dl2k: Clean up rio_ioctl
[zen-stable.git] / drivers / gpu / drm / i915 / i915_gem_execbuffer.c
blobe159e33c9b6a0c52deea86df6a9e41e77401f731
1 /*
2 * Copyright © 2008,2010 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 * Chris Wilson <chris@chris-wilson.co.uk>
29 #include "drmP.h"
30 #include "drm.h"
31 #include "i915_drm.h"
32 #include "i915_drv.h"
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35 #include <linux/dma_remapping.h>
37 struct change_domains {
38 uint32_t invalidate_domains;
39 uint32_t flush_domains;
40 uint32_t flush_rings;
41 uint32_t flips;
45 * Set the next domain for the specified object. This
46 * may not actually perform the necessary flushing/invaliding though,
47 * as that may want to be batched with other set_domain operations
49 * This is (we hope) the only really tricky part of gem. The goal
50 * is fairly simple -- track which caches hold bits of the object
51 * and make sure they remain coherent. A few concrete examples may
52 * help to explain how it works. For shorthand, we use the notation
53 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
54 * a pair of read and write domain masks.
56 * Case 1: the batch buffer
58 * 1. Allocated
59 * 2. Written by CPU
60 * 3. Mapped to GTT
61 * 4. Read by GPU
62 * 5. Unmapped from GTT
63 * 6. Freed
65 * Let's take these a step at a time
67 * 1. Allocated
68 * Pages allocated from the kernel may still have
69 * cache contents, so we set them to (CPU, CPU) always.
70 * 2. Written by CPU (using pwrite)
71 * The pwrite function calls set_domain (CPU, CPU) and
72 * this function does nothing (as nothing changes)
73 * 3. Mapped by GTT
74 * This function asserts that the object is not
75 * currently in any GPU-based read or write domains
76 * 4. Read by GPU
77 * i915_gem_execbuffer calls set_domain (COMMAND, 0).
78 * As write_domain is zero, this function adds in the
79 * current read domains (CPU+COMMAND, 0).
80 * flush_domains is set to CPU.
81 * invalidate_domains is set to COMMAND
82 * clflush is run to get data out of the CPU caches
83 * then i915_dev_set_domain calls i915_gem_flush to
84 * emit an MI_FLUSH and drm_agp_chipset_flush
85 * 5. Unmapped from GTT
86 * i915_gem_object_unbind calls set_domain (CPU, CPU)
87 * flush_domains and invalidate_domains end up both zero
88 * so no flushing/invalidating happens
89 * 6. Freed
90 * yay, done
92 * Case 2: The shared render buffer
94 * 1. Allocated
95 * 2. Mapped to GTT
96 * 3. Read/written by GPU
97 * 4. set_domain to (CPU,CPU)
98 * 5. Read/written by CPU
99 * 6. Read/written by GPU
101 * 1. Allocated
102 * Same as last example, (CPU, CPU)
103 * 2. Mapped to GTT
104 * Nothing changes (assertions find that it is not in the GPU)
105 * 3. Read/written by GPU
106 * execbuffer calls set_domain (RENDER, RENDER)
107 * flush_domains gets CPU
108 * invalidate_domains gets GPU
109 * clflush (obj)
110 * MI_FLUSH and drm_agp_chipset_flush
111 * 4. set_domain (CPU, CPU)
112 * flush_domains gets GPU
113 * invalidate_domains gets CPU
114 * wait_rendering (obj) to make sure all drawing is complete.
115 * This will include an MI_FLUSH to get the data from GPU
116 * to memory
117 * clflush (obj) to invalidate the CPU cache
118 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
119 * 5. Read/written by CPU
120 * cache lines are loaded and dirtied
121 * 6. Read written by GPU
122 * Same as last GPU access
124 * Case 3: The constant buffer
126 * 1. Allocated
127 * 2. Written by CPU
128 * 3. Read by GPU
129 * 4. Updated (written) by CPU again
130 * 5. Read by GPU
132 * 1. Allocated
133 * (CPU, CPU)
134 * 2. Written by CPU
135 * (CPU, CPU)
136 * 3. Read by GPU
137 * (CPU+RENDER, 0)
138 * flush_domains = CPU
139 * invalidate_domains = RENDER
140 * clflush (obj)
141 * MI_FLUSH
142 * drm_agp_chipset_flush
143 * 4. Updated (written) by CPU again
144 * (CPU, CPU)
145 * flush_domains = 0 (no previous write domain)
146 * invalidate_domains = 0 (no new read domains)
147 * 5. Read by GPU
148 * (CPU+RENDER, 0)
149 * flush_domains = CPU
150 * invalidate_domains = RENDER
151 * clflush (obj)
152 * MI_FLUSH
153 * drm_agp_chipset_flush
155 static void
156 i915_gem_object_set_to_gpu_domain(struct drm_i915_gem_object *obj,
157 struct intel_ring_buffer *ring,
158 struct change_domains *cd)
160 uint32_t invalidate_domains = 0, flush_domains = 0;
163 * If the object isn't moving to a new write domain,
164 * let the object stay in multiple read domains
166 if (obj->base.pending_write_domain == 0)
167 obj->base.pending_read_domains |= obj->base.read_domains;
170 * Flush the current write domain if
171 * the new read domains don't match. Invalidate
172 * any read domains which differ from the old
173 * write domain
175 if (obj->base.write_domain &&
176 (((obj->base.write_domain != obj->base.pending_read_domains ||
177 obj->ring != ring)) ||
178 (obj->fenced_gpu_access && !obj->pending_fenced_gpu_access))) {
179 flush_domains |= obj->base.write_domain;
180 invalidate_domains |=
181 obj->base.pending_read_domains & ~obj->base.write_domain;
184 * Invalidate any read caches which may have
185 * stale data. That is, any new read domains.
187 invalidate_domains |= obj->base.pending_read_domains & ~obj->base.read_domains;
188 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU)
189 i915_gem_clflush_object(obj);
191 if (obj->base.pending_write_domain)
192 cd->flips |= atomic_read(&obj->pending_flip);
194 /* The actual obj->write_domain will be updated with
195 * pending_write_domain after we emit the accumulated flush for all
196 * of our domain changes in execbuffers (which clears objects'
197 * write_domains). So if we have a current write domain that we
198 * aren't changing, set pending_write_domain to that.
200 if (flush_domains == 0 && obj->base.pending_write_domain == 0)
201 obj->base.pending_write_domain = obj->base.write_domain;
203 cd->invalidate_domains |= invalidate_domains;
204 cd->flush_domains |= flush_domains;
205 if (flush_domains & I915_GEM_GPU_DOMAINS)
206 cd->flush_rings |= obj->ring->id;
207 if (invalidate_domains & I915_GEM_GPU_DOMAINS)
208 cd->flush_rings |= ring->id;
211 struct eb_objects {
212 int and;
213 struct hlist_head buckets[0];
216 static struct eb_objects *
217 eb_create(int size)
219 struct eb_objects *eb;
220 int count = PAGE_SIZE / sizeof(struct hlist_head) / 2;
221 while (count > size)
222 count >>= 1;
223 eb = kzalloc(count*sizeof(struct hlist_head) +
224 sizeof(struct eb_objects),
225 GFP_KERNEL);
226 if (eb == NULL)
227 return eb;
229 eb->and = count - 1;
230 return eb;
233 static void
234 eb_reset(struct eb_objects *eb)
236 memset(eb->buckets, 0, (eb->and+1)*sizeof(struct hlist_head));
239 static void
240 eb_add_object(struct eb_objects *eb, struct drm_i915_gem_object *obj)
242 hlist_add_head(&obj->exec_node,
243 &eb->buckets[obj->exec_handle & eb->and]);
246 static struct drm_i915_gem_object *
247 eb_get_object(struct eb_objects *eb, unsigned long handle)
249 struct hlist_head *head;
250 struct hlist_node *node;
251 struct drm_i915_gem_object *obj;
253 head = &eb->buckets[handle & eb->and];
254 hlist_for_each(node, head) {
255 obj = hlist_entry(node, struct drm_i915_gem_object, exec_node);
256 if (obj->exec_handle == handle)
257 return obj;
260 return NULL;
263 static void
264 eb_destroy(struct eb_objects *eb)
266 kfree(eb);
269 static int
270 i915_gem_execbuffer_relocate_entry(struct drm_i915_gem_object *obj,
271 struct eb_objects *eb,
272 struct drm_i915_gem_relocation_entry *reloc)
274 struct drm_device *dev = obj->base.dev;
275 struct drm_gem_object *target_obj;
276 uint32_t target_offset;
277 int ret = -EINVAL;
279 /* we've already hold a reference to all valid objects */
280 target_obj = &eb_get_object(eb, reloc->target_handle)->base;
281 if (unlikely(target_obj == NULL))
282 return -ENOENT;
284 target_offset = to_intel_bo(target_obj)->gtt_offset;
286 /* The target buffer should have appeared before us in the
287 * exec_object list, so it should have a GTT space bound by now.
289 if (unlikely(target_offset == 0)) {
290 DRM_ERROR("No GTT space found for object %d\n",
291 reloc->target_handle);
292 return ret;
295 /* Validate that the target is in a valid r/w GPU domain */
296 if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
297 DRM_ERROR("reloc with multiple write domains: "
298 "obj %p target %d offset %d "
299 "read %08x write %08x",
300 obj, reloc->target_handle,
301 (int) reloc->offset,
302 reloc->read_domains,
303 reloc->write_domain);
304 return ret;
306 if (unlikely((reloc->write_domain | reloc->read_domains) & I915_GEM_DOMAIN_CPU)) {
307 DRM_ERROR("reloc with read/write CPU domains: "
308 "obj %p target %d offset %d "
309 "read %08x write %08x",
310 obj, reloc->target_handle,
311 (int) reloc->offset,
312 reloc->read_domains,
313 reloc->write_domain);
314 return ret;
316 if (unlikely(reloc->write_domain && target_obj->pending_write_domain &&
317 reloc->write_domain != target_obj->pending_write_domain)) {
318 DRM_ERROR("Write domain conflict: "
319 "obj %p target %d offset %d "
320 "new %08x old %08x\n",
321 obj, reloc->target_handle,
322 (int) reloc->offset,
323 reloc->write_domain,
324 target_obj->pending_write_domain);
325 return ret;
328 target_obj->pending_read_domains |= reloc->read_domains;
329 target_obj->pending_write_domain |= reloc->write_domain;
331 /* If the relocation already has the right value in it, no
332 * more work needs to be done.
334 if (target_offset == reloc->presumed_offset)
335 return 0;
337 /* Check that the relocation address is valid... */
338 if (unlikely(reloc->offset > obj->base.size - 4)) {
339 DRM_ERROR("Relocation beyond object bounds: "
340 "obj %p target %d offset %d size %d.\n",
341 obj, reloc->target_handle,
342 (int) reloc->offset,
343 (int) obj->base.size);
344 return ret;
346 if (unlikely(reloc->offset & 3)) {
347 DRM_ERROR("Relocation not 4-byte aligned: "
348 "obj %p target %d offset %d.\n",
349 obj, reloc->target_handle,
350 (int) reloc->offset);
351 return ret;
354 reloc->delta += target_offset;
355 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU) {
356 uint32_t page_offset = reloc->offset & ~PAGE_MASK;
357 char *vaddr;
359 vaddr = kmap_atomic(obj->pages[reloc->offset >> PAGE_SHIFT]);
360 *(uint32_t *)(vaddr + page_offset) = reloc->delta;
361 kunmap_atomic(vaddr);
362 } else {
363 struct drm_i915_private *dev_priv = dev->dev_private;
364 uint32_t __iomem *reloc_entry;
365 void __iomem *reloc_page;
367 /* We can't wait for rendering with pagefaults disabled */
368 if (obj->active && in_atomic())
369 return -EFAULT;
371 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
372 if (ret)
373 return ret;
375 /* Map the page containing the relocation we're going to perform. */
376 reloc->offset += obj->gtt_offset;
377 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
378 reloc->offset & PAGE_MASK);
379 reloc_entry = (uint32_t __iomem *)
380 (reloc_page + (reloc->offset & ~PAGE_MASK));
381 iowrite32(reloc->delta, reloc_entry);
382 io_mapping_unmap_atomic(reloc_page);
385 /* and update the user's relocation entry */
386 reloc->presumed_offset = target_offset;
388 return 0;
391 static int
392 i915_gem_execbuffer_relocate_object(struct drm_i915_gem_object *obj,
393 struct eb_objects *eb)
395 struct drm_i915_gem_relocation_entry __user *user_relocs;
396 struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
397 int i, ret;
399 user_relocs = (void __user *)(uintptr_t)entry->relocs_ptr;
400 for (i = 0; i < entry->relocation_count; i++) {
401 struct drm_i915_gem_relocation_entry reloc;
403 if (__copy_from_user_inatomic(&reloc,
404 user_relocs+i,
405 sizeof(reloc)))
406 return -EFAULT;
408 ret = i915_gem_execbuffer_relocate_entry(obj, eb, &reloc);
409 if (ret)
410 return ret;
412 if (__copy_to_user_inatomic(&user_relocs[i].presumed_offset,
413 &reloc.presumed_offset,
414 sizeof(reloc.presumed_offset)))
415 return -EFAULT;
418 return 0;
421 static int
422 i915_gem_execbuffer_relocate_object_slow(struct drm_i915_gem_object *obj,
423 struct eb_objects *eb,
424 struct drm_i915_gem_relocation_entry *relocs)
426 const struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
427 int i, ret;
429 for (i = 0; i < entry->relocation_count; i++) {
430 ret = i915_gem_execbuffer_relocate_entry(obj, eb, &relocs[i]);
431 if (ret)
432 return ret;
435 return 0;
438 static int
439 i915_gem_execbuffer_relocate(struct drm_device *dev,
440 struct eb_objects *eb,
441 struct list_head *objects)
443 struct drm_i915_gem_object *obj;
444 int ret = 0;
446 /* This is the fast path and we cannot handle a pagefault whilst
447 * holding the struct mutex lest the user pass in the relocations
448 * contained within a mmaped bo. For in such a case we, the page
449 * fault handler would call i915_gem_fault() and we would try to
450 * acquire the struct mutex again. Obviously this is bad and so
451 * lockdep complains vehemently.
453 pagefault_disable();
454 list_for_each_entry(obj, objects, exec_list) {
455 ret = i915_gem_execbuffer_relocate_object(obj, eb);
456 if (ret)
457 break;
459 pagefault_enable();
461 return ret;
464 static int
465 i915_gem_execbuffer_reserve(struct intel_ring_buffer *ring,
466 struct drm_file *file,
467 struct list_head *objects)
469 struct drm_i915_gem_object *obj;
470 int ret, retry;
471 bool has_fenced_gpu_access = INTEL_INFO(ring->dev)->gen < 4;
472 struct list_head ordered_objects;
474 INIT_LIST_HEAD(&ordered_objects);
475 while (!list_empty(objects)) {
476 struct drm_i915_gem_exec_object2 *entry;
477 bool need_fence, need_mappable;
479 obj = list_first_entry(objects,
480 struct drm_i915_gem_object,
481 exec_list);
482 entry = obj->exec_entry;
484 need_fence =
485 has_fenced_gpu_access &&
486 entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
487 obj->tiling_mode != I915_TILING_NONE;
488 need_mappable =
489 entry->relocation_count ? true : need_fence;
491 if (need_mappable)
492 list_move(&obj->exec_list, &ordered_objects);
493 else
494 list_move_tail(&obj->exec_list, &ordered_objects);
496 obj->base.pending_read_domains = 0;
497 obj->base.pending_write_domain = 0;
499 list_splice(&ordered_objects, objects);
501 /* Attempt to pin all of the buffers into the GTT.
502 * This is done in 3 phases:
504 * 1a. Unbind all objects that do not match the GTT constraints for
505 * the execbuffer (fenceable, mappable, alignment etc).
506 * 1b. Increment pin count for already bound objects.
507 * 2. Bind new objects.
508 * 3. Decrement pin count.
510 * This avoid unnecessary unbinding of later objects in order to makr
511 * room for the earlier objects *unless* we need to defragment.
513 retry = 0;
514 do {
515 ret = 0;
517 /* Unbind any ill-fitting objects or pin. */
518 list_for_each_entry(obj, objects, exec_list) {
519 struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
520 bool need_fence, need_mappable;
521 if (!obj->gtt_space)
522 continue;
524 need_fence =
525 has_fenced_gpu_access &&
526 entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
527 obj->tiling_mode != I915_TILING_NONE;
528 need_mappable =
529 entry->relocation_count ? true : need_fence;
531 if ((entry->alignment && obj->gtt_offset & (entry->alignment - 1)) ||
532 (need_mappable && !obj->map_and_fenceable))
533 ret = i915_gem_object_unbind(obj);
534 else
535 ret = i915_gem_object_pin(obj,
536 entry->alignment,
537 need_mappable);
538 if (ret)
539 goto err;
541 entry++;
544 /* Bind fresh objects */
545 list_for_each_entry(obj, objects, exec_list) {
546 struct drm_i915_gem_exec_object2 *entry = obj->exec_entry;
547 bool need_fence;
549 need_fence =
550 has_fenced_gpu_access &&
551 entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
552 obj->tiling_mode != I915_TILING_NONE;
554 if (!obj->gtt_space) {
555 bool need_mappable =
556 entry->relocation_count ? true : need_fence;
558 ret = i915_gem_object_pin(obj,
559 entry->alignment,
560 need_mappable);
561 if (ret)
562 break;
565 if (has_fenced_gpu_access) {
566 if (need_fence) {
567 ret = i915_gem_object_get_fence(obj, ring);
568 if (ret)
569 break;
570 } else if (entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
571 obj->tiling_mode == I915_TILING_NONE) {
572 /* XXX pipelined! */
573 ret = i915_gem_object_put_fence(obj);
574 if (ret)
575 break;
577 obj->pending_fenced_gpu_access = need_fence;
580 entry->offset = obj->gtt_offset;
583 /* Decrement pin count for bound objects */
584 list_for_each_entry(obj, objects, exec_list) {
585 if (obj->gtt_space)
586 i915_gem_object_unpin(obj);
589 if (ret != -ENOSPC || retry > 1)
590 return ret;
592 /* First attempt, just clear anything that is purgeable.
593 * Second attempt, clear the entire GTT.
595 ret = i915_gem_evict_everything(ring->dev, retry == 0);
596 if (ret)
597 return ret;
599 retry++;
600 } while (1);
602 err:
603 obj = list_entry(obj->exec_list.prev,
604 struct drm_i915_gem_object,
605 exec_list);
606 while (objects != &obj->exec_list) {
607 if (obj->gtt_space)
608 i915_gem_object_unpin(obj);
610 obj = list_entry(obj->exec_list.prev,
611 struct drm_i915_gem_object,
612 exec_list);
615 return ret;
618 static int
619 i915_gem_execbuffer_relocate_slow(struct drm_device *dev,
620 struct drm_file *file,
621 struct intel_ring_buffer *ring,
622 struct list_head *objects,
623 struct eb_objects *eb,
624 struct drm_i915_gem_exec_object2 *exec,
625 int count)
627 struct drm_i915_gem_relocation_entry *reloc;
628 struct drm_i915_gem_object *obj;
629 int *reloc_offset;
630 int i, total, ret;
632 /* We may process another execbuffer during the unlock... */
633 while (!list_empty(objects)) {
634 obj = list_first_entry(objects,
635 struct drm_i915_gem_object,
636 exec_list);
637 list_del_init(&obj->exec_list);
638 drm_gem_object_unreference(&obj->base);
641 mutex_unlock(&dev->struct_mutex);
643 total = 0;
644 for (i = 0; i < count; i++)
645 total += exec[i].relocation_count;
647 reloc_offset = drm_malloc_ab(count, sizeof(*reloc_offset));
648 reloc = drm_malloc_ab(total, sizeof(*reloc));
649 if (reloc == NULL || reloc_offset == NULL) {
650 drm_free_large(reloc);
651 drm_free_large(reloc_offset);
652 mutex_lock(&dev->struct_mutex);
653 return -ENOMEM;
656 total = 0;
657 for (i = 0; i < count; i++) {
658 struct drm_i915_gem_relocation_entry __user *user_relocs;
660 user_relocs = (void __user *)(uintptr_t)exec[i].relocs_ptr;
662 if (copy_from_user(reloc+total, user_relocs,
663 exec[i].relocation_count * sizeof(*reloc))) {
664 ret = -EFAULT;
665 mutex_lock(&dev->struct_mutex);
666 goto err;
669 reloc_offset[i] = total;
670 total += exec[i].relocation_count;
673 ret = i915_mutex_lock_interruptible(dev);
674 if (ret) {
675 mutex_lock(&dev->struct_mutex);
676 goto err;
679 /* reacquire the objects */
680 eb_reset(eb);
681 for (i = 0; i < count; i++) {
682 obj = to_intel_bo(drm_gem_object_lookup(dev, file,
683 exec[i].handle));
684 if (&obj->base == NULL) {
685 DRM_ERROR("Invalid object handle %d at index %d\n",
686 exec[i].handle, i);
687 ret = -ENOENT;
688 goto err;
691 list_add_tail(&obj->exec_list, objects);
692 obj->exec_handle = exec[i].handle;
693 obj->exec_entry = &exec[i];
694 eb_add_object(eb, obj);
697 ret = i915_gem_execbuffer_reserve(ring, file, objects);
698 if (ret)
699 goto err;
701 list_for_each_entry(obj, objects, exec_list) {
702 int offset = obj->exec_entry - exec;
703 ret = i915_gem_execbuffer_relocate_object_slow(obj, eb,
704 reloc + reloc_offset[offset]);
705 if (ret)
706 goto err;
709 /* Leave the user relocations as are, this is the painfully slow path,
710 * and we want to avoid the complication of dropping the lock whilst
711 * having buffers reserved in the aperture and so causing spurious
712 * ENOSPC for random operations.
715 err:
716 drm_free_large(reloc);
717 drm_free_large(reloc_offset);
718 return ret;
721 static int
722 i915_gem_execbuffer_flush(struct drm_device *dev,
723 uint32_t invalidate_domains,
724 uint32_t flush_domains,
725 uint32_t flush_rings)
727 drm_i915_private_t *dev_priv = dev->dev_private;
728 int i, ret;
730 if (flush_domains & I915_GEM_DOMAIN_CPU)
731 intel_gtt_chipset_flush();
733 if (flush_domains & I915_GEM_DOMAIN_GTT)
734 wmb();
736 if ((flush_domains | invalidate_domains) & I915_GEM_GPU_DOMAINS) {
737 for (i = 0; i < I915_NUM_RINGS; i++)
738 if (flush_rings & (1 << i)) {
739 ret = i915_gem_flush_ring(&dev_priv->ring[i],
740 invalidate_domains,
741 flush_domains);
742 if (ret)
743 return ret;
747 return 0;
750 static bool
751 intel_enable_semaphores(struct drm_device *dev)
753 if (INTEL_INFO(dev)->gen < 6)
754 return 0;
756 if (i915_semaphores >= 0)
757 return i915_semaphores;
759 /* Disable semaphores on SNB */
760 if (INTEL_INFO(dev)->gen == 6)
761 return 0;
763 return 1;
766 static int
767 i915_gem_execbuffer_sync_rings(struct drm_i915_gem_object *obj,
768 struct intel_ring_buffer *to)
770 struct intel_ring_buffer *from = obj->ring;
771 u32 seqno;
772 int ret, idx;
774 if (from == NULL || to == from)
775 return 0;
777 /* XXX gpu semaphores are implicated in various hard hangs on SNB */
778 if (!intel_enable_semaphores(obj->base.dev))
779 return i915_gem_object_wait_rendering(obj);
781 idx = intel_ring_sync_index(from, to);
783 seqno = obj->last_rendering_seqno;
784 if (seqno <= from->sync_seqno[idx])
785 return 0;
787 if (seqno == from->outstanding_lazy_request) {
788 struct drm_i915_gem_request *request;
790 request = kzalloc(sizeof(*request), GFP_KERNEL);
791 if (request == NULL)
792 return -ENOMEM;
794 ret = i915_add_request(from, NULL, request);
795 if (ret) {
796 kfree(request);
797 return ret;
800 seqno = request->seqno;
803 from->sync_seqno[idx] = seqno;
805 return to->sync_to(to, from, seqno - 1);
808 static int
809 i915_gem_execbuffer_wait_for_flips(struct intel_ring_buffer *ring, u32 flips)
811 u32 plane, flip_mask;
812 int ret;
814 /* Check for any pending flips. As we only maintain a flip queue depth
815 * of 1, we can simply insert a WAIT for the next display flip prior
816 * to executing the batch and avoid stalling the CPU.
819 for (plane = 0; flips >> plane; plane++) {
820 if (((flips >> plane) & 1) == 0)
821 continue;
823 if (plane)
824 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
825 else
826 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
828 ret = intel_ring_begin(ring, 2);
829 if (ret)
830 return ret;
832 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
833 intel_ring_emit(ring, MI_NOOP);
834 intel_ring_advance(ring);
837 return 0;
841 static int
842 i915_gem_execbuffer_move_to_gpu(struct intel_ring_buffer *ring,
843 struct list_head *objects)
845 struct drm_i915_gem_object *obj;
846 struct change_domains cd;
847 int ret;
849 memset(&cd, 0, sizeof(cd));
850 list_for_each_entry(obj, objects, exec_list)
851 i915_gem_object_set_to_gpu_domain(obj, ring, &cd);
853 if (cd.invalidate_domains | cd.flush_domains) {
854 ret = i915_gem_execbuffer_flush(ring->dev,
855 cd.invalidate_domains,
856 cd.flush_domains,
857 cd.flush_rings);
858 if (ret)
859 return ret;
862 if (cd.flips) {
863 ret = i915_gem_execbuffer_wait_for_flips(ring, cd.flips);
864 if (ret)
865 return ret;
868 list_for_each_entry(obj, objects, exec_list) {
869 ret = i915_gem_execbuffer_sync_rings(obj, ring);
870 if (ret)
871 return ret;
874 return 0;
877 static bool
878 i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
880 return ((exec->batch_start_offset | exec->batch_len) & 0x7) == 0;
883 static int
884 validate_exec_list(struct drm_i915_gem_exec_object2 *exec,
885 int count)
887 int i;
889 for (i = 0; i < count; i++) {
890 char __user *ptr = (char __user *)(uintptr_t)exec[i].relocs_ptr;
891 int length; /* limited by fault_in_pages_readable() */
893 /* First check for malicious input causing overflow */
894 if (exec[i].relocation_count >
895 INT_MAX / sizeof(struct drm_i915_gem_relocation_entry))
896 return -EINVAL;
898 length = exec[i].relocation_count *
899 sizeof(struct drm_i915_gem_relocation_entry);
900 if (!access_ok(VERIFY_READ, ptr, length))
901 return -EFAULT;
903 /* we may also need to update the presumed offsets */
904 if (!access_ok(VERIFY_WRITE, ptr, length))
905 return -EFAULT;
907 if (fault_in_pages_readable(ptr, length))
908 return -EFAULT;
911 return 0;
914 static void
915 i915_gem_execbuffer_move_to_active(struct list_head *objects,
916 struct intel_ring_buffer *ring,
917 u32 seqno)
919 struct drm_i915_gem_object *obj;
921 list_for_each_entry(obj, objects, exec_list) {
922 u32 old_read = obj->base.read_domains;
923 u32 old_write = obj->base.write_domain;
926 obj->base.read_domains = obj->base.pending_read_domains;
927 obj->base.write_domain = obj->base.pending_write_domain;
928 obj->fenced_gpu_access = obj->pending_fenced_gpu_access;
930 i915_gem_object_move_to_active(obj, ring, seqno);
931 if (obj->base.write_domain) {
932 obj->dirty = 1;
933 obj->pending_gpu_write = true;
934 list_move_tail(&obj->gpu_write_list,
935 &ring->gpu_write_list);
936 intel_mark_busy(ring->dev, obj);
939 trace_i915_gem_object_change_domain(obj, old_read, old_write);
943 static void
944 i915_gem_execbuffer_retire_commands(struct drm_device *dev,
945 struct drm_file *file,
946 struct intel_ring_buffer *ring)
948 struct drm_i915_gem_request *request;
949 u32 invalidate;
952 * Ensure that the commands in the batch buffer are
953 * finished before the interrupt fires.
955 * The sampler always gets flushed on i965 (sigh).
957 invalidate = I915_GEM_DOMAIN_COMMAND;
958 if (INTEL_INFO(dev)->gen >= 4)
959 invalidate |= I915_GEM_DOMAIN_SAMPLER;
960 if (ring->flush(ring, invalidate, 0)) {
961 i915_gem_next_request_seqno(ring);
962 return;
965 /* Add a breadcrumb for the completion of the batch buffer */
966 request = kzalloc(sizeof(*request), GFP_KERNEL);
967 if (request == NULL || i915_add_request(ring, file, request)) {
968 i915_gem_next_request_seqno(ring);
969 kfree(request);
973 static int
974 i915_reset_gen7_sol_offsets(struct drm_device *dev,
975 struct intel_ring_buffer *ring)
977 drm_i915_private_t *dev_priv = dev->dev_private;
978 int ret, i;
980 if (!IS_GEN7(dev) || ring != &dev_priv->ring[RCS])
981 return 0;
983 ret = intel_ring_begin(ring, 4 * 3);
984 if (ret)
985 return ret;
987 for (i = 0; i < 4; i++) {
988 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
989 intel_ring_emit(ring, GEN7_SO_WRITE_OFFSET(i));
990 intel_ring_emit(ring, 0);
993 intel_ring_advance(ring);
995 return 0;
998 static int
999 i915_gem_do_execbuffer(struct drm_device *dev, void *data,
1000 struct drm_file *file,
1001 struct drm_i915_gem_execbuffer2 *args,
1002 struct drm_i915_gem_exec_object2 *exec)
1004 drm_i915_private_t *dev_priv = dev->dev_private;
1005 struct list_head objects;
1006 struct eb_objects *eb;
1007 struct drm_i915_gem_object *batch_obj;
1008 struct drm_clip_rect *cliprects = NULL;
1009 struct intel_ring_buffer *ring;
1010 u32 exec_start, exec_len;
1011 u32 seqno;
1012 u32 mask;
1013 int ret, mode, i;
1015 if (!i915_gem_check_execbuffer(args)) {
1016 DRM_ERROR("execbuf with invalid offset/length\n");
1017 return -EINVAL;
1020 ret = validate_exec_list(exec, args->buffer_count);
1021 if (ret)
1022 return ret;
1024 switch (args->flags & I915_EXEC_RING_MASK) {
1025 case I915_EXEC_DEFAULT:
1026 case I915_EXEC_RENDER:
1027 ring = &dev_priv->ring[RCS];
1028 break;
1029 case I915_EXEC_BSD:
1030 if (!HAS_BSD(dev)) {
1031 DRM_ERROR("execbuf with invalid ring (BSD)\n");
1032 return -EINVAL;
1034 ring = &dev_priv->ring[VCS];
1035 break;
1036 case I915_EXEC_BLT:
1037 if (!HAS_BLT(dev)) {
1038 DRM_ERROR("execbuf with invalid ring (BLT)\n");
1039 return -EINVAL;
1041 ring = &dev_priv->ring[BCS];
1042 break;
1043 default:
1044 DRM_ERROR("execbuf with unknown ring: %d\n",
1045 (int)(args->flags & I915_EXEC_RING_MASK));
1046 return -EINVAL;
1049 mode = args->flags & I915_EXEC_CONSTANTS_MASK;
1050 mask = I915_EXEC_CONSTANTS_MASK;
1051 switch (mode) {
1052 case I915_EXEC_CONSTANTS_REL_GENERAL:
1053 case I915_EXEC_CONSTANTS_ABSOLUTE:
1054 case I915_EXEC_CONSTANTS_REL_SURFACE:
1055 if (ring == &dev_priv->ring[RCS] &&
1056 mode != dev_priv->relative_constants_mode) {
1057 if (INTEL_INFO(dev)->gen < 4)
1058 return -EINVAL;
1060 if (INTEL_INFO(dev)->gen > 5 &&
1061 mode == I915_EXEC_CONSTANTS_REL_SURFACE)
1062 return -EINVAL;
1064 /* The HW changed the meaning on this bit on gen6 */
1065 if (INTEL_INFO(dev)->gen >= 6)
1066 mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
1068 break;
1069 default:
1070 DRM_ERROR("execbuf with unknown constants: %d\n", mode);
1071 return -EINVAL;
1074 if (args->buffer_count < 1) {
1075 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
1076 return -EINVAL;
1079 if (args->num_cliprects != 0) {
1080 if (ring != &dev_priv->ring[RCS]) {
1081 DRM_ERROR("clip rectangles are only valid with the render ring\n");
1082 return -EINVAL;
1085 if (args->num_cliprects > UINT_MAX / sizeof(*cliprects)) {
1086 DRM_DEBUG("execbuf with %u cliprects\n",
1087 args->num_cliprects);
1088 return -EINVAL;
1090 cliprects = kmalloc(args->num_cliprects * sizeof(*cliprects),
1091 GFP_KERNEL);
1092 if (cliprects == NULL) {
1093 ret = -ENOMEM;
1094 goto pre_mutex_err;
1097 if (copy_from_user(cliprects,
1098 (struct drm_clip_rect __user *)(uintptr_t)
1099 args->cliprects_ptr,
1100 sizeof(*cliprects)*args->num_cliprects)) {
1101 ret = -EFAULT;
1102 goto pre_mutex_err;
1106 ret = i915_mutex_lock_interruptible(dev);
1107 if (ret)
1108 goto pre_mutex_err;
1110 if (dev_priv->mm.suspended) {
1111 mutex_unlock(&dev->struct_mutex);
1112 ret = -EBUSY;
1113 goto pre_mutex_err;
1116 eb = eb_create(args->buffer_count);
1117 if (eb == NULL) {
1118 mutex_unlock(&dev->struct_mutex);
1119 ret = -ENOMEM;
1120 goto pre_mutex_err;
1123 /* Look up object handles */
1124 INIT_LIST_HEAD(&objects);
1125 for (i = 0; i < args->buffer_count; i++) {
1126 struct drm_i915_gem_object *obj;
1128 obj = to_intel_bo(drm_gem_object_lookup(dev, file,
1129 exec[i].handle));
1130 if (&obj->base == NULL) {
1131 DRM_ERROR("Invalid object handle %d at index %d\n",
1132 exec[i].handle, i);
1133 /* prevent error path from reading uninitialized data */
1134 ret = -ENOENT;
1135 goto err;
1138 if (!list_empty(&obj->exec_list)) {
1139 DRM_ERROR("Object %p [handle %d, index %d] appears more than once in object list\n",
1140 obj, exec[i].handle, i);
1141 ret = -EINVAL;
1142 goto err;
1145 list_add_tail(&obj->exec_list, &objects);
1146 obj->exec_handle = exec[i].handle;
1147 obj->exec_entry = &exec[i];
1148 eb_add_object(eb, obj);
1151 /* take note of the batch buffer before we might reorder the lists */
1152 batch_obj = list_entry(objects.prev,
1153 struct drm_i915_gem_object,
1154 exec_list);
1156 /* Move the objects en-masse into the GTT, evicting if necessary. */
1157 ret = i915_gem_execbuffer_reserve(ring, file, &objects);
1158 if (ret)
1159 goto err;
1161 /* The objects are in their final locations, apply the relocations. */
1162 ret = i915_gem_execbuffer_relocate(dev, eb, &objects);
1163 if (ret) {
1164 if (ret == -EFAULT) {
1165 ret = i915_gem_execbuffer_relocate_slow(dev, file, ring,
1166 &objects, eb,
1167 exec,
1168 args->buffer_count);
1169 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1171 if (ret)
1172 goto err;
1175 /* Set the pending read domains for the batch buffer to COMMAND */
1176 if (batch_obj->base.pending_write_domain) {
1177 DRM_ERROR("Attempting to use self-modifying batch buffer\n");
1178 ret = -EINVAL;
1179 goto err;
1181 batch_obj->base.pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
1183 ret = i915_gem_execbuffer_move_to_gpu(ring, &objects);
1184 if (ret)
1185 goto err;
1187 seqno = i915_gem_next_request_seqno(ring);
1188 for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++) {
1189 if (seqno < ring->sync_seqno[i]) {
1190 /* The GPU can not handle its semaphore value wrapping,
1191 * so every billion or so execbuffers, we need to stall
1192 * the GPU in order to reset the counters.
1194 ret = i915_gpu_idle(dev);
1195 if (ret)
1196 goto err;
1198 BUG_ON(ring->sync_seqno[i]);
1202 if (ring == &dev_priv->ring[RCS] &&
1203 mode != dev_priv->relative_constants_mode) {
1204 ret = intel_ring_begin(ring, 4);
1205 if (ret)
1206 goto err;
1208 intel_ring_emit(ring, MI_NOOP);
1209 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
1210 intel_ring_emit(ring, INSTPM);
1211 intel_ring_emit(ring, mask << 16 | mode);
1212 intel_ring_advance(ring);
1214 dev_priv->relative_constants_mode = mode;
1217 if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
1218 ret = i915_reset_gen7_sol_offsets(dev, ring);
1219 if (ret)
1220 goto err;
1223 trace_i915_gem_ring_dispatch(ring, seqno);
1225 exec_start = batch_obj->gtt_offset + args->batch_start_offset;
1226 exec_len = args->batch_len;
1227 if (cliprects) {
1228 for (i = 0; i < args->num_cliprects; i++) {
1229 ret = i915_emit_box(dev, &cliprects[i],
1230 args->DR1, args->DR4);
1231 if (ret)
1232 goto err;
1234 ret = ring->dispatch_execbuffer(ring,
1235 exec_start, exec_len);
1236 if (ret)
1237 goto err;
1239 } else {
1240 ret = ring->dispatch_execbuffer(ring, exec_start, exec_len);
1241 if (ret)
1242 goto err;
1245 i915_gem_execbuffer_move_to_active(&objects, ring, seqno);
1246 i915_gem_execbuffer_retire_commands(dev, file, ring);
1248 err:
1249 eb_destroy(eb);
1250 while (!list_empty(&objects)) {
1251 struct drm_i915_gem_object *obj;
1253 obj = list_first_entry(&objects,
1254 struct drm_i915_gem_object,
1255 exec_list);
1256 list_del_init(&obj->exec_list);
1257 drm_gem_object_unreference(&obj->base);
1260 mutex_unlock(&dev->struct_mutex);
1262 pre_mutex_err:
1263 kfree(cliprects);
1264 return ret;
1268 * Legacy execbuffer just creates an exec2 list from the original exec object
1269 * list array and passes it to the real function.
1272 i915_gem_execbuffer(struct drm_device *dev, void *data,
1273 struct drm_file *file)
1275 struct drm_i915_gem_execbuffer *args = data;
1276 struct drm_i915_gem_execbuffer2 exec2;
1277 struct drm_i915_gem_exec_object *exec_list = NULL;
1278 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
1279 int ret, i;
1281 if (args->buffer_count < 1) {
1282 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
1283 return -EINVAL;
1286 /* Copy in the exec list from userland */
1287 exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
1288 exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
1289 if (exec_list == NULL || exec2_list == NULL) {
1290 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
1291 args->buffer_count);
1292 drm_free_large(exec_list);
1293 drm_free_large(exec2_list);
1294 return -ENOMEM;
1296 ret = copy_from_user(exec_list,
1297 (struct drm_i915_relocation_entry __user *)
1298 (uintptr_t) args->buffers_ptr,
1299 sizeof(*exec_list) * args->buffer_count);
1300 if (ret != 0) {
1301 DRM_ERROR("copy %d exec entries failed %d\n",
1302 args->buffer_count, ret);
1303 drm_free_large(exec_list);
1304 drm_free_large(exec2_list);
1305 return -EFAULT;
1308 for (i = 0; i < args->buffer_count; i++) {
1309 exec2_list[i].handle = exec_list[i].handle;
1310 exec2_list[i].relocation_count = exec_list[i].relocation_count;
1311 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
1312 exec2_list[i].alignment = exec_list[i].alignment;
1313 exec2_list[i].offset = exec_list[i].offset;
1314 if (INTEL_INFO(dev)->gen < 4)
1315 exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
1316 else
1317 exec2_list[i].flags = 0;
1320 exec2.buffers_ptr = args->buffers_ptr;
1321 exec2.buffer_count = args->buffer_count;
1322 exec2.batch_start_offset = args->batch_start_offset;
1323 exec2.batch_len = args->batch_len;
1324 exec2.DR1 = args->DR1;
1325 exec2.DR4 = args->DR4;
1326 exec2.num_cliprects = args->num_cliprects;
1327 exec2.cliprects_ptr = args->cliprects_ptr;
1328 exec2.flags = I915_EXEC_RENDER;
1330 ret = i915_gem_do_execbuffer(dev, data, file, &exec2, exec2_list);
1331 if (!ret) {
1332 /* Copy the new buffer offsets back to the user's exec list. */
1333 for (i = 0; i < args->buffer_count; i++)
1334 exec_list[i].offset = exec2_list[i].offset;
1335 /* ... and back out to userspace */
1336 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
1337 (uintptr_t) args->buffers_ptr,
1338 exec_list,
1339 sizeof(*exec_list) * args->buffer_count);
1340 if (ret) {
1341 ret = -EFAULT;
1342 DRM_ERROR("failed to copy %d exec entries "
1343 "back to user (%d)\n",
1344 args->buffer_count, ret);
1348 drm_free_large(exec_list);
1349 drm_free_large(exec2_list);
1350 return ret;
1354 i915_gem_execbuffer2(struct drm_device *dev, void *data,
1355 struct drm_file *file)
1357 struct drm_i915_gem_execbuffer2 *args = data;
1358 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
1359 int ret;
1361 if (args->buffer_count < 1 ||
1362 args->buffer_count > UINT_MAX / sizeof(*exec2_list)) {
1363 DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
1364 return -EINVAL;
1367 exec2_list = kmalloc(sizeof(*exec2_list)*args->buffer_count,
1368 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY);
1369 if (exec2_list == NULL)
1370 exec2_list = drm_malloc_ab(sizeof(*exec2_list),
1371 args->buffer_count);
1372 if (exec2_list == NULL) {
1373 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
1374 args->buffer_count);
1375 return -ENOMEM;
1377 ret = copy_from_user(exec2_list,
1378 (struct drm_i915_relocation_entry __user *)
1379 (uintptr_t) args->buffers_ptr,
1380 sizeof(*exec2_list) * args->buffer_count);
1381 if (ret != 0) {
1382 DRM_ERROR("copy %d exec entries failed %d\n",
1383 args->buffer_count, ret);
1384 drm_free_large(exec2_list);
1385 return -EFAULT;
1388 ret = i915_gem_do_execbuffer(dev, data, file, args, exec2_list);
1389 if (!ret) {
1390 /* Copy the new buffer offsets back to the user's exec list. */
1391 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
1392 (uintptr_t) args->buffers_ptr,
1393 exec2_list,
1394 sizeof(*exec2_list) * args->buffer_count);
1395 if (ret) {
1396 ret = -EFAULT;
1397 DRM_ERROR("failed to copy %d exec entries "
1398 "back to user (%d)\n",
1399 args->buffer_count, ret);
1403 drm_free_large(exec2_list);
1404 return ret;