD_ADDBITS(req
->td_data
->status
,
1020 UDC_DMA_IN_STS_TXBYTES
);
1022 td
->status
= AMD_ADDBITS(td
->status
,
1024 UDC_DMA_IN_STS_TXBYTES
);
1027 if (create_new_chain
) {
1028 last
->next
= dma_addr
;
1030 /* last->next = virt_to_phys(td); */
1033 /* write tx bytes */
1034 td
->status
= AMD_ADDBITS(td
->status
,
1036 UDC_DMA_IN_STS_TXBYTES
);
1043 td
->status
|= AMD_BIT(UDC_DMA_IN_STS_L
);
1044 /* last desc. points to itself */
1045 req
->td_data_last
= td
;
1051 /* Enabling RX DMA */
1052 static void udc_set_rde(struct udc
*dev
)
1056 VDBG(dev
, "udc_set_rde()\n");
1057 /* stop RDE timer */
1058 if (timer_pending(&udc_timer
)) {
1060 mod_timer(&udc_timer
, jiffies
- 1);
1063 tmp
= readl(&dev
->regs
->ctl
);
1064 tmp
|= AMD_BIT(UDC_DEVCTL_RDE
);
1065 writel(tmp
, &dev
->regs
->ctl
);
1068 /* Queues a request packet, called by gadget driver */
1070 udc_queue(struct usb_ep
*usbep
, struct usb_request
*usbreq
, gfp_t gfp
)
1074 unsigned long iflags
;
1076 struct udc_request
*req
;
1080 /* check the inputs */
1081 req
= container_of(usbreq
, struct udc_request
, req
);
1083 if (!usbep
|| !usbreq
|| !usbreq
->complete
|| !usbreq
->buf
1084 || !list_empty(&req
->queue
))
1087 ep
= container_of(usbep
, struct udc_ep
, ep
);
1088 if (!ep
->desc
&& (ep
->num
!= 0 && ep
->num
!= UDC_EP0OUT_IX
))
1091 VDBG(ep
->dev
, "udc_queue(): ep%d-in=%d\n", ep
->num
, ep
->in
);
1094 if (!dev
->driver
|| dev
->gadget
.speed
== USB_SPEED_UNKNOWN
)
1097 /* map dma (usually done before) */
1098 if (ep
->dma
&& usbreq
->length
!= 0
1099 && (usbreq
->dma
== DMA_DONT_USE
|| usbreq
->dma
== 0)) {
1100 VDBG(dev
, "DMA map req %p\n", req
);
1102 usbreq
->dma
= pci_map_single(dev
->pdev
,
1107 usbreq
->dma
= pci_map_single(dev
->pdev
,
1110 PCI_DMA_FROMDEVICE
);
1111 req
->dma_mapping
= 1;
1114 VDBG(dev
, "%s queue req %p, len %d req->td_data=%p buf %p\n",
1115 usbep
->name
, usbreq
, usbreq
->length
,
1116 req
->td_data
, usbreq
->buf
);
1118 spin_lock_irqsave(&dev
->lock
, iflags
);
1120 usbreq
->status
= -EINPROGRESS
;
1123 /* on empty queue just do first transfer */
1124 if (list_empty(&ep
->queue
)) {
1126 if (usbreq
->length
== 0) {
1127 /* IN zlp's are handled by hardware */
1128 complete_req(ep
, req
, 0);
1129 VDBG(dev
, "%s: zlp\n", ep
->ep
.name
);
1131 * if set_config or set_intf is waiting for ack by zlp
1134 if (dev
->set_cfg_not_acked
) {
1135 tmp
= readl(&dev
->regs
->ctl
);
1136 tmp
|= AMD_BIT(UDC_DEVCTL_CSR_DONE
);
1137 writel(tmp
, &dev
->regs
->ctl
);
1138 dev
->set_cfg_not_acked
= 0;
1140 /* setup command is ACK'ed now by zlp */
1141 if (dev
->waiting_zlp_ack_ep0in
) {
1142 /* clear NAK by writing CNAK in EP0_IN */
1143 tmp
= readl(&dev
->ep
[UDC_EP0IN_IX
].regs
->ctl
);
1144 tmp
|= AMD_BIT(UDC_EPCTL_CNAK
);
1145 writel(tmp
, &dev
->ep
[UDC_EP0IN_IX
].regs
->ctl
);
1146 dev
->ep
[UDC_EP0IN_IX
].naking
= 0;
1147 UDC_QUEUE_CNAK(&dev
->ep
[UDC_EP0IN_IX
],
1149 dev
->waiting_zlp_ack_ep0in
= 0;
1154 retval
= prep_dma(ep
, req
, gfp
);
1157 /* write desc pointer to enable DMA */
1159 /* set HOST READY */
1160 req
->td_data
->status
=
1161 AMD_ADDBITS(req
->td_data
->status
,
1162 UDC_DMA_IN_STS_BS_HOST_READY
,
1166 /* disabled rx dma while descriptor update */
1168 /* stop RDE timer */
1169 if (timer_pending(&udc_timer
)) {
1171 mod_timer(&udc_timer
, jiffies
- 1);
1174 tmp
= readl(&dev
->regs
->ctl
);
1175 tmp
&= AMD_UNMASK_BIT(UDC_DEVCTL_RDE
);
1176 writel(tmp
, &dev
->regs
->ctl
);
1180 * if BNA occurred then let BNA dummy desc.
1181 * point to current desc.
1183 if (ep
->bna_occurred
) {
1184 VDBG(dev
, "copy to BNA dummy desc.\n");
1185 memcpy(ep
->bna_dummy_req
->td_data
,
1187 sizeof(struct udc_data_dma
));
1190 /* write desc pointer */
1191 writel(req
->td_phys
, &ep
->regs
->desptr
);
1193 /* clear NAK by writing CNAK */
1195 tmp
= readl(&ep
->regs
->ctl
);
1196 tmp
|= AMD_BIT(UDC_EPCTL_CNAK
);
1197 writel(tmp
, &ep
->regs
->ctl
);
1199 UDC_QUEUE_CNAK(ep
, ep
->num
);
1204 tmp
= readl(&dev
->regs
->ep_irqmsk
);
1205 tmp
&= AMD_UNMASK_BIT(ep
->num
);
1206 writel(tmp
, &dev
->regs
->ep_irqmsk
);
1208 } else if (ep
->in
) {
1210 tmp
= readl(&dev
->regs
->ep_irqmsk
);
1211 tmp
&= AMD_UNMASK_BIT(ep
->num
);
1212 writel(tmp
, &dev
->regs
->ep_irqmsk
);
1215 } else if (ep
->dma
) {
1218 * prep_dma not used for OUT ep's, this is not possible
1219 * for PPB modes, because of chain creation reasons
1222 retval
= prep_dma(ep
, req
, gfp
);
1227 VDBG(dev
, "list_add\n");
1228 /* add request to ep queue */
1231 list_add_tail(&req
->queue
, &ep
->queue
);
1233 /* open rxfifo if out data queued */
1238 if (ep
->num
!= UDC_EP0OUT_IX
)
1239 dev
->data_ep_queued
= 1;
1241 /* stop OUT naking */
1243 if (!use_dma
&& udc_rxfifo_pending
) {
1244 DBG(dev
, "udc_queue(): pending bytes in "
1245 "rxfifo after nyet\n");
1247 * read pending bytes afer nyet:
1250 if (udc_rxfifo_read(ep
, req
)) {
1252 complete_req(ep
, req
, 0);
1254 udc_rxfifo_pending
= 0;
1261 spin_unlock_irqrestore(&dev
->lock
, iflags
);
1265 /* Empty request queue of an endpoint; caller holds spinlock */
1266 static void empty_req_queue(struct udc_ep
*ep
)
1268 struct udc_request
*req
;
1271 while (!list_empty(&ep
->queue
)) {
1272 req
= list_entry(ep
->queue
.next
,
1275 complete_req(ep
, req
, -ESHUTDOWN
);
1279 /* Dequeues a request packet, called by gadget driver */
1280 static int udc_dequeue(struct usb_ep
*usbep
, struct usb_request
*usbreq
)
1283 struct udc_request
*req
;
1285 unsigned long iflags
;
1287 ep
= container_of(usbep
, struct udc_ep
, ep
);
1288 if (!usbep
|| !usbreq
|| (!ep
->desc
&& (ep
->num
!= 0
1289 && ep
->num
!= UDC_EP0OUT_IX
)))
1292 req
= container_of(usbreq
, struct udc_request
, req
);
1294 spin_lock_irqsave(&ep
->dev
->lock
, iflags
);
1295 halted
= ep
->halted
;
1297 /* request in processing or next one */
1298 if (ep
->queue
.next
== &req
->queue
) {
1299 if (ep
->dma
&& req
->dma_going
) {
1301 ep
->cancel_transfer
= 1;
1305 /* stop potential receive DMA */
1306 tmp
= readl(&udc
->regs
->ctl
);
1307 writel(tmp
& AMD_UNMASK_BIT(UDC_DEVCTL_RDE
),
1310 * Cancel transfer later in ISR
1311 * if descriptor was touched.
1313 dma_sts
= AMD_GETBITS(req
->td_data
->status
,
1314 UDC_DMA_OUT_STS_BS
);
1315 if (dma_sts
!= UDC_DMA_OUT_STS_BS_HOST_READY
)
1316 ep
->cancel_transfer
= 1;
1318 udc_init_bna_dummy(ep
->req
);
1319 writel(ep
->bna_dummy_req
->td_phys
,
1322 writel(tmp
, &udc
->regs
->ctl
);
1326 complete_req(ep
, req
, -ECONNRESET
);
1327 ep
->halted
= halted
;
1329 spin_unlock_irqrestore(&ep
->dev
->lock
, iflags
);
1333 /* Halt or clear halt of endpoint */
1335 udc_set_halt(struct usb_ep
*usbep
, int halt
)
1339 unsigned long iflags
;
1345 pr_debug("set_halt %s: halt=%d\n", usbep
->name
, halt
);
1347 ep
= container_of(usbep
, struct udc_ep
, ep
);
1348 if (!ep
->desc
&& (ep
->num
!= 0 && ep
->num
!= UDC_EP0OUT_IX
))
1350 if (!ep
->dev
->driver
|| ep
->dev
->gadget
.speed
== USB_SPEED_UNKNOWN
)
1353 spin_lock_irqsave(&udc_stall_spinlock
, iflags
);
1354 /* halt or clear halt */
1357 ep
->dev
->stall_ep0in
= 1;
1361 * rxfifo empty not taken into acount
1363 tmp
= readl(&ep
->regs
->ctl
);
1364 tmp
|= AMD_BIT(UDC_EPCTL_S
);
1365 writel(tmp
, &ep
->regs
->ctl
);
1368 /* setup poll timer */
1369 if (!timer_pending(&udc_pollstall_timer
)) {
1370 udc_pollstall_timer
.expires
= jiffies
+
1371 HZ
* UDC_POLLSTALL_TIMER_USECONDS
1373 if (!stop_pollstall_timer
) {
1374 DBG(ep
->dev
, "start polltimer\n");
1375 add_timer(&udc_pollstall_timer
);
1380 /* ep is halted by set_halt() before */
1382 tmp
= readl(&ep
->regs
->ctl
);
1383 /* clear stall bit */
1384 tmp
= tmp
& AMD_CLEAR_BIT(UDC_EPCTL_S
);
1385 /* clear NAK by writing CNAK */
1386 tmp
|= AMD_BIT(UDC_EPCTL_CNAK
);
1387 writel(tmp
, &ep
->regs
->ctl
);
1389 UDC_QUEUE_CNAK(ep
, ep
->num
);
1392 spin_unlock_irqrestore(&udc_stall_spinlock
, iflags
);
1396 /* gadget interface */
1397 static const struct usb_ep_ops udc_ep_ops
= {
1398 .enable
= udc_ep_enable
,
1399 .disable
= udc_ep_disable
,
1401 .alloc_request
= udc_alloc_request
,
1402 .free_request
= udc_free_request
,
1405 .dequeue
= udc_dequeue
,
1407 .set_halt
= udc_set_halt
,
1408 /* fifo ops not implemented */
1411 /*-------------------------------------------------------------------------*/
1413 /* Get frame counter (not implemented) */
1414 static int udc_get_frame(struct usb_gadget
*gadget
)
1419 /* Remote wakeup gadget interface */
1420 static int udc_wakeup(struct usb_gadget
*gadget
)
1426 dev
= container_of(gadget
, struct udc
, gadget
);
1427 udc_remote_wakeup(dev
);
1432 static int amd5536_start(struct usb_gadget_driver
*driver
,
1433 int (*bind
)(struct usb_gadget
*));
1434 static int amd5536_stop(struct usb_gadget_driver
*driver
);
1435 /* gadget operations */
1436 static const struct usb_gadget_ops udc_ops
= {
1437 .wakeup
= udc_wakeup
,
1438 .get_frame
= udc_get_frame
,
1439 .start
= amd5536_start
,
1440 .stop
= amd5536_stop
,
1443 /* Setups endpoint parameters, adds endpoints to linked list */
1444 static void make_ep_lists(struct udc
*dev
)
1446 /* make gadget ep lists */
1447 INIT_LIST_HEAD(&dev
->gadget
.ep_list
);
1448 list_add_tail(&dev
->ep
[UDC_EPIN_STATUS_IX
].ep
.ep_list
,
1449 &dev
->gadget
.ep_list
);
1450 list_add_tail(&dev
->ep
[UDC_EPIN_IX
].ep
.ep_list
,
1451 &dev
->gadget
.ep_list
);
1452 list_add_tail(&dev
->ep
[UDC_EPOUT_IX
].ep
.ep_list
,
1453 &dev
->gadget
.ep_list
);
1456 dev
->ep
[UDC_EPIN_STATUS_IX
].fifo_depth
= UDC_EPIN_SMALLINT_BUFF_SIZE
;
1457 if (dev
->gadget
.speed
== USB_SPEED_FULL
)
1458 dev
->ep
[UDC_EPIN_IX
].fifo_depth
= UDC_FS_EPIN_BUFF_SIZE
;
1459 else if (dev
->gadget
.speed
== USB_SPEED_HIGH
)
1460 dev
->ep
[UDC_EPIN_IX
].fifo_depth
= hs_tx_buf
;
1461 dev
->ep
[UDC_EPOUT_IX
].fifo_depth
= UDC_RXFIFO_SIZE
;
1464 /* init registers at driver load time */
1465 static int startup_registers(struct udc
*dev
)
1469 /* init controller by soft reset */
1470 udc_soft_reset(dev
);
1472 /* mask not needed interrupts */
1473 udc_mask_unused_interrupts(dev
);
1475 /* put into initial config */
1476 udc_basic_init(dev
);
1477 /* link up all endpoints */
1478 udc_setup_endpoints(dev
);
1481 tmp
= readl(&dev
->regs
->cfg
);
1482 if (use_fullspeed
) {
1483 tmp
= AMD_ADDBITS(tmp
, UDC_DEVCFG_SPD_FS
, UDC_DEVCFG_SPD
);
1485 tmp
= AMD_ADDBITS(tmp
, UDC_DEVCFG_SPD_HS
, UDC_DEVCFG_SPD
);
1487 writel(tmp
, &dev
->regs
->cfg
);
1492 /* Inits UDC context */
1493 static void udc_basic_init(struct udc
*dev
)
1497 DBG(dev
, "udc_basic_init()\n");
1499 dev
->gadget
.speed
= USB_SPEED_UNKNOWN
;
1501 /* stop RDE timer */
1502 if (timer_pending(&udc_timer
)) {
1504 mod_timer(&udc_timer
, jiffies
- 1);
1506 /* stop poll stall timer */
1507 if (timer_pending(&udc_pollstall_timer
)) {
1508 mod_timer(&udc_pollstall_timer
, jiffies
- 1);
1511 tmp
= readl(&dev
->regs
->ctl
);
1512 tmp
&= AMD_UNMASK_BIT(UDC_DEVCTL_RDE
);
1513 tmp
&= AMD_UNMASK_BIT(UDC_DEVCTL_TDE
);
1514 writel(tmp
, &dev
->regs
->ctl
);
1516 /* enable dynamic CSR programming */
1517 tmp
= readl(&dev
->regs
->cfg
);
1518 tmp
|= AMD_BIT(UDC_DEVCFG_CSR_PRG
);
1519 /* set self powered */
1520 tmp
|= AMD_BIT(UDC_DEVCFG_SP
);
1521 /* set remote wakeupable */
1522 tmp
|= AMD_BIT(UDC_DEVCFG_RWKP
);
1523 writel(tmp
, &dev
->regs
->cfg
);
1527 dev
->data_ep_enabled
= 0;
1528 dev
->data_ep_queued
= 0;
1531 /* Sets initial endpoint parameters */
1532 static void udc_setup_endpoints(struct udc
*dev
)
1538 DBG(dev
, "udc_setup_endpoints()\n");
1540 /* read enum speed */
1541 tmp
= readl(&dev
->regs
->sts
);
1542 tmp
= AMD_GETBITS(tmp
, UDC_DEVSTS_ENUM_SPEED
);
1543 if (tmp
== UDC_DEVSTS_ENUM_SPEED_HIGH
) {
1544 dev
->gadget
.speed
= USB_SPEED_HIGH
;
1545 } else if (tmp
== UDC_DEVSTS_ENUM_SPEED_FULL
) {
1546 dev
->gadget
.speed
= USB_SPEED_FULL
;
1549 /* set basic ep parameters */
1550 for (tmp
= 0; tmp
< UDC_EP_NUM
; tmp
++) {
1553 ep
->ep
.name
= ep_string
[tmp
];
1555 /* txfifo size is calculated at enable time */
1556 ep
->txfifo
= dev
->txfifo
;
1559 if (tmp
< UDC_EPIN_NUM
) {
1560 ep
->fifo_depth
= UDC_TXFIFO_SIZE
;
1563 ep
->fifo_depth
= UDC_RXFIFO_SIZE
;
1567 ep
->regs
= &dev
->ep_regs
[tmp
];
1569 * ep will be reset only if ep was not enabled before to avoid
1570 * disabling ep interrupts when ENUM interrupt occurs but ep is
1571 * not enabled by gadget driver
1574 ep_init(dev
->regs
, ep
);
1579 * ep->dma is not really used, just to indicate that
1580 * DMA is active: remove this
1581 * dma regs = dev control regs
1583 ep
->dma
= &dev
->regs
->ctl
;
1585 /* nak OUT endpoints until enable - not for ep0 */
1586 if (tmp
!= UDC_EP0IN_IX
&& tmp
!= UDC_EP0OUT_IX
1587 && tmp
> UDC_EPIN_NUM
) {
1589 reg
= readl(&dev
->ep
[tmp
].regs
->ctl
);
1590 reg
|= AMD_BIT(UDC_EPCTL_SNAK
);
1591 writel(reg
, &dev
->ep
[tmp
].regs
->ctl
);
1592 dev
->ep
[tmp
].naking
= 1;
1597 /* EP0 max packet */
1598 if (dev
->gadget
.speed
== USB_SPEED_FULL
) {
1599 dev
->ep
[UDC_EP0IN_IX
].ep
.maxpacket
= UDC_FS_EP0IN_MAX_PKT_SIZE
;
1600 dev
->ep
[UDC_EP0OUT_IX
].ep
.maxpacket
=
1601 UDC_FS_EP0OUT_MAX_PKT_SIZE
;
1602 } else if (dev
->gadget
.speed
== USB_SPEED_HIGH
) {
1603 dev
->ep
[UDC_EP0IN_IX
].ep
.maxpacket
= UDC_EP0IN_MAX_PKT_SIZE
;
1604 dev
->ep
[UDC_EP0OUT_IX
].ep
.maxpacket
= UDC_EP0OUT_MAX_PKT_SIZE
;
1608 * with suspend bug workaround, ep0 params for gadget driver
1609 * are set at gadget driver bind() call
1611 dev
->gadget
.ep0
= &dev
->ep
[UDC_EP0IN_IX
].ep
;
1612 dev
->ep
[UDC_EP0IN_IX
].halted
= 0;
1613 INIT_LIST_HEAD(&dev
->gadget
.ep0
->ep_list
);
1615 /* init cfg/alt/int */
1616 dev
->cur_config
= 0;
1621 /* Bringup after Connect event, initial bringup to be ready for ep0 events */
1622 static void usb_connect(struct udc
*dev
)
1625 dev_info(&dev
->pdev
->dev
, "USB Connect\n");
1629 /* put into initial config */
1630 udc_basic_init(dev
);
1632 /* enable device setup interrupts */
1633 udc_enable_dev_setup_interrupts(dev
);
1637 * Calls gadget with disconnect event and resets the UDC and makes
1638 * initial bringup to be ready for ep0 events
1640 static void usb_disconnect(struct udc
*dev
)
1643 dev_info(&dev
->pdev
->dev
, "USB Disconnect\n");
1647 /* mask interrupts */
1648 udc_mask_unused_interrupts(dev
);
1650 /* REVISIT there doesn't seem to be a point to having this
1651 * talk to a tasklet ... do it directly, we already hold
1652 * the spinlock needed to process the disconnect.
1655 tasklet_schedule(&disconnect_tasklet
);
1658 /* Tasklet for disconnect to be outside of interrupt context */
1659 static void udc_tasklet_disconnect(unsigned long par
)
1661 struct udc
*dev
= (struct udc
*)(*((struct udc
**) par
));
1664 DBG(dev
, "Tasklet disconnect\n");
1665 spin_lock_irq(&dev
->lock
);
1668 spin_unlock(&dev
->lock
);
1669 dev
->driver
->disconnect(&dev
->gadget
);
1670 spin_lock(&dev
->lock
);
1673 for (tmp
= 0; tmp
< UDC_EP_NUM
; tmp
++) {
1674 empty_req_queue(&dev
->ep
[tmp
]);
1681 &dev
->ep
[UDC_EP0IN_IX
]);
1684 if (!soft_reset_occured
) {
1685 /* init controller by soft reset */
1686 udc_soft_reset(dev
);
1687 soft_reset_occured
++;
1690 /* re-enable dev interrupts */
1691 udc_enable_dev_setup_interrupts(dev
);
1692 /* back to full speed ? */
1693 if (use_fullspeed
) {
1694 tmp
= readl(&dev
->regs
->cfg
);
1695 tmp
= AMD_ADDBITS(tmp
, UDC_DEVCFG_SPD_FS
, UDC_DEVCFG_SPD
);
1696 writel(tmp
, &dev
->regs
->cfg
);
1699 spin_unlock_irq(&dev
->lock
);
1702 /* Reset the UDC core */
1703 static void udc_soft_reset(struct udc
*dev
)
1705 unsigned long flags
;
1707 DBG(dev
, "Soft reset\n");
1709 * reset possible waiting interrupts, because int.
1710 * status is lost after soft reset,
1711 * ep int. status reset
1713 writel(UDC_EPINT_MSK_DISABLE_ALL
, &dev
->regs
->ep_irqsts
);
1714 /* device int. status reset */
1715 writel(UDC_DEV_MSK_DISABLE
, &dev
->regs
->irqsts
);
1717 spin_lock_irqsave(&udc_irq_spinlock
, flags
);
1718 writel(AMD_BIT(UDC_DEVCFG_SOFTRESET
), &dev
->regs
->cfg
);
1719 readl(&dev
->regs
->cfg
);
1720 spin_unlock_irqrestore(&udc_irq_spinlock
, flags
);
1724 /* RDE timer callback to set RDE bit */
1725 static void udc_timer_function(unsigned long v
)
1729 spin_lock_irq(&udc_irq_spinlock
);
1733 * open the fifo if fifo was filled on last timer call
1737 /* set RDE to receive setup data */
1738 tmp
= readl(&udc
->regs
->ctl
);
1739 tmp
|= AMD_BIT(UDC_DEVCTL_RDE
);
1740 writel(tmp
, &udc
->regs
->ctl
);
1742 } else if (readl(&udc
->regs
->sts
)
1743 & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY
)) {
1745 * if fifo empty setup polling, do not just
1748 udc_timer
.expires
= jiffies
+ HZ
/UDC_RDE_TIMER_DIV
;
1750 add_timer(&udc_timer
);
1754 * fifo contains data now, setup timer for opening
1755 * the fifo when timer expires to be able to receive
1756 * setup packets, when data packets gets queued by
1757 * gadget layer then timer will forced to expire with
1758 * set_rde=0 (RDE is set in udc_queue())
1761 /* debug: lhadmot_timer_start = 221070 */
1762 udc_timer
.expires
= jiffies
+ HZ
*UDC_RDE_TIMER_SECONDS
;
1764 add_timer(&udc_timer
);
1769 set_rde
= -1; /* RDE was set by udc_queue() */
1770 spin_unlock_irq(&udc_irq_spinlock
);
1776 /* Handle halt state, used in stall poll timer */
1777 static void udc_handle_halt_state(struct udc_ep
*ep
)
1780 /* set stall as long not halted */
1781 if (ep
->halted
== 1) {
1782 tmp
= readl(&ep
->regs
->ctl
);
1783 /* STALL cleared ? */
1784 if (!(tmp
& AMD_BIT(UDC_EPCTL_S
))) {
1786 * FIXME: MSC spec requires that stall remains
1787 * even on receivng of CLEAR_FEATURE HALT. So
1788 * we would set STALL again here to be compliant.
1789 * But with current mass storage drivers this does
1790 * not work (would produce endless host retries).
1791 * So we clear halt on CLEAR_FEATURE.
1793 DBG(ep->dev, "ep %d: set STALL again\n", ep->num);
1794 tmp |= AMD_BIT(UDC_EPCTL_S);
1795 writel(tmp, &ep->regs->ctl);*/
1797 /* clear NAK by writing CNAK */
1798 tmp
|= AMD_BIT(UDC_EPCTL_CNAK
);
1799 writel(tmp
, &ep
->regs
->ctl
);
1801 UDC_QUEUE_CNAK(ep
, ep
->num
);
1806 /* Stall timer callback to poll S bit and set it again after */
1807 static void udc_pollstall_timer_function(unsigned long v
)
1812 spin_lock_irq(&udc_stall_spinlock
);
1814 * only one IN and OUT endpoints are handled
1817 ep
= &udc
->ep
[UDC_EPIN_IX
];
1818 udc_handle_halt_state(ep
);
1821 /* OUT poll stall */
1822 ep
= &udc
->ep
[UDC_EPOUT_IX
];
1823 udc_handle_halt_state(ep
);
1827 /* setup timer again when still halted */
1828 if (!stop_pollstall_timer
&& halted
) {
1829 udc_pollstall_timer
.expires
= jiffies
+
1830 HZ
* UDC_POLLSTALL_TIMER_USECONDS
1832 add_timer(&udc_pollstall_timer
);
1834 spin_unlock_irq(&udc_stall_spinlock
);
1836 if (stop_pollstall_timer
)
1837 complete(&on_pollstall_exit
);
1840 /* Inits endpoint 0 so that SETUP packets are processed */
1841 static void activate_control_endpoints(struct udc
*dev
)
1845 DBG(dev
, "activate_control_endpoints\n");
1848 tmp
= readl(&dev
->ep
[UDC_EP0IN_IX
].regs
->ctl
);
1849 tmp
|= AMD_BIT(UDC_EPCTL_F
);
1850 writel(tmp
, &dev
->ep
[UDC_EP0IN_IX
].regs
->ctl
);
1852 /* set ep0 directions */
1853 dev
->ep
[UDC_EP0IN_IX
].in
= 1;
1854 dev
->ep
[UDC_EP0OUT_IX
].in
= 0;
1856 /* set buffer size (tx fifo entries) of EP0_IN */
1857 tmp
= readl(&dev
->ep
[UDC_EP0IN_IX
].regs
->bufin_framenum
);
1858 if (dev
->gadget
.speed
== USB_SPEED_FULL
)
1859 tmp
= AMD_ADDBITS(tmp
, UDC_FS_EPIN0_BUFF_SIZE
,
1860 UDC_EPIN_BUFF_SIZE
);
1861 else if (dev
->gadget
.speed
== USB_SPEED_HIGH
)
1862 tmp
= AMD_ADDBITS(tmp
, UDC_EPIN0_BUFF_SIZE
,
1863 UDC_EPIN_BUFF_SIZE
);
1864 writel(tmp
, &dev
->ep
[UDC_EP0IN_IX
].regs
->bufin_framenum
);
1866 /* set max packet size of EP0_IN */
1867 tmp
= readl(&dev
->ep
[UDC_EP0IN_IX
].regs
->bufout_maxpkt
);
1868 if (dev
->gadget
.speed
== USB_SPEED_FULL
)
1869 tmp
= AMD_ADDBITS(tmp
, UDC_FS_EP0IN_MAX_PKT_SIZE
,
1870 UDC_EP_MAX_PKT_SIZE
);
1871 else if (dev
->gadget
.speed
== USB_SPEED_HIGH
)
1872 tmp
= AMD_ADDBITS(tmp
, UDC_EP0IN_MAX_PKT_SIZE
,
1873 UDC_EP_MAX_PKT_SIZE
);
1874 writel(tmp
, &dev
->ep
[UDC_EP0IN_IX
].regs
->bufout_maxpkt
);
1876 /* set max packet size of EP0_OUT */
1877 tmp
= readl(&dev
->ep
[UDC_EP0OUT_IX
].regs
->bufout_maxpkt
);
1878 if (dev
->gadget
.speed
== USB_SPEED_FULL
)
1879 tmp
= AMD_ADDBITS(tmp
, UDC_FS_EP0OUT_MAX_PKT_SIZE
,
1880 UDC_EP_MAX_PKT_SIZE
);
1881 else if (dev
->gadget
.speed
== USB_SPEED_HIGH
)
1882 tmp
= AMD_ADDBITS(tmp
, UDC_EP0OUT_MAX_PKT_SIZE
,
1883 UDC_EP_MAX_PKT_SIZE
);
1884 writel(tmp
, &dev
->ep
[UDC_EP0OUT_IX
].regs
->bufout_maxpkt
);
1886 /* set max packet size of EP0 in UDC CSR */
1887 tmp
= readl(&dev
->csr
->ne
[0]);
1888 if (dev
->gadget
.speed
== USB_SPEED_FULL
)
1889 tmp
= AMD_ADDBITS(tmp
, UDC_FS_EP0OUT_MAX_PKT_SIZE
,
1890 UDC_CSR_NE_MAX_PKT
);
1891 else if (dev
->gadget
.speed
== USB_SPEED_HIGH
)
1892 tmp
= AMD_ADDBITS(tmp
, UDC_EP0OUT_MAX_PKT_SIZE
,
1893 UDC_CSR_NE_MAX_PKT
);
1894 writel(tmp
, &dev
->csr
->ne
[0]);
1897 dev
->ep
[UDC_EP0OUT_IX
].td
->status
|=
1898 AMD_BIT(UDC_DMA_OUT_STS_L
);
1899 /* write dma desc address */
1900 writel(dev
->ep
[UDC_EP0OUT_IX
].td_stp_dma
,
1901 &dev
->ep
[UDC_EP0OUT_IX
].regs
->subptr
);
1902 writel(dev
->ep
[UDC_EP0OUT_IX
].td_phys
,
1903 &dev
->ep
[UDC_EP0OUT_IX
].regs
->desptr
);
1904 /* stop RDE timer */
1905 if (timer_pending(&udc_timer
)) {
1907 mod_timer(&udc_timer
, jiffies
- 1);
1909 /* stop pollstall timer */
1910 if (timer_pending(&udc_pollstall_timer
)) {
1911 mod_timer(&udc_pollstall_timer
, jiffies
- 1);
1914 tmp
= readl(&dev
->regs
->ctl
);
1915 tmp
|= AMD_BIT(UDC_DEVCTL_MODE
)
1916 | AMD_BIT(UDC_DEVCTL_RDE
)
1917 | AMD_BIT(UDC_DEVCTL_TDE
);
1918 if (use_dma_bufferfill_mode
) {
1919 tmp
|= AMD_BIT(UDC_DEVCTL_BF
);
1920 } else if (use_dma_ppb_du
) {
1921 tmp
|= AMD_BIT(UDC_DEVCTL_DU
);
1923 writel(tmp
, &dev
->regs
->ctl
);
1926 /* clear NAK by writing CNAK for EP0IN */
1927 tmp
= readl(&dev
->ep
[UDC_EP0IN_IX
].regs
->ctl
);
1928 tmp
|= AMD_BIT(UDC_EPCTL_CNAK
);
1929 writel(tmp
, &dev
->ep
[UDC_EP0IN_IX
].regs
->ctl
);
1930 dev
->ep
[UDC_EP0IN_IX
].naking
= 0;
1931 UDC_QUEUE_CNAK(&dev
->ep
[UDC_EP0IN_IX
], UDC_EP0IN_IX
);
1933 /* clear NAK by writing CNAK for EP0OUT */
1934 tmp
= readl(&dev
->ep
[UDC_EP0OUT_IX
].regs
->ctl
);
1935 tmp
|= AMD_BIT(UDC_EPCTL_CNAK
);
1936 writel(tmp
, &dev
->ep
[UDC_EP0OUT_IX
].regs
->ctl
);
1937 dev
->ep
[UDC_EP0OUT_IX
].naking
= 0;
1938 UDC_QUEUE_CNAK(&dev
->ep
[UDC_EP0OUT_IX
], UDC_EP0OUT_IX
);
1941 /* Make endpoint 0 ready for control traffic */
1942 static int setup_ep0(struct udc
*dev
)
1944 activate_control_endpoints(dev
);
1945 /* enable ep0 interrupts */
1946 udc_enable_ep0_interrupts(dev
);
1947 /* enable device setup interrupts */
1948 udc_enable_dev_setup_interrupts(dev
);
1953 /* Called by gadget driver to register itself */
1954 static int amd5536_start(struct usb_gadget_driver
*driver
,
1955 int (*bind
)(struct usb_gadget
*))
1957 struct udc
*dev
= udc
;
1961 if (!driver
|| !bind
|| !driver
->setup
1962 || driver
->speed
< USB_SPEED_HIGH
)
1969 driver
->driver
.bus
= NULL
;
1970 dev
->driver
= driver
;
1971 dev
->gadget
.dev
.driver
= &driver
->driver
;
1973 retval
= bind(&dev
->gadget
);
1975 /* Some gadget drivers use both ep0 directions.
1976 * NOTE: to gadget driver, ep0 is just one endpoint...
1978 dev
->ep
[UDC_EP0OUT_IX
].ep
.driver_data
=
1979 dev
->ep
[UDC_EP0IN_IX
].ep
.driver_data
;
1982 DBG(dev
, "binding to %s returning %d\n",
1983 driver
->driver
.name
, retval
);
1985 dev
->gadget
.dev
.driver
= NULL
;
1989 /* get ready for ep0 traffic */
1993 tmp
= readl(&dev
->regs
->ctl
);
1994 tmp
= tmp
& AMD_CLEAR_BIT(UDC_DEVCTL_SD
);
1995 writel(tmp
, &dev
->regs
->ctl
);
2002 /* shutdown requests and disconnect from gadget */
2004 shutdown(struct udc
*dev
, struct usb_gadget_driver
*driver
)
2005 __releases(dev
->lock
)
2006 __acquires(dev
->lock
)
2010 if (dev
->gadget
.speed
!= USB_SPEED_UNKNOWN
) {
2011 spin_unlock(&dev
->lock
);
2012 driver
->disconnect(&dev
->gadget
);
2013 spin_lock(&dev
->lock
);
2016 /* empty queues and init hardware */
2017 udc_basic_init(dev
);
2018 for (tmp
= 0; tmp
< UDC_EP_NUM
; tmp
++)
2019 empty_req_queue(&dev
->ep
[tmp
]);
2021 udc_setup_endpoints(dev
);
2024 /* Called by gadget driver to unregister itself */
2025 static int amd5536_stop(struct usb_gadget_driver
*driver
)
2027 struct udc
*dev
= udc
;
2028 unsigned long flags
;
2033 if (!driver
|| driver
!= dev
->driver
|| !driver
->unbind
)
2036 spin_lock_irqsave(&dev
->lock
, flags
);
2037 udc_mask_unused_interrupts(dev
);
2038 shutdown(dev
, driver
);
2039 spin_unlock_irqrestore(&dev
->lock
, flags
);
2041 driver
->unbind(&dev
->gadget
);
2042 dev
->gadget
.dev
.driver
= NULL
;
2046 tmp
= readl(&dev
->regs
->ctl
);
2047 tmp
|= AMD_BIT(UDC_DEVCTL_SD
);
2048 writel(tmp
, &dev
->regs
->ctl
);
2051 DBG(dev
, "%s: unregistered\n", driver
->driver
.name
);
2056 /* Clear pending NAK bits */
2057 static void udc_process_cnak_queue(struct udc
*dev
)
2063 DBG(dev
, "CNAK pending queue processing\n");
2064 for (tmp
= 0; tmp
< UDC_EPIN_NUM_USED
; tmp
++) {
2065 if (cnak_pending
& (1 << tmp
)) {
2066 DBG(dev
, "CNAK pending for ep%d\n", tmp
);
2067 /* clear NAK by writing CNAK */
2068 reg
= readl(&dev
->ep
[tmp
].regs
->ctl
);
2069 reg
|= AMD_BIT(UDC_EPCTL_CNAK
);
2070 writel(reg
, &dev
->ep
[tmp
].regs
->ctl
);
2071 dev
->ep
[tmp
].naking
= 0;
2072 UDC_QUEUE_CNAK(&dev
->ep
[tmp
], dev
->ep
[tmp
].num
);
2075 /* ... and ep0out */
2076 if (cnak_pending
& (1 << UDC_EP0OUT_IX
)) {
2077 DBG(dev
, "CNAK pending for ep%d\n", UDC_EP0OUT_IX
);
2078 /* clear NAK by writing CNAK */
2079 reg
= readl(&dev
->ep
[UDC_EP0OUT_IX
].regs
->ctl
);
2080 reg
|= AMD_BIT(UDC_EPCTL_CNAK
);
2081 writel(reg
, &dev
->ep
[UDC_EP0OUT_IX
].regs
->ctl
);
2082 dev
->ep
[UDC_EP0OUT_IX
].naking
= 0;
2083 UDC_QUEUE_CNAK(&dev
->ep
[UDC_EP0OUT_IX
],
2084 dev
->ep
[UDC_EP0OUT_IX
].num
);
2088 /* Enabling RX DMA after setup packet */
2089 static void udc_ep0_set_rde(struct udc
*dev
)
2093 * only enable RXDMA when no data endpoint enabled
2096 if (!dev
->data_ep_enabled
|| dev
->data_ep_queued
) {
2100 * setup timer for enabling RDE (to not enable
2101 * RXFIFO DMA for data endpoints to early)
2103 if (set_rde
!= 0 && !timer_pending(&udc_timer
)) {
2105 jiffies
+ HZ
/UDC_RDE_TIMER_DIV
;
2108 add_timer(&udc_timer
);
2116 /* Interrupt handler for data OUT traffic */
2117 static irqreturn_t
udc_data_out_isr(struct udc
*dev
, int ep_ix
)
2119 irqreturn_t ret_val
= IRQ_NONE
;
2122 struct udc_request
*req
;
2124 struct udc_data_dma
*td
= NULL
;
2127 VDBG(dev
, "ep%d irq\n", ep_ix
);
2128 ep
= &dev
->ep
[ep_ix
];
2130 tmp
= readl(&ep
->regs
->sts
);
2133 if (tmp
& AMD_BIT(UDC_EPSTS_BNA
)) {
2134 DBG(dev
, "BNA ep%dout occurred - DESPTR = %x \n",
2135 ep
->num
, readl(&ep
->regs
->desptr
));
2137 writel(tmp
| AMD_BIT(UDC_EPSTS_BNA
), &ep
->regs
->sts
);
2138 if (!ep
->cancel_transfer
)
2139 ep
->bna_occurred
= 1;
2141 ep
->cancel_transfer
= 0;
2142 ret_val
= IRQ_HANDLED
;
2147 if (tmp
& AMD_BIT(UDC_EPSTS_HE
)) {
2148 dev_err(&dev
->pdev
->dev
, "HE ep%dout occurred\n", ep
->num
);
2151 writel(tmp
| AMD_BIT(UDC_EPSTS_HE
), &ep
->regs
->sts
);
2152 ret_val
= IRQ_HANDLED
;
2156 if (!list_empty(&ep
->queue
)) {
2159 req
= list_entry(ep
->queue
.next
,
2160 struct udc_request
, queue
);
2163 udc_rxfifo_pending
= 1;
2165 VDBG(dev
, "req = %p\n", req
);
2170 if (req
&& udc_rxfifo_read(ep
, req
)) {
2171 ret_val
= IRQ_HANDLED
;
2174 complete_req(ep
, req
, 0);
2176 if (!list_empty(&ep
->queue
) && !ep
->halted
) {
2177 req
= list_entry(ep
->queue
.next
,
2178 struct udc_request
, queue
);
2184 } else if (!ep
->cancel_transfer
&& req
!= NULL
) {
2185 ret_val
= IRQ_HANDLED
;
2187 /* check for DMA done */
2189 dma_done
= AMD_GETBITS(req
->td_data
->status
,
2190 UDC_DMA_OUT_STS_BS
);
2191 /* packet per buffer mode - rx bytes */
2194 * if BNA occurred then recover desc. from
2197 if (ep
->bna_occurred
) {
2198 VDBG(dev
, "Recover desc. from BNA dummy\n");
2199 memcpy(req
->td_data
, ep
->bna_dummy_req
->td_data
,
2200 sizeof(struct udc_data_dma
));
2201 ep
->bna_occurred
= 0;
2202 udc_init_bna_dummy(ep
->req
);
2204 td
= udc_get_last_dma_desc(req
);
2205 dma_done
= AMD_GETBITS(td
->status
, UDC_DMA_OUT_STS_BS
);
2207 if (dma_done
== UDC_DMA_OUT_STS_BS_DMA_DONE
) {
2208 /* buffer fill mode - rx bytes */
2210 /* received number bytes */
2211 count
= AMD_GETBITS(req
->td_data
->status
,
2212 UDC_DMA_OUT_STS_RXBYTES
);
2213 VDBG(dev
, "rx bytes=%u\n", count
);
2214 /* packet per buffer mode - rx bytes */
2216 VDBG(dev
, "req->td_data=%p\n", req
->td_data
);
2217 VDBG(dev
, "last desc = %p\n", td
);
2218 /* received number bytes */
2219 if (use_dma_ppb_du
) {
2220 /* every desc. counts bytes */
2221 count
= udc_get_ppbdu_rxbytes(req
);
2223 /* last desc. counts bytes */
2224 count
= AMD_GETBITS(td
->status
,
2225 UDC_DMA_OUT_STS_RXBYTES
);
2226 if (!count
&& req
->req
.length
2227 == UDC_DMA_MAXPACKET
) {
2229 * on 64k packets the RXBYTES
2232 count
= UDC_DMA_MAXPACKET
;
2235 VDBG(dev
, "last desc rx bytes=%u\n", count
);
2238 tmp
= req
->req
.length
- req
->req
.actual
;
2240 if ((tmp
% ep
->ep
.maxpacket
) != 0) {
2241 DBG(dev
, "%s: rx %db, space=%db\n",
2242 ep
->ep
.name
, count
, tmp
);
2243 req
->req
.status
= -EOVERFLOW
;
2247 req
->req
.actual
+= count
;
2249 /* complete request */
2250 complete_req(ep
, req
, 0);
2253 if (!list_empty(&ep
->queue
) && !ep
->halted
) {
2254 req
= list_entry(ep
->queue
.next
,
2258 * DMA may be already started by udc_queue()
2259 * called by gadget drivers completion
2260 * routine. This happens when queue
2261 * holds one request only.
2263 if (req
->dma_going
== 0) {
2265 if (prep_dma(ep
, req
, GFP_ATOMIC
) != 0)
2267 /* write desc pointer */
2268 writel(req
->td_phys
,
2276 * implant BNA dummy descriptor to allow
2277 * RXFIFO opening by RDE
2279 if (ep
->bna_dummy_req
) {
2280 /* write desc pointer */
2281 writel(ep
->bna_dummy_req
->td_phys
,
2283 ep
->bna_occurred
= 0;
2287 * schedule timer for setting RDE if queue
2288 * remains empty to allow ep0 packets pass
2292 && !timer_pending(&udc_timer
)) {
2295 + HZ
*UDC_RDE_TIMER_SECONDS
;
2298 add_timer(&udc_timer
);
2301 if (ep
->num
!= UDC_EP0OUT_IX
)
2302 dev
->data_ep_queued
= 0;
2307 * RX DMA must be reenabled for each desc in PPBDU mode
2308 * and must be enabled for PPBNDU mode in case of BNA
2313 } else if (ep
->cancel_transfer
) {
2314 ret_val
= IRQ_HANDLED
;
2315 ep
->cancel_transfer
= 0;
2318 /* check pending CNAKS */
2320 /* CNAk processing when rxfifo empty only */
2321 if (readl(&dev
->regs
->sts
) & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY
)) {
2322 udc_process_cnak_queue(dev
);
2326 /* clear OUT bits in ep status */
2327 writel(UDC_EPSTS_OUT_CLEAR
, &ep
->regs
->sts
);
2332 /* Interrupt handler for data IN traffic */
2333 static irqreturn_t
udc_data_in_isr(struct udc
*dev
, int ep_ix
)
2335 irqreturn_t ret_val
= IRQ_NONE
;
2339 struct udc_request
*req
;
2340 struct udc_data_dma
*td
;
2344 ep
= &dev
->ep
[ep_ix
];
2346 epsts
= readl(&ep
->regs
->sts
);
2349 if (epsts
& AMD_BIT(UDC_EPSTS_BNA
)) {
2350 dev_err(&dev
->pdev
->dev
,
2351 "BNA ep%din occurred - DESPTR = %08lx \n",
2353 (unsigned long) readl(&ep
->regs
->desptr
));
2356 writel(epsts
, &ep
->regs
->sts
);
2357 ret_val
= IRQ_HANDLED
;
2362 if (epsts
& AMD_BIT(UDC_EPSTS_HE
)) {
2363 dev_err(&dev
->pdev
->dev
,
2364 "HE ep%dn occurred - DESPTR = %08lx \n",
2365 ep
->num
, (unsigned long) readl(&ep
->regs
->desptr
));
2368 writel(epsts
| AMD_BIT(UDC_EPSTS_HE
), &ep
->regs
->sts
);
2369 ret_val
= IRQ_HANDLED
;
2373 /* DMA completion */
2374 if (epsts
& AMD_BIT(UDC_EPSTS_TDC
)) {
2375 VDBG(dev
, "TDC set- completion\n");
2376 ret_val
= IRQ_HANDLED
;
2377 if (!ep
->cancel_transfer
&& !list_empty(&ep
->queue
)) {
2378 req
= list_entry(ep
->queue
.next
,
2379 struct udc_request
, queue
);
2381 * length bytes transferred
2382 * check dma done of last desc. in PPBDU mode
2384 if (use_dma_ppb_du
) {
2385 td
= udc_get_last_dma_desc(req
);
2388 AMD_GETBITS(td
->status
,
2390 /* don't care DMA done */
2391 req
->req
.actual
= req
->req
.length
;
2394 /* assume all bytes transferred */
2395 req
->req
.actual
= req
->req
.length
;
2398 if (req
->req
.actual
== req
->req
.length
) {
2400 complete_req(ep
, req
, 0);
2402 /* further request available ? */
2403 if (list_empty(&ep
->queue
)) {
2404 /* disable interrupt */
2405 tmp
= readl(&dev
->regs
->ep_irqmsk
);
2406 tmp
|= AMD_BIT(ep
->num
);
2407 writel(tmp
, &dev
->regs
->ep_irqmsk
);
2411 ep
->cancel_transfer
= 0;
2415 * status reg has IN bit set and TDC not set (if TDC was handled,
2416 * IN must not be handled (UDC defect) ?
2418 if ((epsts
& AMD_BIT(UDC_EPSTS_IN
))
2419 && !(epsts
& AMD_BIT(UDC_EPSTS_TDC
))) {
2420 ret_val
= IRQ_HANDLED
;
2421 if (!list_empty(&ep
->queue
)) {
2423 req
= list_entry(ep
->queue
.next
,
2424 struct udc_request
, queue
);
2428 udc_txfifo_write(ep
, &req
->req
);
2429 len
= req
->req
.length
- req
->req
.actual
;
2430 if (len
> ep
->ep
.maxpacket
)
2431 len
= ep
->ep
.maxpacket
;
2432 req
->req
.actual
+= len
;
2433 if (req
->req
.actual
== req
->req
.length
2434 || (len
!= ep
->ep
.maxpacket
)) {
2436 complete_req(ep
, req
, 0);
2439 } else if (req
&& !req
->dma_going
) {
2440 VDBG(dev
, "IN DMA : req=%p req->td_data=%p\n",
2447 * unset L bit of first desc.
2450 if (use_dma_ppb
&& req
->req
.length
>
2452 req
->td_data
->status
&=
2457 /* write desc pointer */
2458 writel(req
->td_phys
, &ep
->regs
->desptr
);
2460 /* set HOST READY */
2461 req
->td_data
->status
=
2463 req
->td_data
->status
,
2464 UDC_DMA_IN_STS_BS_HOST_READY
,
2467 /* set poll demand bit */
2468 tmp
= readl(&ep
->regs
->ctl
);
2469 tmp
|= AMD_BIT(UDC_EPCTL_P
);
2470 writel(tmp
, &ep
->regs
->ctl
);
2474 } else if (!use_dma
&& ep
->in
) {
2475 /* disable interrupt */
2477 &dev
->regs
->ep_irqmsk
);
2478 tmp
|= AMD_BIT(ep
->num
);
2480 &dev
->regs
->ep_irqmsk
);
2483 /* clear status bits */
2484 writel(epsts
, &ep
->regs
->sts
);
2491 /* Interrupt handler for Control OUT traffic */
2492 static irqreturn_t
udc_control_out_isr(struct udc
*dev
)
2493 __releases(dev
->lock
)
2494 __acquires(dev
->lock
)
2496 irqreturn_t ret_val
= IRQ_NONE
;
2498 int setup_supported
;
2502 struct udc_ep
*ep_tmp
;
2504 ep
= &dev
->ep
[UDC_EP0OUT_IX
];
2507 writel(AMD_BIT(UDC_EPINT_OUT_EP0
), &dev
->regs
->ep_irqsts
);
2509 tmp
= readl(&dev
->ep
[UDC_EP0OUT_IX
].regs
->sts
);
2510 /* check BNA and clear if set */
2511 if (tmp
& AMD_BIT(UDC_EPSTS_BNA
)) {
2512 VDBG(dev
, "ep0: BNA set\n");
2513 writel(AMD_BIT(UDC_EPSTS_BNA
),
2514 &dev
->ep
[UDC_EP0OUT_IX
].regs
->sts
);
2515 ep
->bna_occurred
= 1;
2516 ret_val
= IRQ_HANDLED
;
2520 /* type of data: SETUP or DATA 0 bytes */
2521 tmp
= AMD_GETBITS(tmp
, UDC_EPSTS_OUT
);
2522 VDBG(dev
, "data_typ = %x\n", tmp
);
2525 if (tmp
== UDC_EPSTS_OUT_SETUP
) {
2526 ret_val
= IRQ_HANDLED
;
2528 ep
->dev
->stall_ep0in
= 0;
2529 dev
->waiting_zlp_ack_ep0in
= 0;
2531 /* set NAK for EP0_IN */
2532 tmp
= readl(&dev
->ep
[UDC_EP0IN_IX
].regs
->ctl
);
2533 tmp
|= AMD_BIT(UDC_EPCTL_SNAK
);
2534 writel(tmp
, &dev
->ep
[UDC_EP0IN_IX
].regs
->ctl
);
2535 dev
->ep
[UDC_EP0IN_IX
].naking
= 1;
2536 /* get setup data */
2539 /* clear OUT bits in ep status */
2540 writel(UDC_EPSTS_OUT_CLEAR
,
2541 &dev
->ep
[UDC_EP0OUT_IX
].regs
->sts
);
2543 setup_data
.data
[0] =
2544 dev
->ep
[UDC_EP0OUT_IX
].td_stp
->data12
;
2545 setup_data
.data
[1] =
2546 dev
->ep
[UDC_EP0OUT_IX
].td_stp
->data34
;
2547 /* set HOST READY */
2548 dev
->ep
[UDC_EP0OUT_IX
].td_stp
->status
=
2549 UDC_DMA_STP_STS_BS_HOST_READY
;
2552 udc_rxfifo_read_dwords(dev
, setup_data
.data
, 2);
2555 /* determine direction of control data */
2556 if ((setup_data
.request
.bRequestType
& USB_DIR_IN
) != 0) {
2557 dev
->gadget
.ep0
= &dev
->ep
[UDC_EP0IN_IX
].ep
;
2559 udc_ep0_set_rde(dev
);
2562 dev
->gadget
.ep0
= &dev
->ep
[UDC_EP0OUT_IX
].ep
;
2564 * implant BNA dummy descriptor to allow RXFIFO opening
2567 if (ep
->bna_dummy_req
) {
2568 /* write desc pointer */
2569 writel(ep
->bna_dummy_req
->td_phys
,
2570 &dev
->ep
[UDC_EP0OUT_IX
].regs
->desptr
);
2571 ep
->bna_occurred
= 0;
2575 dev
->ep
[UDC_EP0OUT_IX
].naking
= 1;
2577 * setup timer for enabling RDE (to not enable
2578 * RXFIFO DMA for data to early)
2581 if (!timer_pending(&udc_timer
)) {
2582 udc_timer
.expires
= jiffies
+
2583 HZ
/UDC_RDE_TIMER_DIV
;
2585 add_timer(&udc_timer
);
2591 * mass storage reset must be processed here because
2592 * next packet may be a CLEAR_FEATURE HALT which would not
2593 * clear the stall bit when no STALL handshake was received
2594 * before (autostall can cause this)
2596 if (setup_data
.data
[0] == UDC_MSCRES_DWORD0
2597 && setup_data
.data
[1] == UDC_MSCRES_DWORD1
) {
2598 DBG(dev
, "MSC Reset\n");
2601 * only one IN and OUT endpoints are handled
2603 ep_tmp
= &udc
->ep
[UDC_EPIN_IX
];
2604 udc_set_halt(&ep_tmp
->ep
, 0);
2605 ep_tmp
= &udc
->ep
[UDC_EPOUT_IX
];
2606 udc_set_halt(&ep_tmp
->ep
, 0);
2609 /* call gadget with setup data received */
2610 spin_unlock(&dev
->lock
);
2611 setup_supported
= dev
->driver
->setup(&dev
->gadget
,
2612 &setup_data
.request
);
2613 spin_lock(&dev
->lock
);
2615 tmp
= readl(&dev
->ep
[UDC_EP0IN_IX
].regs
->ctl
);
2616 /* ep0 in returns data (not zlp) on IN phase */
2617 if (setup_supported
>= 0 && setup_supported
<
2618 UDC_EP0IN_MAXPACKET
) {
2619 /* clear NAK by writing CNAK in EP0_IN */
2620 tmp
|= AMD_BIT(UDC_EPCTL_CNAK
);
2621 writel(tmp
, &dev
->ep
[UDC_EP0IN_IX
].regs
->ctl
);
2622 dev
->ep
[UDC_EP0IN_IX
].naking
= 0;
2623 UDC_QUEUE_CNAK(&dev
->ep
[UDC_EP0IN_IX
], UDC_EP0IN_IX
);
2625 /* if unsupported request then stall */
2626 } else if (setup_supported
< 0) {
2627 tmp
|= AMD_BIT(UDC_EPCTL_S
);
2628 writel(tmp
, &dev
->ep
[UDC_EP0IN_IX
].regs
->ctl
);
2630 dev
->waiting_zlp_ack_ep0in
= 1;
2633 /* clear NAK by writing CNAK in EP0_OUT */
2635 tmp
= readl(&dev
->ep
[UDC_EP0OUT_IX
].regs
->ctl
);
2636 tmp
|= AMD_BIT(UDC_EPCTL_CNAK
);
2637 writel(tmp
, &dev
->ep
[UDC_EP0OUT_IX
].regs
->ctl
);
2638 dev
->ep
[UDC_EP0OUT_IX
].naking
= 0;
2639 UDC_QUEUE_CNAK(&dev
->ep
[UDC_EP0OUT_IX
], UDC_EP0OUT_IX
);
2643 /* clear OUT bits in ep status */
2644 writel(UDC_EPSTS_OUT_CLEAR
,
2645 &dev
->ep
[UDC_EP0OUT_IX
].regs
->sts
);
2648 /* data packet 0 bytes */
2649 } else if (tmp
== UDC_EPSTS_OUT_DATA
) {
2650 /* clear OUT bits in ep status */
2651 writel(UDC_EPSTS_OUT_CLEAR
, &dev
->ep
[UDC_EP0OUT_IX
].regs
->sts
);
2653 /* get setup data: only 0 packet */
2655 /* no req if 0 packet, just reactivate */
2656 if (list_empty(&dev
->ep
[UDC_EP0OUT_IX
].queue
)) {
2659 /* set HOST READY */
2660 dev
->ep
[UDC_EP0OUT_IX
].td
->status
=
2662 dev
->ep
[UDC_EP0OUT_IX
].td
->status
,
2663 UDC_DMA_OUT_STS_BS_HOST_READY
,
2664 UDC_DMA_OUT_STS_BS
);
2666 udc_ep0_set_rde(dev
);
2667 ret_val
= IRQ_HANDLED
;
2671 ret_val
|= udc_data_out_isr(dev
, UDC_EP0OUT_IX
);
2672 /* re-program desc. pointer for possible ZLPs */
2673 writel(dev
->ep
[UDC_EP0OUT_IX
].td_phys
,
2674 &dev
->ep
[UDC_EP0OUT_IX
].regs
->desptr
);
2676 udc_ep0_set_rde(dev
);
2680 /* received number bytes */
2681 count
= readl(&dev
->ep
[UDC_EP0OUT_IX
].regs
->sts
);
2682 count
= AMD_GETBITS(count
, UDC_EPSTS_RX_PKT_SIZE
);
2683 /* out data for fifo mode not working */
2686 /* 0 packet or real data ? */
2688 ret_val
|= udc_data_out_isr(dev
, UDC_EP0OUT_IX
);
2690 /* dummy read confirm */
2691 readl(&dev
->ep
[UDC_EP0OUT_IX
].regs
->confirm
);
2692 ret_val
= IRQ_HANDLED
;
2697 /* check pending CNAKS */
2699 /* CNAk processing when rxfifo empty only */
2700 if (readl(&dev
->regs
->sts
) & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY
)) {
2701 udc_process_cnak_queue(dev
);
2709 /* Interrupt handler for Control IN traffic */
2710 static irqreturn_t
udc_control_in_isr(struct udc
*dev
)
2712 irqreturn_t ret_val
= IRQ_NONE
;
2715 struct udc_request
*req
;
2718 ep
= &dev
->ep
[UDC_EP0IN_IX
];
2721 writel(AMD_BIT(UDC_EPINT_IN_EP0
), &dev
->regs
->ep_irqsts
);
2723 tmp
= readl(&dev
->ep
[UDC_EP0IN_IX
].regs
->sts
);
2724 /* DMA completion */
2725 if (tmp
& AMD_BIT(UDC_EPSTS_TDC
)) {
2726 VDBG(dev
, "isr: TDC clear \n");
2727 ret_val
= IRQ_HANDLED
;
2730 writel(AMD_BIT(UDC_EPSTS_TDC
),
2731 &dev
->ep
[UDC_EP0IN_IX
].regs
->sts
);
2733 /* status reg has IN bit set ? */
2734 } else if (tmp
& AMD_BIT(UDC_EPSTS_IN
)) {
2735 ret_val
= IRQ_HANDLED
;
2739 writel(AMD_BIT(UDC_EPSTS_IN
),
2740 &dev
->ep
[UDC_EP0IN_IX
].regs
->sts
);
2742 if (dev
->stall_ep0in
) {
2743 DBG(dev
, "stall ep0in\n");
2745 tmp
= readl(&ep
->regs
->ctl
);
2746 tmp
|= AMD_BIT(UDC_EPCTL_S
);
2747 writel(tmp
, &ep
->regs
->ctl
);
2749 if (!list_empty(&ep
->queue
)) {
2751 req
= list_entry(ep
->queue
.next
,
2752 struct udc_request
, queue
);
2755 /* write desc pointer */
2756 writel(req
->td_phys
, &ep
->regs
->desptr
);
2757 /* set HOST READY */
2758 req
->td_data
->status
=
2760 req
->td_data
->status
,
2761 UDC_DMA_STP_STS_BS_HOST_READY
,
2762 UDC_DMA_STP_STS_BS
);
2764 /* set poll demand bit */
2766 readl(&dev
->ep
[UDC_EP0IN_IX
].regs
->ctl
);
2767 tmp
|= AMD_BIT(UDC_EPCTL_P
);
2769 &dev
->ep
[UDC_EP0IN_IX
].regs
->ctl
);
2771 /* all bytes will be transferred */
2772 req
->req
.actual
= req
->req
.length
;
2775 complete_req(ep
, req
, 0);
2779 udc_txfifo_write(ep
, &req
->req
);
2781 /* lengh bytes transferred */
2782 len
= req
->req
.length
- req
->req
.actual
;
2783 if (len
> ep
->ep
.maxpacket
)
2784 len
= ep
->ep
.maxpacket
;
2786 req
->req
.actual
+= len
;
2787 if (req
->req
.actual
== req
->req
.length
2788 || (len
!= ep
->ep
.maxpacket
)) {
2790 complete_req(ep
, req
, 0);
2797 dev
->stall_ep0in
= 0;
2800 writel(AMD_BIT(UDC_EPSTS_IN
),
2801 &dev
->ep
[UDC_EP0IN_IX
].regs
->sts
);
2809 /* Interrupt handler for global device events */
2810 static irqreturn_t
udc_dev_isr(struct udc
*dev
, u32 dev_irq
)
2811 __releases(dev
->lock
)
2812 __acquires(dev
->lock
)
2814 irqreturn_t ret_val
= IRQ_NONE
;
2821 /* SET_CONFIG irq ? */
2822 if (dev_irq
& AMD_BIT(UDC_DEVINT_SC
)) {
2823 ret_val
= IRQ_HANDLED
;
2825 /* read config value */
2826 tmp
= readl(&dev
->regs
->sts
);
2827 cfg
= AMD_GETBITS(tmp
, UDC_DEVSTS_CFG
);
2828 DBG(dev
, "SET_CONFIG interrupt: config=%d\n", cfg
);
2829 dev
->cur_config
= cfg
;
2830 dev
->set_cfg_not_acked
= 1;
2832 /* make usb request for gadget driver */
2833 memset(&setup_data
, 0 , sizeof(union udc_setup_data
));
2834 setup_data
.request
.bRequest
= USB_REQ_SET_CONFIGURATION
;
2835 setup_data
.request
.wValue
= cpu_to_le16(dev
->cur_config
);
2837 /* programm the NE registers */
2838 for (i
= 0; i
< UDC_EP_NUM
; i
++) {
2842 /* ep ix in UDC CSR register space */
2843 udc_csr_epix
= ep
->num
;
2848 /* ep ix in UDC CSR register space */
2849 udc_csr_epix
= ep
->num
- UDC_CSR_EP_OUT_IX_OFS
;
2852 tmp
= readl(&dev
->csr
->ne
[udc_csr_epix
]);
2854 tmp
= AMD_ADDBITS(tmp
, ep
->dev
->cur_config
,
2857 writel(tmp
, &dev
->csr
->ne
[udc_csr_epix
]);
2859 /* clear stall bits */
2861 tmp
= readl(&ep
->regs
->ctl
);
2862 tmp
= tmp
& AMD_CLEAR_BIT(UDC_EPCTL_S
);
2863 writel(tmp
, &ep
->regs
->ctl
);
2865 /* call gadget zero with setup data received */
2866 spin_unlock(&dev
->lock
);
2867 tmp
= dev
->driver
->setup(&dev
->gadget
, &setup_data
.request
);
2868 spin_lock(&dev
->lock
);
2870 } /* SET_INTERFACE ? */
2871 if (dev_irq
& AMD_BIT(UDC_DEVINT_SI
)) {
2872 ret_val
= IRQ_HANDLED
;
2874 dev
->set_cfg_not_acked
= 1;
2875 /* read interface and alt setting values */
2876 tmp
= readl(&dev
->regs
->sts
);
2877 dev
->cur_alt
= AMD_GETBITS(tmp
, UDC_DEVSTS_ALT
);
2878 dev
->cur_intf
= AMD_GETBITS(tmp
, UDC_DEVSTS_INTF
);
2880 /* make usb request for gadget driver */
2881 memset(&setup_data
, 0 , sizeof(union udc_setup_data
));
2882 setup_data
.request
.bRequest
= USB_REQ_SET_INTERFACE
;
2883 setup_data
.request
.bRequestType
= USB_RECIP_INTERFACE
;
2884 setup_data
.request
.wValue
= cpu_to_le16(dev
->cur_alt
);
2885 setup_data
.request
.wIndex
= cpu_to_le16(dev
->cur_intf
);
2887 DBG(dev
, "SET_INTERFACE interrupt: alt=%d intf=%d\n",
2888 dev
->cur_alt
, dev
->cur_intf
);
2890 /* programm the NE registers */
2891 for (i
= 0; i
< UDC_EP_NUM
; i
++) {
2895 /* ep ix in UDC CSR register space */
2896 udc_csr_epix
= ep
->num
;
2901 /* ep ix in UDC CSR register space */
2902 udc_csr_epix
= ep
->num
- UDC_CSR_EP_OUT_IX_OFS
;
2907 tmp
= readl(&dev
->csr
->ne
[udc_csr_epix
]);
2909 tmp
= AMD_ADDBITS(tmp
, ep
->dev
->cur_intf
,
2911 /* tmp = AMD_ADDBITS(tmp, 2, UDC_CSR_NE_INTF); */
2913 tmp
= AMD_ADDBITS(tmp
, ep
->dev
->cur_alt
,
2916 writel(tmp
, &dev
->csr
->ne
[udc_csr_epix
]);
2918 /* clear stall bits */
2920 tmp
= readl(&ep
->regs
->ctl
);
2921 tmp
= tmp
& AMD_CLEAR_BIT(UDC_EPCTL_S
);
2922 writel(tmp
, &ep
->regs
->ctl
);
2925 /* call gadget zero with setup data received */
2926 spin_unlock(&dev
->lock
);
2927 tmp
= dev
->driver
->setup(&dev
->gadget
, &setup_data
.request
);
2928 spin_lock(&dev
->lock
);
2931 if (dev_irq
& AMD_BIT(UDC_DEVINT_UR
)) {
2932 DBG(dev
, "USB Reset interrupt\n");
2933 ret_val
= IRQ_HANDLED
;
2935 /* allow soft reset when suspend occurs */
2936 soft_reset_occured
= 0;
2938 dev
->waiting_zlp_ack_ep0in
= 0;
2939 dev
->set_cfg_not_acked
= 0;
2941 /* mask not needed interrupts */
2942 udc_mask_unused_interrupts(dev
);
2944 /* call gadget to resume and reset configs etc. */
2945 spin_unlock(&dev
->lock
);
2946 if (dev
->sys_suspended
&& dev
->driver
->resume
) {
2947 dev
->driver
->resume(&dev
->gadget
);
2948 dev
->sys_suspended
= 0;
2950 dev
->driver
->disconnect(&dev
->gadget
);
2951 spin_lock(&dev
->lock
);
2953 /* disable ep0 to empty req queue */
2954 empty_req_queue(&dev
->ep
[UDC_EP0IN_IX
]);
2955 ep_init(dev
->regs
, &dev
->ep
[UDC_EP0IN_IX
]);
2957 /* soft reset when rxfifo not empty */
2958 tmp
= readl(&dev
->regs
->sts
);
2959 if (!(tmp
& AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY
))
2960 && !soft_reset_after_usbreset_occured
) {
2961 udc_soft_reset(dev
);
2962 soft_reset_after_usbreset_occured
++;
2966 * DMA reset to kill potential old DMA hw hang,
2967 * POLL bit is already reset by ep_init() through
2970 DBG(dev
, "DMA machine reset\n");
2971 tmp
= readl(&dev
->regs
->cfg
);
2972 writel(tmp
| AMD_BIT(UDC_DEVCFG_DMARST
), &dev
->regs
->cfg
);
2973 writel(tmp
, &dev
->regs
->cfg
);
2975 /* put into initial config */
2976 udc_basic_init(dev
);
2978 /* enable device setup interrupts */
2979 udc_enable_dev_setup_interrupts(dev
);
2981 /* enable suspend interrupt */
2982 tmp
= readl(&dev
->regs
->irqmsk
);
2983 tmp
&= AMD_UNMASK_BIT(UDC_DEVINT_US
);
2984 writel(tmp
, &dev
->regs
->irqmsk
);
2987 if (dev_irq
& AMD_BIT(UDC_DEVINT_US
)) {
2988 DBG(dev
, "USB Suspend interrupt\n");
2989 ret_val
= IRQ_HANDLED
;
2990 if (dev
->driver
->suspend
) {
2991 spin_unlock(&dev
->lock
);
2992 dev
->sys_suspended
= 1;
2993 dev
->driver
->suspend(&dev
->gadget
);
2994 spin_lock(&dev
->lock
);
2997 if (dev_irq
& AMD_BIT(UDC_DEVINT_ENUM
)) {
2998 DBG(dev
, "ENUM interrupt\n");
2999 ret_val
= IRQ_HANDLED
;
3000 soft_reset_after_usbreset_occured
= 0;
3002 /* disable ep0 to empty req queue */
3003 empty_req_queue(&dev
->ep
[UDC_EP0IN_IX
]);
3004 ep_init(dev
->regs
, &dev
->ep
[UDC_EP0IN_IX
]);
3006 /* link up all endpoints */
3007 udc_setup_endpoints(dev
);
3008 dev_info(&dev
->pdev
->dev
, "Connect: %s\n",
3009 usb_speed_string(dev
->gadget
.speed
));
3012 activate_control_endpoints(dev
);
3014 /* enable ep0 interrupts */
3015 udc_enable_ep0_interrupts(dev
);
3017 /* session valid change interrupt */
3018 if (dev_irq
& AMD_BIT(UDC_DEVINT_SVC
)) {
3019 DBG(dev
, "USB SVC interrupt\n");
3020 ret_val
= IRQ_HANDLED
;
3022 /* check that session is not valid to detect disconnect */
3023 tmp
= readl(&dev
->regs
->sts
);
3024 if (!(tmp
& AMD_BIT(UDC_DEVSTS_SESSVLD
))) {
3025 /* disable suspend interrupt */
3026 tmp
= readl(&dev
->regs
->irqmsk
);
3027 tmp
|= AMD_BIT(UDC_DEVINT_US
);
3028 writel(tmp
, &dev
->regs
->irqmsk
);
3029 DBG(dev
, "USB Disconnect (session valid low)\n");
3030 /* cleanup on disconnect */
3031 usb_disconnect(udc
);
3039 /* Interrupt Service Routine, see Linux Kernel Doc for parameters */
3040 static irqreturn_t
udc_irq(int irq
, void *pdev
)
3042 struct udc
*dev
= pdev
;
3046 irqreturn_t ret_val
= IRQ_NONE
;
3048 spin_lock(&dev
->lock
);
3050 /* check for ep irq */
3051 reg
= readl(&dev
->regs
->ep_irqsts
);
3053 if (reg
& AMD_BIT(UDC_EPINT_OUT_EP0
))
3054 ret_val
|= udc_control_out_isr(dev
);
3055 if (reg
& AMD_BIT(UDC_EPINT_IN_EP0
))
3056 ret_val
|= udc_control_in_isr(dev
);
3062 for (i
= 1; i
< UDC_EP_NUM
; i
++) {
3064 if (!(reg
& ep_irq
) || i
== UDC_EPINT_OUT_EP0
)
3067 /* clear irq status */
3068 writel(ep_irq
, &dev
->regs
->ep_irqsts
);
3070 /* irq for out ep ? */
3071 if (i
> UDC_EPIN_NUM
)
3072 ret_val
|= udc_data_out_isr(dev
, i
);
3074 ret_val
|= udc_data_in_isr(dev
, i
);
3080 /* check for dev irq */
3081 reg
= readl(&dev
->regs
->irqsts
);
3084 writel(reg
, &dev
->regs
->irqsts
);
3085 ret_val
|= udc_dev_isr(dev
, reg
);
3089 spin_unlock(&dev
->lock
);
3093 /* Tears down device */
3094 static void gadget_release(struct device
*pdev
)
3096 struct amd5536udc
*dev
= dev_get_drvdata(pdev
);
3100 /* Cleanup on device remove */
3101 static void udc_remove(struct udc
*dev
)
3105 if (timer_pending(&udc_timer
))
3106 wait_for_completion(&on_exit
);
3108 del_timer_sync(&udc_timer
);
3109 /* remove pollstall timer */
3110 stop_pollstall_timer
++;
3111 if (timer_pending(&udc_pollstall_timer
))
3112 wait_for_completion(&on_pollstall_exit
);
3113 if (udc_pollstall_timer
.data
)
3114 del_timer_sync(&udc_pollstall_timer
);
3118 /* Reset all pci context */
3119 static void udc_pci_remove(struct pci_dev
*pdev
)
3123 dev
= pci_get_drvdata(pdev
);
3125 usb_del_gadget_udc(&udc
->gadget
);
3126 /* gadget driver must not be registered */
3127 BUG_ON(dev
->driver
!= NULL
);
3129 /* dma pool cleanup */
3130 if (dev
->data_requests
)
3131 pci_pool_destroy(dev
->data_requests
);
3133 if (dev
->stp_requests
) {
3134 /* cleanup DMA desc's for ep0in */
3135 pci_pool_free(dev
->stp_requests
,
3136 dev
->ep
[UDC_EP0OUT_IX
].td_stp
,
3137 dev
->ep
[UDC_EP0OUT_IX
].td_stp_dma
);
3138 pci_pool_free(dev
->stp_requests
,
3139 dev
->ep
[UDC_EP0OUT_IX
].td
,
3140 dev
->ep
[UDC_EP0OUT_IX
].td_phys
);
3142 pci_pool_destroy(dev
->stp_requests
);
3145 /* reset controller */
3146 writel(AMD_BIT(UDC_DEVCFG_SOFTRESET
), &dev
->regs
->cfg
);
3147 if (dev
->irq_registered
)
3148 free_irq(pdev
->irq
, dev
);
3151 if (dev
->mem_region
)
3152 release_mem_region(pci_resource_start(pdev
, 0),
3153 pci_resource_len(pdev
, 0));
3155 pci_disable_device(pdev
);
3157 device_unregister(&dev
->gadget
.dev
);
3158 pci_set_drvdata(pdev
, NULL
);
3163 /* create dma pools on init */
3164 static int init_dma_pools(struct udc
*dev
)
3166 struct udc_stp_dma
*td_stp
;
3167 struct udc_data_dma
*td_data
;
3170 /* consistent DMA mode setting ? */
3172 use_dma_bufferfill_mode
= 0;
3175 use_dma_bufferfill_mode
= 1;
3179 dev
->data_requests
= dma_pool_create("data_requests", NULL
,
3180 sizeof(struct udc_data_dma
), 0, 0);
3181 if (!dev
->data_requests
) {
3182 DBG(dev
, "can't get request data pool\n");
3187 /* EP0 in dma regs = dev control regs */
3188 dev
->ep
[UDC_EP0IN_IX
].dma
= &dev
->regs
->ctl
;
3190 /* dma desc for setup data */
3191 dev
->stp_requests
= dma_pool_create("setup requests", NULL
,
3192 sizeof(struct udc_stp_dma
), 0, 0);
3193 if (!dev
->stp_requests
) {
3194 DBG(dev
, "can't get stp request pool\n");
3199 td_stp
= dma_pool_alloc(dev
->stp_requests
, GFP_KERNEL
,
3200 &dev
->ep
[UDC_EP0OUT_IX
].td_stp_dma
);
3201 if (td_stp
== NULL
) {
3205 dev
->ep
[UDC_EP0OUT_IX
].td_stp
= td_stp
;
3207 /* data: 0 packets !? */
3208 td_data
= dma_pool_alloc(dev
->stp_requests
, GFP_KERNEL
,
3209 &dev
->ep
[UDC_EP0OUT_IX
].td_phys
);
3210 if (td_data
== NULL
) {
3214 dev
->ep
[UDC_EP0OUT_IX
].td
= td_data
;
3221 /* Called by pci bus driver to init pci context */
3222 static int udc_pci_probe(
3223 struct pci_dev
*pdev
,
3224 const struct pci_device_id
*id
3228 unsigned long resource
;
3234 dev_dbg(&pdev
->dev
, "already probed\n");
3239 dev
= kzalloc(sizeof(struct udc
), GFP_KERNEL
);
3246 if (pci_enable_device(pdev
) < 0) {
3254 /* PCI resource allocation */
3255 resource
= pci_resource_start(pdev
, 0);
3256 len
= pci_resource_len(pdev
, 0);
3258 if (!request_mem_region(resource
, len
, name
)) {
3259 dev_dbg(&pdev
->dev
, "pci device used already\n");
3265 dev
->mem_region
= 1;
3267 dev
->virt_addr
= ioremap_nocache(resource
, len
);
3268 if (dev
->virt_addr
== NULL
) {
3269 dev_dbg(&pdev
->dev
, "start address cannot be mapped\n");
3277 dev_err(&dev
->pdev
->dev
, "irq not set\n");
3284 spin_lock_init(&dev
->lock
);
3285 /* udc csr registers base */
3286 dev
->csr
= dev
->virt_addr
+ UDC_CSR_ADDR
;
3287 /* dev registers base */
3288 dev
->regs
= dev
->virt_addr
+ UDC_DEVCFG_ADDR
;
3289 /* ep registers base */
3290 dev
->ep_regs
= dev
->virt_addr
+ UDC_EPREGS_ADDR
;
3292 dev
->rxfifo
= (u32 __iomem
*)(dev
->virt_addr
+ UDC_RXFIFO_ADDR
);
3293 dev
->txfifo
= (u32 __iomem
*)(dev
->virt_addr
+ UDC_TXFIFO_ADDR
);
3295 if (request_irq(pdev
->irq
, udc_irq
, IRQF_SHARED
, name
, dev
) != 0) {
3296 dev_dbg(&dev
->pdev
->dev
, "request_irq(%d) fail\n", pdev
->irq
);
3302 dev
->irq_registered
= 1;
3304 pci_set_drvdata(pdev
, dev
);
3306 /* chip revision for Hs AMD5536 */
3307 dev
->chiprev
= pdev
->revision
;
3309 pci_set_master(pdev
);
3310 pci_try_set_mwi(pdev
);
3312 /* init dma pools */
3314 retval
= init_dma_pools(dev
);
3319 dev
->phys_addr
= resource
;
3320 dev
->irq
= pdev
->irq
;
3322 dev
->gadget
.dev
.parent
= &pdev
->dev
;
3323 dev
->gadget
.dev
.dma_mask
= pdev
->dev
.dma_mask
;
3325 /* general probing */
3326 if (udc_probe(dev
) == 0)
3331 udc_pci_remove(pdev
);
3336 static int udc_probe(struct udc
*dev
)
3342 /* mark timer as not initialized */
3344 udc_pollstall_timer
.data
= 0;
3346 /* device struct setup */
3347 dev
->gadget
.ops
= &udc_ops
;
3349 dev_set_name(&dev
->gadget
.dev
, "gadget");
3350 dev
->gadget
.dev
.release
= gadget_release
;
3351 dev
->gadget
.name
= name
;
3352 dev
->gadget
.is_dualspeed
= 1;
3354 /* init registers, interrupts, ... */
3355 startup_registers(dev
);
3357 dev_info(&dev
->pdev
->dev
, "%s\n", mod_desc
);
3359 snprintf(tmp
, sizeof tmp
, "%d", dev
->irq
);
3360 dev_info(&dev
->pdev
->dev
,
3361 "irq %s, pci mem %08lx, chip rev %02x(Geode5536 %s)\n",
3362 tmp
, dev
->phys_addr
, dev
->chiprev
,
3363 (dev
->chiprev
== UDC_HSA0_REV
) ? "A0" : "B1");
3364 strcpy(tmp
, UDC_DRIVER_VERSION_STRING
);
3365 if (dev
->chiprev
== UDC_HSA0_REV
) {
3366 dev_err(&dev
->pdev
->dev
, "chip revision is A0; too old\n");
3370 dev_info(&dev
->pdev
->dev
,
3371 "driver version: %s(for Geode5536 B1)\n", tmp
);
3374 retval
= usb_add_gadget_udc(&udc
->pdev
->dev
, &dev
->gadget
);
3378 retval
= device_register(&dev
->gadget
.dev
);
3380 usb_del_gadget_udc(&dev
->gadget
);
3381 put_device(&dev
->gadget
.dev
);
3386 init_timer(&udc_timer
);
3387 udc_timer
.function
= udc_timer_function
;
3389 /* timer pollstall init */
3390 init_timer(&udc_pollstall_timer
);
3391 udc_pollstall_timer
.function
= udc_pollstall_timer_function
;
3392 udc_pollstall_timer
.data
= 1;
3395 reg
= readl(&dev
->regs
->ctl
);
3396 reg
|= AMD_BIT(UDC_DEVCTL_SD
);
3397 writel(reg
, &dev
->regs
->ctl
);
3399 /* print dev register info */
3408 /* Initiates a remote wakeup */
3409 static int udc_remote_wakeup(struct udc
*dev
)
3411 unsigned long flags
;
3414 DBG(dev
, "UDC initiates remote wakeup\n");
3416 spin_lock_irqsave(&dev
->lock
, flags
);
3418 tmp
= readl(&dev
->regs
->ctl
);
3419 tmp
|= AMD_BIT(UDC_DEVCTL_RES
);
3420 writel(tmp
, &dev
->regs
->ctl
);
3421 tmp
&= AMD_CLEAR_BIT(UDC_DEVCTL_RES
);
3422 writel(tmp
, &dev
->regs
->ctl
);
3424 spin_unlock_irqrestore(&dev
->lock
, flags
);
3428 /* PCI device parameters */
3429 static const struct pci_device_id pci_id
[] = {
3431 PCI_DEVICE(PCI_VENDOR_ID_AMD
, 0x2096),
3432 .class = (PCI_CLASS_SERIAL_USB
<< 8) | 0xfe,
3433 .class_mask
= 0xffffffff,
3437 MODULE_DEVICE_TABLE(pci
, pci_id
);
3440 static struct pci_driver udc_pci_driver
= {
3441 .name
= (char *) name
,
3443 .probe
= udc_pci_probe
,
3444 .remove
= udc_pci_remove
,
3448 static int __init
init(void)
3450 return pci_register_driver(&udc_pci_driver
);
3455 static void __exit
cleanup(void)
3457 pci_unregister_driver(&udc_pci_driver
);
3459 module_exit(cleanup
);
3461 MODULE_DESCRIPTION(UDC_MOD_DESCRIPTION
);
3462 MODULE_AUTHOR("Thomas Dahlmann");
3463 MODULE_LICENSE("GPL");