procfs: do not confuse jiffies with cputime64_t
[zen-stable.git] / drivers / usb / host / xhci.c
bloba1afb7c39f7e70c36c12a8bccdc0a0b64b7f29d3
1 /*
2 * xHCI host controller driver
4 * Copyright (C) 2008 Intel Corp.
6 * Author: Sarah Sharp
7 * Some code borrowed from the Linux EHCI driver.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 * for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
30 #include "xhci.h"
32 #define DRIVER_AUTHOR "Sarah Sharp"
33 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
35 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
36 static int link_quirk;
37 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
38 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
40 /* TODO: copied from ehci-hcd.c - can this be refactored? */
42 * handshake - spin reading hc until handshake completes or fails
43 * @ptr: address of hc register to be read
44 * @mask: bits to look at in result of read
45 * @done: value of those bits when handshake succeeds
46 * @usec: timeout in microseconds
48 * Returns negative errno, or zero on success
50 * Success happens when the "mask" bits have the specified value (hardware
51 * handshake done). There are two failure modes: "usec" have passed (major
52 * hardware flakeout), or the register reads as all-ones (hardware removed).
54 static int handshake(struct xhci_hcd *xhci, void __iomem *ptr,
55 u32 mask, u32 done, int usec)
57 u32 result;
59 do {
60 result = xhci_readl(xhci, ptr);
61 if (result == ~(u32)0) /* card removed */
62 return -ENODEV;
63 result &= mask;
64 if (result == done)
65 return 0;
66 udelay(1);
67 usec--;
68 } while (usec > 0);
69 return -ETIMEDOUT;
73 * Disable interrupts and begin the xHCI halting process.
75 void xhci_quiesce(struct xhci_hcd *xhci)
77 u32 halted;
78 u32 cmd;
79 u32 mask;
81 mask = ~(XHCI_IRQS);
82 halted = xhci_readl(xhci, &xhci->op_regs->status) & STS_HALT;
83 if (!halted)
84 mask &= ~CMD_RUN;
86 cmd = xhci_readl(xhci, &xhci->op_regs->command);
87 cmd &= mask;
88 xhci_writel(xhci, cmd, &xhci->op_regs->command);
92 * Force HC into halt state.
94 * Disable any IRQs and clear the run/stop bit.
95 * HC will complete any current and actively pipelined transactions, and
96 * should halt within 16 ms of the run/stop bit being cleared.
97 * Read HC Halted bit in the status register to see when the HC is finished.
99 int xhci_halt(struct xhci_hcd *xhci)
101 int ret;
102 xhci_dbg(xhci, "// Halt the HC\n");
103 xhci_quiesce(xhci);
105 ret = handshake(xhci, &xhci->op_regs->status,
106 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
107 if (!ret)
108 xhci->xhc_state |= XHCI_STATE_HALTED;
109 return ret;
113 * Set the run bit and wait for the host to be running.
115 static int xhci_start(struct xhci_hcd *xhci)
117 u32 temp;
118 int ret;
120 temp = xhci_readl(xhci, &xhci->op_regs->command);
121 temp |= (CMD_RUN);
122 xhci_dbg(xhci, "// Turn on HC, cmd = 0x%x.\n",
123 temp);
124 xhci_writel(xhci, temp, &xhci->op_regs->command);
127 * Wait for the HCHalted Status bit to be 0 to indicate the host is
128 * running.
130 ret = handshake(xhci, &xhci->op_regs->status,
131 STS_HALT, 0, XHCI_MAX_HALT_USEC);
132 if (ret == -ETIMEDOUT)
133 xhci_err(xhci, "Host took too long to start, "
134 "waited %u microseconds.\n",
135 XHCI_MAX_HALT_USEC);
136 if (!ret)
137 xhci->xhc_state &= ~XHCI_STATE_HALTED;
138 return ret;
142 * Reset a halted HC.
144 * This resets pipelines, timers, counters, state machines, etc.
145 * Transactions will be terminated immediately, and operational registers
146 * will be set to their defaults.
148 int xhci_reset(struct xhci_hcd *xhci)
150 u32 command;
151 u32 state;
152 int ret;
154 state = xhci_readl(xhci, &xhci->op_regs->status);
155 if ((state & STS_HALT) == 0) {
156 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
157 return 0;
160 xhci_dbg(xhci, "// Reset the HC\n");
161 command = xhci_readl(xhci, &xhci->op_regs->command);
162 command |= CMD_RESET;
163 xhci_writel(xhci, command, &xhci->op_regs->command);
165 ret = handshake(xhci, &xhci->op_regs->command,
166 CMD_RESET, 0, 250 * 1000);
167 if (ret)
168 return ret;
170 xhci_dbg(xhci, "Wait for controller to be ready for doorbell rings\n");
172 * xHCI cannot write to any doorbells or operational registers other
173 * than status until the "Controller Not Ready" flag is cleared.
175 return handshake(xhci, &xhci->op_regs->status, STS_CNR, 0, 250 * 1000);
178 #ifdef CONFIG_PCI
179 static int xhci_free_msi(struct xhci_hcd *xhci)
181 int i;
183 if (!xhci->msix_entries)
184 return -EINVAL;
186 for (i = 0; i < xhci->msix_count; i++)
187 if (xhci->msix_entries[i].vector)
188 free_irq(xhci->msix_entries[i].vector,
189 xhci_to_hcd(xhci));
190 return 0;
194 * Set up MSI
196 static int xhci_setup_msi(struct xhci_hcd *xhci)
198 int ret;
199 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
201 ret = pci_enable_msi(pdev);
202 if (ret) {
203 xhci_err(xhci, "failed to allocate MSI entry\n");
204 return ret;
207 ret = request_irq(pdev->irq, (irq_handler_t)xhci_msi_irq,
208 0, "xhci_hcd", xhci_to_hcd(xhci));
209 if (ret) {
210 xhci_err(xhci, "disable MSI interrupt\n");
211 pci_disable_msi(pdev);
214 return ret;
218 * Free IRQs
219 * free all IRQs request
221 static void xhci_free_irq(struct xhci_hcd *xhci)
223 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
224 int ret;
226 /* return if using legacy interrupt */
227 if (xhci_to_hcd(xhci)->irq >= 0)
228 return;
230 ret = xhci_free_msi(xhci);
231 if (!ret)
232 return;
233 if (pdev->irq >= 0)
234 free_irq(pdev->irq, xhci_to_hcd(xhci));
236 return;
240 * Set up MSI-X
242 static int xhci_setup_msix(struct xhci_hcd *xhci)
244 int i, ret = 0;
245 struct usb_hcd *hcd = xhci_to_hcd(xhci);
246 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
249 * calculate number of msi-x vectors supported.
250 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
251 * with max number of interrupters based on the xhci HCSPARAMS1.
252 * - num_online_cpus: maximum msi-x vectors per CPUs core.
253 * Add additional 1 vector to ensure always available interrupt.
255 xhci->msix_count = min(num_online_cpus() + 1,
256 HCS_MAX_INTRS(xhci->hcs_params1));
258 xhci->msix_entries =
259 kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
260 GFP_KERNEL);
261 if (!xhci->msix_entries) {
262 xhci_err(xhci, "Failed to allocate MSI-X entries\n");
263 return -ENOMEM;
266 for (i = 0; i < xhci->msix_count; i++) {
267 xhci->msix_entries[i].entry = i;
268 xhci->msix_entries[i].vector = 0;
271 ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count);
272 if (ret) {
273 xhci_err(xhci, "Failed to enable MSI-X\n");
274 goto free_entries;
277 for (i = 0; i < xhci->msix_count; i++) {
278 ret = request_irq(xhci->msix_entries[i].vector,
279 (irq_handler_t)xhci_msi_irq,
280 0, "xhci_hcd", xhci_to_hcd(xhci));
281 if (ret)
282 goto disable_msix;
285 hcd->msix_enabled = 1;
286 return ret;
288 disable_msix:
289 xhci_err(xhci, "disable MSI-X interrupt\n");
290 xhci_free_irq(xhci);
291 pci_disable_msix(pdev);
292 free_entries:
293 kfree(xhci->msix_entries);
294 xhci->msix_entries = NULL;
295 return ret;
298 /* Free any IRQs and disable MSI-X */
299 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
301 struct usb_hcd *hcd = xhci_to_hcd(xhci);
302 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
304 xhci_free_irq(xhci);
306 if (xhci->msix_entries) {
307 pci_disable_msix(pdev);
308 kfree(xhci->msix_entries);
309 xhci->msix_entries = NULL;
310 } else {
311 pci_disable_msi(pdev);
314 hcd->msix_enabled = 0;
315 return;
318 static void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
320 int i;
322 if (xhci->msix_entries) {
323 for (i = 0; i < xhci->msix_count; i++)
324 synchronize_irq(xhci->msix_entries[i].vector);
328 static int xhci_try_enable_msi(struct usb_hcd *hcd)
330 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
331 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
332 int ret;
335 * Some Fresco Logic host controllers advertise MSI, but fail to
336 * generate interrupts. Don't even try to enable MSI.
338 if (xhci->quirks & XHCI_BROKEN_MSI)
339 return 0;
341 /* unregister the legacy interrupt */
342 if (hcd->irq)
343 free_irq(hcd->irq, hcd);
344 hcd->irq = -1;
346 ret = xhci_setup_msix(xhci);
347 if (ret)
348 /* fall back to msi*/
349 ret = xhci_setup_msi(xhci);
351 if (!ret)
352 /* hcd->irq is -1, we have MSI */
353 return 0;
355 /* fall back to legacy interrupt*/
356 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
357 hcd->irq_descr, hcd);
358 if (ret) {
359 xhci_err(xhci, "request interrupt %d failed\n",
360 pdev->irq);
361 return ret;
363 hcd->irq = pdev->irq;
364 return 0;
367 #else
369 static int xhci_try_enable_msi(struct usb_hcd *hcd)
371 return 0;
374 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
378 static void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
382 #endif
385 * Initialize memory for HCD and xHC (one-time init).
387 * Program the PAGESIZE register, initialize the device context array, create
388 * device contexts (?), set up a command ring segment (or two?), create event
389 * ring (one for now).
391 int xhci_init(struct usb_hcd *hcd)
393 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
394 int retval = 0;
396 xhci_dbg(xhci, "xhci_init\n");
397 spin_lock_init(&xhci->lock);
398 if (xhci->hci_version == 0x95 && link_quirk) {
399 xhci_dbg(xhci, "QUIRK: Not clearing Link TRB chain bits.\n");
400 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
401 } else {
402 xhci_dbg(xhci, "xHCI doesn't need link TRB QUIRK\n");
404 retval = xhci_mem_init(xhci, GFP_KERNEL);
405 xhci_dbg(xhci, "Finished xhci_init\n");
407 return retval;
410 /*-------------------------------------------------------------------------*/
413 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
414 static void xhci_event_ring_work(unsigned long arg)
416 unsigned long flags;
417 int temp;
418 u64 temp_64;
419 struct xhci_hcd *xhci = (struct xhci_hcd *) arg;
420 int i, j;
422 xhci_dbg(xhci, "Poll event ring: %lu\n", jiffies);
424 spin_lock_irqsave(&xhci->lock, flags);
425 temp = xhci_readl(xhci, &xhci->op_regs->status);
426 xhci_dbg(xhci, "op reg status = 0x%x\n", temp);
427 if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
428 (xhci->xhc_state & XHCI_STATE_HALTED)) {
429 xhci_dbg(xhci, "HW died, polling stopped.\n");
430 spin_unlock_irqrestore(&xhci->lock, flags);
431 return;
434 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
435 xhci_dbg(xhci, "ir_set 0 pending = 0x%x\n", temp);
436 xhci_dbg(xhci, "HC error bitmask = 0x%x\n", xhci->error_bitmask);
437 xhci->error_bitmask = 0;
438 xhci_dbg(xhci, "Event ring:\n");
439 xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
440 xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
441 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
442 temp_64 &= ~ERST_PTR_MASK;
443 xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
444 xhci_dbg(xhci, "Command ring:\n");
445 xhci_debug_segment(xhci, xhci->cmd_ring->deq_seg);
446 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
447 xhci_dbg_cmd_ptrs(xhci);
448 for (i = 0; i < MAX_HC_SLOTS; ++i) {
449 if (!xhci->devs[i])
450 continue;
451 for (j = 0; j < 31; ++j) {
452 xhci_dbg_ep_rings(xhci, i, j, &xhci->devs[i]->eps[j]);
455 spin_unlock_irqrestore(&xhci->lock, flags);
457 if (!xhci->zombie)
458 mod_timer(&xhci->event_ring_timer, jiffies + POLL_TIMEOUT * HZ);
459 else
460 xhci_dbg(xhci, "Quit polling the event ring.\n");
462 #endif
464 static int xhci_run_finished(struct xhci_hcd *xhci)
466 if (xhci_start(xhci)) {
467 xhci_halt(xhci);
468 return -ENODEV;
470 xhci->shared_hcd->state = HC_STATE_RUNNING;
472 if (xhci->quirks & XHCI_NEC_HOST)
473 xhci_ring_cmd_db(xhci);
475 xhci_dbg(xhci, "Finished xhci_run for USB3 roothub\n");
476 return 0;
480 * Start the HC after it was halted.
482 * This function is called by the USB core when the HC driver is added.
483 * Its opposite is xhci_stop().
485 * xhci_init() must be called once before this function can be called.
486 * Reset the HC, enable device slot contexts, program DCBAAP, and
487 * set command ring pointer and event ring pointer.
489 * Setup MSI-X vectors and enable interrupts.
491 int xhci_run(struct usb_hcd *hcd)
493 u32 temp;
494 u64 temp_64;
495 int ret;
496 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
498 /* Start the xHCI host controller running only after the USB 2.0 roothub
499 * is setup.
502 hcd->uses_new_polling = 1;
503 if (!usb_hcd_is_primary_hcd(hcd))
504 return xhci_run_finished(xhci);
506 xhci_dbg(xhci, "xhci_run\n");
508 ret = xhci_try_enable_msi(hcd);
509 if (ret)
510 return ret;
512 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
513 init_timer(&xhci->event_ring_timer);
514 xhci->event_ring_timer.data = (unsigned long) xhci;
515 xhci->event_ring_timer.function = xhci_event_ring_work;
516 /* Poll the event ring */
517 xhci->event_ring_timer.expires = jiffies + POLL_TIMEOUT * HZ;
518 xhci->zombie = 0;
519 xhci_dbg(xhci, "Setting event ring polling timer\n");
520 add_timer(&xhci->event_ring_timer);
521 #endif
523 xhci_dbg(xhci, "Command ring memory map follows:\n");
524 xhci_debug_ring(xhci, xhci->cmd_ring);
525 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
526 xhci_dbg_cmd_ptrs(xhci);
528 xhci_dbg(xhci, "ERST memory map follows:\n");
529 xhci_dbg_erst(xhci, &xhci->erst);
530 xhci_dbg(xhci, "Event ring:\n");
531 xhci_debug_ring(xhci, xhci->event_ring);
532 xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
533 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
534 temp_64 &= ~ERST_PTR_MASK;
535 xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
537 xhci_dbg(xhci, "// Set the interrupt modulation register\n");
538 temp = xhci_readl(xhci, &xhci->ir_set->irq_control);
539 temp &= ~ER_IRQ_INTERVAL_MASK;
540 temp |= (u32) 160;
541 xhci_writel(xhci, temp, &xhci->ir_set->irq_control);
543 /* Set the HCD state before we enable the irqs */
544 temp = xhci_readl(xhci, &xhci->op_regs->command);
545 temp |= (CMD_EIE);
546 xhci_dbg(xhci, "// Enable interrupts, cmd = 0x%x.\n",
547 temp);
548 xhci_writel(xhci, temp, &xhci->op_regs->command);
550 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
551 xhci_dbg(xhci, "// Enabling event ring interrupter %p by writing 0x%x to irq_pending\n",
552 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
553 xhci_writel(xhci, ER_IRQ_ENABLE(temp),
554 &xhci->ir_set->irq_pending);
555 xhci_print_ir_set(xhci, 0);
557 if (xhci->quirks & XHCI_NEC_HOST)
558 xhci_queue_vendor_command(xhci, 0, 0, 0,
559 TRB_TYPE(TRB_NEC_GET_FW));
561 xhci_dbg(xhci, "Finished xhci_run for USB2 roothub\n");
562 return 0;
565 static void xhci_only_stop_hcd(struct usb_hcd *hcd)
567 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
569 spin_lock_irq(&xhci->lock);
570 xhci_halt(xhci);
572 /* The shared_hcd is going to be deallocated shortly (the USB core only
573 * calls this function when allocation fails in usb_add_hcd(), or
574 * usb_remove_hcd() is called). So we need to unset xHCI's pointer.
576 xhci->shared_hcd = NULL;
577 spin_unlock_irq(&xhci->lock);
581 * Stop xHCI driver.
583 * This function is called by the USB core when the HC driver is removed.
584 * Its opposite is xhci_run().
586 * Disable device contexts, disable IRQs, and quiesce the HC.
587 * Reset the HC, finish any completed transactions, and cleanup memory.
589 void xhci_stop(struct usb_hcd *hcd)
591 u32 temp;
592 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
594 if (!usb_hcd_is_primary_hcd(hcd)) {
595 xhci_only_stop_hcd(xhci->shared_hcd);
596 return;
599 spin_lock_irq(&xhci->lock);
600 /* Make sure the xHC is halted for a USB3 roothub
601 * (xhci_stop() could be called as part of failed init).
603 xhci_halt(xhci);
604 xhci_reset(xhci);
605 spin_unlock_irq(&xhci->lock);
607 xhci_cleanup_msix(xhci);
609 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
610 /* Tell the event ring poll function not to reschedule */
611 xhci->zombie = 1;
612 del_timer_sync(&xhci->event_ring_timer);
613 #endif
615 if (xhci->quirks & XHCI_AMD_PLL_FIX)
616 usb_amd_dev_put();
618 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
619 temp = xhci_readl(xhci, &xhci->op_regs->status);
620 xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
621 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
622 xhci_writel(xhci, ER_IRQ_DISABLE(temp),
623 &xhci->ir_set->irq_pending);
624 xhci_print_ir_set(xhci, 0);
626 xhci_dbg(xhci, "cleaning up memory\n");
627 xhci_mem_cleanup(xhci);
628 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
629 xhci_readl(xhci, &xhci->op_regs->status));
633 * Shutdown HC (not bus-specific)
635 * This is called when the machine is rebooting or halting. We assume that the
636 * machine will be powered off, and the HC's internal state will be reset.
637 * Don't bother to free memory.
639 * This will only ever be called with the main usb_hcd (the USB3 roothub).
641 void xhci_shutdown(struct usb_hcd *hcd)
643 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
645 spin_lock_irq(&xhci->lock);
646 xhci_halt(xhci);
647 spin_unlock_irq(&xhci->lock);
649 xhci_cleanup_msix(xhci);
651 xhci_dbg(xhci, "xhci_shutdown completed - status = %x\n",
652 xhci_readl(xhci, &xhci->op_regs->status));
655 #ifdef CONFIG_PM
656 static void xhci_save_registers(struct xhci_hcd *xhci)
658 xhci->s3.command = xhci_readl(xhci, &xhci->op_regs->command);
659 xhci->s3.dev_nt = xhci_readl(xhci, &xhci->op_regs->dev_notification);
660 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
661 xhci->s3.config_reg = xhci_readl(xhci, &xhci->op_regs->config_reg);
662 xhci->s3.irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending);
663 xhci->s3.irq_control = xhci_readl(xhci, &xhci->ir_set->irq_control);
664 xhci->s3.erst_size = xhci_readl(xhci, &xhci->ir_set->erst_size);
665 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
666 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
669 static void xhci_restore_registers(struct xhci_hcd *xhci)
671 xhci_writel(xhci, xhci->s3.command, &xhci->op_regs->command);
672 xhci_writel(xhci, xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
673 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
674 xhci_writel(xhci, xhci->s3.config_reg, &xhci->op_regs->config_reg);
675 xhci_writel(xhci, xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
676 xhci_writel(xhci, xhci->s3.irq_control, &xhci->ir_set->irq_control);
677 xhci_writel(xhci, xhci->s3.erst_size, &xhci->ir_set->erst_size);
678 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
681 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
683 u64 val_64;
685 /* step 2: initialize command ring buffer */
686 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
687 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
688 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
689 xhci->cmd_ring->dequeue) &
690 (u64) ~CMD_RING_RSVD_BITS) |
691 xhci->cmd_ring->cycle_state;
692 xhci_dbg(xhci, "// Setting command ring address to 0x%llx\n",
693 (long unsigned long) val_64);
694 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
698 * The whole command ring must be cleared to zero when we suspend the host.
700 * The host doesn't save the command ring pointer in the suspend well, so we
701 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte
702 * aligned, because of the reserved bits in the command ring dequeue pointer
703 * register. Therefore, we can't just set the dequeue pointer back in the
704 * middle of the ring (TRBs are 16-byte aligned).
706 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
708 struct xhci_ring *ring;
709 struct xhci_segment *seg;
711 ring = xhci->cmd_ring;
712 seg = ring->deq_seg;
713 do {
714 memset(seg->trbs, 0,
715 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
716 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
717 cpu_to_le32(~TRB_CYCLE);
718 seg = seg->next;
719 } while (seg != ring->deq_seg);
721 /* Reset the software enqueue and dequeue pointers */
722 ring->deq_seg = ring->first_seg;
723 ring->dequeue = ring->first_seg->trbs;
724 ring->enq_seg = ring->deq_seg;
725 ring->enqueue = ring->dequeue;
728 * Ring is now zeroed, so the HW should look for change of ownership
729 * when the cycle bit is set to 1.
731 ring->cycle_state = 1;
734 * Reset the hardware dequeue pointer.
735 * Yes, this will need to be re-written after resume, but we're paranoid
736 * and want to make sure the hardware doesn't access bogus memory
737 * because, say, the BIOS or an SMI started the host without changing
738 * the command ring pointers.
740 xhci_set_cmd_ring_deq(xhci);
744 * Stop HC (not bus-specific)
746 * This is called when the machine transition into S3/S4 mode.
749 int xhci_suspend(struct xhci_hcd *xhci)
751 int rc = 0;
752 struct usb_hcd *hcd = xhci_to_hcd(xhci);
753 u32 command;
755 spin_lock_irq(&xhci->lock);
756 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
757 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
758 /* step 1: stop endpoint */
759 /* skipped assuming that port suspend has done */
761 /* step 2: clear Run/Stop bit */
762 command = xhci_readl(xhci, &xhci->op_regs->command);
763 command &= ~CMD_RUN;
764 xhci_writel(xhci, command, &xhci->op_regs->command);
765 if (handshake(xhci, &xhci->op_regs->status,
766 STS_HALT, STS_HALT, 100*100)) {
767 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
768 spin_unlock_irq(&xhci->lock);
769 return -ETIMEDOUT;
771 xhci_clear_command_ring(xhci);
773 /* step 3: save registers */
774 xhci_save_registers(xhci);
776 /* step 4: set CSS flag */
777 command = xhci_readl(xhci, &xhci->op_regs->command);
778 command |= CMD_CSS;
779 xhci_writel(xhci, command, &xhci->op_regs->command);
780 if (handshake(xhci, &xhci->op_regs->status, STS_SAVE, 0, 10*100)) {
781 xhci_warn(xhci, "WARN: xHC CMD_CSS timeout\n");
782 spin_unlock_irq(&xhci->lock);
783 return -ETIMEDOUT;
785 spin_unlock_irq(&xhci->lock);
787 /* step 5: remove core well power */
788 /* synchronize irq when using MSI-X */
789 xhci_msix_sync_irqs(xhci);
791 return rc;
795 * start xHC (not bus-specific)
797 * This is called when the machine transition from S3/S4 mode.
800 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
802 u32 command, temp = 0;
803 struct usb_hcd *hcd = xhci_to_hcd(xhci);
804 struct usb_hcd *secondary_hcd;
805 int retval = 0;
807 /* Wait a bit if either of the roothubs need to settle from the
808 * transition into bus suspend.
810 if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
811 time_before(jiffies,
812 xhci->bus_state[1].next_statechange))
813 msleep(100);
815 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
816 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
818 spin_lock_irq(&xhci->lock);
819 if (xhci->quirks & XHCI_RESET_ON_RESUME)
820 hibernated = true;
822 if (!hibernated) {
823 /* step 1: restore register */
824 xhci_restore_registers(xhci);
825 /* step 2: initialize command ring buffer */
826 xhci_set_cmd_ring_deq(xhci);
827 /* step 3: restore state and start state*/
828 /* step 3: set CRS flag */
829 command = xhci_readl(xhci, &xhci->op_regs->command);
830 command |= CMD_CRS;
831 xhci_writel(xhci, command, &xhci->op_regs->command);
832 if (handshake(xhci, &xhci->op_regs->status,
833 STS_RESTORE, 0, 10*100)) {
834 xhci_dbg(xhci, "WARN: xHC CMD_CSS timeout\n");
835 spin_unlock_irq(&xhci->lock);
836 return -ETIMEDOUT;
838 temp = xhci_readl(xhci, &xhci->op_regs->status);
841 /* If restore operation fails, re-initialize the HC during resume */
842 if ((temp & STS_SRE) || hibernated) {
843 /* Let the USB core know _both_ roothubs lost power. */
844 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
845 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
847 xhci_dbg(xhci, "Stop HCD\n");
848 xhci_halt(xhci);
849 xhci_reset(xhci);
850 spin_unlock_irq(&xhci->lock);
851 xhci_cleanup_msix(xhci);
853 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
854 /* Tell the event ring poll function not to reschedule */
855 xhci->zombie = 1;
856 del_timer_sync(&xhci->event_ring_timer);
857 #endif
859 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
860 temp = xhci_readl(xhci, &xhci->op_regs->status);
861 xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
862 temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
863 xhci_writel(xhci, ER_IRQ_DISABLE(temp),
864 &xhci->ir_set->irq_pending);
865 xhci_print_ir_set(xhci, 0);
867 xhci_dbg(xhci, "cleaning up memory\n");
868 xhci_mem_cleanup(xhci);
869 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
870 xhci_readl(xhci, &xhci->op_regs->status));
872 /* USB core calls the PCI reinit and start functions twice:
873 * first with the primary HCD, and then with the secondary HCD.
874 * If we don't do the same, the host will never be started.
876 if (!usb_hcd_is_primary_hcd(hcd))
877 secondary_hcd = hcd;
878 else
879 secondary_hcd = xhci->shared_hcd;
881 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
882 retval = xhci_init(hcd->primary_hcd);
883 if (retval)
884 return retval;
885 xhci_dbg(xhci, "Start the primary HCD\n");
886 retval = xhci_run(hcd->primary_hcd);
887 if (!retval) {
888 xhci_dbg(xhci, "Start the secondary HCD\n");
889 retval = xhci_run(secondary_hcd);
891 hcd->state = HC_STATE_SUSPENDED;
892 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
893 goto done;
896 /* step 4: set Run/Stop bit */
897 command = xhci_readl(xhci, &xhci->op_regs->command);
898 command |= CMD_RUN;
899 xhci_writel(xhci, command, &xhci->op_regs->command);
900 handshake(xhci, &xhci->op_regs->status, STS_HALT,
901 0, 250 * 1000);
903 /* step 5: walk topology and initialize portsc,
904 * portpmsc and portli
906 /* this is done in bus_resume */
908 /* step 6: restart each of the previously
909 * Running endpoints by ringing their doorbells
912 spin_unlock_irq(&xhci->lock);
914 done:
915 if (retval == 0) {
916 usb_hcd_resume_root_hub(hcd);
917 usb_hcd_resume_root_hub(xhci->shared_hcd);
919 return retval;
921 #endif /* CONFIG_PM */
923 /*-------------------------------------------------------------------------*/
926 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
927 * HCDs. Find the index for an endpoint given its descriptor. Use the return
928 * value to right shift 1 for the bitmask.
930 * Index = (epnum * 2) + direction - 1,
931 * where direction = 0 for OUT, 1 for IN.
932 * For control endpoints, the IN index is used (OUT index is unused), so
933 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
935 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
937 unsigned int index;
938 if (usb_endpoint_xfer_control(desc))
939 index = (unsigned int) (usb_endpoint_num(desc)*2);
940 else
941 index = (unsigned int) (usb_endpoint_num(desc)*2) +
942 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
943 return index;
946 /* Find the flag for this endpoint (for use in the control context). Use the
947 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
948 * bit 1, etc.
950 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
952 return 1 << (xhci_get_endpoint_index(desc) + 1);
955 /* Find the flag for this endpoint (for use in the control context). Use the
956 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
957 * bit 1, etc.
959 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
961 return 1 << (ep_index + 1);
964 /* Compute the last valid endpoint context index. Basically, this is the
965 * endpoint index plus one. For slot contexts with more than valid endpoint,
966 * we find the most significant bit set in the added contexts flags.
967 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
968 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
970 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
972 return fls(added_ctxs) - 1;
975 /* Returns 1 if the arguments are OK;
976 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
978 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
979 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
980 const char *func) {
981 struct xhci_hcd *xhci;
982 struct xhci_virt_device *virt_dev;
984 if (!hcd || (check_ep && !ep) || !udev) {
985 printk(KERN_DEBUG "xHCI %s called with invalid args\n",
986 func);
987 return -EINVAL;
989 if (!udev->parent) {
990 printk(KERN_DEBUG "xHCI %s called for root hub\n",
991 func);
992 return 0;
995 xhci = hcd_to_xhci(hcd);
996 if (xhci->xhc_state & XHCI_STATE_HALTED)
997 return -ENODEV;
999 if (check_virt_dev) {
1000 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1001 printk(KERN_DEBUG "xHCI %s called with unaddressed "
1002 "device\n", func);
1003 return -EINVAL;
1006 virt_dev = xhci->devs[udev->slot_id];
1007 if (virt_dev->udev != udev) {
1008 printk(KERN_DEBUG "xHCI %s called with udev and "
1009 "virt_dev does not match\n", func);
1010 return -EINVAL;
1014 return 1;
1017 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1018 struct usb_device *udev, struct xhci_command *command,
1019 bool ctx_change, bool must_succeed);
1022 * Full speed devices may have a max packet size greater than 8 bytes, but the
1023 * USB core doesn't know that until it reads the first 8 bytes of the
1024 * descriptor. If the usb_device's max packet size changes after that point,
1025 * we need to issue an evaluate context command and wait on it.
1027 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1028 unsigned int ep_index, struct urb *urb)
1030 struct xhci_container_ctx *in_ctx;
1031 struct xhci_container_ctx *out_ctx;
1032 struct xhci_input_control_ctx *ctrl_ctx;
1033 struct xhci_ep_ctx *ep_ctx;
1034 int max_packet_size;
1035 int hw_max_packet_size;
1036 int ret = 0;
1038 out_ctx = xhci->devs[slot_id]->out_ctx;
1039 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1040 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1041 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1042 if (hw_max_packet_size != max_packet_size) {
1043 xhci_dbg(xhci, "Max Packet Size for ep 0 changed.\n");
1044 xhci_dbg(xhci, "Max packet size in usb_device = %d\n",
1045 max_packet_size);
1046 xhci_dbg(xhci, "Max packet size in xHCI HW = %d\n",
1047 hw_max_packet_size);
1048 xhci_dbg(xhci, "Issuing evaluate context command.\n");
1050 /* Set up the modified control endpoint 0 */
1051 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1052 xhci->devs[slot_id]->out_ctx, ep_index);
1053 in_ctx = xhci->devs[slot_id]->in_ctx;
1054 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1055 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1056 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1058 /* Set up the input context flags for the command */
1059 /* FIXME: This won't work if a non-default control endpoint
1060 * changes max packet sizes.
1062 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1063 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1064 ctrl_ctx->drop_flags = 0;
1066 xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1067 xhci_dbg_ctx(xhci, in_ctx, ep_index);
1068 xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1069 xhci_dbg_ctx(xhci, out_ctx, ep_index);
1071 ret = xhci_configure_endpoint(xhci, urb->dev, NULL,
1072 true, false);
1074 /* Clean up the input context for later use by bandwidth
1075 * functions.
1077 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1079 return ret;
1083 * non-error returns are a promise to giveback() the urb later
1084 * we drop ownership so next owner (or urb unlink) can get it
1086 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1088 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1089 struct xhci_td *buffer;
1090 unsigned long flags;
1091 int ret = 0;
1092 unsigned int slot_id, ep_index;
1093 struct urb_priv *urb_priv;
1094 int size, i;
1096 if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1097 true, true, __func__) <= 0)
1098 return -EINVAL;
1100 slot_id = urb->dev->slot_id;
1101 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1103 if (!HCD_HW_ACCESSIBLE(hcd)) {
1104 if (!in_interrupt())
1105 xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1106 ret = -ESHUTDOWN;
1107 goto exit;
1110 if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1111 size = urb->number_of_packets;
1112 else
1113 size = 1;
1115 urb_priv = kzalloc(sizeof(struct urb_priv) +
1116 size * sizeof(struct xhci_td *), mem_flags);
1117 if (!urb_priv)
1118 return -ENOMEM;
1120 buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1121 if (!buffer) {
1122 kfree(urb_priv);
1123 return -ENOMEM;
1126 for (i = 0; i < size; i++) {
1127 urb_priv->td[i] = buffer;
1128 buffer++;
1131 urb_priv->length = size;
1132 urb_priv->td_cnt = 0;
1133 urb->hcpriv = urb_priv;
1135 if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1136 /* Check to see if the max packet size for the default control
1137 * endpoint changed during FS device enumeration
1139 if (urb->dev->speed == USB_SPEED_FULL) {
1140 ret = xhci_check_maxpacket(xhci, slot_id,
1141 ep_index, urb);
1142 if (ret < 0) {
1143 xhci_urb_free_priv(xhci, urb_priv);
1144 urb->hcpriv = NULL;
1145 return ret;
1149 /* We have a spinlock and interrupts disabled, so we must pass
1150 * atomic context to this function, which may allocate memory.
1152 spin_lock_irqsave(&xhci->lock, flags);
1153 if (xhci->xhc_state & XHCI_STATE_DYING)
1154 goto dying;
1155 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1156 slot_id, ep_index);
1157 if (ret)
1158 goto free_priv;
1159 spin_unlock_irqrestore(&xhci->lock, flags);
1160 } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1161 spin_lock_irqsave(&xhci->lock, flags);
1162 if (xhci->xhc_state & XHCI_STATE_DYING)
1163 goto dying;
1164 if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1165 EP_GETTING_STREAMS) {
1166 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1167 "is transitioning to using streams.\n");
1168 ret = -EINVAL;
1169 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1170 EP_GETTING_NO_STREAMS) {
1171 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1172 "is transitioning to "
1173 "not having streams.\n");
1174 ret = -EINVAL;
1175 } else {
1176 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1177 slot_id, ep_index);
1179 if (ret)
1180 goto free_priv;
1181 spin_unlock_irqrestore(&xhci->lock, flags);
1182 } else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1183 spin_lock_irqsave(&xhci->lock, flags);
1184 if (xhci->xhc_state & XHCI_STATE_DYING)
1185 goto dying;
1186 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1187 slot_id, ep_index);
1188 if (ret)
1189 goto free_priv;
1190 spin_unlock_irqrestore(&xhci->lock, flags);
1191 } else {
1192 spin_lock_irqsave(&xhci->lock, flags);
1193 if (xhci->xhc_state & XHCI_STATE_DYING)
1194 goto dying;
1195 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1196 slot_id, ep_index);
1197 if (ret)
1198 goto free_priv;
1199 spin_unlock_irqrestore(&xhci->lock, flags);
1201 exit:
1202 return ret;
1203 dying:
1204 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1205 "non-responsive xHCI host.\n",
1206 urb->ep->desc.bEndpointAddress, urb);
1207 ret = -ESHUTDOWN;
1208 free_priv:
1209 xhci_urb_free_priv(xhci, urb_priv);
1210 urb->hcpriv = NULL;
1211 spin_unlock_irqrestore(&xhci->lock, flags);
1212 return ret;
1215 /* Get the right ring for the given URB.
1216 * If the endpoint supports streams, boundary check the URB's stream ID.
1217 * If the endpoint doesn't support streams, return the singular endpoint ring.
1219 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1220 struct urb *urb)
1222 unsigned int slot_id;
1223 unsigned int ep_index;
1224 unsigned int stream_id;
1225 struct xhci_virt_ep *ep;
1227 slot_id = urb->dev->slot_id;
1228 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1229 stream_id = urb->stream_id;
1230 ep = &xhci->devs[slot_id]->eps[ep_index];
1231 /* Common case: no streams */
1232 if (!(ep->ep_state & EP_HAS_STREAMS))
1233 return ep->ring;
1235 if (stream_id == 0) {
1236 xhci_warn(xhci,
1237 "WARN: Slot ID %u, ep index %u has streams, "
1238 "but URB has no stream ID.\n",
1239 slot_id, ep_index);
1240 return NULL;
1243 if (stream_id < ep->stream_info->num_streams)
1244 return ep->stream_info->stream_rings[stream_id];
1246 xhci_warn(xhci,
1247 "WARN: Slot ID %u, ep index %u has "
1248 "stream IDs 1 to %u allocated, "
1249 "but stream ID %u is requested.\n",
1250 slot_id, ep_index,
1251 ep->stream_info->num_streams - 1,
1252 stream_id);
1253 return NULL;
1257 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop
1258 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC
1259 * should pick up where it left off in the TD, unless a Set Transfer Ring
1260 * Dequeue Pointer is issued.
1262 * The TRBs that make up the buffers for the canceled URB will be "removed" from
1263 * the ring. Since the ring is a contiguous structure, they can't be physically
1264 * removed. Instead, there are two options:
1266 * 1) If the HC is in the middle of processing the URB to be canceled, we
1267 * simply move the ring's dequeue pointer past those TRBs using the Set
1268 * Transfer Ring Dequeue Pointer command. This will be the common case,
1269 * when drivers timeout on the last submitted URB and attempt to cancel.
1271 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a
1272 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The
1273 * HC will need to invalidate the any TRBs it has cached after the stop
1274 * endpoint command, as noted in the xHCI 0.95 errata.
1276 * 3) The TD may have completed by the time the Stop Endpoint Command
1277 * completes, so software needs to handle that case too.
1279 * This function should protect against the TD enqueueing code ringing the
1280 * doorbell while this code is waiting for a Stop Endpoint command to complete.
1281 * It also needs to account for multiple cancellations on happening at the same
1282 * time for the same endpoint.
1284 * Note that this function can be called in any context, or so says
1285 * usb_hcd_unlink_urb()
1287 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1289 unsigned long flags;
1290 int ret, i;
1291 u32 temp;
1292 struct xhci_hcd *xhci;
1293 struct urb_priv *urb_priv;
1294 struct xhci_td *td;
1295 unsigned int ep_index;
1296 struct xhci_ring *ep_ring;
1297 struct xhci_virt_ep *ep;
1299 xhci = hcd_to_xhci(hcd);
1300 spin_lock_irqsave(&xhci->lock, flags);
1301 /* Make sure the URB hasn't completed or been unlinked already */
1302 ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1303 if (ret || !urb->hcpriv)
1304 goto done;
1305 temp = xhci_readl(xhci, &xhci->op_regs->status);
1306 if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1307 xhci_dbg(xhci, "HW died, freeing TD.\n");
1308 urb_priv = urb->hcpriv;
1309 for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1310 td = urb_priv->td[i];
1311 if (!list_empty(&td->td_list))
1312 list_del_init(&td->td_list);
1313 if (!list_empty(&td->cancelled_td_list))
1314 list_del_init(&td->cancelled_td_list);
1317 usb_hcd_unlink_urb_from_ep(hcd, urb);
1318 spin_unlock_irqrestore(&xhci->lock, flags);
1319 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1320 xhci_urb_free_priv(xhci, urb_priv);
1321 return ret;
1323 if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1324 (xhci->xhc_state & XHCI_STATE_HALTED)) {
1325 xhci_dbg(xhci, "Ep 0x%x: URB %p to be canceled on "
1326 "non-responsive xHCI host.\n",
1327 urb->ep->desc.bEndpointAddress, urb);
1328 /* Let the stop endpoint command watchdog timer (which set this
1329 * state) finish cleaning up the endpoint TD lists. We must
1330 * have caught it in the middle of dropping a lock and giving
1331 * back an URB.
1333 goto done;
1336 xhci_dbg(xhci, "Cancel URB %p\n", urb);
1337 xhci_dbg(xhci, "Event ring:\n");
1338 xhci_debug_ring(xhci, xhci->event_ring);
1339 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1340 ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1341 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1342 if (!ep_ring) {
1343 ret = -EINVAL;
1344 goto done;
1347 xhci_dbg(xhci, "Endpoint ring:\n");
1348 xhci_debug_ring(xhci, ep_ring);
1350 urb_priv = urb->hcpriv;
1352 for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1353 td = urb_priv->td[i];
1354 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1357 /* Queue a stop endpoint command, but only if this is
1358 * the first cancellation to be handled.
1360 if (!(ep->ep_state & EP_HALT_PENDING)) {
1361 ep->ep_state |= EP_HALT_PENDING;
1362 ep->stop_cmds_pending++;
1363 ep->stop_cmd_timer.expires = jiffies +
1364 XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1365 add_timer(&ep->stop_cmd_timer);
1366 xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index, 0);
1367 xhci_ring_cmd_db(xhci);
1369 done:
1370 spin_unlock_irqrestore(&xhci->lock, flags);
1371 return ret;
1374 /* Drop an endpoint from a new bandwidth configuration for this device.
1375 * Only one call to this function is allowed per endpoint before
1376 * check_bandwidth() or reset_bandwidth() must be called.
1377 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1378 * add the endpoint to the schedule with possibly new parameters denoted by a
1379 * different endpoint descriptor in usb_host_endpoint.
1380 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1381 * not allowed.
1383 * The USB core will not allow URBs to be queued to an endpoint that is being
1384 * disabled, so there's no need for mutual exclusion to protect
1385 * the xhci->devs[slot_id] structure.
1387 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1388 struct usb_host_endpoint *ep)
1390 struct xhci_hcd *xhci;
1391 struct xhci_container_ctx *in_ctx, *out_ctx;
1392 struct xhci_input_control_ctx *ctrl_ctx;
1393 struct xhci_slot_ctx *slot_ctx;
1394 unsigned int last_ctx;
1395 unsigned int ep_index;
1396 struct xhci_ep_ctx *ep_ctx;
1397 u32 drop_flag;
1398 u32 new_add_flags, new_drop_flags, new_slot_info;
1399 int ret;
1401 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1402 if (ret <= 0)
1403 return ret;
1404 xhci = hcd_to_xhci(hcd);
1405 if (xhci->xhc_state & XHCI_STATE_DYING)
1406 return -ENODEV;
1408 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1409 drop_flag = xhci_get_endpoint_flag(&ep->desc);
1410 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1411 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1412 __func__, drop_flag);
1413 return 0;
1416 in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1417 out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1418 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1419 ep_index = xhci_get_endpoint_index(&ep->desc);
1420 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1421 /* If the HC already knows the endpoint is disabled,
1422 * or the HCD has noted it is disabled, ignore this request
1424 if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1425 cpu_to_le32(EP_STATE_DISABLED)) ||
1426 le32_to_cpu(ctrl_ctx->drop_flags) &
1427 xhci_get_endpoint_flag(&ep->desc)) {
1428 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1429 __func__, ep);
1430 return 0;
1433 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1434 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1436 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1437 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1439 last_ctx = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags));
1440 slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1441 /* Update the last valid endpoint context, if we deleted the last one */
1442 if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) >
1443 LAST_CTX(last_ctx)) {
1444 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1445 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1447 new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1449 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1451 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1452 (unsigned int) ep->desc.bEndpointAddress,
1453 udev->slot_id,
1454 (unsigned int) new_drop_flags,
1455 (unsigned int) new_add_flags,
1456 (unsigned int) new_slot_info);
1457 return 0;
1460 /* Add an endpoint to a new possible bandwidth configuration for this device.
1461 * Only one call to this function is allowed per endpoint before
1462 * check_bandwidth() or reset_bandwidth() must be called.
1463 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1464 * add the endpoint to the schedule with possibly new parameters denoted by a
1465 * different endpoint descriptor in usb_host_endpoint.
1466 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1467 * not allowed.
1469 * The USB core will not allow URBs to be queued to an endpoint until the
1470 * configuration or alt setting is installed in the device, so there's no need
1471 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1473 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1474 struct usb_host_endpoint *ep)
1476 struct xhci_hcd *xhci;
1477 struct xhci_container_ctx *in_ctx, *out_ctx;
1478 unsigned int ep_index;
1479 struct xhci_ep_ctx *ep_ctx;
1480 struct xhci_slot_ctx *slot_ctx;
1481 struct xhci_input_control_ctx *ctrl_ctx;
1482 u32 added_ctxs;
1483 unsigned int last_ctx;
1484 u32 new_add_flags, new_drop_flags, new_slot_info;
1485 struct xhci_virt_device *virt_dev;
1486 int ret = 0;
1488 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1489 if (ret <= 0) {
1490 /* So we won't queue a reset ep command for a root hub */
1491 ep->hcpriv = NULL;
1492 return ret;
1494 xhci = hcd_to_xhci(hcd);
1495 if (xhci->xhc_state & XHCI_STATE_DYING)
1496 return -ENODEV;
1498 added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1499 last_ctx = xhci_last_valid_endpoint(added_ctxs);
1500 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1501 /* FIXME when we have to issue an evaluate endpoint command to
1502 * deal with ep0 max packet size changing once we get the
1503 * descriptors
1505 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1506 __func__, added_ctxs);
1507 return 0;
1510 virt_dev = xhci->devs[udev->slot_id];
1511 in_ctx = virt_dev->in_ctx;
1512 out_ctx = virt_dev->out_ctx;
1513 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1514 ep_index = xhci_get_endpoint_index(&ep->desc);
1515 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1517 /* If this endpoint is already in use, and the upper layers are trying
1518 * to add it again without dropping it, reject the addition.
1520 if (virt_dev->eps[ep_index].ring &&
1521 !(le32_to_cpu(ctrl_ctx->drop_flags) &
1522 xhci_get_endpoint_flag(&ep->desc))) {
1523 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1524 "without dropping it.\n",
1525 (unsigned int) ep->desc.bEndpointAddress);
1526 return -EINVAL;
1529 /* If the HCD has already noted the endpoint is enabled,
1530 * ignore this request.
1532 if (le32_to_cpu(ctrl_ctx->add_flags) &
1533 xhci_get_endpoint_flag(&ep->desc)) {
1534 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1535 __func__, ep);
1536 return 0;
1540 * Configuration and alternate setting changes must be done in
1541 * process context, not interrupt context (or so documenation
1542 * for usb_set_interface() and usb_set_configuration() claim).
1544 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1545 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1546 __func__, ep->desc.bEndpointAddress);
1547 return -ENOMEM;
1550 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1551 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1553 /* If xhci_endpoint_disable() was called for this endpoint, but the
1554 * xHC hasn't been notified yet through the check_bandwidth() call,
1555 * this re-adds a new state for the endpoint from the new endpoint
1556 * descriptors. We must drop and re-add this endpoint, so we leave the
1557 * drop flags alone.
1559 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1561 slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1562 /* Update the last valid endpoint context, if we just added one past */
1563 if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) <
1564 LAST_CTX(last_ctx)) {
1565 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1566 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1568 new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1570 /* Store the usb_device pointer for later use */
1571 ep->hcpriv = udev;
1573 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1574 (unsigned int) ep->desc.bEndpointAddress,
1575 udev->slot_id,
1576 (unsigned int) new_drop_flags,
1577 (unsigned int) new_add_flags,
1578 (unsigned int) new_slot_info);
1579 return 0;
1582 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1584 struct xhci_input_control_ctx *ctrl_ctx;
1585 struct xhci_ep_ctx *ep_ctx;
1586 struct xhci_slot_ctx *slot_ctx;
1587 int i;
1589 /* When a device's add flag and drop flag are zero, any subsequent
1590 * configure endpoint command will leave that endpoint's state
1591 * untouched. Make sure we don't leave any old state in the input
1592 * endpoint contexts.
1594 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1595 ctrl_ctx->drop_flags = 0;
1596 ctrl_ctx->add_flags = 0;
1597 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1598 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1599 /* Endpoint 0 is always valid */
1600 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1601 for (i = 1; i < 31; ++i) {
1602 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1603 ep_ctx->ep_info = 0;
1604 ep_ctx->ep_info2 = 0;
1605 ep_ctx->deq = 0;
1606 ep_ctx->tx_info = 0;
1610 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1611 struct usb_device *udev, u32 *cmd_status)
1613 int ret;
1615 switch (*cmd_status) {
1616 case COMP_ENOMEM:
1617 dev_warn(&udev->dev, "Not enough host controller resources "
1618 "for new device state.\n");
1619 ret = -ENOMEM;
1620 /* FIXME: can we allocate more resources for the HC? */
1621 break;
1622 case COMP_BW_ERR:
1623 dev_warn(&udev->dev, "Not enough bandwidth "
1624 "for new device state.\n");
1625 ret = -ENOSPC;
1626 /* FIXME: can we go back to the old state? */
1627 break;
1628 case COMP_TRB_ERR:
1629 /* the HCD set up something wrong */
1630 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1631 "add flag = 1, "
1632 "and endpoint is not disabled.\n");
1633 ret = -EINVAL;
1634 break;
1635 case COMP_DEV_ERR:
1636 dev_warn(&udev->dev, "ERROR: Incompatible device for endpoint "
1637 "configure command.\n");
1638 ret = -ENODEV;
1639 break;
1640 case COMP_SUCCESS:
1641 dev_dbg(&udev->dev, "Successful Endpoint Configure command\n");
1642 ret = 0;
1643 break;
1644 default:
1645 xhci_err(xhci, "ERROR: unexpected command completion "
1646 "code 0x%x.\n", *cmd_status);
1647 ret = -EINVAL;
1648 break;
1650 return ret;
1653 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1654 struct usb_device *udev, u32 *cmd_status)
1656 int ret;
1657 struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1659 switch (*cmd_status) {
1660 case COMP_EINVAL:
1661 dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate "
1662 "context command.\n");
1663 ret = -EINVAL;
1664 break;
1665 case COMP_EBADSLT:
1666 dev_warn(&udev->dev, "WARN: slot not enabled for"
1667 "evaluate context command.\n");
1668 case COMP_CTX_STATE:
1669 dev_warn(&udev->dev, "WARN: invalid context state for "
1670 "evaluate context command.\n");
1671 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1672 ret = -EINVAL;
1673 break;
1674 case COMP_DEV_ERR:
1675 dev_warn(&udev->dev, "ERROR: Incompatible device for evaluate "
1676 "context command.\n");
1677 ret = -ENODEV;
1678 break;
1679 case COMP_MEL_ERR:
1680 /* Max Exit Latency too large error */
1681 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1682 ret = -EINVAL;
1683 break;
1684 case COMP_SUCCESS:
1685 dev_dbg(&udev->dev, "Successful evaluate context command\n");
1686 ret = 0;
1687 break;
1688 default:
1689 xhci_err(xhci, "ERROR: unexpected command completion "
1690 "code 0x%x.\n", *cmd_status);
1691 ret = -EINVAL;
1692 break;
1694 return ret;
1697 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1698 struct xhci_container_ctx *in_ctx)
1700 struct xhci_input_control_ctx *ctrl_ctx;
1701 u32 valid_add_flags;
1702 u32 valid_drop_flags;
1704 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1705 /* Ignore the slot flag (bit 0), and the default control endpoint flag
1706 * (bit 1). The default control endpoint is added during the Address
1707 * Device command and is never removed until the slot is disabled.
1709 valid_add_flags = ctrl_ctx->add_flags >> 2;
1710 valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1712 /* Use hweight32 to count the number of ones in the add flags, or
1713 * number of endpoints added. Don't count endpoints that are changed
1714 * (both added and dropped).
1716 return hweight32(valid_add_flags) -
1717 hweight32(valid_add_flags & valid_drop_flags);
1720 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1721 struct xhci_container_ctx *in_ctx)
1723 struct xhci_input_control_ctx *ctrl_ctx;
1724 u32 valid_add_flags;
1725 u32 valid_drop_flags;
1727 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1728 valid_add_flags = ctrl_ctx->add_flags >> 2;
1729 valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1731 return hweight32(valid_drop_flags) -
1732 hweight32(valid_add_flags & valid_drop_flags);
1736 * We need to reserve the new number of endpoints before the configure endpoint
1737 * command completes. We can't subtract the dropped endpoints from the number
1738 * of active endpoints until the command completes because we can oversubscribe
1739 * the host in this case:
1741 * - the first configure endpoint command drops more endpoints than it adds
1742 * - a second configure endpoint command that adds more endpoints is queued
1743 * - the first configure endpoint command fails, so the config is unchanged
1744 * - the second command may succeed, even though there isn't enough resources
1746 * Must be called with xhci->lock held.
1748 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1749 struct xhci_container_ctx *in_ctx)
1751 u32 added_eps;
1753 added_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
1754 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1755 xhci_dbg(xhci, "Not enough ep ctxs: "
1756 "%u active, need to add %u, limit is %u.\n",
1757 xhci->num_active_eps, added_eps,
1758 xhci->limit_active_eps);
1759 return -ENOMEM;
1761 xhci->num_active_eps += added_eps;
1762 xhci_dbg(xhci, "Adding %u ep ctxs, %u now active.\n", added_eps,
1763 xhci->num_active_eps);
1764 return 0;
1768 * The configure endpoint was failed by the xHC for some other reason, so we
1769 * need to revert the resources that failed configuration would have used.
1771 * Must be called with xhci->lock held.
1773 static void xhci_free_host_resources(struct xhci_hcd *xhci,
1774 struct xhci_container_ctx *in_ctx)
1776 u32 num_failed_eps;
1778 num_failed_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
1779 xhci->num_active_eps -= num_failed_eps;
1780 xhci_dbg(xhci, "Removing %u failed ep ctxs, %u now active.\n",
1781 num_failed_eps,
1782 xhci->num_active_eps);
1786 * Now that the command has completed, clean up the active endpoint count by
1787 * subtracting out the endpoints that were dropped (but not changed).
1789 * Must be called with xhci->lock held.
1791 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
1792 struct xhci_container_ctx *in_ctx)
1794 u32 num_dropped_eps;
1796 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, in_ctx);
1797 xhci->num_active_eps -= num_dropped_eps;
1798 if (num_dropped_eps)
1799 xhci_dbg(xhci, "Removing %u dropped ep ctxs, %u now active.\n",
1800 num_dropped_eps,
1801 xhci->num_active_eps);
1804 unsigned int xhci_get_block_size(struct usb_device *udev)
1806 switch (udev->speed) {
1807 case USB_SPEED_LOW:
1808 case USB_SPEED_FULL:
1809 return FS_BLOCK;
1810 case USB_SPEED_HIGH:
1811 return HS_BLOCK;
1812 case USB_SPEED_SUPER:
1813 return SS_BLOCK;
1814 case USB_SPEED_UNKNOWN:
1815 case USB_SPEED_WIRELESS:
1816 default:
1817 /* Should never happen */
1818 return 1;
1822 unsigned int xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
1824 if (interval_bw->overhead[LS_OVERHEAD_TYPE])
1825 return LS_OVERHEAD;
1826 if (interval_bw->overhead[FS_OVERHEAD_TYPE])
1827 return FS_OVERHEAD;
1828 return HS_OVERHEAD;
1831 /* If we are changing a LS/FS device under a HS hub,
1832 * make sure (if we are activating a new TT) that the HS bus has enough
1833 * bandwidth for this new TT.
1835 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
1836 struct xhci_virt_device *virt_dev,
1837 int old_active_eps)
1839 struct xhci_interval_bw_table *bw_table;
1840 struct xhci_tt_bw_info *tt_info;
1842 /* Find the bandwidth table for the root port this TT is attached to. */
1843 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
1844 tt_info = virt_dev->tt_info;
1845 /* If this TT already had active endpoints, the bandwidth for this TT
1846 * has already been added. Removing all periodic endpoints (and thus
1847 * making the TT enactive) will only decrease the bandwidth used.
1849 if (old_active_eps)
1850 return 0;
1851 if (old_active_eps == 0 && tt_info->active_eps != 0) {
1852 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
1853 return -ENOMEM;
1854 return 0;
1856 /* Not sure why we would have no new active endpoints...
1858 * Maybe because of an Evaluate Context change for a hub update or a
1859 * control endpoint 0 max packet size change?
1860 * FIXME: skip the bandwidth calculation in that case.
1862 return 0;
1865 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
1866 struct xhci_virt_device *virt_dev)
1868 unsigned int bw_reserved;
1870 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
1871 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
1872 return -ENOMEM;
1874 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
1875 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
1876 return -ENOMEM;
1878 return 0;
1882 * This algorithm is a very conservative estimate of the worst-case scheduling
1883 * scenario for any one interval. The hardware dynamically schedules the
1884 * packets, so we can't tell which microframe could be the limiting factor in
1885 * the bandwidth scheduling. This only takes into account periodic endpoints.
1887 * Obviously, we can't solve an NP complete problem to find the minimum worst
1888 * case scenario. Instead, we come up with an estimate that is no less than
1889 * the worst case bandwidth used for any one microframe, but may be an
1890 * over-estimate.
1892 * We walk the requirements for each endpoint by interval, starting with the
1893 * smallest interval, and place packets in the schedule where there is only one
1894 * possible way to schedule packets for that interval. In order to simplify
1895 * this algorithm, we record the largest max packet size for each interval, and
1896 * assume all packets will be that size.
1898 * For interval 0, we obviously must schedule all packets for each interval.
1899 * The bandwidth for interval 0 is just the amount of data to be transmitted
1900 * (the sum of all max ESIT payload sizes, plus any overhead per packet times
1901 * the number of packets).
1903 * For interval 1, we have two possible microframes to schedule those packets
1904 * in. For this algorithm, if we can schedule the same number of packets for
1905 * each possible scheduling opportunity (each microframe), we will do so. The
1906 * remaining number of packets will be saved to be transmitted in the gaps in
1907 * the next interval's scheduling sequence.
1909 * As we move those remaining packets to be scheduled with interval 2 packets,
1910 * we have to double the number of remaining packets to transmit. This is
1911 * because the intervals are actually powers of 2, and we would be transmitting
1912 * the previous interval's packets twice in this interval. We also have to be
1913 * sure that when we look at the largest max packet size for this interval, we
1914 * also look at the largest max packet size for the remaining packets and take
1915 * the greater of the two.
1917 * The algorithm continues to evenly distribute packets in each scheduling
1918 * opportunity, and push the remaining packets out, until we get to the last
1919 * interval. Then those packets and their associated overhead are just added
1920 * to the bandwidth used.
1922 static int xhci_check_bw_table(struct xhci_hcd *xhci,
1923 struct xhci_virt_device *virt_dev,
1924 int old_active_eps)
1926 unsigned int bw_reserved;
1927 unsigned int max_bandwidth;
1928 unsigned int bw_used;
1929 unsigned int block_size;
1930 struct xhci_interval_bw_table *bw_table;
1931 unsigned int packet_size = 0;
1932 unsigned int overhead = 0;
1933 unsigned int packets_transmitted = 0;
1934 unsigned int packets_remaining = 0;
1935 unsigned int i;
1937 if (virt_dev->udev->speed == USB_SPEED_SUPER)
1938 return xhci_check_ss_bw(xhci, virt_dev);
1940 if (virt_dev->udev->speed == USB_SPEED_HIGH) {
1941 max_bandwidth = HS_BW_LIMIT;
1942 /* Convert percent of bus BW reserved to blocks reserved */
1943 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
1944 } else {
1945 max_bandwidth = FS_BW_LIMIT;
1946 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
1949 bw_table = virt_dev->bw_table;
1950 /* We need to translate the max packet size and max ESIT payloads into
1951 * the units the hardware uses.
1953 block_size = xhci_get_block_size(virt_dev->udev);
1955 /* If we are manipulating a LS/FS device under a HS hub, double check
1956 * that the HS bus has enough bandwidth if we are activing a new TT.
1958 if (virt_dev->tt_info) {
1959 xhci_dbg(xhci, "Recalculating BW for rootport %u\n",
1960 virt_dev->real_port);
1961 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
1962 xhci_warn(xhci, "Not enough bandwidth on HS bus for "
1963 "newly activated TT.\n");
1964 return -ENOMEM;
1966 xhci_dbg(xhci, "Recalculating BW for TT slot %u port %u\n",
1967 virt_dev->tt_info->slot_id,
1968 virt_dev->tt_info->ttport);
1969 } else {
1970 xhci_dbg(xhci, "Recalculating BW for rootport %u\n",
1971 virt_dev->real_port);
1974 /* Add in how much bandwidth will be used for interval zero, or the
1975 * rounded max ESIT payload + number of packets * largest overhead.
1977 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
1978 bw_table->interval_bw[0].num_packets *
1979 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
1981 for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
1982 unsigned int bw_added;
1983 unsigned int largest_mps;
1984 unsigned int interval_overhead;
1987 * How many packets could we transmit in this interval?
1988 * If packets didn't fit in the previous interval, we will need
1989 * to transmit that many packets twice within this interval.
1991 packets_remaining = 2 * packets_remaining +
1992 bw_table->interval_bw[i].num_packets;
1994 /* Find the largest max packet size of this or the previous
1995 * interval.
1997 if (list_empty(&bw_table->interval_bw[i].endpoints))
1998 largest_mps = 0;
1999 else {
2000 struct xhci_virt_ep *virt_ep;
2001 struct list_head *ep_entry;
2003 ep_entry = bw_table->interval_bw[i].endpoints.next;
2004 virt_ep = list_entry(ep_entry,
2005 struct xhci_virt_ep, bw_endpoint_list);
2006 /* Convert to blocks, rounding up */
2007 largest_mps = DIV_ROUND_UP(
2008 virt_ep->bw_info.max_packet_size,
2009 block_size);
2011 if (largest_mps > packet_size)
2012 packet_size = largest_mps;
2014 /* Use the larger overhead of this or the previous interval. */
2015 interval_overhead = xhci_get_largest_overhead(
2016 &bw_table->interval_bw[i]);
2017 if (interval_overhead > overhead)
2018 overhead = interval_overhead;
2020 /* How many packets can we evenly distribute across
2021 * (1 << (i + 1)) possible scheduling opportunities?
2023 packets_transmitted = packets_remaining >> (i + 1);
2025 /* Add in the bandwidth used for those scheduled packets */
2026 bw_added = packets_transmitted * (overhead + packet_size);
2028 /* How many packets do we have remaining to transmit? */
2029 packets_remaining = packets_remaining % (1 << (i + 1));
2031 /* What largest max packet size should those packets have? */
2032 /* If we've transmitted all packets, don't carry over the
2033 * largest packet size.
2035 if (packets_remaining == 0) {
2036 packet_size = 0;
2037 overhead = 0;
2038 } else if (packets_transmitted > 0) {
2039 /* Otherwise if we do have remaining packets, and we've
2040 * scheduled some packets in this interval, take the
2041 * largest max packet size from endpoints with this
2042 * interval.
2044 packet_size = largest_mps;
2045 overhead = interval_overhead;
2047 /* Otherwise carry over packet_size and overhead from the last
2048 * time we had a remainder.
2050 bw_used += bw_added;
2051 if (bw_used > max_bandwidth) {
2052 xhci_warn(xhci, "Not enough bandwidth. "
2053 "Proposed: %u, Max: %u\n",
2054 bw_used, max_bandwidth);
2055 return -ENOMEM;
2059 * Ok, we know we have some packets left over after even-handedly
2060 * scheduling interval 15. We don't know which microframes they will
2061 * fit into, so we over-schedule and say they will be scheduled every
2062 * microframe.
2064 if (packets_remaining > 0)
2065 bw_used += overhead + packet_size;
2067 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2068 unsigned int port_index = virt_dev->real_port - 1;
2070 /* OK, we're manipulating a HS device attached to a
2071 * root port bandwidth domain. Include the number of active TTs
2072 * in the bandwidth used.
2074 bw_used += TT_HS_OVERHEAD *
2075 xhci->rh_bw[port_index].num_active_tts;
2078 xhci_dbg(xhci, "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2079 "Available: %u " "percent\n",
2080 bw_used, max_bandwidth, bw_reserved,
2081 (max_bandwidth - bw_used - bw_reserved) * 100 /
2082 max_bandwidth);
2084 bw_used += bw_reserved;
2085 if (bw_used > max_bandwidth) {
2086 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2087 bw_used, max_bandwidth);
2088 return -ENOMEM;
2091 bw_table->bw_used = bw_used;
2092 return 0;
2095 static bool xhci_is_async_ep(unsigned int ep_type)
2097 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2098 ep_type != ISOC_IN_EP &&
2099 ep_type != INT_IN_EP);
2102 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2104 return (ep_type == ISOC_IN_EP || ep_type != INT_IN_EP);
2107 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2109 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2111 if (ep_bw->ep_interval == 0)
2112 return SS_OVERHEAD_BURST +
2113 (ep_bw->mult * ep_bw->num_packets *
2114 (SS_OVERHEAD + mps));
2115 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2116 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2117 1 << ep_bw->ep_interval);
2121 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2122 struct xhci_bw_info *ep_bw,
2123 struct xhci_interval_bw_table *bw_table,
2124 struct usb_device *udev,
2125 struct xhci_virt_ep *virt_ep,
2126 struct xhci_tt_bw_info *tt_info)
2128 struct xhci_interval_bw *interval_bw;
2129 int normalized_interval;
2131 if (xhci_is_async_ep(ep_bw->type))
2132 return;
2134 if (udev->speed == USB_SPEED_SUPER) {
2135 if (xhci_is_sync_in_ep(ep_bw->type))
2136 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2137 xhci_get_ss_bw_consumed(ep_bw);
2138 else
2139 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2140 xhci_get_ss_bw_consumed(ep_bw);
2141 return;
2144 /* SuperSpeed endpoints never get added to intervals in the table, so
2145 * this check is only valid for HS/FS/LS devices.
2147 if (list_empty(&virt_ep->bw_endpoint_list))
2148 return;
2149 /* For LS/FS devices, we need to translate the interval expressed in
2150 * microframes to frames.
2152 if (udev->speed == USB_SPEED_HIGH)
2153 normalized_interval = ep_bw->ep_interval;
2154 else
2155 normalized_interval = ep_bw->ep_interval - 3;
2157 if (normalized_interval == 0)
2158 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2159 interval_bw = &bw_table->interval_bw[normalized_interval];
2160 interval_bw->num_packets -= ep_bw->num_packets;
2161 switch (udev->speed) {
2162 case USB_SPEED_LOW:
2163 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2164 break;
2165 case USB_SPEED_FULL:
2166 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2167 break;
2168 case USB_SPEED_HIGH:
2169 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2170 break;
2171 case USB_SPEED_SUPER:
2172 case USB_SPEED_UNKNOWN:
2173 case USB_SPEED_WIRELESS:
2174 /* Should never happen because only LS/FS/HS endpoints will get
2175 * added to the endpoint list.
2177 return;
2179 if (tt_info)
2180 tt_info->active_eps -= 1;
2181 list_del_init(&virt_ep->bw_endpoint_list);
2184 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2185 struct xhci_bw_info *ep_bw,
2186 struct xhci_interval_bw_table *bw_table,
2187 struct usb_device *udev,
2188 struct xhci_virt_ep *virt_ep,
2189 struct xhci_tt_bw_info *tt_info)
2191 struct xhci_interval_bw *interval_bw;
2192 struct xhci_virt_ep *smaller_ep;
2193 int normalized_interval;
2195 if (xhci_is_async_ep(ep_bw->type))
2196 return;
2198 if (udev->speed == USB_SPEED_SUPER) {
2199 if (xhci_is_sync_in_ep(ep_bw->type))
2200 xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2201 xhci_get_ss_bw_consumed(ep_bw);
2202 else
2203 xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2204 xhci_get_ss_bw_consumed(ep_bw);
2205 return;
2208 /* For LS/FS devices, we need to translate the interval expressed in
2209 * microframes to frames.
2211 if (udev->speed == USB_SPEED_HIGH)
2212 normalized_interval = ep_bw->ep_interval;
2213 else
2214 normalized_interval = ep_bw->ep_interval - 3;
2216 if (normalized_interval == 0)
2217 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2218 interval_bw = &bw_table->interval_bw[normalized_interval];
2219 interval_bw->num_packets += ep_bw->num_packets;
2220 switch (udev->speed) {
2221 case USB_SPEED_LOW:
2222 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2223 break;
2224 case USB_SPEED_FULL:
2225 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2226 break;
2227 case USB_SPEED_HIGH:
2228 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2229 break;
2230 case USB_SPEED_SUPER:
2231 case USB_SPEED_UNKNOWN:
2232 case USB_SPEED_WIRELESS:
2233 /* Should never happen because only LS/FS/HS endpoints will get
2234 * added to the endpoint list.
2236 return;
2239 if (tt_info)
2240 tt_info->active_eps += 1;
2241 /* Insert the endpoint into the list, largest max packet size first. */
2242 list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2243 bw_endpoint_list) {
2244 if (ep_bw->max_packet_size >=
2245 smaller_ep->bw_info.max_packet_size) {
2246 /* Add the new ep before the smaller endpoint */
2247 list_add_tail(&virt_ep->bw_endpoint_list,
2248 &smaller_ep->bw_endpoint_list);
2249 return;
2252 /* Add the new endpoint at the end of the list. */
2253 list_add_tail(&virt_ep->bw_endpoint_list,
2254 &interval_bw->endpoints);
2257 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2258 struct xhci_virt_device *virt_dev,
2259 int old_active_eps)
2261 struct xhci_root_port_bw_info *rh_bw_info;
2262 if (!virt_dev->tt_info)
2263 return;
2265 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2266 if (old_active_eps == 0 &&
2267 virt_dev->tt_info->active_eps != 0) {
2268 rh_bw_info->num_active_tts += 1;
2269 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2270 } else if (old_active_eps != 0 &&
2271 virt_dev->tt_info->active_eps == 0) {
2272 rh_bw_info->num_active_tts -= 1;
2273 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2277 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2278 struct xhci_virt_device *virt_dev,
2279 struct xhci_container_ctx *in_ctx)
2281 struct xhci_bw_info ep_bw_info[31];
2282 int i;
2283 struct xhci_input_control_ctx *ctrl_ctx;
2284 int old_active_eps = 0;
2286 if (virt_dev->tt_info)
2287 old_active_eps = virt_dev->tt_info->active_eps;
2289 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2291 for (i = 0; i < 31; i++) {
2292 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2293 continue;
2295 /* Make a copy of the BW info in case we need to revert this */
2296 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2297 sizeof(ep_bw_info[i]));
2298 /* Drop the endpoint from the interval table if the endpoint is
2299 * being dropped or changed.
2301 if (EP_IS_DROPPED(ctrl_ctx, i))
2302 xhci_drop_ep_from_interval_table(xhci,
2303 &virt_dev->eps[i].bw_info,
2304 virt_dev->bw_table,
2305 virt_dev->udev,
2306 &virt_dev->eps[i],
2307 virt_dev->tt_info);
2309 /* Overwrite the information stored in the endpoints' bw_info */
2310 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2311 for (i = 0; i < 31; i++) {
2312 /* Add any changed or added endpoints to the interval table */
2313 if (EP_IS_ADDED(ctrl_ctx, i))
2314 xhci_add_ep_to_interval_table(xhci,
2315 &virt_dev->eps[i].bw_info,
2316 virt_dev->bw_table,
2317 virt_dev->udev,
2318 &virt_dev->eps[i],
2319 virt_dev->tt_info);
2322 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2323 /* Ok, this fits in the bandwidth we have.
2324 * Update the number of active TTs.
2326 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2327 return 0;
2330 /* We don't have enough bandwidth for this, revert the stored info. */
2331 for (i = 0; i < 31; i++) {
2332 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2333 continue;
2335 /* Drop the new copies of any added or changed endpoints from
2336 * the interval table.
2338 if (EP_IS_ADDED(ctrl_ctx, i)) {
2339 xhci_drop_ep_from_interval_table(xhci,
2340 &virt_dev->eps[i].bw_info,
2341 virt_dev->bw_table,
2342 virt_dev->udev,
2343 &virt_dev->eps[i],
2344 virt_dev->tt_info);
2346 /* Revert the endpoint back to its old information */
2347 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2348 sizeof(ep_bw_info[i]));
2349 /* Add any changed or dropped endpoints back into the table */
2350 if (EP_IS_DROPPED(ctrl_ctx, i))
2351 xhci_add_ep_to_interval_table(xhci,
2352 &virt_dev->eps[i].bw_info,
2353 virt_dev->bw_table,
2354 virt_dev->udev,
2355 &virt_dev->eps[i],
2356 virt_dev->tt_info);
2358 return -ENOMEM;
2362 /* Issue a configure endpoint command or evaluate context command
2363 * and wait for it to finish.
2365 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2366 struct usb_device *udev,
2367 struct xhci_command *command,
2368 bool ctx_change, bool must_succeed)
2370 int ret;
2371 int timeleft;
2372 unsigned long flags;
2373 struct xhci_container_ctx *in_ctx;
2374 struct completion *cmd_completion;
2375 u32 *cmd_status;
2376 struct xhci_virt_device *virt_dev;
2378 spin_lock_irqsave(&xhci->lock, flags);
2379 virt_dev = xhci->devs[udev->slot_id];
2381 if (command)
2382 in_ctx = command->in_ctx;
2383 else
2384 in_ctx = virt_dev->in_ctx;
2386 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2387 xhci_reserve_host_resources(xhci, in_ctx)) {
2388 spin_unlock_irqrestore(&xhci->lock, flags);
2389 xhci_warn(xhci, "Not enough host resources, "
2390 "active endpoint contexts = %u\n",
2391 xhci->num_active_eps);
2392 return -ENOMEM;
2394 if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2395 xhci_reserve_bandwidth(xhci, virt_dev, in_ctx)) {
2396 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2397 xhci_free_host_resources(xhci, in_ctx);
2398 spin_unlock_irqrestore(&xhci->lock, flags);
2399 xhci_warn(xhci, "Not enough bandwidth\n");
2400 return -ENOMEM;
2403 if (command) {
2404 cmd_completion = command->completion;
2405 cmd_status = &command->status;
2406 command->command_trb = xhci->cmd_ring->enqueue;
2408 /* Enqueue pointer can be left pointing to the link TRB,
2409 * we must handle that
2411 if (TRB_TYPE_LINK_LE32(command->command_trb->link.control))
2412 command->command_trb =
2413 xhci->cmd_ring->enq_seg->next->trbs;
2415 list_add_tail(&command->cmd_list, &virt_dev->cmd_list);
2416 } else {
2417 cmd_completion = &virt_dev->cmd_completion;
2418 cmd_status = &virt_dev->cmd_status;
2420 init_completion(cmd_completion);
2422 if (!ctx_change)
2423 ret = xhci_queue_configure_endpoint(xhci, in_ctx->dma,
2424 udev->slot_id, must_succeed);
2425 else
2426 ret = xhci_queue_evaluate_context(xhci, in_ctx->dma,
2427 udev->slot_id);
2428 if (ret < 0) {
2429 if (command)
2430 list_del(&command->cmd_list);
2431 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2432 xhci_free_host_resources(xhci, in_ctx);
2433 spin_unlock_irqrestore(&xhci->lock, flags);
2434 xhci_dbg(xhci, "FIXME allocate a new ring segment\n");
2435 return -ENOMEM;
2437 xhci_ring_cmd_db(xhci);
2438 spin_unlock_irqrestore(&xhci->lock, flags);
2440 /* Wait for the configure endpoint command to complete */
2441 timeleft = wait_for_completion_interruptible_timeout(
2442 cmd_completion,
2443 USB_CTRL_SET_TIMEOUT);
2444 if (timeleft <= 0) {
2445 xhci_warn(xhci, "%s while waiting for %s command\n",
2446 timeleft == 0 ? "Timeout" : "Signal",
2447 ctx_change == 0 ?
2448 "configure endpoint" :
2449 "evaluate context");
2450 /* FIXME cancel the configure endpoint command */
2451 return -ETIME;
2454 if (!ctx_change)
2455 ret = xhci_configure_endpoint_result(xhci, udev, cmd_status);
2456 else
2457 ret = xhci_evaluate_context_result(xhci, udev, cmd_status);
2459 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2460 spin_lock_irqsave(&xhci->lock, flags);
2461 /* If the command failed, remove the reserved resources.
2462 * Otherwise, clean up the estimate to include dropped eps.
2464 if (ret)
2465 xhci_free_host_resources(xhci, in_ctx);
2466 else
2467 xhci_finish_resource_reservation(xhci, in_ctx);
2468 spin_unlock_irqrestore(&xhci->lock, flags);
2470 return ret;
2473 /* Called after one or more calls to xhci_add_endpoint() or
2474 * xhci_drop_endpoint(). If this call fails, the USB core is expected
2475 * to call xhci_reset_bandwidth().
2477 * Since we are in the middle of changing either configuration or
2478 * installing a new alt setting, the USB core won't allow URBs to be
2479 * enqueued for any endpoint on the old config or interface. Nothing
2480 * else should be touching the xhci->devs[slot_id] structure, so we
2481 * don't need to take the xhci->lock for manipulating that.
2483 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2485 int i;
2486 int ret = 0;
2487 struct xhci_hcd *xhci;
2488 struct xhci_virt_device *virt_dev;
2489 struct xhci_input_control_ctx *ctrl_ctx;
2490 struct xhci_slot_ctx *slot_ctx;
2492 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2493 if (ret <= 0)
2494 return ret;
2495 xhci = hcd_to_xhci(hcd);
2496 if (xhci->xhc_state & XHCI_STATE_DYING)
2497 return -ENODEV;
2499 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2500 virt_dev = xhci->devs[udev->slot_id];
2502 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2503 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
2504 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2505 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2506 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2508 /* Don't issue the command if there's no endpoints to update. */
2509 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2510 ctrl_ctx->drop_flags == 0)
2511 return 0;
2513 xhci_dbg(xhci, "New Input Control Context:\n");
2514 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2515 xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2516 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2518 ret = xhci_configure_endpoint(xhci, udev, NULL,
2519 false, false);
2520 if (ret) {
2521 /* Callee should call reset_bandwidth() */
2522 return ret;
2525 xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2526 xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2527 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2529 /* Free any rings that were dropped, but not changed. */
2530 for (i = 1; i < 31; ++i) {
2531 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2532 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1))))
2533 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2535 xhci_zero_in_ctx(xhci, virt_dev);
2537 * Install any rings for completely new endpoints or changed endpoints,
2538 * and free or cache any old rings from changed endpoints.
2540 for (i = 1; i < 31; ++i) {
2541 if (!virt_dev->eps[i].new_ring)
2542 continue;
2543 /* Only cache or free the old ring if it exists.
2544 * It may not if this is the first add of an endpoint.
2546 if (virt_dev->eps[i].ring) {
2547 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2549 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2550 virt_dev->eps[i].new_ring = NULL;
2553 return ret;
2556 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2558 struct xhci_hcd *xhci;
2559 struct xhci_virt_device *virt_dev;
2560 int i, ret;
2562 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2563 if (ret <= 0)
2564 return;
2565 xhci = hcd_to_xhci(hcd);
2567 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2568 virt_dev = xhci->devs[udev->slot_id];
2569 /* Free any rings allocated for added endpoints */
2570 for (i = 0; i < 31; ++i) {
2571 if (virt_dev->eps[i].new_ring) {
2572 xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2573 virt_dev->eps[i].new_ring = NULL;
2576 xhci_zero_in_ctx(xhci, virt_dev);
2579 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2580 struct xhci_container_ctx *in_ctx,
2581 struct xhci_container_ctx *out_ctx,
2582 u32 add_flags, u32 drop_flags)
2584 struct xhci_input_control_ctx *ctrl_ctx;
2585 ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2586 ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2587 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2588 xhci_slot_copy(xhci, in_ctx, out_ctx);
2589 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2591 xhci_dbg(xhci, "Input Context:\n");
2592 xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2595 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2596 unsigned int slot_id, unsigned int ep_index,
2597 struct xhci_dequeue_state *deq_state)
2599 struct xhci_container_ctx *in_ctx;
2600 struct xhci_ep_ctx *ep_ctx;
2601 u32 added_ctxs;
2602 dma_addr_t addr;
2604 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2605 xhci->devs[slot_id]->out_ctx, ep_index);
2606 in_ctx = xhci->devs[slot_id]->in_ctx;
2607 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2608 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2609 deq_state->new_deq_ptr);
2610 if (addr == 0) {
2611 xhci_warn(xhci, "WARN Cannot submit config ep after "
2612 "reset ep command\n");
2613 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2614 deq_state->new_deq_seg,
2615 deq_state->new_deq_ptr);
2616 return;
2618 ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2620 added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2621 xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2622 xhci->devs[slot_id]->out_ctx, added_ctxs, added_ctxs);
2625 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2626 struct usb_device *udev, unsigned int ep_index)
2628 struct xhci_dequeue_state deq_state;
2629 struct xhci_virt_ep *ep;
2631 xhci_dbg(xhci, "Cleaning up stalled endpoint ring\n");
2632 ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2633 /* We need to move the HW's dequeue pointer past this TD,
2634 * or it will attempt to resend it on the next doorbell ring.
2636 xhci_find_new_dequeue_state(xhci, udev->slot_id,
2637 ep_index, ep->stopped_stream, ep->stopped_td,
2638 &deq_state);
2640 /* HW with the reset endpoint quirk will use the saved dequeue state to
2641 * issue a configure endpoint command later.
2643 if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2644 xhci_dbg(xhci, "Queueing new dequeue state\n");
2645 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2646 ep_index, ep->stopped_stream, &deq_state);
2647 } else {
2648 /* Better hope no one uses the input context between now and the
2649 * reset endpoint completion!
2650 * XXX: No idea how this hardware will react when stream rings
2651 * are enabled.
2653 xhci_dbg(xhci, "Setting up input context for "
2654 "configure endpoint command\n");
2655 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2656 ep_index, &deq_state);
2660 /* Deal with stalled endpoints. The core should have sent the control message
2661 * to clear the halt condition. However, we need to make the xHCI hardware
2662 * reset its sequence number, since a device will expect a sequence number of
2663 * zero after the halt condition is cleared.
2664 * Context: in_interrupt
2666 void xhci_endpoint_reset(struct usb_hcd *hcd,
2667 struct usb_host_endpoint *ep)
2669 struct xhci_hcd *xhci;
2670 struct usb_device *udev;
2671 unsigned int ep_index;
2672 unsigned long flags;
2673 int ret;
2674 struct xhci_virt_ep *virt_ep;
2676 xhci = hcd_to_xhci(hcd);
2677 udev = (struct usb_device *) ep->hcpriv;
2678 /* Called with a root hub endpoint (or an endpoint that wasn't added
2679 * with xhci_add_endpoint()
2681 if (!ep->hcpriv)
2682 return;
2683 ep_index = xhci_get_endpoint_index(&ep->desc);
2684 virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2685 if (!virt_ep->stopped_td) {
2686 xhci_dbg(xhci, "Endpoint 0x%x not halted, refusing to reset.\n",
2687 ep->desc.bEndpointAddress);
2688 return;
2690 if (usb_endpoint_xfer_control(&ep->desc)) {
2691 xhci_dbg(xhci, "Control endpoint stall already handled.\n");
2692 return;
2695 xhci_dbg(xhci, "Queueing reset endpoint command\n");
2696 spin_lock_irqsave(&xhci->lock, flags);
2697 ret = xhci_queue_reset_ep(xhci, udev->slot_id, ep_index);
2699 * Can't change the ring dequeue pointer until it's transitioned to the
2700 * stopped state, which is only upon a successful reset endpoint
2701 * command. Better hope that last command worked!
2703 if (!ret) {
2704 xhci_cleanup_stalled_ring(xhci, udev, ep_index);
2705 kfree(virt_ep->stopped_td);
2706 xhci_ring_cmd_db(xhci);
2708 virt_ep->stopped_td = NULL;
2709 virt_ep->stopped_trb = NULL;
2710 virt_ep->stopped_stream = 0;
2711 spin_unlock_irqrestore(&xhci->lock, flags);
2713 if (ret)
2714 xhci_warn(xhci, "FIXME allocate a new ring segment\n");
2717 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2718 struct usb_device *udev, struct usb_host_endpoint *ep,
2719 unsigned int slot_id)
2721 int ret;
2722 unsigned int ep_index;
2723 unsigned int ep_state;
2725 if (!ep)
2726 return -EINVAL;
2727 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2728 if (ret <= 0)
2729 return -EINVAL;
2730 if (ep->ss_ep_comp.bmAttributes == 0) {
2731 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2732 " descriptor for ep 0x%x does not support streams\n",
2733 ep->desc.bEndpointAddress);
2734 return -EINVAL;
2737 ep_index = xhci_get_endpoint_index(&ep->desc);
2738 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2739 if (ep_state & EP_HAS_STREAMS ||
2740 ep_state & EP_GETTING_STREAMS) {
2741 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
2742 "already has streams set up.\n",
2743 ep->desc.bEndpointAddress);
2744 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
2745 "dynamic stream context array reallocation.\n");
2746 return -EINVAL;
2748 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
2749 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
2750 "endpoint 0x%x; URBs are pending.\n",
2751 ep->desc.bEndpointAddress);
2752 return -EINVAL;
2754 return 0;
2757 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
2758 unsigned int *num_streams, unsigned int *num_stream_ctxs)
2760 unsigned int max_streams;
2762 /* The stream context array size must be a power of two */
2763 *num_stream_ctxs = roundup_pow_of_two(*num_streams);
2765 * Find out how many primary stream array entries the host controller
2766 * supports. Later we may use secondary stream arrays (similar to 2nd
2767 * level page entries), but that's an optional feature for xHCI host
2768 * controllers. xHCs must support at least 4 stream IDs.
2770 max_streams = HCC_MAX_PSA(xhci->hcc_params);
2771 if (*num_stream_ctxs > max_streams) {
2772 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
2773 max_streams);
2774 *num_stream_ctxs = max_streams;
2775 *num_streams = max_streams;
2779 /* Returns an error code if one of the endpoint already has streams.
2780 * This does not change any data structures, it only checks and gathers
2781 * information.
2783 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
2784 struct usb_device *udev,
2785 struct usb_host_endpoint **eps, unsigned int num_eps,
2786 unsigned int *num_streams, u32 *changed_ep_bitmask)
2788 unsigned int max_streams;
2789 unsigned int endpoint_flag;
2790 int i;
2791 int ret;
2793 for (i = 0; i < num_eps; i++) {
2794 ret = xhci_check_streams_endpoint(xhci, udev,
2795 eps[i], udev->slot_id);
2796 if (ret < 0)
2797 return ret;
2799 max_streams = USB_SS_MAX_STREAMS(
2800 eps[i]->ss_ep_comp.bmAttributes);
2801 if (max_streams < (*num_streams - 1)) {
2802 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
2803 eps[i]->desc.bEndpointAddress,
2804 max_streams);
2805 *num_streams = max_streams+1;
2808 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
2809 if (*changed_ep_bitmask & endpoint_flag)
2810 return -EINVAL;
2811 *changed_ep_bitmask |= endpoint_flag;
2813 return 0;
2816 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
2817 struct usb_device *udev,
2818 struct usb_host_endpoint **eps, unsigned int num_eps)
2820 u32 changed_ep_bitmask = 0;
2821 unsigned int slot_id;
2822 unsigned int ep_index;
2823 unsigned int ep_state;
2824 int i;
2826 slot_id = udev->slot_id;
2827 if (!xhci->devs[slot_id])
2828 return 0;
2830 for (i = 0; i < num_eps; i++) {
2831 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2832 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2833 /* Are streams already being freed for the endpoint? */
2834 if (ep_state & EP_GETTING_NO_STREAMS) {
2835 xhci_warn(xhci, "WARN Can't disable streams for "
2836 "endpoint 0x%x\n, "
2837 "streams are being disabled already.",
2838 eps[i]->desc.bEndpointAddress);
2839 return 0;
2841 /* Are there actually any streams to free? */
2842 if (!(ep_state & EP_HAS_STREAMS) &&
2843 !(ep_state & EP_GETTING_STREAMS)) {
2844 xhci_warn(xhci, "WARN Can't disable streams for "
2845 "endpoint 0x%x\n, "
2846 "streams are already disabled!",
2847 eps[i]->desc.bEndpointAddress);
2848 xhci_warn(xhci, "WARN xhci_free_streams() called "
2849 "with non-streams endpoint\n");
2850 return 0;
2852 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
2854 return changed_ep_bitmask;
2858 * The USB device drivers use this function (though the HCD interface in USB
2859 * core) to prepare a set of bulk endpoints to use streams. Streams are used to
2860 * coordinate mass storage command queueing across multiple endpoints (basically
2861 * a stream ID == a task ID).
2863 * Setting up streams involves allocating the same size stream context array
2864 * for each endpoint and issuing a configure endpoint command for all endpoints.
2866 * Don't allow the call to succeed if one endpoint only supports one stream
2867 * (which means it doesn't support streams at all).
2869 * Drivers may get less stream IDs than they asked for, if the host controller
2870 * hardware or endpoints claim they can't support the number of requested
2871 * stream IDs.
2873 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
2874 struct usb_host_endpoint **eps, unsigned int num_eps,
2875 unsigned int num_streams, gfp_t mem_flags)
2877 int i, ret;
2878 struct xhci_hcd *xhci;
2879 struct xhci_virt_device *vdev;
2880 struct xhci_command *config_cmd;
2881 unsigned int ep_index;
2882 unsigned int num_stream_ctxs;
2883 unsigned long flags;
2884 u32 changed_ep_bitmask = 0;
2886 if (!eps)
2887 return -EINVAL;
2889 /* Add one to the number of streams requested to account for
2890 * stream 0 that is reserved for xHCI usage.
2892 num_streams += 1;
2893 xhci = hcd_to_xhci(hcd);
2894 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
2895 num_streams);
2897 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
2898 if (!config_cmd) {
2899 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
2900 return -ENOMEM;
2903 /* Check to make sure all endpoints are not already configured for
2904 * streams. While we're at it, find the maximum number of streams that
2905 * all the endpoints will support and check for duplicate endpoints.
2907 spin_lock_irqsave(&xhci->lock, flags);
2908 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
2909 num_eps, &num_streams, &changed_ep_bitmask);
2910 if (ret < 0) {
2911 xhci_free_command(xhci, config_cmd);
2912 spin_unlock_irqrestore(&xhci->lock, flags);
2913 return ret;
2915 if (num_streams <= 1) {
2916 xhci_warn(xhci, "WARN: endpoints can't handle "
2917 "more than one stream.\n");
2918 xhci_free_command(xhci, config_cmd);
2919 spin_unlock_irqrestore(&xhci->lock, flags);
2920 return -EINVAL;
2922 vdev = xhci->devs[udev->slot_id];
2923 /* Mark each endpoint as being in transition, so
2924 * xhci_urb_enqueue() will reject all URBs.
2926 for (i = 0; i < num_eps; i++) {
2927 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2928 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
2930 spin_unlock_irqrestore(&xhci->lock, flags);
2932 /* Setup internal data structures and allocate HW data structures for
2933 * streams (but don't install the HW structures in the input context
2934 * until we're sure all memory allocation succeeded).
2936 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
2937 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
2938 num_stream_ctxs, num_streams);
2940 for (i = 0; i < num_eps; i++) {
2941 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2942 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
2943 num_stream_ctxs,
2944 num_streams, mem_flags);
2945 if (!vdev->eps[ep_index].stream_info)
2946 goto cleanup;
2947 /* Set maxPstreams in endpoint context and update deq ptr to
2948 * point to stream context array. FIXME
2952 /* Set up the input context for a configure endpoint command. */
2953 for (i = 0; i < num_eps; i++) {
2954 struct xhci_ep_ctx *ep_ctx;
2956 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2957 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
2959 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
2960 vdev->out_ctx, ep_index);
2961 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
2962 vdev->eps[ep_index].stream_info);
2964 /* Tell the HW to drop its old copy of the endpoint context info
2965 * and add the updated copy from the input context.
2967 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
2968 vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
2970 /* Issue and wait for the configure endpoint command */
2971 ret = xhci_configure_endpoint(xhci, udev, config_cmd,
2972 false, false);
2974 /* xHC rejected the configure endpoint command for some reason, so we
2975 * leave the old ring intact and free our internal streams data
2976 * structure.
2978 if (ret < 0)
2979 goto cleanup;
2981 spin_lock_irqsave(&xhci->lock, flags);
2982 for (i = 0; i < num_eps; i++) {
2983 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2984 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
2985 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
2986 udev->slot_id, ep_index);
2987 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
2989 xhci_free_command(xhci, config_cmd);
2990 spin_unlock_irqrestore(&xhci->lock, flags);
2992 /* Subtract 1 for stream 0, which drivers can't use */
2993 return num_streams - 1;
2995 cleanup:
2996 /* If it didn't work, free the streams! */
2997 for (i = 0; i < num_eps; i++) {
2998 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2999 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3000 vdev->eps[ep_index].stream_info = NULL;
3001 /* FIXME Unset maxPstreams in endpoint context and
3002 * update deq ptr to point to normal string ring.
3004 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3005 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3006 xhci_endpoint_zero(xhci, vdev, eps[i]);
3008 xhci_free_command(xhci, config_cmd);
3009 return -ENOMEM;
3012 /* Transition the endpoint from using streams to being a "normal" endpoint
3013 * without streams.
3015 * Modify the endpoint context state, submit a configure endpoint command,
3016 * and free all endpoint rings for streams if that completes successfully.
3018 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3019 struct usb_host_endpoint **eps, unsigned int num_eps,
3020 gfp_t mem_flags)
3022 int i, ret;
3023 struct xhci_hcd *xhci;
3024 struct xhci_virt_device *vdev;
3025 struct xhci_command *command;
3026 unsigned int ep_index;
3027 unsigned long flags;
3028 u32 changed_ep_bitmask;
3030 xhci = hcd_to_xhci(hcd);
3031 vdev = xhci->devs[udev->slot_id];
3033 /* Set up a configure endpoint command to remove the streams rings */
3034 spin_lock_irqsave(&xhci->lock, flags);
3035 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3036 udev, eps, num_eps);
3037 if (changed_ep_bitmask == 0) {
3038 spin_unlock_irqrestore(&xhci->lock, flags);
3039 return -EINVAL;
3042 /* Use the xhci_command structure from the first endpoint. We may have
3043 * allocated too many, but the driver may call xhci_free_streams() for
3044 * each endpoint it grouped into one call to xhci_alloc_streams().
3046 ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3047 command = vdev->eps[ep_index].stream_info->free_streams_command;
3048 for (i = 0; i < num_eps; i++) {
3049 struct xhci_ep_ctx *ep_ctx;
3051 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3052 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3053 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3054 EP_GETTING_NO_STREAMS;
3056 xhci_endpoint_copy(xhci, command->in_ctx,
3057 vdev->out_ctx, ep_index);
3058 xhci_setup_no_streams_ep_input_ctx(xhci, ep_ctx,
3059 &vdev->eps[ep_index]);
3061 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3062 vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
3063 spin_unlock_irqrestore(&xhci->lock, flags);
3065 /* Issue and wait for the configure endpoint command,
3066 * which must succeed.
3068 ret = xhci_configure_endpoint(xhci, udev, command,
3069 false, true);
3071 /* xHC rejected the configure endpoint command for some reason, so we
3072 * leave the streams rings intact.
3074 if (ret < 0)
3075 return ret;
3077 spin_lock_irqsave(&xhci->lock, flags);
3078 for (i = 0; i < num_eps; i++) {
3079 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3080 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3081 vdev->eps[ep_index].stream_info = NULL;
3082 /* FIXME Unset maxPstreams in endpoint context and
3083 * update deq ptr to point to normal string ring.
3085 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3086 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3088 spin_unlock_irqrestore(&xhci->lock, flags);
3090 return 0;
3094 * Deletes endpoint resources for endpoints that were active before a Reset
3095 * Device command, or a Disable Slot command. The Reset Device command leaves
3096 * the control endpoint intact, whereas the Disable Slot command deletes it.
3098 * Must be called with xhci->lock held.
3100 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3101 struct xhci_virt_device *virt_dev, bool drop_control_ep)
3103 int i;
3104 unsigned int num_dropped_eps = 0;
3105 unsigned int drop_flags = 0;
3107 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3108 if (virt_dev->eps[i].ring) {
3109 drop_flags |= 1 << i;
3110 num_dropped_eps++;
3113 xhci->num_active_eps -= num_dropped_eps;
3114 if (num_dropped_eps)
3115 xhci_dbg(xhci, "Dropped %u ep ctxs, flags = 0x%x, "
3116 "%u now active.\n",
3117 num_dropped_eps, drop_flags,
3118 xhci->num_active_eps);
3122 * This submits a Reset Device Command, which will set the device state to 0,
3123 * set the device address to 0, and disable all the endpoints except the default
3124 * control endpoint. The USB core should come back and call
3125 * xhci_address_device(), and then re-set up the configuration. If this is
3126 * called because of a usb_reset_and_verify_device(), then the old alternate
3127 * settings will be re-installed through the normal bandwidth allocation
3128 * functions.
3130 * Wait for the Reset Device command to finish. Remove all structures
3131 * associated with the endpoints that were disabled. Clear the input device
3132 * structure? Cache the rings? Reset the control endpoint 0 max packet size?
3134 * If the virt_dev to be reset does not exist or does not match the udev,
3135 * it means the device is lost, possibly due to the xHC restore error and
3136 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3137 * re-allocate the device.
3139 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3141 int ret, i;
3142 unsigned long flags;
3143 struct xhci_hcd *xhci;
3144 unsigned int slot_id;
3145 struct xhci_virt_device *virt_dev;
3146 struct xhci_command *reset_device_cmd;
3147 int timeleft;
3148 int last_freed_endpoint;
3149 struct xhci_slot_ctx *slot_ctx;
3150 int old_active_eps = 0;
3152 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3153 if (ret <= 0)
3154 return ret;
3155 xhci = hcd_to_xhci(hcd);
3156 slot_id = udev->slot_id;
3157 virt_dev = xhci->devs[slot_id];
3158 if (!virt_dev) {
3159 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3160 "not exist. Re-allocate the device\n", slot_id);
3161 ret = xhci_alloc_dev(hcd, udev);
3162 if (ret == 1)
3163 return 0;
3164 else
3165 return -EINVAL;
3168 if (virt_dev->udev != udev) {
3169 /* If the virt_dev and the udev does not match, this virt_dev
3170 * may belong to another udev.
3171 * Re-allocate the device.
3173 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3174 "not match the udev. Re-allocate the device\n",
3175 slot_id);
3176 ret = xhci_alloc_dev(hcd, udev);
3177 if (ret == 1)
3178 return 0;
3179 else
3180 return -EINVAL;
3183 /* If device is not setup, there is no point in resetting it */
3184 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3185 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3186 SLOT_STATE_DISABLED)
3187 return 0;
3189 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3190 /* Allocate the command structure that holds the struct completion.
3191 * Assume we're in process context, since the normal device reset
3192 * process has to wait for the device anyway. Storage devices are
3193 * reset as part of error handling, so use GFP_NOIO instead of
3194 * GFP_KERNEL.
3196 reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3197 if (!reset_device_cmd) {
3198 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3199 return -ENOMEM;
3202 /* Attempt to submit the Reset Device command to the command ring */
3203 spin_lock_irqsave(&xhci->lock, flags);
3204 reset_device_cmd->command_trb = xhci->cmd_ring->enqueue;
3206 /* Enqueue pointer can be left pointing to the link TRB,
3207 * we must handle that
3209 if (TRB_TYPE_LINK_LE32(reset_device_cmd->command_trb->link.control))
3210 reset_device_cmd->command_trb =
3211 xhci->cmd_ring->enq_seg->next->trbs;
3213 list_add_tail(&reset_device_cmd->cmd_list, &virt_dev->cmd_list);
3214 ret = xhci_queue_reset_device(xhci, slot_id);
3215 if (ret) {
3216 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3217 list_del(&reset_device_cmd->cmd_list);
3218 spin_unlock_irqrestore(&xhci->lock, flags);
3219 goto command_cleanup;
3221 xhci_ring_cmd_db(xhci);
3222 spin_unlock_irqrestore(&xhci->lock, flags);
3224 /* Wait for the Reset Device command to finish */
3225 timeleft = wait_for_completion_interruptible_timeout(
3226 reset_device_cmd->completion,
3227 USB_CTRL_SET_TIMEOUT);
3228 if (timeleft <= 0) {
3229 xhci_warn(xhci, "%s while waiting for reset device command\n",
3230 timeleft == 0 ? "Timeout" : "Signal");
3231 spin_lock_irqsave(&xhci->lock, flags);
3232 /* The timeout might have raced with the event ring handler, so
3233 * only delete from the list if the item isn't poisoned.
3235 if (reset_device_cmd->cmd_list.next != LIST_POISON1)
3236 list_del(&reset_device_cmd->cmd_list);
3237 spin_unlock_irqrestore(&xhci->lock, flags);
3238 ret = -ETIME;
3239 goto command_cleanup;
3242 /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3243 * unless we tried to reset a slot ID that wasn't enabled,
3244 * or the device wasn't in the addressed or configured state.
3246 ret = reset_device_cmd->status;
3247 switch (ret) {
3248 case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3249 case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3250 xhci_info(xhci, "Can't reset device (slot ID %u) in %s state\n",
3251 slot_id,
3252 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3253 xhci_info(xhci, "Not freeing device rings.\n");
3254 /* Don't treat this as an error. May change my mind later. */
3255 ret = 0;
3256 goto command_cleanup;
3257 case COMP_SUCCESS:
3258 xhci_dbg(xhci, "Successful reset device command.\n");
3259 break;
3260 default:
3261 if (xhci_is_vendor_info_code(xhci, ret))
3262 break;
3263 xhci_warn(xhci, "Unknown completion code %u for "
3264 "reset device command.\n", ret);
3265 ret = -EINVAL;
3266 goto command_cleanup;
3269 /* Free up host controller endpoint resources */
3270 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3271 spin_lock_irqsave(&xhci->lock, flags);
3272 /* Don't delete the default control endpoint resources */
3273 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3274 spin_unlock_irqrestore(&xhci->lock, flags);
3277 /* Everything but endpoint 0 is disabled, so free or cache the rings. */
3278 last_freed_endpoint = 1;
3279 for (i = 1; i < 31; ++i) {
3280 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3282 if (ep->ep_state & EP_HAS_STREAMS) {
3283 xhci_free_stream_info(xhci, ep->stream_info);
3284 ep->stream_info = NULL;
3285 ep->ep_state &= ~EP_HAS_STREAMS;
3288 if (ep->ring) {
3289 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3290 last_freed_endpoint = i;
3292 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3293 xhci_drop_ep_from_interval_table(xhci,
3294 &virt_dev->eps[i].bw_info,
3295 virt_dev->bw_table,
3296 udev,
3297 &virt_dev->eps[i],
3298 virt_dev->tt_info);
3299 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3301 /* If necessary, update the number of active TTs on this root port */
3302 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3304 xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3305 xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3306 ret = 0;
3308 command_cleanup:
3309 xhci_free_command(xhci, reset_device_cmd);
3310 return ret;
3314 * At this point, the struct usb_device is about to go away, the device has
3315 * disconnected, and all traffic has been stopped and the endpoints have been
3316 * disabled. Free any HC data structures associated with that device.
3318 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3320 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3321 struct xhci_virt_device *virt_dev;
3322 unsigned long flags;
3323 u32 state;
3324 int i, ret;
3326 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3327 /* If the host is halted due to driver unload, we still need to free the
3328 * device.
3330 if (ret <= 0 && ret != -ENODEV)
3331 return;
3333 virt_dev = xhci->devs[udev->slot_id];
3335 /* Stop any wayward timer functions (which may grab the lock) */
3336 for (i = 0; i < 31; ++i) {
3337 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3338 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3341 if (udev->usb2_hw_lpm_enabled) {
3342 xhci_set_usb2_hardware_lpm(hcd, udev, 0);
3343 udev->usb2_hw_lpm_enabled = 0;
3346 spin_lock_irqsave(&xhci->lock, flags);
3347 /* Don't disable the slot if the host controller is dead. */
3348 state = xhci_readl(xhci, &xhci->op_regs->status);
3349 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3350 (xhci->xhc_state & XHCI_STATE_HALTED)) {
3351 xhci_free_virt_device(xhci, udev->slot_id);
3352 spin_unlock_irqrestore(&xhci->lock, flags);
3353 return;
3356 if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) {
3357 spin_unlock_irqrestore(&xhci->lock, flags);
3358 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3359 return;
3361 xhci_ring_cmd_db(xhci);
3362 spin_unlock_irqrestore(&xhci->lock, flags);
3364 * Event command completion handler will free any data structures
3365 * associated with the slot. XXX Can free sleep?
3370 * Checks if we have enough host controller resources for the default control
3371 * endpoint.
3373 * Must be called with xhci->lock held.
3375 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3377 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3378 xhci_dbg(xhci, "Not enough ep ctxs: "
3379 "%u active, need to add 1, limit is %u.\n",
3380 xhci->num_active_eps, xhci->limit_active_eps);
3381 return -ENOMEM;
3383 xhci->num_active_eps += 1;
3384 xhci_dbg(xhci, "Adding 1 ep ctx, %u now active.\n",
3385 xhci->num_active_eps);
3386 return 0;
3391 * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3392 * timed out, or allocating memory failed. Returns 1 on success.
3394 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3396 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3397 unsigned long flags;
3398 int timeleft;
3399 int ret;
3401 spin_lock_irqsave(&xhci->lock, flags);
3402 ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0);
3403 if (ret) {
3404 spin_unlock_irqrestore(&xhci->lock, flags);
3405 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3406 return 0;
3408 xhci_ring_cmd_db(xhci);
3409 spin_unlock_irqrestore(&xhci->lock, flags);
3411 /* XXX: how much time for xHC slot assignment? */
3412 timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3413 USB_CTRL_SET_TIMEOUT);
3414 if (timeleft <= 0) {
3415 xhci_warn(xhci, "%s while waiting for a slot\n",
3416 timeleft == 0 ? "Timeout" : "Signal");
3417 /* FIXME cancel the enable slot request */
3418 return 0;
3421 if (!xhci->slot_id) {
3422 xhci_err(xhci, "Error while assigning device slot ID\n");
3423 return 0;
3426 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3427 spin_lock_irqsave(&xhci->lock, flags);
3428 ret = xhci_reserve_host_control_ep_resources(xhci);
3429 if (ret) {
3430 spin_unlock_irqrestore(&xhci->lock, flags);
3431 xhci_warn(xhci, "Not enough host resources, "
3432 "active endpoint contexts = %u\n",
3433 xhci->num_active_eps);
3434 goto disable_slot;
3436 spin_unlock_irqrestore(&xhci->lock, flags);
3438 /* Use GFP_NOIO, since this function can be called from
3439 * xhci_discover_or_reset_device(), which may be called as part of
3440 * mass storage driver error handling.
3442 if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) {
3443 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3444 goto disable_slot;
3446 udev->slot_id = xhci->slot_id;
3447 /* Is this a LS or FS device under a HS hub? */
3448 /* Hub or peripherial? */
3449 return 1;
3451 disable_slot:
3452 /* Disable slot, if we can do it without mem alloc */
3453 spin_lock_irqsave(&xhci->lock, flags);
3454 if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id))
3455 xhci_ring_cmd_db(xhci);
3456 spin_unlock_irqrestore(&xhci->lock, flags);
3457 return 0;
3461 * Issue an Address Device command (which will issue a SetAddress request to
3462 * the device).
3463 * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so
3464 * we should only issue and wait on one address command at the same time.
3466 * We add one to the device address issued by the hardware because the USB core
3467 * uses address 1 for the root hubs (even though they're not really devices).
3469 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3471 unsigned long flags;
3472 int timeleft;
3473 struct xhci_virt_device *virt_dev;
3474 int ret = 0;
3475 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3476 struct xhci_slot_ctx *slot_ctx;
3477 struct xhci_input_control_ctx *ctrl_ctx;
3478 u64 temp_64;
3480 if (!udev->slot_id) {
3481 xhci_dbg(xhci, "Bad Slot ID %d\n", udev->slot_id);
3482 return -EINVAL;
3485 virt_dev = xhci->devs[udev->slot_id];
3487 if (WARN_ON(!virt_dev)) {
3489 * In plug/unplug torture test with an NEC controller,
3490 * a zero-dereference was observed once due to virt_dev = 0.
3491 * Print useful debug rather than crash if it is observed again!
3493 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3494 udev->slot_id);
3495 return -EINVAL;
3498 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3500 * If this is the first Set Address since device plug-in or
3501 * virt_device realloaction after a resume with an xHCI power loss,
3502 * then set up the slot context.
3504 if (!slot_ctx->dev_info)
3505 xhci_setup_addressable_virt_dev(xhci, udev);
3506 /* Otherwise, update the control endpoint ring enqueue pointer. */
3507 else
3508 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3509 ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
3510 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3511 ctrl_ctx->drop_flags = 0;
3513 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3514 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3516 spin_lock_irqsave(&xhci->lock, flags);
3517 ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma,
3518 udev->slot_id);
3519 if (ret) {
3520 spin_unlock_irqrestore(&xhci->lock, flags);
3521 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3522 return ret;
3524 xhci_ring_cmd_db(xhci);
3525 spin_unlock_irqrestore(&xhci->lock, flags);
3527 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3528 timeleft = wait_for_completion_interruptible_timeout(&xhci->addr_dev,
3529 USB_CTRL_SET_TIMEOUT);
3530 /* FIXME: From section 4.3.4: "Software shall be responsible for timing
3531 * the SetAddress() "recovery interval" required by USB and aborting the
3532 * command on a timeout.
3534 if (timeleft <= 0) {
3535 xhci_warn(xhci, "%s while waiting for address device command\n",
3536 timeleft == 0 ? "Timeout" : "Signal");
3537 /* FIXME cancel the address device command */
3538 return -ETIME;
3541 switch (virt_dev->cmd_status) {
3542 case COMP_CTX_STATE:
3543 case COMP_EBADSLT:
3544 xhci_err(xhci, "Setup ERROR: address device command for slot %d.\n",
3545 udev->slot_id);
3546 ret = -EINVAL;
3547 break;
3548 case COMP_TX_ERR:
3549 dev_warn(&udev->dev, "Device not responding to set address.\n");
3550 ret = -EPROTO;
3551 break;
3552 case COMP_DEV_ERR:
3553 dev_warn(&udev->dev, "ERROR: Incompatible device for address "
3554 "device command.\n");
3555 ret = -ENODEV;
3556 break;
3557 case COMP_SUCCESS:
3558 xhci_dbg(xhci, "Successful Address Device command\n");
3559 break;
3560 default:
3561 xhci_err(xhci, "ERROR: unexpected command completion "
3562 "code 0x%x.\n", virt_dev->cmd_status);
3563 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3564 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3565 ret = -EINVAL;
3566 break;
3568 if (ret) {
3569 return ret;
3571 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3572 xhci_dbg(xhci, "Op regs DCBAA ptr = %#016llx\n", temp_64);
3573 xhci_dbg(xhci, "Slot ID %d dcbaa entry @%p = %#016llx\n",
3574 udev->slot_id,
3575 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3576 (unsigned long long)
3577 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3578 xhci_dbg(xhci, "Output Context DMA address = %#08llx\n",
3579 (unsigned long long)virt_dev->out_ctx->dma);
3580 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3581 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3582 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3583 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3585 * USB core uses address 1 for the roothubs, so we add one to the
3586 * address given back to us by the HC.
3588 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3589 /* Use kernel assigned address for devices; store xHC assigned
3590 * address locally. */
3591 virt_dev->address = (le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK)
3592 + 1;
3593 /* Zero the input context control for later use */
3594 ctrl_ctx->add_flags = 0;
3595 ctrl_ctx->drop_flags = 0;
3597 xhci_dbg(xhci, "Internal device address = %d\n", virt_dev->address);
3599 return 0;
3602 #ifdef CONFIG_USB_SUSPEND
3604 /* BESL to HIRD Encoding array for USB2 LPM */
3605 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
3606 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
3608 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
3609 static int xhci_calculate_hird_besl(int u2del, bool use_besl)
3611 int hird;
3613 if (use_besl) {
3614 for (hird = 0; hird < 16; hird++) {
3615 if (xhci_besl_encoding[hird] >= u2del)
3616 break;
3618 } else {
3619 if (u2del <= 50)
3620 hird = 0;
3621 else
3622 hird = (u2del - 51) / 75 + 1;
3624 if (hird > 15)
3625 hird = 15;
3628 return hird;
3631 static int xhci_usb2_software_lpm_test(struct usb_hcd *hcd,
3632 struct usb_device *udev)
3634 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3635 struct dev_info *dev_info;
3636 __le32 __iomem **port_array;
3637 __le32 __iomem *addr, *pm_addr;
3638 u32 temp, dev_id;
3639 unsigned int port_num;
3640 unsigned long flags;
3641 int u2del, hird;
3642 int ret;
3644 if (hcd->speed == HCD_USB3 || !xhci->sw_lpm_support ||
3645 !udev->lpm_capable)
3646 return -EINVAL;
3648 /* we only support lpm for non-hub device connected to root hub yet */
3649 if (!udev->parent || udev->parent->parent ||
3650 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
3651 return -EINVAL;
3653 spin_lock_irqsave(&xhci->lock, flags);
3655 /* Look for devices in lpm_failed_devs list */
3656 dev_id = le16_to_cpu(udev->descriptor.idVendor) << 16 |
3657 le16_to_cpu(udev->descriptor.idProduct);
3658 list_for_each_entry(dev_info, &xhci->lpm_failed_devs, list) {
3659 if (dev_info->dev_id == dev_id) {
3660 ret = -EINVAL;
3661 goto finish;
3665 port_array = xhci->usb2_ports;
3666 port_num = udev->portnum - 1;
3668 if (port_num > HCS_MAX_PORTS(xhci->hcs_params1)) {
3669 xhci_dbg(xhci, "invalid port number %d\n", udev->portnum);
3670 ret = -EINVAL;
3671 goto finish;
3675 * Test USB 2.0 software LPM.
3676 * FIXME: some xHCI 1.0 hosts may implement a new register to set up
3677 * hardware-controlled USB 2.0 LPM. See section 5.4.11 and 4.23.5.1.1.1
3678 * in the June 2011 errata release.
3680 xhci_dbg(xhci, "test port %d software LPM\n", port_num);
3682 * Set L1 Device Slot and HIRD/BESL.
3683 * Check device's USB 2.0 extension descriptor to determine whether
3684 * HIRD or BESL shoule be used. See USB2.0 LPM errata.
3686 pm_addr = port_array[port_num] + 1;
3687 u2del = HCS_U2_LATENCY(xhci->hcs_params3);
3688 if (le32_to_cpu(udev->bos->ext_cap->bmAttributes) & (1 << 2))
3689 hird = xhci_calculate_hird_besl(u2del, 1);
3690 else
3691 hird = xhci_calculate_hird_besl(u2del, 0);
3693 temp = PORT_L1DS(udev->slot_id) | PORT_HIRD(hird);
3694 xhci_writel(xhci, temp, pm_addr);
3696 /* Set port link state to U2(L1) */
3697 addr = port_array[port_num];
3698 xhci_set_link_state(xhci, port_array, port_num, XDEV_U2);
3700 /* wait for ACK */
3701 spin_unlock_irqrestore(&xhci->lock, flags);
3702 msleep(10);
3703 spin_lock_irqsave(&xhci->lock, flags);
3705 /* Check L1 Status */
3706 ret = handshake(xhci, pm_addr, PORT_L1S_MASK, PORT_L1S_SUCCESS, 125);
3707 if (ret != -ETIMEDOUT) {
3708 /* enter L1 successfully */
3709 temp = xhci_readl(xhci, addr);
3710 xhci_dbg(xhci, "port %d entered L1 state, port status 0x%x\n",
3711 port_num, temp);
3712 ret = 0;
3713 } else {
3714 temp = xhci_readl(xhci, pm_addr);
3715 xhci_dbg(xhci, "port %d software lpm failed, L1 status %d\n",
3716 port_num, temp & PORT_L1S_MASK);
3717 ret = -EINVAL;
3720 /* Resume the port */
3721 xhci_set_link_state(xhci, port_array, port_num, XDEV_U0);
3723 spin_unlock_irqrestore(&xhci->lock, flags);
3724 msleep(10);
3725 spin_lock_irqsave(&xhci->lock, flags);
3727 /* Clear PLC */
3728 xhci_test_and_clear_bit(xhci, port_array, port_num, PORT_PLC);
3730 /* Check PORTSC to make sure the device is in the right state */
3731 if (!ret) {
3732 temp = xhci_readl(xhci, addr);
3733 xhci_dbg(xhci, "resumed port %d status 0x%x\n", port_num, temp);
3734 if (!(temp & PORT_CONNECT) || !(temp & PORT_PE) ||
3735 (temp & PORT_PLS_MASK) != XDEV_U0) {
3736 xhci_dbg(xhci, "port L1 resume fail\n");
3737 ret = -EINVAL;
3741 if (ret) {
3742 /* Insert dev to lpm_failed_devs list */
3743 xhci_warn(xhci, "device LPM test failed, may disconnect and "
3744 "re-enumerate\n");
3745 dev_info = kzalloc(sizeof(struct dev_info), GFP_ATOMIC);
3746 if (!dev_info) {
3747 ret = -ENOMEM;
3748 goto finish;
3750 dev_info->dev_id = dev_id;
3751 INIT_LIST_HEAD(&dev_info->list);
3752 list_add(&dev_info->list, &xhci->lpm_failed_devs);
3753 } else {
3754 xhci_ring_device(xhci, udev->slot_id);
3757 finish:
3758 spin_unlock_irqrestore(&xhci->lock, flags);
3759 return ret;
3762 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
3763 struct usb_device *udev, int enable)
3765 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3766 __le32 __iomem **port_array;
3767 __le32 __iomem *pm_addr;
3768 u32 temp;
3769 unsigned int port_num;
3770 unsigned long flags;
3771 int u2del, hird;
3773 if (hcd->speed == HCD_USB3 || !xhci->hw_lpm_support ||
3774 !udev->lpm_capable)
3775 return -EPERM;
3777 if (!udev->parent || udev->parent->parent ||
3778 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
3779 return -EPERM;
3781 if (udev->usb2_hw_lpm_capable != 1)
3782 return -EPERM;
3784 spin_lock_irqsave(&xhci->lock, flags);
3786 port_array = xhci->usb2_ports;
3787 port_num = udev->portnum - 1;
3788 pm_addr = port_array[port_num] + 1;
3789 temp = xhci_readl(xhci, pm_addr);
3791 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
3792 enable ? "enable" : "disable", port_num);
3794 u2del = HCS_U2_LATENCY(xhci->hcs_params3);
3795 if (le32_to_cpu(udev->bos->ext_cap->bmAttributes) & (1 << 2))
3796 hird = xhci_calculate_hird_besl(u2del, 1);
3797 else
3798 hird = xhci_calculate_hird_besl(u2del, 0);
3800 if (enable) {
3801 temp &= ~PORT_HIRD_MASK;
3802 temp |= PORT_HIRD(hird) | PORT_RWE;
3803 xhci_writel(xhci, temp, pm_addr);
3804 temp = xhci_readl(xhci, pm_addr);
3805 temp |= PORT_HLE;
3806 xhci_writel(xhci, temp, pm_addr);
3807 } else {
3808 temp &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK);
3809 xhci_writel(xhci, temp, pm_addr);
3812 spin_unlock_irqrestore(&xhci->lock, flags);
3813 return 0;
3816 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
3818 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3819 int ret;
3821 ret = xhci_usb2_software_lpm_test(hcd, udev);
3822 if (!ret) {
3823 xhci_dbg(xhci, "software LPM test succeed\n");
3824 if (xhci->hw_lpm_support == 1) {
3825 udev->usb2_hw_lpm_capable = 1;
3826 ret = xhci_set_usb2_hardware_lpm(hcd, udev, 1);
3827 if (!ret)
3828 udev->usb2_hw_lpm_enabled = 1;
3832 return 0;
3835 #else
3837 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
3838 struct usb_device *udev, int enable)
3840 return 0;
3843 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
3845 return 0;
3848 #endif /* CONFIG_USB_SUSPEND */
3850 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
3851 * internal data structures for the device.
3853 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
3854 struct usb_tt *tt, gfp_t mem_flags)
3856 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3857 struct xhci_virt_device *vdev;
3858 struct xhci_command *config_cmd;
3859 struct xhci_input_control_ctx *ctrl_ctx;
3860 struct xhci_slot_ctx *slot_ctx;
3861 unsigned long flags;
3862 unsigned think_time;
3863 int ret;
3865 /* Ignore root hubs */
3866 if (!hdev->parent)
3867 return 0;
3869 vdev = xhci->devs[hdev->slot_id];
3870 if (!vdev) {
3871 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
3872 return -EINVAL;
3874 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3875 if (!config_cmd) {
3876 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3877 return -ENOMEM;
3880 spin_lock_irqsave(&xhci->lock, flags);
3881 if (hdev->speed == USB_SPEED_HIGH &&
3882 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
3883 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
3884 xhci_free_command(xhci, config_cmd);
3885 spin_unlock_irqrestore(&xhci->lock, flags);
3886 return -ENOMEM;
3889 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
3890 ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
3891 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3892 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
3893 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
3894 if (tt->multi)
3895 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
3896 if (xhci->hci_version > 0x95) {
3897 xhci_dbg(xhci, "xHCI version %x needs hub "
3898 "TT think time and number of ports\n",
3899 (unsigned int) xhci->hci_version);
3900 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
3901 /* Set TT think time - convert from ns to FS bit times.
3902 * 0 = 8 FS bit times, 1 = 16 FS bit times,
3903 * 2 = 24 FS bit times, 3 = 32 FS bit times.
3905 * xHCI 1.0: this field shall be 0 if the device is not a
3906 * High-spped hub.
3908 think_time = tt->think_time;
3909 if (think_time != 0)
3910 think_time = (think_time / 666) - 1;
3911 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
3912 slot_ctx->tt_info |=
3913 cpu_to_le32(TT_THINK_TIME(think_time));
3914 } else {
3915 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
3916 "TT think time or number of ports\n",
3917 (unsigned int) xhci->hci_version);
3919 slot_ctx->dev_state = 0;
3920 spin_unlock_irqrestore(&xhci->lock, flags);
3922 xhci_dbg(xhci, "Set up %s for hub device.\n",
3923 (xhci->hci_version > 0x95) ?
3924 "configure endpoint" : "evaluate context");
3925 xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
3926 xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
3928 /* Issue and wait for the configure endpoint or
3929 * evaluate context command.
3931 if (xhci->hci_version > 0x95)
3932 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
3933 false, false);
3934 else
3935 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
3936 true, false);
3938 xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
3939 xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
3941 xhci_free_command(xhci, config_cmd);
3942 return ret;
3945 int xhci_get_frame(struct usb_hcd *hcd)
3947 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3948 /* EHCI mods by the periodic size. Why? */
3949 return xhci_readl(xhci, &xhci->run_regs->microframe_index) >> 3;
3952 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
3954 struct xhci_hcd *xhci;
3955 struct device *dev = hcd->self.controller;
3956 int retval;
3957 u32 temp;
3959 hcd->self.sg_tablesize = TRBS_PER_SEGMENT - 2;
3961 if (usb_hcd_is_primary_hcd(hcd)) {
3962 xhci = kzalloc(sizeof(struct xhci_hcd), GFP_KERNEL);
3963 if (!xhci)
3964 return -ENOMEM;
3965 *((struct xhci_hcd **) hcd->hcd_priv) = xhci;
3966 xhci->main_hcd = hcd;
3967 /* Mark the first roothub as being USB 2.0.
3968 * The xHCI driver will register the USB 3.0 roothub.
3970 hcd->speed = HCD_USB2;
3971 hcd->self.root_hub->speed = USB_SPEED_HIGH;
3973 * USB 2.0 roothub under xHCI has an integrated TT,
3974 * (rate matching hub) as opposed to having an OHCI/UHCI
3975 * companion controller.
3977 hcd->has_tt = 1;
3978 } else {
3979 /* xHCI private pointer was set in xhci_pci_probe for the second
3980 * registered roothub.
3982 xhci = hcd_to_xhci(hcd);
3983 temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
3984 if (HCC_64BIT_ADDR(temp)) {
3985 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
3986 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64));
3987 } else {
3988 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32));
3990 return 0;
3993 xhci->cap_regs = hcd->regs;
3994 xhci->op_regs = hcd->regs +
3995 HC_LENGTH(xhci_readl(xhci, &xhci->cap_regs->hc_capbase));
3996 xhci->run_regs = hcd->regs +
3997 (xhci_readl(xhci, &xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
3998 /* Cache read-only capability registers */
3999 xhci->hcs_params1 = xhci_readl(xhci, &xhci->cap_regs->hcs_params1);
4000 xhci->hcs_params2 = xhci_readl(xhci, &xhci->cap_regs->hcs_params2);
4001 xhci->hcs_params3 = xhci_readl(xhci, &xhci->cap_regs->hcs_params3);
4002 xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hc_capbase);
4003 xhci->hci_version = HC_VERSION(xhci->hcc_params);
4004 xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4005 xhci_print_registers(xhci);
4007 get_quirks(dev, xhci);
4009 /* Make sure the HC is halted. */
4010 retval = xhci_halt(xhci);
4011 if (retval)
4012 goto error;
4014 xhci_dbg(xhci, "Resetting HCD\n");
4015 /* Reset the internal HC memory state and registers. */
4016 retval = xhci_reset(xhci);
4017 if (retval)
4018 goto error;
4019 xhci_dbg(xhci, "Reset complete\n");
4021 temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4022 if (HCC_64BIT_ADDR(temp)) {
4023 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4024 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64));
4025 } else {
4026 dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32));
4029 xhci_dbg(xhci, "Calling HCD init\n");
4030 /* Initialize HCD and host controller data structures. */
4031 retval = xhci_init(hcd);
4032 if (retval)
4033 goto error;
4034 xhci_dbg(xhci, "Called HCD init\n");
4035 return 0;
4036 error:
4037 kfree(xhci);
4038 return retval;
4041 MODULE_DESCRIPTION(DRIVER_DESC);
4042 MODULE_AUTHOR(DRIVER_AUTHOR);
4043 MODULE_LICENSE("GPL");
4045 static int __init xhci_hcd_init(void)
4047 int retval;
4049 retval = xhci_register_pci();
4050 if (retval < 0) {
4051 printk(KERN_DEBUG "Problem registering PCI driver.");
4052 return retval;
4055 * Check the compiler generated sizes of structures that must be laid
4056 * out in specific ways for hardware access.
4058 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
4059 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
4060 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
4061 /* xhci_device_control has eight fields, and also
4062 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
4064 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
4065 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
4066 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
4067 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8);
4068 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
4069 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
4070 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
4071 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
4072 return 0;
4074 module_init(xhci_hcd_init);
4076 static void __exit xhci_hcd_cleanup(void)
4078 xhci_unregister_pci();
4080 module_exit(xhci_hcd_cleanup);