dl2k: Clean up rio_ioctl
[zen-stable.git] / drivers / gpu / drm / i915 / intel_display.c
blob216381827be813db05258bdb71409a9ab906cc40
1 /*
2 * Copyright © 2006-2007 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
27 #include <linux/cpufreq.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include "drmP.h"
36 #include "intel_drv.h"
37 #include "i915_drm.h"
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include "drm_dp_helper.h"
41 #include "drm_crtc_helper.h"
42 #include <linux/dma_remapping.h>
44 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
46 bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
47 static void intel_update_watermarks(struct drm_device *dev);
48 static void intel_increase_pllclock(struct drm_crtc *crtc);
49 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
51 typedef struct {
52 /* given values */
53 int n;
54 int m1, m2;
55 int p1, p2;
56 /* derived values */
57 int dot;
58 int vco;
59 int m;
60 int p;
61 } intel_clock_t;
63 typedef struct {
64 int min, max;
65 } intel_range_t;
67 typedef struct {
68 int dot_limit;
69 int p2_slow, p2_fast;
70 } intel_p2_t;
72 #define INTEL_P2_NUM 2
73 typedef struct intel_limit intel_limit_t;
74 struct intel_limit {
75 intel_range_t dot, vco, n, m, m1, m2, p, p1;
76 intel_p2_t p2;
77 bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
78 int, int, intel_clock_t *);
81 /* FDI */
82 #define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
84 static bool
85 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
86 int target, int refclk, intel_clock_t *best_clock);
87 static bool
88 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
89 int target, int refclk, intel_clock_t *best_clock);
91 static bool
92 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
93 int target, int refclk, intel_clock_t *best_clock);
94 static bool
95 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
96 int target, int refclk, intel_clock_t *best_clock);
98 static inline u32 /* units of 100MHz */
99 intel_fdi_link_freq(struct drm_device *dev)
101 if (IS_GEN5(dev)) {
102 struct drm_i915_private *dev_priv = dev->dev_private;
103 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
104 } else
105 return 27;
108 static const intel_limit_t intel_limits_i8xx_dvo = {
109 .dot = { .min = 25000, .max = 350000 },
110 .vco = { .min = 930000, .max = 1400000 },
111 .n = { .min = 3, .max = 16 },
112 .m = { .min = 96, .max = 140 },
113 .m1 = { .min = 18, .max = 26 },
114 .m2 = { .min = 6, .max = 16 },
115 .p = { .min = 4, .max = 128 },
116 .p1 = { .min = 2, .max = 33 },
117 .p2 = { .dot_limit = 165000,
118 .p2_slow = 4, .p2_fast = 2 },
119 .find_pll = intel_find_best_PLL,
122 static const intel_limit_t intel_limits_i8xx_lvds = {
123 .dot = { .min = 25000, .max = 350000 },
124 .vco = { .min = 930000, .max = 1400000 },
125 .n = { .min = 3, .max = 16 },
126 .m = { .min = 96, .max = 140 },
127 .m1 = { .min = 18, .max = 26 },
128 .m2 = { .min = 6, .max = 16 },
129 .p = { .min = 4, .max = 128 },
130 .p1 = { .min = 1, .max = 6 },
131 .p2 = { .dot_limit = 165000,
132 .p2_slow = 14, .p2_fast = 7 },
133 .find_pll = intel_find_best_PLL,
136 static const intel_limit_t intel_limits_i9xx_sdvo = {
137 .dot = { .min = 20000, .max = 400000 },
138 .vco = { .min = 1400000, .max = 2800000 },
139 .n = { .min = 1, .max = 6 },
140 .m = { .min = 70, .max = 120 },
141 .m1 = { .min = 10, .max = 22 },
142 .m2 = { .min = 5, .max = 9 },
143 .p = { .min = 5, .max = 80 },
144 .p1 = { .min = 1, .max = 8 },
145 .p2 = { .dot_limit = 200000,
146 .p2_slow = 10, .p2_fast = 5 },
147 .find_pll = intel_find_best_PLL,
150 static const intel_limit_t intel_limits_i9xx_lvds = {
151 .dot = { .min = 20000, .max = 400000 },
152 .vco = { .min = 1400000, .max = 2800000 },
153 .n = { .min = 1, .max = 6 },
154 .m = { .min = 70, .max = 120 },
155 .m1 = { .min = 10, .max = 22 },
156 .m2 = { .min = 5, .max = 9 },
157 .p = { .min = 7, .max = 98 },
158 .p1 = { .min = 1, .max = 8 },
159 .p2 = { .dot_limit = 112000,
160 .p2_slow = 14, .p2_fast = 7 },
161 .find_pll = intel_find_best_PLL,
165 static const intel_limit_t intel_limits_g4x_sdvo = {
166 .dot = { .min = 25000, .max = 270000 },
167 .vco = { .min = 1750000, .max = 3500000},
168 .n = { .min = 1, .max = 4 },
169 .m = { .min = 104, .max = 138 },
170 .m1 = { .min = 17, .max = 23 },
171 .m2 = { .min = 5, .max = 11 },
172 .p = { .min = 10, .max = 30 },
173 .p1 = { .min = 1, .max = 3},
174 .p2 = { .dot_limit = 270000,
175 .p2_slow = 10,
176 .p2_fast = 10
178 .find_pll = intel_g4x_find_best_PLL,
181 static const intel_limit_t intel_limits_g4x_hdmi = {
182 .dot = { .min = 22000, .max = 400000 },
183 .vco = { .min = 1750000, .max = 3500000},
184 .n = { .min = 1, .max = 4 },
185 .m = { .min = 104, .max = 138 },
186 .m1 = { .min = 16, .max = 23 },
187 .m2 = { .min = 5, .max = 11 },
188 .p = { .min = 5, .max = 80 },
189 .p1 = { .min = 1, .max = 8},
190 .p2 = { .dot_limit = 165000,
191 .p2_slow = 10, .p2_fast = 5 },
192 .find_pll = intel_g4x_find_best_PLL,
195 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
196 .dot = { .min = 20000, .max = 115000 },
197 .vco = { .min = 1750000, .max = 3500000 },
198 .n = { .min = 1, .max = 3 },
199 .m = { .min = 104, .max = 138 },
200 .m1 = { .min = 17, .max = 23 },
201 .m2 = { .min = 5, .max = 11 },
202 .p = { .min = 28, .max = 112 },
203 .p1 = { .min = 2, .max = 8 },
204 .p2 = { .dot_limit = 0,
205 .p2_slow = 14, .p2_fast = 14
207 .find_pll = intel_g4x_find_best_PLL,
210 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
211 .dot = { .min = 80000, .max = 224000 },
212 .vco = { .min = 1750000, .max = 3500000 },
213 .n = { .min = 1, .max = 3 },
214 .m = { .min = 104, .max = 138 },
215 .m1 = { .min = 17, .max = 23 },
216 .m2 = { .min = 5, .max = 11 },
217 .p = { .min = 14, .max = 42 },
218 .p1 = { .min = 2, .max = 6 },
219 .p2 = { .dot_limit = 0,
220 .p2_slow = 7, .p2_fast = 7
222 .find_pll = intel_g4x_find_best_PLL,
225 static const intel_limit_t intel_limits_g4x_display_port = {
226 .dot = { .min = 161670, .max = 227000 },
227 .vco = { .min = 1750000, .max = 3500000},
228 .n = { .min = 1, .max = 2 },
229 .m = { .min = 97, .max = 108 },
230 .m1 = { .min = 0x10, .max = 0x12 },
231 .m2 = { .min = 0x05, .max = 0x06 },
232 .p = { .min = 10, .max = 20 },
233 .p1 = { .min = 1, .max = 2},
234 .p2 = { .dot_limit = 0,
235 .p2_slow = 10, .p2_fast = 10 },
236 .find_pll = intel_find_pll_g4x_dp,
239 static const intel_limit_t intel_limits_pineview_sdvo = {
240 .dot = { .min = 20000, .max = 400000},
241 .vco = { .min = 1700000, .max = 3500000 },
242 /* Pineview's Ncounter is a ring counter */
243 .n = { .min = 3, .max = 6 },
244 .m = { .min = 2, .max = 256 },
245 /* Pineview only has one combined m divider, which we treat as m2. */
246 .m1 = { .min = 0, .max = 0 },
247 .m2 = { .min = 0, .max = 254 },
248 .p = { .min = 5, .max = 80 },
249 .p1 = { .min = 1, .max = 8 },
250 .p2 = { .dot_limit = 200000,
251 .p2_slow = 10, .p2_fast = 5 },
252 .find_pll = intel_find_best_PLL,
255 static const intel_limit_t intel_limits_pineview_lvds = {
256 .dot = { .min = 20000, .max = 400000 },
257 .vco = { .min = 1700000, .max = 3500000 },
258 .n = { .min = 3, .max = 6 },
259 .m = { .min = 2, .max = 256 },
260 .m1 = { .min = 0, .max = 0 },
261 .m2 = { .min = 0, .max = 254 },
262 .p = { .min = 7, .max = 112 },
263 .p1 = { .min = 1, .max = 8 },
264 .p2 = { .dot_limit = 112000,
265 .p2_slow = 14, .p2_fast = 14 },
266 .find_pll = intel_find_best_PLL,
269 /* Ironlake / Sandybridge
271 * We calculate clock using (register_value + 2) for N/M1/M2, so here
272 * the range value for them is (actual_value - 2).
274 static const intel_limit_t intel_limits_ironlake_dac = {
275 .dot = { .min = 25000, .max = 350000 },
276 .vco = { .min = 1760000, .max = 3510000 },
277 .n = { .min = 1, .max = 5 },
278 .m = { .min = 79, .max = 127 },
279 .m1 = { .min = 12, .max = 22 },
280 .m2 = { .min = 5, .max = 9 },
281 .p = { .min = 5, .max = 80 },
282 .p1 = { .min = 1, .max = 8 },
283 .p2 = { .dot_limit = 225000,
284 .p2_slow = 10, .p2_fast = 5 },
285 .find_pll = intel_g4x_find_best_PLL,
288 static const intel_limit_t intel_limits_ironlake_single_lvds = {
289 .dot = { .min = 25000, .max = 350000 },
290 .vco = { .min = 1760000, .max = 3510000 },
291 .n = { .min = 1, .max = 3 },
292 .m = { .min = 79, .max = 118 },
293 .m1 = { .min = 12, .max = 22 },
294 .m2 = { .min = 5, .max = 9 },
295 .p = { .min = 28, .max = 112 },
296 .p1 = { .min = 2, .max = 8 },
297 .p2 = { .dot_limit = 225000,
298 .p2_slow = 14, .p2_fast = 14 },
299 .find_pll = intel_g4x_find_best_PLL,
302 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
303 .dot = { .min = 25000, .max = 350000 },
304 .vco = { .min = 1760000, .max = 3510000 },
305 .n = { .min = 1, .max = 3 },
306 .m = { .min = 79, .max = 127 },
307 .m1 = { .min = 12, .max = 22 },
308 .m2 = { .min = 5, .max = 9 },
309 .p = { .min = 14, .max = 56 },
310 .p1 = { .min = 2, .max = 8 },
311 .p2 = { .dot_limit = 225000,
312 .p2_slow = 7, .p2_fast = 7 },
313 .find_pll = intel_g4x_find_best_PLL,
316 /* LVDS 100mhz refclk limits. */
317 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
318 .dot = { .min = 25000, .max = 350000 },
319 .vco = { .min = 1760000, .max = 3510000 },
320 .n = { .min = 1, .max = 2 },
321 .m = { .min = 79, .max = 126 },
322 .m1 = { .min = 12, .max = 22 },
323 .m2 = { .min = 5, .max = 9 },
324 .p = { .min = 28, .max = 112 },
325 .p1 = { .min = 2, .max = 8 },
326 .p2 = { .dot_limit = 225000,
327 .p2_slow = 14, .p2_fast = 14 },
328 .find_pll = intel_g4x_find_best_PLL,
331 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
332 .dot = { .min = 25000, .max = 350000 },
333 .vco = { .min = 1760000, .max = 3510000 },
334 .n = { .min = 1, .max = 3 },
335 .m = { .min = 79, .max = 126 },
336 .m1 = { .min = 12, .max = 22 },
337 .m2 = { .min = 5, .max = 9 },
338 .p = { .min = 14, .max = 42 },
339 .p1 = { .min = 2, .max = 6 },
340 .p2 = { .dot_limit = 225000,
341 .p2_slow = 7, .p2_fast = 7 },
342 .find_pll = intel_g4x_find_best_PLL,
345 static const intel_limit_t intel_limits_ironlake_display_port = {
346 .dot = { .min = 25000, .max = 350000 },
347 .vco = { .min = 1760000, .max = 3510000},
348 .n = { .min = 1, .max = 2 },
349 .m = { .min = 81, .max = 90 },
350 .m1 = { .min = 12, .max = 22 },
351 .m2 = { .min = 5, .max = 9 },
352 .p = { .min = 10, .max = 20 },
353 .p1 = { .min = 1, .max = 2},
354 .p2 = { .dot_limit = 0,
355 .p2_slow = 10, .p2_fast = 10 },
356 .find_pll = intel_find_pll_ironlake_dp,
359 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
360 int refclk)
362 struct drm_device *dev = crtc->dev;
363 struct drm_i915_private *dev_priv = dev->dev_private;
364 const intel_limit_t *limit;
366 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
367 if ((I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) ==
368 LVDS_CLKB_POWER_UP) {
369 /* LVDS dual channel */
370 if (refclk == 100000)
371 limit = &intel_limits_ironlake_dual_lvds_100m;
372 else
373 limit = &intel_limits_ironlake_dual_lvds;
374 } else {
375 if (refclk == 100000)
376 limit = &intel_limits_ironlake_single_lvds_100m;
377 else
378 limit = &intel_limits_ironlake_single_lvds;
380 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
381 HAS_eDP)
382 limit = &intel_limits_ironlake_display_port;
383 else
384 limit = &intel_limits_ironlake_dac;
386 return limit;
389 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
391 struct drm_device *dev = crtc->dev;
392 struct drm_i915_private *dev_priv = dev->dev_private;
393 const intel_limit_t *limit;
395 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
396 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
397 LVDS_CLKB_POWER_UP)
398 /* LVDS with dual channel */
399 limit = &intel_limits_g4x_dual_channel_lvds;
400 else
401 /* LVDS with dual channel */
402 limit = &intel_limits_g4x_single_channel_lvds;
403 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
404 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
405 limit = &intel_limits_g4x_hdmi;
406 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
407 limit = &intel_limits_g4x_sdvo;
408 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
409 limit = &intel_limits_g4x_display_port;
410 } else /* The option is for other outputs */
411 limit = &intel_limits_i9xx_sdvo;
413 return limit;
416 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
418 struct drm_device *dev = crtc->dev;
419 const intel_limit_t *limit;
421 if (HAS_PCH_SPLIT(dev))
422 limit = intel_ironlake_limit(crtc, refclk);
423 else if (IS_G4X(dev)) {
424 limit = intel_g4x_limit(crtc);
425 } else if (IS_PINEVIEW(dev)) {
426 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
427 limit = &intel_limits_pineview_lvds;
428 else
429 limit = &intel_limits_pineview_sdvo;
430 } else if (!IS_GEN2(dev)) {
431 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
432 limit = &intel_limits_i9xx_lvds;
433 else
434 limit = &intel_limits_i9xx_sdvo;
435 } else {
436 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
437 limit = &intel_limits_i8xx_lvds;
438 else
439 limit = &intel_limits_i8xx_dvo;
441 return limit;
444 /* m1 is reserved as 0 in Pineview, n is a ring counter */
445 static void pineview_clock(int refclk, intel_clock_t *clock)
447 clock->m = clock->m2 + 2;
448 clock->p = clock->p1 * clock->p2;
449 clock->vco = refclk * clock->m / clock->n;
450 clock->dot = clock->vco / clock->p;
453 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
455 if (IS_PINEVIEW(dev)) {
456 pineview_clock(refclk, clock);
457 return;
459 clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
460 clock->p = clock->p1 * clock->p2;
461 clock->vco = refclk * clock->m / (clock->n + 2);
462 clock->dot = clock->vco / clock->p;
466 * Returns whether any output on the specified pipe is of the specified type
468 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
470 struct drm_device *dev = crtc->dev;
471 struct drm_mode_config *mode_config = &dev->mode_config;
472 struct intel_encoder *encoder;
474 list_for_each_entry(encoder, &mode_config->encoder_list, base.head)
475 if (encoder->base.crtc == crtc && encoder->type == type)
476 return true;
478 return false;
481 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
483 * Returns whether the given set of divisors are valid for a given refclk with
484 * the given connectors.
487 static bool intel_PLL_is_valid(struct drm_device *dev,
488 const intel_limit_t *limit,
489 const intel_clock_t *clock)
491 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
492 INTELPllInvalid("p1 out of range\n");
493 if (clock->p < limit->p.min || limit->p.max < clock->p)
494 INTELPllInvalid("p out of range\n");
495 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
496 INTELPllInvalid("m2 out of range\n");
497 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
498 INTELPllInvalid("m1 out of range\n");
499 if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
500 INTELPllInvalid("m1 <= m2\n");
501 if (clock->m < limit->m.min || limit->m.max < clock->m)
502 INTELPllInvalid("m out of range\n");
503 if (clock->n < limit->n.min || limit->n.max < clock->n)
504 INTELPllInvalid("n out of range\n");
505 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
506 INTELPllInvalid("vco out of range\n");
507 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
508 * connector, etc., rather than just a single range.
510 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
511 INTELPllInvalid("dot out of range\n");
513 return true;
516 static bool
517 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
518 int target, int refclk, intel_clock_t *best_clock)
521 struct drm_device *dev = crtc->dev;
522 struct drm_i915_private *dev_priv = dev->dev_private;
523 intel_clock_t clock;
524 int err = target;
526 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
527 (I915_READ(LVDS)) != 0) {
529 * For LVDS, if the panel is on, just rely on its current
530 * settings for dual-channel. We haven't figured out how to
531 * reliably set up different single/dual channel state, if we
532 * even can.
534 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
535 LVDS_CLKB_POWER_UP)
536 clock.p2 = limit->p2.p2_fast;
537 else
538 clock.p2 = limit->p2.p2_slow;
539 } else {
540 if (target < limit->p2.dot_limit)
541 clock.p2 = limit->p2.p2_slow;
542 else
543 clock.p2 = limit->p2.p2_fast;
546 memset(best_clock, 0, sizeof(*best_clock));
548 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
549 clock.m1++) {
550 for (clock.m2 = limit->m2.min;
551 clock.m2 <= limit->m2.max; clock.m2++) {
552 /* m1 is always 0 in Pineview */
553 if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
554 break;
555 for (clock.n = limit->n.min;
556 clock.n <= limit->n.max; clock.n++) {
557 for (clock.p1 = limit->p1.min;
558 clock.p1 <= limit->p1.max; clock.p1++) {
559 int this_err;
561 intel_clock(dev, refclk, &clock);
562 if (!intel_PLL_is_valid(dev, limit,
563 &clock))
564 continue;
566 this_err = abs(clock.dot - target);
567 if (this_err < err) {
568 *best_clock = clock;
569 err = this_err;
576 return (err != target);
579 static bool
580 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
581 int target, int refclk, intel_clock_t *best_clock)
583 struct drm_device *dev = crtc->dev;
584 struct drm_i915_private *dev_priv = dev->dev_private;
585 intel_clock_t clock;
586 int max_n;
587 bool found;
588 /* approximately equals target * 0.00585 */
589 int err_most = (target >> 8) + (target >> 9);
590 found = false;
592 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
593 int lvds_reg;
595 if (HAS_PCH_SPLIT(dev))
596 lvds_reg = PCH_LVDS;
597 else
598 lvds_reg = LVDS;
599 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
600 LVDS_CLKB_POWER_UP)
601 clock.p2 = limit->p2.p2_fast;
602 else
603 clock.p2 = limit->p2.p2_slow;
604 } else {
605 if (target < limit->p2.dot_limit)
606 clock.p2 = limit->p2.p2_slow;
607 else
608 clock.p2 = limit->p2.p2_fast;
611 memset(best_clock, 0, sizeof(*best_clock));
612 max_n = limit->n.max;
613 /* based on hardware requirement, prefer smaller n to precision */
614 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
615 /* based on hardware requirement, prefere larger m1,m2 */
616 for (clock.m1 = limit->m1.max;
617 clock.m1 >= limit->m1.min; clock.m1--) {
618 for (clock.m2 = limit->m2.max;
619 clock.m2 >= limit->m2.min; clock.m2--) {
620 for (clock.p1 = limit->p1.max;
621 clock.p1 >= limit->p1.min; clock.p1--) {
622 int this_err;
624 intel_clock(dev, refclk, &clock);
625 if (!intel_PLL_is_valid(dev, limit,
626 &clock))
627 continue;
629 this_err = abs(clock.dot - target);
630 if (this_err < err_most) {
631 *best_clock = clock;
632 err_most = this_err;
633 max_n = clock.n;
634 found = true;
640 return found;
643 static bool
644 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
645 int target, int refclk, intel_clock_t *best_clock)
647 struct drm_device *dev = crtc->dev;
648 intel_clock_t clock;
650 if (target < 200000) {
651 clock.n = 1;
652 clock.p1 = 2;
653 clock.p2 = 10;
654 clock.m1 = 12;
655 clock.m2 = 9;
656 } else {
657 clock.n = 2;
658 clock.p1 = 1;
659 clock.p2 = 10;
660 clock.m1 = 14;
661 clock.m2 = 8;
663 intel_clock(dev, refclk, &clock);
664 memcpy(best_clock, &clock, sizeof(intel_clock_t));
665 return true;
668 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
669 static bool
670 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
671 int target, int refclk, intel_clock_t *best_clock)
673 intel_clock_t clock;
674 if (target < 200000) {
675 clock.p1 = 2;
676 clock.p2 = 10;
677 clock.n = 2;
678 clock.m1 = 23;
679 clock.m2 = 8;
680 } else {
681 clock.p1 = 1;
682 clock.p2 = 10;
683 clock.n = 1;
684 clock.m1 = 14;
685 clock.m2 = 2;
687 clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
688 clock.p = (clock.p1 * clock.p2);
689 clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
690 clock.vco = 0;
691 memcpy(best_clock, &clock, sizeof(intel_clock_t));
692 return true;
696 * intel_wait_for_vblank - wait for vblank on a given pipe
697 * @dev: drm device
698 * @pipe: pipe to wait for
700 * Wait for vblank to occur on a given pipe. Needed for various bits of
701 * mode setting code.
703 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
705 struct drm_i915_private *dev_priv = dev->dev_private;
706 int pipestat_reg = PIPESTAT(pipe);
708 /* Clear existing vblank status. Note this will clear any other
709 * sticky status fields as well.
711 * This races with i915_driver_irq_handler() with the result
712 * that either function could miss a vblank event. Here it is not
713 * fatal, as we will either wait upon the next vblank interrupt or
714 * timeout. Generally speaking intel_wait_for_vblank() is only
715 * called during modeset at which time the GPU should be idle and
716 * should *not* be performing page flips and thus not waiting on
717 * vblanks...
718 * Currently, the result of us stealing a vblank from the irq
719 * handler is that a single frame will be skipped during swapbuffers.
721 I915_WRITE(pipestat_reg,
722 I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
724 /* Wait for vblank interrupt bit to set */
725 if (wait_for(I915_READ(pipestat_reg) &
726 PIPE_VBLANK_INTERRUPT_STATUS,
727 50))
728 DRM_DEBUG_KMS("vblank wait timed out\n");
732 * intel_wait_for_pipe_off - wait for pipe to turn off
733 * @dev: drm device
734 * @pipe: pipe to wait for
736 * After disabling a pipe, we can't wait for vblank in the usual way,
737 * spinning on the vblank interrupt status bit, since we won't actually
738 * see an interrupt when the pipe is disabled.
740 * On Gen4 and above:
741 * wait for the pipe register state bit to turn off
743 * Otherwise:
744 * wait for the display line value to settle (it usually
745 * ends up stopping at the start of the next frame).
748 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
750 struct drm_i915_private *dev_priv = dev->dev_private;
752 if (INTEL_INFO(dev)->gen >= 4) {
753 int reg = PIPECONF(pipe);
755 /* Wait for the Pipe State to go off */
756 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
757 100))
758 DRM_DEBUG_KMS("pipe_off wait timed out\n");
759 } else {
760 u32 last_line;
761 int reg = PIPEDSL(pipe);
762 unsigned long timeout = jiffies + msecs_to_jiffies(100);
764 /* Wait for the display line to settle */
765 do {
766 last_line = I915_READ(reg) & DSL_LINEMASK;
767 mdelay(5);
768 } while (((I915_READ(reg) & DSL_LINEMASK) != last_line) &&
769 time_after(timeout, jiffies));
770 if (time_after(jiffies, timeout))
771 DRM_DEBUG_KMS("pipe_off wait timed out\n");
775 static const char *state_string(bool enabled)
777 return enabled ? "on" : "off";
780 /* Only for pre-ILK configs */
781 static void assert_pll(struct drm_i915_private *dev_priv,
782 enum pipe pipe, bool state)
784 int reg;
785 u32 val;
786 bool cur_state;
788 reg = DPLL(pipe);
789 val = I915_READ(reg);
790 cur_state = !!(val & DPLL_VCO_ENABLE);
791 WARN(cur_state != state,
792 "PLL state assertion failure (expected %s, current %s)\n",
793 state_string(state), state_string(cur_state));
795 #define assert_pll_enabled(d, p) assert_pll(d, p, true)
796 #define assert_pll_disabled(d, p) assert_pll(d, p, false)
798 /* For ILK+ */
799 static void assert_pch_pll(struct drm_i915_private *dev_priv,
800 enum pipe pipe, bool state)
802 int reg;
803 u32 val;
804 bool cur_state;
806 if (HAS_PCH_CPT(dev_priv->dev)) {
807 u32 pch_dpll;
809 pch_dpll = I915_READ(PCH_DPLL_SEL);
811 /* Make sure the selected PLL is enabled to the transcoder */
812 WARN(!((pch_dpll >> (4 * pipe)) & 8),
813 "transcoder %d PLL not enabled\n", pipe);
815 /* Convert the transcoder pipe number to a pll pipe number */
816 pipe = (pch_dpll >> (4 * pipe)) & 1;
819 reg = PCH_DPLL(pipe);
820 val = I915_READ(reg);
821 cur_state = !!(val & DPLL_VCO_ENABLE);
822 WARN(cur_state != state,
823 "PCH PLL state assertion failure (expected %s, current %s)\n",
824 state_string(state), state_string(cur_state));
826 #define assert_pch_pll_enabled(d, p) assert_pch_pll(d, p, true)
827 #define assert_pch_pll_disabled(d, p) assert_pch_pll(d, p, false)
829 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
830 enum pipe pipe, bool state)
832 int reg;
833 u32 val;
834 bool cur_state;
836 reg = FDI_TX_CTL(pipe);
837 val = I915_READ(reg);
838 cur_state = !!(val & FDI_TX_ENABLE);
839 WARN(cur_state != state,
840 "FDI TX state assertion failure (expected %s, current %s)\n",
841 state_string(state), state_string(cur_state));
843 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
844 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
846 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
847 enum pipe pipe, bool state)
849 int reg;
850 u32 val;
851 bool cur_state;
853 reg = FDI_RX_CTL(pipe);
854 val = I915_READ(reg);
855 cur_state = !!(val & FDI_RX_ENABLE);
856 WARN(cur_state != state,
857 "FDI RX state assertion failure (expected %s, current %s)\n",
858 state_string(state), state_string(cur_state));
860 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
861 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
863 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
864 enum pipe pipe)
866 int reg;
867 u32 val;
869 /* ILK FDI PLL is always enabled */
870 if (dev_priv->info->gen == 5)
871 return;
873 reg = FDI_TX_CTL(pipe);
874 val = I915_READ(reg);
875 WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
878 static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
879 enum pipe pipe)
881 int reg;
882 u32 val;
884 reg = FDI_RX_CTL(pipe);
885 val = I915_READ(reg);
886 WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
889 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
890 enum pipe pipe)
892 int pp_reg, lvds_reg;
893 u32 val;
894 enum pipe panel_pipe = PIPE_A;
895 bool locked = true;
897 if (HAS_PCH_SPLIT(dev_priv->dev)) {
898 pp_reg = PCH_PP_CONTROL;
899 lvds_reg = PCH_LVDS;
900 } else {
901 pp_reg = PP_CONTROL;
902 lvds_reg = LVDS;
905 val = I915_READ(pp_reg);
906 if (!(val & PANEL_POWER_ON) ||
907 ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
908 locked = false;
910 if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
911 panel_pipe = PIPE_B;
913 WARN(panel_pipe == pipe && locked,
914 "panel assertion failure, pipe %c regs locked\n",
915 pipe_name(pipe));
918 void assert_pipe(struct drm_i915_private *dev_priv,
919 enum pipe pipe, bool state)
921 int reg;
922 u32 val;
923 bool cur_state;
925 reg = PIPECONF(pipe);
926 val = I915_READ(reg);
927 cur_state = !!(val & PIPECONF_ENABLE);
928 WARN(cur_state != state,
929 "pipe %c assertion failure (expected %s, current %s)\n",
930 pipe_name(pipe), state_string(state), state_string(cur_state));
933 static void assert_plane_enabled(struct drm_i915_private *dev_priv,
934 enum plane plane)
936 int reg;
937 u32 val;
939 reg = DSPCNTR(plane);
940 val = I915_READ(reg);
941 WARN(!(val & DISPLAY_PLANE_ENABLE),
942 "plane %c assertion failure, should be active but is disabled\n",
943 plane_name(plane));
946 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
947 enum pipe pipe)
949 int reg, i;
950 u32 val;
951 int cur_pipe;
953 /* Planes are fixed to pipes on ILK+ */
954 if (HAS_PCH_SPLIT(dev_priv->dev))
955 return;
957 /* Need to check both planes against the pipe */
958 for (i = 0; i < 2; i++) {
959 reg = DSPCNTR(i);
960 val = I915_READ(reg);
961 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
962 DISPPLANE_SEL_PIPE_SHIFT;
963 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
964 "plane %c assertion failure, should be off on pipe %c but is still active\n",
965 plane_name(i), pipe_name(pipe));
969 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
971 u32 val;
972 bool enabled;
974 val = I915_READ(PCH_DREF_CONTROL);
975 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
976 DREF_SUPERSPREAD_SOURCE_MASK));
977 WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
980 static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
981 enum pipe pipe)
983 int reg;
984 u32 val;
985 bool enabled;
987 reg = TRANSCONF(pipe);
988 val = I915_READ(reg);
989 enabled = !!(val & TRANS_ENABLE);
990 WARN(enabled,
991 "transcoder assertion failed, should be off on pipe %c but is still active\n",
992 pipe_name(pipe));
995 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
996 enum pipe pipe, u32 port_sel, u32 val)
998 if ((val & DP_PORT_EN) == 0)
999 return false;
1001 if (HAS_PCH_CPT(dev_priv->dev)) {
1002 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1003 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1004 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1005 return false;
1006 } else {
1007 if ((val & DP_PIPE_MASK) != (pipe << 30))
1008 return false;
1010 return true;
1013 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1014 enum pipe pipe, u32 val)
1016 if ((val & PORT_ENABLE) == 0)
1017 return false;
1019 if (HAS_PCH_CPT(dev_priv->dev)) {
1020 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1021 return false;
1022 } else {
1023 if ((val & TRANSCODER_MASK) != TRANSCODER(pipe))
1024 return false;
1026 return true;
1029 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1030 enum pipe pipe, u32 val)
1032 if ((val & LVDS_PORT_EN) == 0)
1033 return false;
1035 if (HAS_PCH_CPT(dev_priv->dev)) {
1036 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1037 return false;
1038 } else {
1039 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1040 return false;
1042 return true;
1045 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1046 enum pipe pipe, u32 val)
1048 if ((val & ADPA_DAC_ENABLE) == 0)
1049 return false;
1050 if (HAS_PCH_CPT(dev_priv->dev)) {
1051 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1052 return false;
1053 } else {
1054 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1055 return false;
1057 return true;
1060 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1061 enum pipe pipe, int reg, u32 port_sel)
1063 u32 val = I915_READ(reg);
1064 WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1065 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1066 reg, pipe_name(pipe));
1069 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1070 enum pipe pipe, int reg)
1072 u32 val = I915_READ(reg);
1073 WARN(hdmi_pipe_enabled(dev_priv, val, pipe),
1074 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1075 reg, pipe_name(pipe));
1078 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1079 enum pipe pipe)
1081 int reg;
1082 u32 val;
1084 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1085 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1086 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1088 reg = PCH_ADPA;
1089 val = I915_READ(reg);
1090 WARN(adpa_pipe_enabled(dev_priv, val, pipe),
1091 "PCH VGA enabled on transcoder %c, should be disabled\n",
1092 pipe_name(pipe));
1094 reg = PCH_LVDS;
1095 val = I915_READ(reg);
1096 WARN(lvds_pipe_enabled(dev_priv, val, pipe),
1097 "PCH LVDS enabled on transcoder %c, should be disabled\n",
1098 pipe_name(pipe));
1100 assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
1101 assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
1102 assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
1106 * intel_enable_pll - enable a PLL
1107 * @dev_priv: i915 private structure
1108 * @pipe: pipe PLL to enable
1110 * Enable @pipe's PLL so we can start pumping pixels from a plane. Check to
1111 * make sure the PLL reg is writable first though, since the panel write
1112 * protect mechanism may be enabled.
1114 * Note! This is for pre-ILK only.
1116 static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1118 int reg;
1119 u32 val;
1121 /* No really, not for ILK+ */
1122 BUG_ON(dev_priv->info->gen >= 5);
1124 /* PLL is protected by panel, make sure we can write it */
1125 if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1126 assert_panel_unlocked(dev_priv, pipe);
1128 reg = DPLL(pipe);
1129 val = I915_READ(reg);
1130 val |= DPLL_VCO_ENABLE;
1132 /* We do this three times for luck */
1133 I915_WRITE(reg, val);
1134 POSTING_READ(reg);
1135 udelay(150); /* wait for warmup */
1136 I915_WRITE(reg, val);
1137 POSTING_READ(reg);
1138 udelay(150); /* wait for warmup */
1139 I915_WRITE(reg, val);
1140 POSTING_READ(reg);
1141 udelay(150); /* wait for warmup */
1145 * intel_disable_pll - disable a PLL
1146 * @dev_priv: i915 private structure
1147 * @pipe: pipe PLL to disable
1149 * Disable the PLL for @pipe, making sure the pipe is off first.
1151 * Note! This is for pre-ILK only.
1153 static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1155 int reg;
1156 u32 val;
1158 /* Don't disable pipe A or pipe A PLLs if needed */
1159 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1160 return;
1162 /* Make sure the pipe isn't still relying on us */
1163 assert_pipe_disabled(dev_priv, pipe);
1165 reg = DPLL(pipe);
1166 val = I915_READ(reg);
1167 val &= ~DPLL_VCO_ENABLE;
1168 I915_WRITE(reg, val);
1169 POSTING_READ(reg);
1173 * intel_enable_pch_pll - enable PCH PLL
1174 * @dev_priv: i915 private structure
1175 * @pipe: pipe PLL to enable
1177 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1178 * drives the transcoder clock.
1180 static void intel_enable_pch_pll(struct drm_i915_private *dev_priv,
1181 enum pipe pipe)
1183 int reg;
1184 u32 val;
1186 if (pipe > 1)
1187 return;
1189 /* PCH only available on ILK+ */
1190 BUG_ON(dev_priv->info->gen < 5);
1192 /* PCH refclock must be enabled first */
1193 assert_pch_refclk_enabled(dev_priv);
1195 reg = PCH_DPLL(pipe);
1196 val = I915_READ(reg);
1197 val |= DPLL_VCO_ENABLE;
1198 I915_WRITE(reg, val);
1199 POSTING_READ(reg);
1200 udelay(200);
1203 static void intel_disable_pch_pll(struct drm_i915_private *dev_priv,
1204 enum pipe pipe)
1206 int reg;
1207 u32 val, pll_mask = TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL,
1208 pll_sel = TRANSC_DPLL_ENABLE;
1210 if (pipe > 1)
1211 return;
1213 /* PCH only available on ILK+ */
1214 BUG_ON(dev_priv->info->gen < 5);
1216 /* Make sure transcoder isn't still depending on us */
1217 assert_transcoder_disabled(dev_priv, pipe);
1219 if (pipe == 0)
1220 pll_sel |= TRANSC_DPLLA_SEL;
1221 else if (pipe == 1)
1222 pll_sel |= TRANSC_DPLLB_SEL;
1225 if ((I915_READ(PCH_DPLL_SEL) & pll_mask) == pll_sel)
1226 return;
1228 reg = PCH_DPLL(pipe);
1229 val = I915_READ(reg);
1230 val &= ~DPLL_VCO_ENABLE;
1231 I915_WRITE(reg, val);
1232 POSTING_READ(reg);
1233 udelay(200);
1236 static void intel_enable_transcoder(struct drm_i915_private *dev_priv,
1237 enum pipe pipe)
1239 int reg;
1240 u32 val;
1242 /* PCH only available on ILK+ */
1243 BUG_ON(dev_priv->info->gen < 5);
1245 /* Make sure PCH DPLL is enabled */
1246 assert_pch_pll_enabled(dev_priv, pipe);
1248 /* FDI must be feeding us bits for PCH ports */
1249 assert_fdi_tx_enabled(dev_priv, pipe);
1250 assert_fdi_rx_enabled(dev_priv, pipe);
1252 reg = TRANSCONF(pipe);
1253 val = I915_READ(reg);
1255 if (HAS_PCH_IBX(dev_priv->dev)) {
1257 * make the BPC in transcoder be consistent with
1258 * that in pipeconf reg.
1260 val &= ~PIPE_BPC_MASK;
1261 val |= I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK;
1263 I915_WRITE(reg, val | TRANS_ENABLE);
1264 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1265 DRM_ERROR("failed to enable transcoder %d\n", pipe);
1268 static void intel_disable_transcoder(struct drm_i915_private *dev_priv,
1269 enum pipe pipe)
1271 int reg;
1272 u32 val;
1274 /* FDI relies on the transcoder */
1275 assert_fdi_tx_disabled(dev_priv, pipe);
1276 assert_fdi_rx_disabled(dev_priv, pipe);
1278 /* Ports must be off as well */
1279 assert_pch_ports_disabled(dev_priv, pipe);
1281 reg = TRANSCONF(pipe);
1282 val = I915_READ(reg);
1283 val &= ~TRANS_ENABLE;
1284 I915_WRITE(reg, val);
1285 /* wait for PCH transcoder off, transcoder state */
1286 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1287 DRM_ERROR("failed to disable transcoder %d\n", pipe);
1291 * intel_enable_pipe - enable a pipe, asserting requirements
1292 * @dev_priv: i915 private structure
1293 * @pipe: pipe to enable
1294 * @pch_port: on ILK+, is this pipe driving a PCH port or not
1296 * Enable @pipe, making sure that various hardware specific requirements
1297 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1299 * @pipe should be %PIPE_A or %PIPE_B.
1301 * Will wait until the pipe is actually running (i.e. first vblank) before
1302 * returning.
1304 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1305 bool pch_port)
1307 int reg;
1308 u32 val;
1311 * A pipe without a PLL won't actually be able to drive bits from
1312 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
1313 * need the check.
1315 if (!HAS_PCH_SPLIT(dev_priv->dev))
1316 assert_pll_enabled(dev_priv, pipe);
1317 else {
1318 if (pch_port) {
1319 /* if driving the PCH, we need FDI enabled */
1320 assert_fdi_rx_pll_enabled(dev_priv, pipe);
1321 assert_fdi_tx_pll_enabled(dev_priv, pipe);
1323 /* FIXME: assert CPU port conditions for SNB+ */
1326 reg = PIPECONF(pipe);
1327 val = I915_READ(reg);
1328 if (val & PIPECONF_ENABLE)
1329 return;
1331 I915_WRITE(reg, val | PIPECONF_ENABLE);
1332 intel_wait_for_vblank(dev_priv->dev, pipe);
1336 * intel_disable_pipe - disable a pipe, asserting requirements
1337 * @dev_priv: i915 private structure
1338 * @pipe: pipe to disable
1340 * Disable @pipe, making sure that various hardware specific requirements
1341 * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1343 * @pipe should be %PIPE_A or %PIPE_B.
1345 * Will wait until the pipe has shut down before returning.
1347 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1348 enum pipe pipe)
1350 int reg;
1351 u32 val;
1354 * Make sure planes won't keep trying to pump pixels to us,
1355 * or we might hang the display.
1357 assert_planes_disabled(dev_priv, pipe);
1359 /* Don't disable pipe A or pipe A PLLs if needed */
1360 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1361 return;
1363 reg = PIPECONF(pipe);
1364 val = I915_READ(reg);
1365 if ((val & PIPECONF_ENABLE) == 0)
1366 return;
1368 I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1369 intel_wait_for_pipe_off(dev_priv->dev, pipe);
1373 * Plane regs are double buffered, going from enabled->disabled needs a
1374 * trigger in order to latch. The display address reg provides this.
1376 static void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1377 enum plane plane)
1379 I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1380 I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1384 * intel_enable_plane - enable a display plane on a given pipe
1385 * @dev_priv: i915 private structure
1386 * @plane: plane to enable
1387 * @pipe: pipe being fed
1389 * Enable @plane on @pipe, making sure that @pipe is running first.
1391 static void intel_enable_plane(struct drm_i915_private *dev_priv,
1392 enum plane plane, enum pipe pipe)
1394 int reg;
1395 u32 val;
1397 /* If the pipe isn't enabled, we can't pump pixels and may hang */
1398 assert_pipe_enabled(dev_priv, pipe);
1400 reg = DSPCNTR(plane);
1401 val = I915_READ(reg);
1402 if (val & DISPLAY_PLANE_ENABLE)
1403 return;
1405 I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1406 intel_flush_display_plane(dev_priv, plane);
1407 intel_wait_for_vblank(dev_priv->dev, pipe);
1411 * intel_disable_plane - disable a display plane
1412 * @dev_priv: i915 private structure
1413 * @plane: plane to disable
1414 * @pipe: pipe consuming the data
1416 * Disable @plane; should be an independent operation.
1418 static void intel_disable_plane(struct drm_i915_private *dev_priv,
1419 enum plane plane, enum pipe pipe)
1421 int reg;
1422 u32 val;
1424 reg = DSPCNTR(plane);
1425 val = I915_READ(reg);
1426 if ((val & DISPLAY_PLANE_ENABLE) == 0)
1427 return;
1429 I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1430 intel_flush_display_plane(dev_priv, plane);
1431 intel_wait_for_vblank(dev_priv->dev, pipe);
1434 static void disable_pch_dp(struct drm_i915_private *dev_priv,
1435 enum pipe pipe, int reg, u32 port_sel)
1437 u32 val = I915_READ(reg);
1438 if (dp_pipe_enabled(dev_priv, pipe, port_sel, val)) {
1439 DRM_DEBUG_KMS("Disabling pch dp %x on pipe %d\n", reg, pipe);
1440 I915_WRITE(reg, val & ~DP_PORT_EN);
1444 static void disable_pch_hdmi(struct drm_i915_private *dev_priv,
1445 enum pipe pipe, int reg)
1447 u32 val = I915_READ(reg);
1448 if (hdmi_pipe_enabled(dev_priv, val, pipe)) {
1449 DRM_DEBUG_KMS("Disabling pch HDMI %x on pipe %d\n",
1450 reg, pipe);
1451 I915_WRITE(reg, val & ~PORT_ENABLE);
1455 /* Disable any ports connected to this transcoder */
1456 static void intel_disable_pch_ports(struct drm_i915_private *dev_priv,
1457 enum pipe pipe)
1459 u32 reg, val;
1461 val = I915_READ(PCH_PP_CONTROL);
1462 I915_WRITE(PCH_PP_CONTROL, val | PANEL_UNLOCK_REGS);
1464 disable_pch_dp(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1465 disable_pch_dp(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1466 disable_pch_dp(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1468 reg = PCH_ADPA;
1469 val = I915_READ(reg);
1470 if (adpa_pipe_enabled(dev_priv, val, pipe))
1471 I915_WRITE(reg, val & ~ADPA_DAC_ENABLE);
1473 reg = PCH_LVDS;
1474 val = I915_READ(reg);
1475 if (lvds_pipe_enabled(dev_priv, val, pipe)) {
1476 DRM_DEBUG_KMS("disable lvds on pipe %d val 0x%08x\n", pipe, val);
1477 I915_WRITE(reg, val & ~LVDS_PORT_EN);
1478 POSTING_READ(reg);
1479 udelay(100);
1482 disable_pch_hdmi(dev_priv, pipe, HDMIB);
1483 disable_pch_hdmi(dev_priv, pipe, HDMIC);
1484 disable_pch_hdmi(dev_priv, pipe, HDMID);
1487 static void i8xx_disable_fbc(struct drm_device *dev)
1489 struct drm_i915_private *dev_priv = dev->dev_private;
1490 u32 fbc_ctl;
1492 /* Disable compression */
1493 fbc_ctl = I915_READ(FBC_CONTROL);
1494 if ((fbc_ctl & FBC_CTL_EN) == 0)
1495 return;
1497 fbc_ctl &= ~FBC_CTL_EN;
1498 I915_WRITE(FBC_CONTROL, fbc_ctl);
1500 /* Wait for compressing bit to clear */
1501 if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
1502 DRM_DEBUG_KMS("FBC idle timed out\n");
1503 return;
1506 DRM_DEBUG_KMS("disabled FBC\n");
1509 static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1511 struct drm_device *dev = crtc->dev;
1512 struct drm_i915_private *dev_priv = dev->dev_private;
1513 struct drm_framebuffer *fb = crtc->fb;
1514 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1515 struct drm_i915_gem_object *obj = intel_fb->obj;
1516 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1517 int cfb_pitch;
1518 int plane, i;
1519 u32 fbc_ctl, fbc_ctl2;
1521 cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
1522 if (fb->pitches[0] < cfb_pitch)
1523 cfb_pitch = fb->pitches[0];
1525 /* FBC_CTL wants 64B units */
1526 cfb_pitch = (cfb_pitch / 64) - 1;
1527 plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
1529 /* Clear old tags */
1530 for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
1531 I915_WRITE(FBC_TAG + (i * 4), 0);
1533 /* Set it up... */
1534 fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
1535 fbc_ctl2 |= plane;
1536 I915_WRITE(FBC_CONTROL2, fbc_ctl2);
1537 I915_WRITE(FBC_FENCE_OFF, crtc->y);
1539 /* enable it... */
1540 fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
1541 if (IS_I945GM(dev))
1542 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
1543 fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
1544 fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
1545 fbc_ctl |= obj->fence_reg;
1546 I915_WRITE(FBC_CONTROL, fbc_ctl);
1548 DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %d, ",
1549 cfb_pitch, crtc->y, intel_crtc->plane);
1552 static bool i8xx_fbc_enabled(struct drm_device *dev)
1554 struct drm_i915_private *dev_priv = dev->dev_private;
1556 return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
1559 static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1561 struct drm_device *dev = crtc->dev;
1562 struct drm_i915_private *dev_priv = dev->dev_private;
1563 struct drm_framebuffer *fb = crtc->fb;
1564 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1565 struct drm_i915_gem_object *obj = intel_fb->obj;
1566 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1567 int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
1568 unsigned long stall_watermark = 200;
1569 u32 dpfc_ctl;
1571 dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
1572 dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
1573 I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
1575 I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1576 (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1577 (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1578 I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
1580 /* enable it... */
1581 I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
1583 DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1586 static void g4x_disable_fbc(struct drm_device *dev)
1588 struct drm_i915_private *dev_priv = dev->dev_private;
1589 u32 dpfc_ctl;
1591 /* Disable compression */
1592 dpfc_ctl = I915_READ(DPFC_CONTROL);
1593 if (dpfc_ctl & DPFC_CTL_EN) {
1594 dpfc_ctl &= ~DPFC_CTL_EN;
1595 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
1597 DRM_DEBUG_KMS("disabled FBC\n");
1601 static bool g4x_fbc_enabled(struct drm_device *dev)
1603 struct drm_i915_private *dev_priv = dev->dev_private;
1605 return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
1608 static void sandybridge_blit_fbc_update(struct drm_device *dev)
1610 struct drm_i915_private *dev_priv = dev->dev_private;
1611 u32 blt_ecoskpd;
1613 /* Make sure blitter notifies FBC of writes */
1614 gen6_gt_force_wake_get(dev_priv);
1615 blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
1616 blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
1617 GEN6_BLITTER_LOCK_SHIFT;
1618 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1619 blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
1620 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1621 blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
1622 GEN6_BLITTER_LOCK_SHIFT);
1623 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1624 POSTING_READ(GEN6_BLITTER_ECOSKPD);
1625 gen6_gt_force_wake_put(dev_priv);
1628 static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1630 struct drm_device *dev = crtc->dev;
1631 struct drm_i915_private *dev_priv = dev->dev_private;
1632 struct drm_framebuffer *fb = crtc->fb;
1633 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1634 struct drm_i915_gem_object *obj = intel_fb->obj;
1635 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1636 int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
1637 unsigned long stall_watermark = 200;
1638 u32 dpfc_ctl;
1640 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
1641 dpfc_ctl &= DPFC_RESERVED;
1642 dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
1643 /* Set persistent mode for front-buffer rendering, ala X. */
1644 dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
1645 dpfc_ctl |= (DPFC_CTL_FENCE_EN | obj->fence_reg);
1646 I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
1648 I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1649 (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1650 (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1651 I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
1652 I915_WRITE(ILK_FBC_RT_BASE, obj->gtt_offset | ILK_FBC_RT_VALID);
1653 /* enable it... */
1654 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
1656 if (IS_GEN6(dev)) {
1657 I915_WRITE(SNB_DPFC_CTL_SA,
1658 SNB_CPU_FENCE_ENABLE | obj->fence_reg);
1659 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
1660 sandybridge_blit_fbc_update(dev);
1663 DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1666 static void ironlake_disable_fbc(struct drm_device *dev)
1668 struct drm_i915_private *dev_priv = dev->dev_private;
1669 u32 dpfc_ctl;
1671 /* Disable compression */
1672 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
1673 if (dpfc_ctl & DPFC_CTL_EN) {
1674 dpfc_ctl &= ~DPFC_CTL_EN;
1675 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
1677 DRM_DEBUG_KMS("disabled FBC\n");
1681 static bool ironlake_fbc_enabled(struct drm_device *dev)
1683 struct drm_i915_private *dev_priv = dev->dev_private;
1685 return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
1688 bool intel_fbc_enabled(struct drm_device *dev)
1690 struct drm_i915_private *dev_priv = dev->dev_private;
1692 if (!dev_priv->display.fbc_enabled)
1693 return false;
1695 return dev_priv->display.fbc_enabled(dev);
1698 static void intel_fbc_work_fn(struct work_struct *__work)
1700 struct intel_fbc_work *work =
1701 container_of(to_delayed_work(__work),
1702 struct intel_fbc_work, work);
1703 struct drm_device *dev = work->crtc->dev;
1704 struct drm_i915_private *dev_priv = dev->dev_private;
1706 mutex_lock(&dev->struct_mutex);
1707 if (work == dev_priv->fbc_work) {
1708 /* Double check that we haven't switched fb without cancelling
1709 * the prior work.
1711 if (work->crtc->fb == work->fb) {
1712 dev_priv->display.enable_fbc(work->crtc,
1713 work->interval);
1715 dev_priv->cfb_plane = to_intel_crtc(work->crtc)->plane;
1716 dev_priv->cfb_fb = work->crtc->fb->base.id;
1717 dev_priv->cfb_y = work->crtc->y;
1720 dev_priv->fbc_work = NULL;
1722 mutex_unlock(&dev->struct_mutex);
1724 kfree(work);
1727 static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
1729 if (dev_priv->fbc_work == NULL)
1730 return;
1732 DRM_DEBUG_KMS("cancelling pending FBC enable\n");
1734 /* Synchronisation is provided by struct_mutex and checking of
1735 * dev_priv->fbc_work, so we can perform the cancellation
1736 * entirely asynchronously.
1738 if (cancel_delayed_work(&dev_priv->fbc_work->work))
1739 /* tasklet was killed before being run, clean up */
1740 kfree(dev_priv->fbc_work);
1742 /* Mark the work as no longer wanted so that if it does
1743 * wake-up (because the work was already running and waiting
1744 * for our mutex), it will discover that is no longer
1745 * necessary to run.
1747 dev_priv->fbc_work = NULL;
1750 static void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1752 struct intel_fbc_work *work;
1753 struct drm_device *dev = crtc->dev;
1754 struct drm_i915_private *dev_priv = dev->dev_private;
1756 if (!dev_priv->display.enable_fbc)
1757 return;
1759 intel_cancel_fbc_work(dev_priv);
1761 work = kzalloc(sizeof *work, GFP_KERNEL);
1762 if (work == NULL) {
1763 dev_priv->display.enable_fbc(crtc, interval);
1764 return;
1767 work->crtc = crtc;
1768 work->fb = crtc->fb;
1769 work->interval = interval;
1770 INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
1772 dev_priv->fbc_work = work;
1774 DRM_DEBUG_KMS("scheduling delayed FBC enable\n");
1776 /* Delay the actual enabling to let pageflipping cease and the
1777 * display to settle before starting the compression. Note that
1778 * this delay also serves a second purpose: it allows for a
1779 * vblank to pass after disabling the FBC before we attempt
1780 * to modify the control registers.
1782 * A more complicated solution would involve tracking vblanks
1783 * following the termination of the page-flipping sequence
1784 * and indeed performing the enable as a co-routine and not
1785 * waiting synchronously upon the vblank.
1787 schedule_delayed_work(&work->work, msecs_to_jiffies(50));
1790 void intel_disable_fbc(struct drm_device *dev)
1792 struct drm_i915_private *dev_priv = dev->dev_private;
1794 intel_cancel_fbc_work(dev_priv);
1796 if (!dev_priv->display.disable_fbc)
1797 return;
1799 dev_priv->display.disable_fbc(dev);
1800 dev_priv->cfb_plane = -1;
1804 * intel_update_fbc - enable/disable FBC as needed
1805 * @dev: the drm_device
1807 * Set up the framebuffer compression hardware at mode set time. We
1808 * enable it if possible:
1809 * - plane A only (on pre-965)
1810 * - no pixel mulitply/line duplication
1811 * - no alpha buffer discard
1812 * - no dual wide
1813 * - framebuffer <= 2048 in width, 1536 in height
1815 * We can't assume that any compression will take place (worst case),
1816 * so the compressed buffer has to be the same size as the uncompressed
1817 * one. It also must reside (along with the line length buffer) in
1818 * stolen memory.
1820 * We need to enable/disable FBC on a global basis.
1822 static void intel_update_fbc(struct drm_device *dev)
1824 struct drm_i915_private *dev_priv = dev->dev_private;
1825 struct drm_crtc *crtc = NULL, *tmp_crtc;
1826 struct intel_crtc *intel_crtc;
1827 struct drm_framebuffer *fb;
1828 struct intel_framebuffer *intel_fb;
1829 struct drm_i915_gem_object *obj;
1830 int enable_fbc;
1832 DRM_DEBUG_KMS("\n");
1834 if (!i915_powersave)
1835 return;
1837 if (!I915_HAS_FBC(dev))
1838 return;
1841 * If FBC is already on, we just have to verify that we can
1842 * keep it that way...
1843 * Need to disable if:
1844 * - more than one pipe is active
1845 * - changing FBC params (stride, fence, mode)
1846 * - new fb is too large to fit in compressed buffer
1847 * - going to an unsupported config (interlace, pixel multiply, etc.)
1849 list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
1850 if (tmp_crtc->enabled && tmp_crtc->fb) {
1851 if (crtc) {
1852 DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
1853 dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
1854 goto out_disable;
1856 crtc = tmp_crtc;
1860 if (!crtc || crtc->fb == NULL) {
1861 DRM_DEBUG_KMS("no output, disabling\n");
1862 dev_priv->no_fbc_reason = FBC_NO_OUTPUT;
1863 goto out_disable;
1866 intel_crtc = to_intel_crtc(crtc);
1867 fb = crtc->fb;
1868 intel_fb = to_intel_framebuffer(fb);
1869 obj = intel_fb->obj;
1871 enable_fbc = i915_enable_fbc;
1872 if (enable_fbc < 0) {
1873 DRM_DEBUG_KMS("fbc set to per-chip default\n");
1874 enable_fbc = 1;
1875 if (INTEL_INFO(dev)->gen <= 6)
1876 enable_fbc = 0;
1878 if (!enable_fbc) {
1879 DRM_DEBUG_KMS("fbc disabled per module param\n");
1880 dev_priv->no_fbc_reason = FBC_MODULE_PARAM;
1881 goto out_disable;
1883 if (intel_fb->obj->base.size > dev_priv->cfb_size) {
1884 DRM_DEBUG_KMS("framebuffer too large, disabling "
1885 "compression\n");
1886 dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
1887 goto out_disable;
1889 if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
1890 (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
1891 DRM_DEBUG_KMS("mode incompatible with compression, "
1892 "disabling\n");
1893 dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
1894 goto out_disable;
1896 if ((crtc->mode.hdisplay > 2048) ||
1897 (crtc->mode.vdisplay > 1536)) {
1898 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
1899 dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
1900 goto out_disable;
1902 if ((IS_I915GM(dev) || IS_I945GM(dev)) && intel_crtc->plane != 0) {
1903 DRM_DEBUG_KMS("plane not 0, disabling compression\n");
1904 dev_priv->no_fbc_reason = FBC_BAD_PLANE;
1905 goto out_disable;
1908 /* The use of a CPU fence is mandatory in order to detect writes
1909 * by the CPU to the scanout and trigger updates to the FBC.
1911 if (obj->tiling_mode != I915_TILING_X ||
1912 obj->fence_reg == I915_FENCE_REG_NONE) {
1913 DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
1914 dev_priv->no_fbc_reason = FBC_NOT_TILED;
1915 goto out_disable;
1918 /* If the kernel debugger is active, always disable compression */
1919 if (in_dbg_master())
1920 goto out_disable;
1922 /* If the scanout has not changed, don't modify the FBC settings.
1923 * Note that we make the fundamental assumption that the fb->obj
1924 * cannot be unpinned (and have its GTT offset and fence revoked)
1925 * without first being decoupled from the scanout and FBC disabled.
1927 if (dev_priv->cfb_plane == intel_crtc->plane &&
1928 dev_priv->cfb_fb == fb->base.id &&
1929 dev_priv->cfb_y == crtc->y)
1930 return;
1932 if (intel_fbc_enabled(dev)) {
1933 /* We update FBC along two paths, after changing fb/crtc
1934 * configuration (modeswitching) and after page-flipping
1935 * finishes. For the latter, we know that not only did
1936 * we disable the FBC at the start of the page-flip
1937 * sequence, but also more than one vblank has passed.
1939 * For the former case of modeswitching, it is possible
1940 * to switch between two FBC valid configurations
1941 * instantaneously so we do need to disable the FBC
1942 * before we can modify its control registers. We also
1943 * have to wait for the next vblank for that to take
1944 * effect. However, since we delay enabling FBC we can
1945 * assume that a vblank has passed since disabling and
1946 * that we can safely alter the registers in the deferred
1947 * callback.
1949 * In the scenario that we go from a valid to invalid
1950 * and then back to valid FBC configuration we have
1951 * no strict enforcement that a vblank occurred since
1952 * disabling the FBC. However, along all current pipe
1953 * disabling paths we do need to wait for a vblank at
1954 * some point. And we wait before enabling FBC anyway.
1956 DRM_DEBUG_KMS("disabling active FBC for update\n");
1957 intel_disable_fbc(dev);
1960 intel_enable_fbc(crtc, 500);
1961 return;
1963 out_disable:
1964 /* Multiple disables should be harmless */
1965 if (intel_fbc_enabled(dev)) {
1966 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
1967 intel_disable_fbc(dev);
1972 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1973 struct drm_i915_gem_object *obj,
1974 struct intel_ring_buffer *pipelined)
1976 struct drm_i915_private *dev_priv = dev->dev_private;
1977 u32 alignment;
1978 int ret;
1980 switch (obj->tiling_mode) {
1981 case I915_TILING_NONE:
1982 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1983 alignment = 128 * 1024;
1984 else if (INTEL_INFO(dev)->gen >= 4)
1985 alignment = 4 * 1024;
1986 else
1987 alignment = 64 * 1024;
1988 break;
1989 case I915_TILING_X:
1990 /* pin() will align the object as required by fence */
1991 alignment = 0;
1992 break;
1993 case I915_TILING_Y:
1994 /* FIXME: Is this true? */
1995 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1996 return -EINVAL;
1997 default:
1998 BUG();
2001 dev_priv->mm.interruptible = false;
2002 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
2003 if (ret)
2004 goto err_interruptible;
2006 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2007 * fence, whereas 965+ only requires a fence if using
2008 * framebuffer compression. For simplicity, we always install
2009 * a fence as the cost is not that onerous.
2011 if (obj->tiling_mode != I915_TILING_NONE) {
2012 ret = i915_gem_object_get_fence(obj, pipelined);
2013 if (ret)
2014 goto err_unpin;
2017 dev_priv->mm.interruptible = true;
2018 return 0;
2020 err_unpin:
2021 i915_gem_object_unpin(obj);
2022 err_interruptible:
2023 dev_priv->mm.interruptible = true;
2024 return ret;
2027 static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2028 int x, int y)
2030 struct drm_device *dev = crtc->dev;
2031 struct drm_i915_private *dev_priv = dev->dev_private;
2032 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2033 struct intel_framebuffer *intel_fb;
2034 struct drm_i915_gem_object *obj;
2035 int plane = intel_crtc->plane;
2036 unsigned long Start, Offset;
2037 u32 dspcntr;
2038 u32 reg;
2040 switch (plane) {
2041 case 0:
2042 case 1:
2043 break;
2044 default:
2045 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2046 return -EINVAL;
2049 intel_fb = to_intel_framebuffer(fb);
2050 obj = intel_fb->obj;
2052 reg = DSPCNTR(plane);
2053 dspcntr = I915_READ(reg);
2054 /* Mask out pixel format bits in case we change it */
2055 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2056 switch (fb->bits_per_pixel) {
2057 case 8:
2058 dspcntr |= DISPPLANE_8BPP;
2059 break;
2060 case 16:
2061 if (fb->depth == 15)
2062 dspcntr |= DISPPLANE_15_16BPP;
2063 else
2064 dspcntr |= DISPPLANE_16BPP;
2065 break;
2066 case 24:
2067 case 32:
2068 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
2069 break;
2070 default:
2071 DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
2072 return -EINVAL;
2074 if (INTEL_INFO(dev)->gen >= 4) {
2075 if (obj->tiling_mode != I915_TILING_NONE)
2076 dspcntr |= DISPPLANE_TILED;
2077 else
2078 dspcntr &= ~DISPPLANE_TILED;
2081 I915_WRITE(reg, dspcntr);
2083 Start = obj->gtt_offset;
2084 Offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2086 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2087 Start, Offset, x, y, fb->pitches[0]);
2088 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2089 if (INTEL_INFO(dev)->gen >= 4) {
2090 I915_WRITE(DSPSURF(plane), Start);
2091 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2092 I915_WRITE(DSPADDR(plane), Offset);
2093 } else
2094 I915_WRITE(DSPADDR(plane), Start + Offset);
2095 POSTING_READ(reg);
2097 return 0;
2100 static int ironlake_update_plane(struct drm_crtc *crtc,
2101 struct drm_framebuffer *fb, int x, int y)
2103 struct drm_device *dev = crtc->dev;
2104 struct drm_i915_private *dev_priv = dev->dev_private;
2105 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2106 struct intel_framebuffer *intel_fb;
2107 struct drm_i915_gem_object *obj;
2108 int plane = intel_crtc->plane;
2109 unsigned long Start, Offset;
2110 u32 dspcntr;
2111 u32 reg;
2113 switch (plane) {
2114 case 0:
2115 case 1:
2116 case 2:
2117 break;
2118 default:
2119 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2120 return -EINVAL;
2123 intel_fb = to_intel_framebuffer(fb);
2124 obj = intel_fb->obj;
2126 reg = DSPCNTR(plane);
2127 dspcntr = I915_READ(reg);
2128 /* Mask out pixel format bits in case we change it */
2129 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2130 switch (fb->bits_per_pixel) {
2131 case 8:
2132 dspcntr |= DISPPLANE_8BPP;
2133 break;
2134 case 16:
2135 if (fb->depth != 16)
2136 return -EINVAL;
2138 dspcntr |= DISPPLANE_16BPP;
2139 break;
2140 case 24:
2141 case 32:
2142 if (fb->depth == 24)
2143 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
2144 else if (fb->depth == 30)
2145 dspcntr |= DISPPLANE_32BPP_30BIT_NO_ALPHA;
2146 else
2147 return -EINVAL;
2148 break;
2149 default:
2150 DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
2151 return -EINVAL;
2154 if (obj->tiling_mode != I915_TILING_NONE)
2155 dspcntr |= DISPPLANE_TILED;
2156 else
2157 dspcntr &= ~DISPPLANE_TILED;
2159 /* must disable */
2160 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2162 I915_WRITE(reg, dspcntr);
2164 Start = obj->gtt_offset;
2165 Offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2167 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2168 Start, Offset, x, y, fb->pitches[0]);
2169 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2170 I915_WRITE(DSPSURF(plane), Start);
2171 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2172 I915_WRITE(DSPADDR(plane), Offset);
2173 POSTING_READ(reg);
2175 return 0;
2178 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2179 static int
2180 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2181 int x, int y, enum mode_set_atomic state)
2183 struct drm_device *dev = crtc->dev;
2184 struct drm_i915_private *dev_priv = dev->dev_private;
2185 int ret;
2187 ret = dev_priv->display.update_plane(crtc, fb, x, y);
2188 if (ret)
2189 return ret;
2191 intel_update_fbc(dev);
2192 intel_increase_pllclock(crtc);
2194 return 0;
2197 static int
2198 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2199 struct drm_framebuffer *old_fb)
2201 struct drm_device *dev = crtc->dev;
2202 struct drm_i915_master_private *master_priv;
2203 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2204 int ret;
2206 /* no fb bound */
2207 if (!crtc->fb) {
2208 DRM_ERROR("No FB bound\n");
2209 return 0;
2212 switch (intel_crtc->plane) {
2213 case 0:
2214 case 1:
2215 break;
2216 case 2:
2217 if (IS_IVYBRIDGE(dev))
2218 break;
2219 /* fall through otherwise */
2220 default:
2221 DRM_ERROR("no plane for crtc\n");
2222 return -EINVAL;
2225 mutex_lock(&dev->struct_mutex);
2226 ret = intel_pin_and_fence_fb_obj(dev,
2227 to_intel_framebuffer(crtc->fb)->obj,
2228 NULL);
2229 if (ret != 0) {
2230 mutex_unlock(&dev->struct_mutex);
2231 DRM_ERROR("pin & fence failed\n");
2232 return ret;
2235 if (old_fb) {
2236 struct drm_i915_private *dev_priv = dev->dev_private;
2237 struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2239 wait_event(dev_priv->pending_flip_queue,
2240 atomic_read(&dev_priv->mm.wedged) ||
2241 atomic_read(&obj->pending_flip) == 0);
2243 /* Big Hammer, we also need to ensure that any pending
2244 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2245 * current scanout is retired before unpinning the old
2246 * framebuffer.
2248 * This should only fail upon a hung GPU, in which case we
2249 * can safely continue.
2251 ret = i915_gem_object_finish_gpu(obj);
2252 (void) ret;
2255 ret = intel_pipe_set_base_atomic(crtc, crtc->fb, x, y,
2256 LEAVE_ATOMIC_MODE_SET);
2257 if (ret) {
2258 i915_gem_object_unpin(to_intel_framebuffer(crtc->fb)->obj);
2259 mutex_unlock(&dev->struct_mutex);
2260 DRM_ERROR("failed to update base address\n");
2261 return ret;
2264 if (old_fb) {
2265 intel_wait_for_vblank(dev, intel_crtc->pipe);
2266 i915_gem_object_unpin(to_intel_framebuffer(old_fb)->obj);
2269 mutex_unlock(&dev->struct_mutex);
2271 if (!dev->primary->master)
2272 return 0;
2274 master_priv = dev->primary->master->driver_priv;
2275 if (!master_priv->sarea_priv)
2276 return 0;
2278 if (intel_crtc->pipe) {
2279 master_priv->sarea_priv->pipeB_x = x;
2280 master_priv->sarea_priv->pipeB_y = y;
2281 } else {
2282 master_priv->sarea_priv->pipeA_x = x;
2283 master_priv->sarea_priv->pipeA_y = y;
2286 return 0;
2289 static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
2291 struct drm_device *dev = crtc->dev;
2292 struct drm_i915_private *dev_priv = dev->dev_private;
2293 u32 dpa_ctl;
2295 DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
2296 dpa_ctl = I915_READ(DP_A);
2297 dpa_ctl &= ~DP_PLL_FREQ_MASK;
2299 if (clock < 200000) {
2300 u32 temp;
2301 dpa_ctl |= DP_PLL_FREQ_160MHZ;
2302 /* workaround for 160Mhz:
2303 1) program 0x4600c bits 15:0 = 0x8124
2304 2) program 0x46010 bit 0 = 1
2305 3) program 0x46034 bit 24 = 1
2306 4) program 0x64000 bit 14 = 1
2308 temp = I915_READ(0x4600c);
2309 temp &= 0xffff0000;
2310 I915_WRITE(0x4600c, temp | 0x8124);
2312 temp = I915_READ(0x46010);
2313 I915_WRITE(0x46010, temp | 1);
2315 temp = I915_READ(0x46034);
2316 I915_WRITE(0x46034, temp | (1 << 24));
2317 } else {
2318 dpa_ctl |= DP_PLL_FREQ_270MHZ;
2320 I915_WRITE(DP_A, dpa_ctl);
2322 POSTING_READ(DP_A);
2323 udelay(500);
2326 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2328 struct drm_device *dev = crtc->dev;
2329 struct drm_i915_private *dev_priv = dev->dev_private;
2330 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2331 int pipe = intel_crtc->pipe;
2332 u32 reg, temp;
2334 /* enable normal train */
2335 reg = FDI_TX_CTL(pipe);
2336 temp = I915_READ(reg);
2337 if (IS_IVYBRIDGE(dev)) {
2338 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2339 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2340 } else {
2341 temp &= ~FDI_LINK_TRAIN_NONE;
2342 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2344 I915_WRITE(reg, temp);
2346 reg = FDI_RX_CTL(pipe);
2347 temp = I915_READ(reg);
2348 if (HAS_PCH_CPT(dev)) {
2349 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2350 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2351 } else {
2352 temp &= ~FDI_LINK_TRAIN_NONE;
2353 temp |= FDI_LINK_TRAIN_NONE;
2355 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2357 /* wait one idle pattern time */
2358 POSTING_READ(reg);
2359 udelay(1000);
2361 /* IVB wants error correction enabled */
2362 if (IS_IVYBRIDGE(dev))
2363 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2364 FDI_FE_ERRC_ENABLE);
2367 static void cpt_phase_pointer_enable(struct drm_device *dev, int pipe)
2369 struct drm_i915_private *dev_priv = dev->dev_private;
2370 u32 flags = I915_READ(SOUTH_CHICKEN1);
2372 flags |= FDI_PHASE_SYNC_OVR(pipe);
2373 I915_WRITE(SOUTH_CHICKEN1, flags); /* once to unlock... */
2374 flags |= FDI_PHASE_SYNC_EN(pipe);
2375 I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to enable */
2376 POSTING_READ(SOUTH_CHICKEN1);
2379 /* The FDI link training functions for ILK/Ibexpeak. */
2380 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2382 struct drm_device *dev = crtc->dev;
2383 struct drm_i915_private *dev_priv = dev->dev_private;
2384 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2385 int pipe = intel_crtc->pipe;
2386 int plane = intel_crtc->plane;
2387 u32 reg, temp, tries;
2389 /* FDI needs bits from pipe & plane first */
2390 assert_pipe_enabled(dev_priv, pipe);
2391 assert_plane_enabled(dev_priv, plane);
2393 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2394 for train result */
2395 reg = FDI_RX_IMR(pipe);
2396 temp = I915_READ(reg);
2397 temp &= ~FDI_RX_SYMBOL_LOCK;
2398 temp &= ~FDI_RX_BIT_LOCK;
2399 I915_WRITE(reg, temp);
2400 I915_READ(reg);
2401 udelay(150);
2403 /* enable CPU FDI TX and PCH FDI RX */
2404 reg = FDI_TX_CTL(pipe);
2405 temp = I915_READ(reg);
2406 temp &= ~(7 << 19);
2407 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2408 temp &= ~FDI_LINK_TRAIN_NONE;
2409 temp |= FDI_LINK_TRAIN_PATTERN_1;
2410 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2412 reg = FDI_RX_CTL(pipe);
2413 temp = I915_READ(reg);
2414 temp &= ~FDI_LINK_TRAIN_NONE;
2415 temp |= FDI_LINK_TRAIN_PATTERN_1;
2416 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2418 POSTING_READ(reg);
2419 udelay(150);
2421 /* Ironlake workaround, enable clock pointer after FDI enable*/
2422 if (HAS_PCH_IBX(dev)) {
2423 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2424 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2425 FDI_RX_PHASE_SYNC_POINTER_EN);
2428 reg = FDI_RX_IIR(pipe);
2429 for (tries = 0; tries < 5; tries++) {
2430 temp = I915_READ(reg);
2431 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2433 if ((temp & FDI_RX_BIT_LOCK)) {
2434 DRM_DEBUG_KMS("FDI train 1 done.\n");
2435 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2436 break;
2439 if (tries == 5)
2440 DRM_ERROR("FDI train 1 fail!\n");
2442 /* Train 2 */
2443 reg = FDI_TX_CTL(pipe);
2444 temp = I915_READ(reg);
2445 temp &= ~FDI_LINK_TRAIN_NONE;
2446 temp |= FDI_LINK_TRAIN_PATTERN_2;
2447 I915_WRITE(reg, temp);
2449 reg = FDI_RX_CTL(pipe);
2450 temp = I915_READ(reg);
2451 temp &= ~FDI_LINK_TRAIN_NONE;
2452 temp |= FDI_LINK_TRAIN_PATTERN_2;
2453 I915_WRITE(reg, temp);
2455 POSTING_READ(reg);
2456 udelay(150);
2458 reg = FDI_RX_IIR(pipe);
2459 for (tries = 0; tries < 5; tries++) {
2460 temp = I915_READ(reg);
2461 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2463 if (temp & FDI_RX_SYMBOL_LOCK) {
2464 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2465 DRM_DEBUG_KMS("FDI train 2 done.\n");
2466 break;
2469 if (tries == 5)
2470 DRM_ERROR("FDI train 2 fail!\n");
2472 DRM_DEBUG_KMS("FDI train done\n");
2476 static const int snb_b_fdi_train_param[] = {
2477 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2478 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2479 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2480 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2483 /* The FDI link training functions for SNB/Cougarpoint. */
2484 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2486 struct drm_device *dev = crtc->dev;
2487 struct drm_i915_private *dev_priv = dev->dev_private;
2488 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2489 int pipe = intel_crtc->pipe;
2490 u32 reg, temp, i;
2492 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2493 for train result */
2494 reg = FDI_RX_IMR(pipe);
2495 temp = I915_READ(reg);
2496 temp &= ~FDI_RX_SYMBOL_LOCK;
2497 temp &= ~FDI_RX_BIT_LOCK;
2498 I915_WRITE(reg, temp);
2500 POSTING_READ(reg);
2501 udelay(150);
2503 /* enable CPU FDI TX and PCH FDI RX */
2504 reg = FDI_TX_CTL(pipe);
2505 temp = I915_READ(reg);
2506 temp &= ~(7 << 19);
2507 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2508 temp &= ~FDI_LINK_TRAIN_NONE;
2509 temp |= FDI_LINK_TRAIN_PATTERN_1;
2510 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2511 /* SNB-B */
2512 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2513 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2515 reg = FDI_RX_CTL(pipe);
2516 temp = I915_READ(reg);
2517 if (HAS_PCH_CPT(dev)) {
2518 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2519 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2520 } else {
2521 temp &= ~FDI_LINK_TRAIN_NONE;
2522 temp |= FDI_LINK_TRAIN_PATTERN_1;
2524 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2526 POSTING_READ(reg);
2527 udelay(150);
2529 if (HAS_PCH_CPT(dev))
2530 cpt_phase_pointer_enable(dev, pipe);
2532 for (i = 0; i < 4; i++) {
2533 reg = FDI_TX_CTL(pipe);
2534 temp = I915_READ(reg);
2535 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2536 temp |= snb_b_fdi_train_param[i];
2537 I915_WRITE(reg, temp);
2539 POSTING_READ(reg);
2540 udelay(500);
2542 reg = FDI_RX_IIR(pipe);
2543 temp = I915_READ(reg);
2544 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2546 if (temp & FDI_RX_BIT_LOCK) {
2547 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2548 DRM_DEBUG_KMS("FDI train 1 done.\n");
2549 break;
2552 if (i == 4)
2553 DRM_ERROR("FDI train 1 fail!\n");
2555 /* Train 2 */
2556 reg = FDI_TX_CTL(pipe);
2557 temp = I915_READ(reg);
2558 temp &= ~FDI_LINK_TRAIN_NONE;
2559 temp |= FDI_LINK_TRAIN_PATTERN_2;
2560 if (IS_GEN6(dev)) {
2561 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2562 /* SNB-B */
2563 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2565 I915_WRITE(reg, temp);
2567 reg = FDI_RX_CTL(pipe);
2568 temp = I915_READ(reg);
2569 if (HAS_PCH_CPT(dev)) {
2570 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2571 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2572 } else {
2573 temp &= ~FDI_LINK_TRAIN_NONE;
2574 temp |= FDI_LINK_TRAIN_PATTERN_2;
2576 I915_WRITE(reg, temp);
2578 POSTING_READ(reg);
2579 udelay(150);
2581 for (i = 0; i < 4; i++) {
2582 reg = FDI_TX_CTL(pipe);
2583 temp = I915_READ(reg);
2584 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2585 temp |= snb_b_fdi_train_param[i];
2586 I915_WRITE(reg, temp);
2588 POSTING_READ(reg);
2589 udelay(500);
2591 reg = FDI_RX_IIR(pipe);
2592 temp = I915_READ(reg);
2593 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2595 if (temp & FDI_RX_SYMBOL_LOCK) {
2596 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2597 DRM_DEBUG_KMS("FDI train 2 done.\n");
2598 break;
2601 if (i == 4)
2602 DRM_ERROR("FDI train 2 fail!\n");
2604 DRM_DEBUG_KMS("FDI train done.\n");
2607 /* Manual link training for Ivy Bridge A0 parts */
2608 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2610 struct drm_device *dev = crtc->dev;
2611 struct drm_i915_private *dev_priv = dev->dev_private;
2612 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2613 int pipe = intel_crtc->pipe;
2614 u32 reg, temp, i;
2616 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2617 for train result */
2618 reg = FDI_RX_IMR(pipe);
2619 temp = I915_READ(reg);
2620 temp &= ~FDI_RX_SYMBOL_LOCK;
2621 temp &= ~FDI_RX_BIT_LOCK;
2622 I915_WRITE(reg, temp);
2624 POSTING_READ(reg);
2625 udelay(150);
2627 /* enable CPU FDI TX and PCH FDI RX */
2628 reg = FDI_TX_CTL(pipe);
2629 temp = I915_READ(reg);
2630 temp &= ~(7 << 19);
2631 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2632 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2633 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2634 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2635 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2636 temp |= FDI_COMPOSITE_SYNC;
2637 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2639 reg = FDI_RX_CTL(pipe);
2640 temp = I915_READ(reg);
2641 temp &= ~FDI_LINK_TRAIN_AUTO;
2642 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2643 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2644 temp |= FDI_COMPOSITE_SYNC;
2645 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2647 POSTING_READ(reg);
2648 udelay(150);
2650 if (HAS_PCH_CPT(dev))
2651 cpt_phase_pointer_enable(dev, pipe);
2653 for (i = 0; i < 4; i++) {
2654 reg = FDI_TX_CTL(pipe);
2655 temp = I915_READ(reg);
2656 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2657 temp |= snb_b_fdi_train_param[i];
2658 I915_WRITE(reg, temp);
2660 POSTING_READ(reg);
2661 udelay(500);
2663 reg = FDI_RX_IIR(pipe);
2664 temp = I915_READ(reg);
2665 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2667 if (temp & FDI_RX_BIT_LOCK ||
2668 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2669 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2670 DRM_DEBUG_KMS("FDI train 1 done.\n");
2671 break;
2674 if (i == 4)
2675 DRM_ERROR("FDI train 1 fail!\n");
2677 /* Train 2 */
2678 reg = FDI_TX_CTL(pipe);
2679 temp = I915_READ(reg);
2680 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2681 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2682 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2683 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2684 I915_WRITE(reg, temp);
2686 reg = FDI_RX_CTL(pipe);
2687 temp = I915_READ(reg);
2688 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2689 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2690 I915_WRITE(reg, temp);
2692 POSTING_READ(reg);
2693 udelay(150);
2695 for (i = 0; i < 4; i++) {
2696 reg = FDI_TX_CTL(pipe);
2697 temp = I915_READ(reg);
2698 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2699 temp |= snb_b_fdi_train_param[i];
2700 I915_WRITE(reg, temp);
2702 POSTING_READ(reg);
2703 udelay(500);
2705 reg = FDI_RX_IIR(pipe);
2706 temp = I915_READ(reg);
2707 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2709 if (temp & FDI_RX_SYMBOL_LOCK) {
2710 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2711 DRM_DEBUG_KMS("FDI train 2 done.\n");
2712 break;
2715 if (i == 4)
2716 DRM_ERROR("FDI train 2 fail!\n");
2718 DRM_DEBUG_KMS("FDI train done.\n");
2721 static void ironlake_fdi_pll_enable(struct drm_crtc *crtc)
2723 struct drm_device *dev = crtc->dev;
2724 struct drm_i915_private *dev_priv = dev->dev_private;
2725 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2726 int pipe = intel_crtc->pipe;
2727 u32 reg, temp;
2729 /* Write the TU size bits so error detection works */
2730 I915_WRITE(FDI_RX_TUSIZE1(pipe),
2731 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
2733 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2734 reg = FDI_RX_CTL(pipe);
2735 temp = I915_READ(reg);
2736 temp &= ~((0x7 << 19) | (0x7 << 16));
2737 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2738 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2739 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2741 POSTING_READ(reg);
2742 udelay(200);
2744 /* Switch from Rawclk to PCDclk */
2745 temp = I915_READ(reg);
2746 I915_WRITE(reg, temp | FDI_PCDCLK);
2748 POSTING_READ(reg);
2749 udelay(200);
2751 /* Enable CPU FDI TX PLL, always on for Ironlake */
2752 reg = FDI_TX_CTL(pipe);
2753 temp = I915_READ(reg);
2754 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2755 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2757 POSTING_READ(reg);
2758 udelay(100);
2762 static void cpt_phase_pointer_disable(struct drm_device *dev, int pipe)
2764 struct drm_i915_private *dev_priv = dev->dev_private;
2765 u32 flags = I915_READ(SOUTH_CHICKEN1);
2767 flags &= ~(FDI_PHASE_SYNC_EN(pipe));
2768 I915_WRITE(SOUTH_CHICKEN1, flags); /* once to disable... */
2769 flags &= ~(FDI_PHASE_SYNC_OVR(pipe));
2770 I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to lock */
2771 POSTING_READ(SOUTH_CHICKEN1);
2773 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2775 struct drm_device *dev = crtc->dev;
2776 struct drm_i915_private *dev_priv = dev->dev_private;
2777 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2778 int pipe = intel_crtc->pipe;
2779 u32 reg, temp;
2781 /* disable CPU FDI tx and PCH FDI rx */
2782 reg = FDI_TX_CTL(pipe);
2783 temp = I915_READ(reg);
2784 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2785 POSTING_READ(reg);
2787 reg = FDI_RX_CTL(pipe);
2788 temp = I915_READ(reg);
2789 temp &= ~(0x7 << 16);
2790 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2791 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2793 POSTING_READ(reg);
2794 udelay(100);
2796 /* Ironlake workaround, disable clock pointer after downing FDI */
2797 if (HAS_PCH_IBX(dev)) {
2798 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2799 I915_WRITE(FDI_RX_CHICKEN(pipe),
2800 I915_READ(FDI_RX_CHICKEN(pipe) &
2801 ~FDI_RX_PHASE_SYNC_POINTER_EN));
2802 } else if (HAS_PCH_CPT(dev)) {
2803 cpt_phase_pointer_disable(dev, pipe);
2806 /* still set train pattern 1 */
2807 reg = FDI_TX_CTL(pipe);
2808 temp = I915_READ(reg);
2809 temp &= ~FDI_LINK_TRAIN_NONE;
2810 temp |= FDI_LINK_TRAIN_PATTERN_1;
2811 I915_WRITE(reg, temp);
2813 reg = FDI_RX_CTL(pipe);
2814 temp = I915_READ(reg);
2815 if (HAS_PCH_CPT(dev)) {
2816 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2817 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2818 } else {
2819 temp &= ~FDI_LINK_TRAIN_NONE;
2820 temp |= FDI_LINK_TRAIN_PATTERN_1;
2822 /* BPC in FDI rx is consistent with that in PIPECONF */
2823 temp &= ~(0x07 << 16);
2824 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2825 I915_WRITE(reg, temp);
2827 POSTING_READ(reg);
2828 udelay(100);
2832 * When we disable a pipe, we need to clear any pending scanline wait events
2833 * to avoid hanging the ring, which we assume we are waiting on.
2835 static void intel_clear_scanline_wait(struct drm_device *dev)
2837 struct drm_i915_private *dev_priv = dev->dev_private;
2838 struct intel_ring_buffer *ring;
2839 u32 tmp;
2841 if (IS_GEN2(dev))
2842 /* Can't break the hang on i8xx */
2843 return;
2845 ring = LP_RING(dev_priv);
2846 tmp = I915_READ_CTL(ring);
2847 if (tmp & RING_WAIT)
2848 I915_WRITE_CTL(ring, tmp);
2851 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2853 struct drm_i915_gem_object *obj;
2854 struct drm_i915_private *dev_priv;
2856 if (crtc->fb == NULL)
2857 return;
2859 obj = to_intel_framebuffer(crtc->fb)->obj;
2860 dev_priv = crtc->dev->dev_private;
2861 wait_event(dev_priv->pending_flip_queue,
2862 atomic_read(&obj->pending_flip) == 0);
2865 static bool intel_crtc_driving_pch(struct drm_crtc *crtc)
2867 struct drm_device *dev = crtc->dev;
2868 struct drm_mode_config *mode_config = &dev->mode_config;
2869 struct intel_encoder *encoder;
2872 * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
2873 * must be driven by its own crtc; no sharing is possible.
2875 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
2876 if (encoder->base.crtc != crtc)
2877 continue;
2879 switch (encoder->type) {
2880 case INTEL_OUTPUT_EDP:
2881 if (!intel_encoder_is_pch_edp(&encoder->base))
2882 return false;
2883 continue;
2887 return true;
2891 * Enable PCH resources required for PCH ports:
2892 * - PCH PLLs
2893 * - FDI training & RX/TX
2894 * - update transcoder timings
2895 * - DP transcoding bits
2896 * - transcoder
2898 static void ironlake_pch_enable(struct drm_crtc *crtc)
2900 struct drm_device *dev = crtc->dev;
2901 struct drm_i915_private *dev_priv = dev->dev_private;
2902 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2903 int pipe = intel_crtc->pipe;
2904 u32 reg, temp, transc_sel;
2906 /* For PCH output, training FDI link */
2907 dev_priv->display.fdi_link_train(crtc);
2909 intel_enable_pch_pll(dev_priv, pipe);
2911 if (HAS_PCH_CPT(dev)) {
2912 transc_sel = intel_crtc->use_pll_a ? TRANSC_DPLLA_SEL :
2913 TRANSC_DPLLB_SEL;
2915 /* Be sure PCH DPLL SEL is set */
2916 temp = I915_READ(PCH_DPLL_SEL);
2917 if (pipe == 0) {
2918 temp &= ~(TRANSA_DPLLB_SEL);
2919 temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
2920 } else if (pipe == 1) {
2921 temp &= ~(TRANSB_DPLLB_SEL);
2922 temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
2923 } else if (pipe == 2) {
2924 temp &= ~(TRANSC_DPLLB_SEL);
2925 temp |= (TRANSC_DPLL_ENABLE | transc_sel);
2927 I915_WRITE(PCH_DPLL_SEL, temp);
2930 /* set transcoder timing, panel must allow it */
2931 assert_panel_unlocked(dev_priv, pipe);
2932 I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
2933 I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
2934 I915_WRITE(TRANS_HSYNC(pipe), I915_READ(HSYNC(pipe)));
2936 I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
2937 I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
2938 I915_WRITE(TRANS_VSYNC(pipe), I915_READ(VSYNC(pipe)));
2940 intel_fdi_normal_train(crtc);
2942 /* For PCH DP, enable TRANS_DP_CTL */
2943 if (HAS_PCH_CPT(dev) &&
2944 (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
2945 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
2946 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) >> 5;
2947 reg = TRANS_DP_CTL(pipe);
2948 temp = I915_READ(reg);
2949 temp &= ~(TRANS_DP_PORT_SEL_MASK |
2950 TRANS_DP_SYNC_MASK |
2951 TRANS_DP_BPC_MASK);
2952 temp |= (TRANS_DP_OUTPUT_ENABLE |
2953 TRANS_DP_ENH_FRAMING);
2954 temp |= bpc << 9; /* same format but at 11:9 */
2956 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
2957 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
2958 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
2959 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
2961 switch (intel_trans_dp_port_sel(crtc)) {
2962 case PCH_DP_B:
2963 temp |= TRANS_DP_PORT_SEL_B;
2964 break;
2965 case PCH_DP_C:
2966 temp |= TRANS_DP_PORT_SEL_C;
2967 break;
2968 case PCH_DP_D:
2969 temp |= TRANS_DP_PORT_SEL_D;
2970 break;
2971 default:
2972 DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
2973 temp |= TRANS_DP_PORT_SEL_B;
2974 break;
2977 I915_WRITE(reg, temp);
2980 intel_enable_transcoder(dev_priv, pipe);
2983 void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
2985 struct drm_i915_private *dev_priv = dev->dev_private;
2986 int dslreg = PIPEDSL(pipe), tc2reg = TRANS_CHICKEN2(pipe);
2987 u32 temp;
2989 temp = I915_READ(dslreg);
2990 udelay(500);
2991 if (wait_for(I915_READ(dslreg) != temp, 5)) {
2992 /* Without this, mode sets may fail silently on FDI */
2993 I915_WRITE(tc2reg, TRANS_AUTOTRAIN_GEN_STALL_DIS);
2994 udelay(250);
2995 I915_WRITE(tc2reg, 0);
2996 if (wait_for(I915_READ(dslreg) != temp, 5))
2997 DRM_ERROR("mode set failed: pipe %d stuck\n", pipe);
3001 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3003 struct drm_device *dev = crtc->dev;
3004 struct drm_i915_private *dev_priv = dev->dev_private;
3005 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3006 int pipe = intel_crtc->pipe;
3007 int plane = intel_crtc->plane;
3008 u32 temp;
3009 bool is_pch_port;
3011 if (intel_crtc->active)
3012 return;
3014 intel_crtc->active = true;
3015 intel_update_watermarks(dev);
3017 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3018 temp = I915_READ(PCH_LVDS);
3019 if ((temp & LVDS_PORT_EN) == 0)
3020 I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
3023 is_pch_port = intel_crtc_driving_pch(crtc);
3025 if (is_pch_port)
3026 ironlake_fdi_pll_enable(crtc);
3027 else
3028 ironlake_fdi_disable(crtc);
3030 /* Enable panel fitting for LVDS */
3031 if (dev_priv->pch_pf_size &&
3032 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || HAS_eDP)) {
3033 /* Force use of hard-coded filter coefficients
3034 * as some pre-programmed values are broken,
3035 * e.g. x201.
3037 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3038 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3039 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3043 * On ILK+ LUT must be loaded before the pipe is running but with
3044 * clocks enabled
3046 intel_crtc_load_lut(crtc);
3048 intel_enable_pipe(dev_priv, pipe, is_pch_port);
3049 intel_enable_plane(dev_priv, plane, pipe);
3051 if (is_pch_port)
3052 ironlake_pch_enable(crtc);
3054 mutex_lock(&dev->struct_mutex);
3055 intel_update_fbc(dev);
3056 mutex_unlock(&dev->struct_mutex);
3058 intel_crtc_update_cursor(crtc, true);
3061 static void ironlake_crtc_disable(struct drm_crtc *crtc)
3063 struct drm_device *dev = crtc->dev;
3064 struct drm_i915_private *dev_priv = dev->dev_private;
3065 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3066 int pipe = intel_crtc->pipe;
3067 int plane = intel_crtc->plane;
3068 u32 reg, temp;
3070 if (!intel_crtc->active)
3071 return;
3073 intel_crtc_wait_for_pending_flips(crtc);
3074 drm_vblank_off(dev, pipe);
3075 intel_crtc_update_cursor(crtc, false);
3077 intel_disable_plane(dev_priv, plane, pipe);
3079 if (dev_priv->cfb_plane == plane)
3080 intel_disable_fbc(dev);
3082 intel_disable_pipe(dev_priv, pipe);
3084 /* Disable PF */
3085 I915_WRITE(PF_CTL(pipe), 0);
3086 I915_WRITE(PF_WIN_SZ(pipe), 0);
3088 ironlake_fdi_disable(crtc);
3090 /* This is a horrible layering violation; we should be doing this in
3091 * the connector/encoder ->prepare instead, but we don't always have
3092 * enough information there about the config to know whether it will
3093 * actually be necessary or just cause undesired flicker.
3095 intel_disable_pch_ports(dev_priv, pipe);
3097 intel_disable_transcoder(dev_priv, pipe);
3099 if (HAS_PCH_CPT(dev)) {
3100 /* disable TRANS_DP_CTL */
3101 reg = TRANS_DP_CTL(pipe);
3102 temp = I915_READ(reg);
3103 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
3104 temp |= TRANS_DP_PORT_SEL_NONE;
3105 I915_WRITE(reg, temp);
3107 /* disable DPLL_SEL */
3108 temp = I915_READ(PCH_DPLL_SEL);
3109 switch (pipe) {
3110 case 0:
3111 temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
3112 break;
3113 case 1:
3114 temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
3115 break;
3116 case 2:
3117 /* C shares PLL A or B */
3118 temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
3119 break;
3120 default:
3121 BUG(); /* wtf */
3123 I915_WRITE(PCH_DPLL_SEL, temp);
3126 /* disable PCH DPLL */
3127 if (!intel_crtc->no_pll)
3128 intel_disable_pch_pll(dev_priv, pipe);
3130 /* Switch from PCDclk to Rawclk */
3131 reg = FDI_RX_CTL(pipe);
3132 temp = I915_READ(reg);
3133 I915_WRITE(reg, temp & ~FDI_PCDCLK);
3135 /* Disable CPU FDI TX PLL */
3136 reg = FDI_TX_CTL(pipe);
3137 temp = I915_READ(reg);
3138 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3140 POSTING_READ(reg);
3141 udelay(100);
3143 reg = FDI_RX_CTL(pipe);
3144 temp = I915_READ(reg);
3145 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3147 /* Wait for the clocks to turn off. */
3148 POSTING_READ(reg);
3149 udelay(100);
3151 intel_crtc->active = false;
3152 intel_update_watermarks(dev);
3154 mutex_lock(&dev->struct_mutex);
3155 intel_update_fbc(dev);
3156 intel_clear_scanline_wait(dev);
3157 mutex_unlock(&dev->struct_mutex);
3160 static void ironlake_crtc_dpms(struct drm_crtc *crtc, int mode)
3162 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3163 int pipe = intel_crtc->pipe;
3164 int plane = intel_crtc->plane;
3166 /* XXX: When our outputs are all unaware of DPMS modes other than off
3167 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
3169 switch (mode) {
3170 case DRM_MODE_DPMS_ON:
3171 case DRM_MODE_DPMS_STANDBY:
3172 case DRM_MODE_DPMS_SUSPEND:
3173 DRM_DEBUG_KMS("crtc %d/%d dpms on\n", pipe, plane);
3174 ironlake_crtc_enable(crtc);
3175 break;
3177 case DRM_MODE_DPMS_OFF:
3178 DRM_DEBUG_KMS("crtc %d/%d dpms off\n", pipe, plane);
3179 ironlake_crtc_disable(crtc);
3180 break;
3184 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3186 if (!enable && intel_crtc->overlay) {
3187 struct drm_device *dev = intel_crtc->base.dev;
3188 struct drm_i915_private *dev_priv = dev->dev_private;
3190 mutex_lock(&dev->struct_mutex);
3191 dev_priv->mm.interruptible = false;
3192 (void) intel_overlay_switch_off(intel_crtc->overlay);
3193 dev_priv->mm.interruptible = true;
3194 mutex_unlock(&dev->struct_mutex);
3197 /* Let userspace switch the overlay on again. In most cases userspace
3198 * has to recompute where to put it anyway.
3202 static void i9xx_crtc_enable(struct drm_crtc *crtc)
3204 struct drm_device *dev = crtc->dev;
3205 struct drm_i915_private *dev_priv = dev->dev_private;
3206 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3207 int pipe = intel_crtc->pipe;
3208 int plane = intel_crtc->plane;
3210 if (intel_crtc->active)
3211 return;
3213 intel_crtc->active = true;
3214 intel_update_watermarks(dev);
3216 intel_enable_pll(dev_priv, pipe);
3217 intel_enable_pipe(dev_priv, pipe, false);
3218 intel_enable_plane(dev_priv, plane, pipe);
3220 intel_crtc_load_lut(crtc);
3221 intel_update_fbc(dev);
3223 /* Give the overlay scaler a chance to enable if it's on this pipe */
3224 intel_crtc_dpms_overlay(intel_crtc, true);
3225 intel_crtc_update_cursor(crtc, true);
3228 static void i9xx_crtc_disable(struct drm_crtc *crtc)
3230 struct drm_device *dev = crtc->dev;
3231 struct drm_i915_private *dev_priv = dev->dev_private;
3232 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3233 int pipe = intel_crtc->pipe;
3234 int plane = intel_crtc->plane;
3236 if (!intel_crtc->active)
3237 return;
3239 /* Give the overlay scaler a chance to disable if it's on this pipe */
3240 intel_crtc_wait_for_pending_flips(crtc);
3241 drm_vblank_off(dev, pipe);
3242 intel_crtc_dpms_overlay(intel_crtc, false);
3243 intel_crtc_update_cursor(crtc, false);
3245 if (dev_priv->cfb_plane == plane)
3246 intel_disable_fbc(dev);
3248 intel_disable_plane(dev_priv, plane, pipe);
3249 intel_disable_pipe(dev_priv, pipe);
3250 intel_disable_pll(dev_priv, pipe);
3252 intel_crtc->active = false;
3253 intel_update_fbc(dev);
3254 intel_update_watermarks(dev);
3255 intel_clear_scanline_wait(dev);
3258 static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
3260 /* XXX: When our outputs are all unaware of DPMS modes other than off
3261 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
3263 switch (mode) {
3264 case DRM_MODE_DPMS_ON:
3265 case DRM_MODE_DPMS_STANDBY:
3266 case DRM_MODE_DPMS_SUSPEND:
3267 i9xx_crtc_enable(crtc);
3268 break;
3269 case DRM_MODE_DPMS_OFF:
3270 i9xx_crtc_disable(crtc);
3271 break;
3276 * Sets the power management mode of the pipe and plane.
3278 static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
3280 struct drm_device *dev = crtc->dev;
3281 struct drm_i915_private *dev_priv = dev->dev_private;
3282 struct drm_i915_master_private *master_priv;
3283 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3284 int pipe = intel_crtc->pipe;
3285 bool enabled;
3287 if (intel_crtc->dpms_mode == mode)
3288 return;
3290 intel_crtc->dpms_mode = mode;
3292 dev_priv->display.dpms(crtc, mode);
3294 if (!dev->primary->master)
3295 return;
3297 master_priv = dev->primary->master->driver_priv;
3298 if (!master_priv->sarea_priv)
3299 return;
3301 enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
3303 switch (pipe) {
3304 case 0:
3305 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3306 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3307 break;
3308 case 1:
3309 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3310 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3311 break;
3312 default:
3313 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
3314 break;
3318 static void intel_crtc_disable(struct drm_crtc *crtc)
3320 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
3321 struct drm_device *dev = crtc->dev;
3323 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
3325 if (crtc->fb) {
3326 mutex_lock(&dev->struct_mutex);
3327 i915_gem_object_unpin(to_intel_framebuffer(crtc->fb)->obj);
3328 mutex_unlock(&dev->struct_mutex);
3332 /* Prepare for a mode set.
3334 * Note we could be a lot smarter here. We need to figure out which outputs
3335 * will be enabled, which disabled (in short, how the config will changes)
3336 * and perform the minimum necessary steps to accomplish that, e.g. updating
3337 * watermarks, FBC configuration, making sure PLLs are programmed correctly,
3338 * panel fitting is in the proper state, etc.
3340 static void i9xx_crtc_prepare(struct drm_crtc *crtc)
3342 i9xx_crtc_disable(crtc);
3345 static void i9xx_crtc_commit(struct drm_crtc *crtc)
3347 i9xx_crtc_enable(crtc);
3350 static void ironlake_crtc_prepare(struct drm_crtc *crtc)
3352 ironlake_crtc_disable(crtc);
3355 static void ironlake_crtc_commit(struct drm_crtc *crtc)
3357 ironlake_crtc_enable(crtc);
3360 void intel_encoder_prepare(struct drm_encoder *encoder)
3362 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3363 /* lvds has its own version of prepare see intel_lvds_prepare */
3364 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
3367 void intel_encoder_commit(struct drm_encoder *encoder)
3369 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3370 struct drm_device *dev = encoder->dev;
3371 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3372 struct intel_crtc *intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
3374 /* lvds has its own version of commit see intel_lvds_commit */
3375 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
3377 if (HAS_PCH_CPT(dev))
3378 intel_cpt_verify_modeset(dev, intel_crtc->pipe);
3381 void intel_encoder_destroy(struct drm_encoder *encoder)
3383 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3385 drm_encoder_cleanup(encoder);
3386 kfree(intel_encoder);
3389 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
3390 struct drm_display_mode *mode,
3391 struct drm_display_mode *adjusted_mode)
3393 struct drm_device *dev = crtc->dev;
3395 if (HAS_PCH_SPLIT(dev)) {
3396 /* FDI link clock is fixed at 2.7G */
3397 if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
3398 return false;
3401 /* XXX some encoders set the crtcinfo, others don't.
3402 * Obviously we need some form of conflict resolution here...
3404 if (adjusted_mode->crtc_htotal == 0)
3405 drm_mode_set_crtcinfo(adjusted_mode, 0);
3407 return true;
3410 static int i945_get_display_clock_speed(struct drm_device *dev)
3412 return 400000;
3415 static int i915_get_display_clock_speed(struct drm_device *dev)
3417 return 333000;
3420 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
3422 return 200000;
3425 static int i915gm_get_display_clock_speed(struct drm_device *dev)
3427 u16 gcfgc = 0;
3429 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3431 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
3432 return 133000;
3433 else {
3434 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
3435 case GC_DISPLAY_CLOCK_333_MHZ:
3436 return 333000;
3437 default:
3438 case GC_DISPLAY_CLOCK_190_200_MHZ:
3439 return 190000;
3444 static int i865_get_display_clock_speed(struct drm_device *dev)
3446 return 266000;
3449 static int i855_get_display_clock_speed(struct drm_device *dev)
3451 u16 hpllcc = 0;
3452 /* Assume that the hardware is in the high speed state. This
3453 * should be the default.
3455 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
3456 case GC_CLOCK_133_200:
3457 case GC_CLOCK_100_200:
3458 return 200000;
3459 case GC_CLOCK_166_250:
3460 return 250000;
3461 case GC_CLOCK_100_133:
3462 return 133000;
3465 /* Shouldn't happen */
3466 return 0;
3469 static int i830_get_display_clock_speed(struct drm_device *dev)
3471 return 133000;
3474 struct fdi_m_n {
3475 u32 tu;
3476 u32 gmch_m;
3477 u32 gmch_n;
3478 u32 link_m;
3479 u32 link_n;
3482 static void
3483 fdi_reduce_ratio(u32 *num, u32 *den)
3485 while (*num > 0xffffff || *den > 0xffffff) {
3486 *num >>= 1;
3487 *den >>= 1;
3491 static void
3492 ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
3493 int link_clock, struct fdi_m_n *m_n)
3495 m_n->tu = 64; /* default size */
3497 /* BUG_ON(pixel_clock > INT_MAX / 36); */
3498 m_n->gmch_m = bits_per_pixel * pixel_clock;
3499 m_n->gmch_n = link_clock * nlanes * 8;
3500 fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
3502 m_n->link_m = pixel_clock;
3503 m_n->link_n = link_clock;
3504 fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
3508 struct intel_watermark_params {
3509 unsigned long fifo_size;
3510 unsigned long max_wm;
3511 unsigned long default_wm;
3512 unsigned long guard_size;
3513 unsigned long cacheline_size;
3516 /* Pineview has different values for various configs */
3517 static const struct intel_watermark_params pineview_display_wm = {
3518 PINEVIEW_DISPLAY_FIFO,
3519 PINEVIEW_MAX_WM,
3520 PINEVIEW_DFT_WM,
3521 PINEVIEW_GUARD_WM,
3522 PINEVIEW_FIFO_LINE_SIZE
3524 static const struct intel_watermark_params pineview_display_hplloff_wm = {
3525 PINEVIEW_DISPLAY_FIFO,
3526 PINEVIEW_MAX_WM,
3527 PINEVIEW_DFT_HPLLOFF_WM,
3528 PINEVIEW_GUARD_WM,
3529 PINEVIEW_FIFO_LINE_SIZE
3531 static const struct intel_watermark_params pineview_cursor_wm = {
3532 PINEVIEW_CURSOR_FIFO,
3533 PINEVIEW_CURSOR_MAX_WM,
3534 PINEVIEW_CURSOR_DFT_WM,
3535 PINEVIEW_CURSOR_GUARD_WM,
3536 PINEVIEW_FIFO_LINE_SIZE,
3538 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
3539 PINEVIEW_CURSOR_FIFO,
3540 PINEVIEW_CURSOR_MAX_WM,
3541 PINEVIEW_CURSOR_DFT_WM,
3542 PINEVIEW_CURSOR_GUARD_WM,
3543 PINEVIEW_FIFO_LINE_SIZE
3545 static const struct intel_watermark_params g4x_wm_info = {
3546 G4X_FIFO_SIZE,
3547 G4X_MAX_WM,
3548 G4X_MAX_WM,
3550 G4X_FIFO_LINE_SIZE,
3552 static const struct intel_watermark_params g4x_cursor_wm_info = {
3553 I965_CURSOR_FIFO,
3554 I965_CURSOR_MAX_WM,
3555 I965_CURSOR_DFT_WM,
3557 G4X_FIFO_LINE_SIZE,
3559 static const struct intel_watermark_params i965_cursor_wm_info = {
3560 I965_CURSOR_FIFO,
3561 I965_CURSOR_MAX_WM,
3562 I965_CURSOR_DFT_WM,
3564 I915_FIFO_LINE_SIZE,
3566 static const struct intel_watermark_params i945_wm_info = {
3567 I945_FIFO_SIZE,
3568 I915_MAX_WM,
3571 I915_FIFO_LINE_SIZE
3573 static const struct intel_watermark_params i915_wm_info = {
3574 I915_FIFO_SIZE,
3575 I915_MAX_WM,
3578 I915_FIFO_LINE_SIZE
3580 static const struct intel_watermark_params i855_wm_info = {
3581 I855GM_FIFO_SIZE,
3582 I915_MAX_WM,
3585 I830_FIFO_LINE_SIZE
3587 static const struct intel_watermark_params i830_wm_info = {
3588 I830_FIFO_SIZE,
3589 I915_MAX_WM,
3592 I830_FIFO_LINE_SIZE
3595 static const struct intel_watermark_params ironlake_display_wm_info = {
3596 ILK_DISPLAY_FIFO,
3597 ILK_DISPLAY_MAXWM,
3598 ILK_DISPLAY_DFTWM,
3600 ILK_FIFO_LINE_SIZE
3602 static const struct intel_watermark_params ironlake_cursor_wm_info = {
3603 ILK_CURSOR_FIFO,
3604 ILK_CURSOR_MAXWM,
3605 ILK_CURSOR_DFTWM,
3607 ILK_FIFO_LINE_SIZE
3609 static const struct intel_watermark_params ironlake_display_srwm_info = {
3610 ILK_DISPLAY_SR_FIFO,
3611 ILK_DISPLAY_MAX_SRWM,
3612 ILK_DISPLAY_DFT_SRWM,
3614 ILK_FIFO_LINE_SIZE
3616 static const struct intel_watermark_params ironlake_cursor_srwm_info = {
3617 ILK_CURSOR_SR_FIFO,
3618 ILK_CURSOR_MAX_SRWM,
3619 ILK_CURSOR_DFT_SRWM,
3621 ILK_FIFO_LINE_SIZE
3624 static const struct intel_watermark_params sandybridge_display_wm_info = {
3625 SNB_DISPLAY_FIFO,
3626 SNB_DISPLAY_MAXWM,
3627 SNB_DISPLAY_DFTWM,
3629 SNB_FIFO_LINE_SIZE
3631 static const struct intel_watermark_params sandybridge_cursor_wm_info = {
3632 SNB_CURSOR_FIFO,
3633 SNB_CURSOR_MAXWM,
3634 SNB_CURSOR_DFTWM,
3636 SNB_FIFO_LINE_SIZE
3638 static const struct intel_watermark_params sandybridge_display_srwm_info = {
3639 SNB_DISPLAY_SR_FIFO,
3640 SNB_DISPLAY_MAX_SRWM,
3641 SNB_DISPLAY_DFT_SRWM,
3643 SNB_FIFO_LINE_SIZE
3645 static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
3646 SNB_CURSOR_SR_FIFO,
3647 SNB_CURSOR_MAX_SRWM,
3648 SNB_CURSOR_DFT_SRWM,
3650 SNB_FIFO_LINE_SIZE
3655 * intel_calculate_wm - calculate watermark level
3656 * @clock_in_khz: pixel clock
3657 * @wm: chip FIFO params
3658 * @pixel_size: display pixel size
3659 * @latency_ns: memory latency for the platform
3661 * Calculate the watermark level (the level at which the display plane will
3662 * start fetching from memory again). Each chip has a different display
3663 * FIFO size and allocation, so the caller needs to figure that out and pass
3664 * in the correct intel_watermark_params structure.
3666 * As the pixel clock runs, the FIFO will be drained at a rate that depends
3667 * on the pixel size. When it reaches the watermark level, it'll start
3668 * fetching FIFO line sized based chunks from memory until the FIFO fills
3669 * past the watermark point. If the FIFO drains completely, a FIFO underrun
3670 * will occur, and a display engine hang could result.
3672 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
3673 const struct intel_watermark_params *wm,
3674 int fifo_size,
3675 int pixel_size,
3676 unsigned long latency_ns)
3678 long entries_required, wm_size;
3681 * Note: we need to make sure we don't overflow for various clock &
3682 * latency values.
3683 * clocks go from a few thousand to several hundred thousand.
3684 * latency is usually a few thousand
3686 entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
3687 1000;
3688 entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
3690 DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
3692 wm_size = fifo_size - (entries_required + wm->guard_size);
3694 DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
3696 /* Don't promote wm_size to unsigned... */
3697 if (wm_size > (long)wm->max_wm)
3698 wm_size = wm->max_wm;
3699 if (wm_size <= 0)
3700 wm_size = wm->default_wm;
3701 return wm_size;
3704 struct cxsr_latency {
3705 int is_desktop;
3706 int is_ddr3;
3707 unsigned long fsb_freq;
3708 unsigned long mem_freq;
3709 unsigned long display_sr;
3710 unsigned long display_hpll_disable;
3711 unsigned long cursor_sr;
3712 unsigned long cursor_hpll_disable;
3715 static const struct cxsr_latency cxsr_latency_table[] = {
3716 {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
3717 {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
3718 {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
3719 {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
3720 {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
3722 {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
3723 {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
3724 {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
3725 {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
3726 {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
3728 {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
3729 {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
3730 {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
3731 {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
3732 {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
3734 {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
3735 {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
3736 {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
3737 {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
3738 {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
3740 {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
3741 {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
3742 {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
3743 {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
3744 {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
3746 {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
3747 {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
3748 {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
3749 {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
3750 {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
3753 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
3754 int is_ddr3,
3755 int fsb,
3756 int mem)
3758 const struct cxsr_latency *latency;
3759 int i;
3761 if (fsb == 0 || mem == 0)
3762 return NULL;
3764 for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
3765 latency = &cxsr_latency_table[i];
3766 if (is_desktop == latency->is_desktop &&
3767 is_ddr3 == latency->is_ddr3 &&
3768 fsb == latency->fsb_freq && mem == latency->mem_freq)
3769 return latency;
3772 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
3774 return NULL;
3777 static void pineview_disable_cxsr(struct drm_device *dev)
3779 struct drm_i915_private *dev_priv = dev->dev_private;
3781 /* deactivate cxsr */
3782 I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
3786 * Latency for FIFO fetches is dependent on several factors:
3787 * - memory configuration (speed, channels)
3788 * - chipset
3789 * - current MCH state
3790 * It can be fairly high in some situations, so here we assume a fairly
3791 * pessimal value. It's a tradeoff between extra memory fetches (if we
3792 * set this value too high, the FIFO will fetch frequently to stay full)
3793 * and power consumption (set it too low to save power and we might see
3794 * FIFO underruns and display "flicker").
3796 * A value of 5us seems to be a good balance; safe for very low end
3797 * platforms but not overly aggressive on lower latency configs.
3799 static const int latency_ns = 5000;
3801 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
3803 struct drm_i915_private *dev_priv = dev->dev_private;
3804 uint32_t dsparb = I915_READ(DSPARB);
3805 int size;
3807 size = dsparb & 0x7f;
3808 if (plane)
3809 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
3811 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3812 plane ? "B" : "A", size);
3814 return size;
3817 static int i85x_get_fifo_size(struct drm_device *dev, int plane)
3819 struct drm_i915_private *dev_priv = dev->dev_private;
3820 uint32_t dsparb = I915_READ(DSPARB);
3821 int size;
3823 size = dsparb & 0x1ff;
3824 if (plane)
3825 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
3826 size >>= 1; /* Convert to cachelines */
3828 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3829 plane ? "B" : "A", size);
3831 return size;
3834 static int i845_get_fifo_size(struct drm_device *dev, int plane)
3836 struct drm_i915_private *dev_priv = dev->dev_private;
3837 uint32_t dsparb = I915_READ(DSPARB);
3838 int size;
3840 size = dsparb & 0x7f;
3841 size >>= 2; /* Convert to cachelines */
3843 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3844 plane ? "B" : "A",
3845 size);
3847 return size;
3850 static int i830_get_fifo_size(struct drm_device *dev, int plane)
3852 struct drm_i915_private *dev_priv = dev->dev_private;
3853 uint32_t dsparb = I915_READ(DSPARB);
3854 int size;
3856 size = dsparb & 0x7f;
3857 size >>= 1; /* Convert to cachelines */
3859 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3860 plane ? "B" : "A", size);
3862 return size;
3865 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
3867 struct drm_crtc *crtc, *enabled = NULL;
3869 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3870 if (crtc->enabled && crtc->fb) {
3871 if (enabled)
3872 return NULL;
3873 enabled = crtc;
3877 return enabled;
3880 static void pineview_update_wm(struct drm_device *dev)
3882 struct drm_i915_private *dev_priv = dev->dev_private;
3883 struct drm_crtc *crtc;
3884 const struct cxsr_latency *latency;
3885 u32 reg;
3886 unsigned long wm;
3888 latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
3889 dev_priv->fsb_freq, dev_priv->mem_freq);
3890 if (!latency) {
3891 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
3892 pineview_disable_cxsr(dev);
3893 return;
3896 crtc = single_enabled_crtc(dev);
3897 if (crtc) {
3898 int clock = crtc->mode.clock;
3899 int pixel_size = crtc->fb->bits_per_pixel / 8;
3901 /* Display SR */
3902 wm = intel_calculate_wm(clock, &pineview_display_wm,
3903 pineview_display_wm.fifo_size,
3904 pixel_size, latency->display_sr);
3905 reg = I915_READ(DSPFW1);
3906 reg &= ~DSPFW_SR_MASK;
3907 reg |= wm << DSPFW_SR_SHIFT;
3908 I915_WRITE(DSPFW1, reg);
3909 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
3911 /* cursor SR */
3912 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
3913 pineview_display_wm.fifo_size,
3914 pixel_size, latency->cursor_sr);
3915 reg = I915_READ(DSPFW3);
3916 reg &= ~DSPFW_CURSOR_SR_MASK;
3917 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
3918 I915_WRITE(DSPFW3, reg);
3920 /* Display HPLL off SR */
3921 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
3922 pineview_display_hplloff_wm.fifo_size,
3923 pixel_size, latency->display_hpll_disable);
3924 reg = I915_READ(DSPFW3);
3925 reg &= ~DSPFW_HPLL_SR_MASK;
3926 reg |= wm & DSPFW_HPLL_SR_MASK;
3927 I915_WRITE(DSPFW3, reg);
3929 /* cursor HPLL off SR */
3930 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
3931 pineview_display_hplloff_wm.fifo_size,
3932 pixel_size, latency->cursor_hpll_disable);
3933 reg = I915_READ(DSPFW3);
3934 reg &= ~DSPFW_HPLL_CURSOR_MASK;
3935 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
3936 I915_WRITE(DSPFW3, reg);
3937 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
3939 /* activate cxsr */
3940 I915_WRITE(DSPFW3,
3941 I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
3942 DRM_DEBUG_KMS("Self-refresh is enabled\n");
3943 } else {
3944 pineview_disable_cxsr(dev);
3945 DRM_DEBUG_KMS("Self-refresh is disabled\n");
3949 static bool g4x_compute_wm0(struct drm_device *dev,
3950 int plane,
3951 const struct intel_watermark_params *display,
3952 int display_latency_ns,
3953 const struct intel_watermark_params *cursor,
3954 int cursor_latency_ns,
3955 int *plane_wm,
3956 int *cursor_wm)
3958 struct drm_crtc *crtc;
3959 int htotal, hdisplay, clock, pixel_size;
3960 int line_time_us, line_count;
3961 int entries, tlb_miss;
3963 crtc = intel_get_crtc_for_plane(dev, plane);
3964 if (crtc->fb == NULL || !crtc->enabled) {
3965 *cursor_wm = cursor->guard_size;
3966 *plane_wm = display->guard_size;
3967 return false;
3970 htotal = crtc->mode.htotal;
3971 hdisplay = crtc->mode.hdisplay;
3972 clock = crtc->mode.clock;
3973 pixel_size = crtc->fb->bits_per_pixel / 8;
3975 /* Use the small buffer method to calculate plane watermark */
3976 entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
3977 tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
3978 if (tlb_miss > 0)
3979 entries += tlb_miss;
3980 entries = DIV_ROUND_UP(entries, display->cacheline_size);
3981 *plane_wm = entries + display->guard_size;
3982 if (*plane_wm > (int)display->max_wm)
3983 *plane_wm = display->max_wm;
3985 /* Use the large buffer method to calculate cursor watermark */
3986 line_time_us = ((htotal * 1000) / clock);
3987 line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
3988 entries = line_count * 64 * pixel_size;
3989 tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
3990 if (tlb_miss > 0)
3991 entries += tlb_miss;
3992 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
3993 *cursor_wm = entries + cursor->guard_size;
3994 if (*cursor_wm > (int)cursor->max_wm)
3995 *cursor_wm = (int)cursor->max_wm;
3997 return true;
4001 * Check the wm result.
4003 * If any calculated watermark values is larger than the maximum value that
4004 * can be programmed into the associated watermark register, that watermark
4005 * must be disabled.
4007 static bool g4x_check_srwm(struct drm_device *dev,
4008 int display_wm, int cursor_wm,
4009 const struct intel_watermark_params *display,
4010 const struct intel_watermark_params *cursor)
4012 DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
4013 display_wm, cursor_wm);
4015 if (display_wm > display->max_wm) {
4016 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
4017 display_wm, display->max_wm);
4018 return false;
4021 if (cursor_wm > cursor->max_wm) {
4022 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
4023 cursor_wm, cursor->max_wm);
4024 return false;
4027 if (!(display_wm || cursor_wm)) {
4028 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
4029 return false;
4032 return true;
4035 static bool g4x_compute_srwm(struct drm_device *dev,
4036 int plane,
4037 int latency_ns,
4038 const struct intel_watermark_params *display,
4039 const struct intel_watermark_params *cursor,
4040 int *display_wm, int *cursor_wm)
4042 struct drm_crtc *crtc;
4043 int hdisplay, htotal, pixel_size, clock;
4044 unsigned long line_time_us;
4045 int line_count, line_size;
4046 int small, large;
4047 int entries;
4049 if (!latency_ns) {
4050 *display_wm = *cursor_wm = 0;
4051 return false;
4054 crtc = intel_get_crtc_for_plane(dev, plane);
4055 hdisplay = crtc->mode.hdisplay;
4056 htotal = crtc->mode.htotal;
4057 clock = crtc->mode.clock;
4058 pixel_size = crtc->fb->bits_per_pixel / 8;
4060 line_time_us = (htotal * 1000) / clock;
4061 line_count = (latency_ns / line_time_us + 1000) / 1000;
4062 line_size = hdisplay * pixel_size;
4064 /* Use the minimum of the small and large buffer method for primary */
4065 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
4066 large = line_count * line_size;
4068 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
4069 *display_wm = entries + display->guard_size;
4071 /* calculate the self-refresh watermark for display cursor */
4072 entries = line_count * pixel_size * 64;
4073 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
4074 *cursor_wm = entries + cursor->guard_size;
4076 return g4x_check_srwm(dev,
4077 *display_wm, *cursor_wm,
4078 display, cursor);
4081 #define single_plane_enabled(mask) is_power_of_2(mask)
4083 static void g4x_update_wm(struct drm_device *dev)
4085 static const int sr_latency_ns = 12000;
4086 struct drm_i915_private *dev_priv = dev->dev_private;
4087 int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
4088 int plane_sr, cursor_sr;
4089 unsigned int enabled = 0;
4091 if (g4x_compute_wm0(dev, 0,
4092 &g4x_wm_info, latency_ns,
4093 &g4x_cursor_wm_info, latency_ns,
4094 &planea_wm, &cursora_wm))
4095 enabled |= 1;
4097 if (g4x_compute_wm0(dev, 1,
4098 &g4x_wm_info, latency_ns,
4099 &g4x_cursor_wm_info, latency_ns,
4100 &planeb_wm, &cursorb_wm))
4101 enabled |= 2;
4103 plane_sr = cursor_sr = 0;
4104 if (single_plane_enabled(enabled) &&
4105 g4x_compute_srwm(dev, ffs(enabled) - 1,
4106 sr_latency_ns,
4107 &g4x_wm_info,
4108 &g4x_cursor_wm_info,
4109 &plane_sr, &cursor_sr))
4110 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
4111 else
4112 I915_WRITE(FW_BLC_SELF,
4113 I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
4115 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
4116 planea_wm, cursora_wm,
4117 planeb_wm, cursorb_wm,
4118 plane_sr, cursor_sr);
4120 I915_WRITE(DSPFW1,
4121 (plane_sr << DSPFW_SR_SHIFT) |
4122 (cursorb_wm << DSPFW_CURSORB_SHIFT) |
4123 (planeb_wm << DSPFW_PLANEB_SHIFT) |
4124 planea_wm);
4125 I915_WRITE(DSPFW2,
4126 (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
4127 (cursora_wm << DSPFW_CURSORA_SHIFT));
4128 /* HPLL off in SR has some issues on G4x... disable it */
4129 I915_WRITE(DSPFW3,
4130 (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
4131 (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
4134 static void i965_update_wm(struct drm_device *dev)
4136 struct drm_i915_private *dev_priv = dev->dev_private;
4137 struct drm_crtc *crtc;
4138 int srwm = 1;
4139 int cursor_sr = 16;
4141 /* Calc sr entries for one plane configs */
4142 crtc = single_enabled_crtc(dev);
4143 if (crtc) {
4144 /* self-refresh has much higher latency */
4145 static const int sr_latency_ns = 12000;
4146 int clock = crtc->mode.clock;
4147 int htotal = crtc->mode.htotal;
4148 int hdisplay = crtc->mode.hdisplay;
4149 int pixel_size = crtc->fb->bits_per_pixel / 8;
4150 unsigned long line_time_us;
4151 int entries;
4153 line_time_us = ((htotal * 1000) / clock);
4155 /* Use ns/us then divide to preserve precision */
4156 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
4157 pixel_size * hdisplay;
4158 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
4159 srwm = I965_FIFO_SIZE - entries;
4160 if (srwm < 0)
4161 srwm = 1;
4162 srwm &= 0x1ff;
4163 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
4164 entries, srwm);
4166 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
4167 pixel_size * 64;
4168 entries = DIV_ROUND_UP(entries,
4169 i965_cursor_wm_info.cacheline_size);
4170 cursor_sr = i965_cursor_wm_info.fifo_size -
4171 (entries + i965_cursor_wm_info.guard_size);
4173 if (cursor_sr > i965_cursor_wm_info.max_wm)
4174 cursor_sr = i965_cursor_wm_info.max_wm;
4176 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
4177 "cursor %d\n", srwm, cursor_sr);
4179 if (IS_CRESTLINE(dev))
4180 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
4181 } else {
4182 /* Turn off self refresh if both pipes are enabled */
4183 if (IS_CRESTLINE(dev))
4184 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
4185 & ~FW_BLC_SELF_EN);
4188 DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
4189 srwm);
4191 /* 965 has limitations... */
4192 I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
4193 (8 << 16) | (8 << 8) | (8 << 0));
4194 I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
4195 /* update cursor SR watermark */
4196 I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
4199 static void i9xx_update_wm(struct drm_device *dev)
4201 struct drm_i915_private *dev_priv = dev->dev_private;
4202 const struct intel_watermark_params *wm_info;
4203 uint32_t fwater_lo;
4204 uint32_t fwater_hi;
4205 int cwm, srwm = 1;
4206 int fifo_size;
4207 int planea_wm, planeb_wm;
4208 struct drm_crtc *crtc, *enabled = NULL;
4210 if (IS_I945GM(dev))
4211 wm_info = &i945_wm_info;
4212 else if (!IS_GEN2(dev))
4213 wm_info = &i915_wm_info;
4214 else
4215 wm_info = &i855_wm_info;
4217 fifo_size = dev_priv->display.get_fifo_size(dev, 0);
4218 crtc = intel_get_crtc_for_plane(dev, 0);
4219 if (crtc->enabled && crtc->fb) {
4220 planea_wm = intel_calculate_wm(crtc->mode.clock,
4221 wm_info, fifo_size,
4222 crtc->fb->bits_per_pixel / 8,
4223 latency_ns);
4224 enabled = crtc;
4225 } else
4226 planea_wm = fifo_size - wm_info->guard_size;
4228 fifo_size = dev_priv->display.get_fifo_size(dev, 1);
4229 crtc = intel_get_crtc_for_plane(dev, 1);
4230 if (crtc->enabled && crtc->fb) {
4231 planeb_wm = intel_calculate_wm(crtc->mode.clock,
4232 wm_info, fifo_size,
4233 crtc->fb->bits_per_pixel / 8,
4234 latency_ns);
4235 if (enabled == NULL)
4236 enabled = crtc;
4237 else
4238 enabled = NULL;
4239 } else
4240 planeb_wm = fifo_size - wm_info->guard_size;
4242 DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
4245 * Overlay gets an aggressive default since video jitter is bad.
4247 cwm = 2;
4249 /* Play safe and disable self-refresh before adjusting watermarks. */
4250 if (IS_I945G(dev) || IS_I945GM(dev))
4251 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
4252 else if (IS_I915GM(dev))
4253 I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
4255 /* Calc sr entries for one plane configs */
4256 if (HAS_FW_BLC(dev) && enabled) {
4257 /* self-refresh has much higher latency */
4258 static const int sr_latency_ns = 6000;
4259 int clock = enabled->mode.clock;
4260 int htotal = enabled->mode.htotal;
4261 int hdisplay = enabled->mode.hdisplay;
4262 int pixel_size = enabled->fb->bits_per_pixel / 8;
4263 unsigned long line_time_us;
4264 int entries;
4266 line_time_us = (htotal * 1000) / clock;
4268 /* Use ns/us then divide to preserve precision */
4269 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
4270 pixel_size * hdisplay;
4271 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
4272 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
4273 srwm = wm_info->fifo_size - entries;
4274 if (srwm < 0)
4275 srwm = 1;
4277 if (IS_I945G(dev) || IS_I945GM(dev))
4278 I915_WRITE(FW_BLC_SELF,
4279 FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
4280 else if (IS_I915GM(dev))
4281 I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
4284 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
4285 planea_wm, planeb_wm, cwm, srwm);
4287 fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
4288 fwater_hi = (cwm & 0x1f);
4290 /* Set request length to 8 cachelines per fetch */
4291 fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
4292 fwater_hi = fwater_hi | (1 << 8);
4294 I915_WRITE(FW_BLC, fwater_lo);
4295 I915_WRITE(FW_BLC2, fwater_hi);
4297 if (HAS_FW_BLC(dev)) {
4298 if (enabled) {
4299 if (IS_I945G(dev) || IS_I945GM(dev))
4300 I915_WRITE(FW_BLC_SELF,
4301 FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
4302 else if (IS_I915GM(dev))
4303 I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
4304 DRM_DEBUG_KMS("memory self refresh enabled\n");
4305 } else
4306 DRM_DEBUG_KMS("memory self refresh disabled\n");
4310 static void i830_update_wm(struct drm_device *dev)
4312 struct drm_i915_private *dev_priv = dev->dev_private;
4313 struct drm_crtc *crtc;
4314 uint32_t fwater_lo;
4315 int planea_wm;
4317 crtc = single_enabled_crtc(dev);
4318 if (crtc == NULL)
4319 return;
4321 planea_wm = intel_calculate_wm(crtc->mode.clock, &i830_wm_info,
4322 dev_priv->display.get_fifo_size(dev, 0),
4323 crtc->fb->bits_per_pixel / 8,
4324 latency_ns);
4325 fwater_lo = I915_READ(FW_BLC) & ~0xfff;
4326 fwater_lo |= (3<<8) | planea_wm;
4328 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
4330 I915_WRITE(FW_BLC, fwater_lo);
4333 #define ILK_LP0_PLANE_LATENCY 700
4334 #define ILK_LP0_CURSOR_LATENCY 1300
4337 * Check the wm result.
4339 * If any calculated watermark values is larger than the maximum value that
4340 * can be programmed into the associated watermark register, that watermark
4341 * must be disabled.
4343 static bool ironlake_check_srwm(struct drm_device *dev, int level,
4344 int fbc_wm, int display_wm, int cursor_wm,
4345 const struct intel_watermark_params *display,
4346 const struct intel_watermark_params *cursor)
4348 struct drm_i915_private *dev_priv = dev->dev_private;
4350 DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
4351 " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
4353 if (fbc_wm > SNB_FBC_MAX_SRWM) {
4354 DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
4355 fbc_wm, SNB_FBC_MAX_SRWM, level);
4357 /* fbc has it's own way to disable FBC WM */
4358 I915_WRITE(DISP_ARB_CTL,
4359 I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
4360 return false;
4363 if (display_wm > display->max_wm) {
4364 DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
4365 display_wm, SNB_DISPLAY_MAX_SRWM, level);
4366 return false;
4369 if (cursor_wm > cursor->max_wm) {
4370 DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
4371 cursor_wm, SNB_CURSOR_MAX_SRWM, level);
4372 return false;
4375 if (!(fbc_wm || display_wm || cursor_wm)) {
4376 DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
4377 return false;
4380 return true;
4384 * Compute watermark values of WM[1-3],
4386 static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
4387 int latency_ns,
4388 const struct intel_watermark_params *display,
4389 const struct intel_watermark_params *cursor,
4390 int *fbc_wm, int *display_wm, int *cursor_wm)
4392 struct drm_crtc *crtc;
4393 unsigned long line_time_us;
4394 int hdisplay, htotal, pixel_size, clock;
4395 int line_count, line_size;
4396 int small, large;
4397 int entries;
4399 if (!latency_ns) {
4400 *fbc_wm = *display_wm = *cursor_wm = 0;
4401 return false;
4404 crtc = intel_get_crtc_for_plane(dev, plane);
4405 hdisplay = crtc->mode.hdisplay;
4406 htotal = crtc->mode.htotal;
4407 clock = crtc->mode.clock;
4408 pixel_size = crtc->fb->bits_per_pixel / 8;
4410 line_time_us = (htotal * 1000) / clock;
4411 line_count = (latency_ns / line_time_us + 1000) / 1000;
4412 line_size = hdisplay * pixel_size;
4414 /* Use the minimum of the small and large buffer method for primary */
4415 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
4416 large = line_count * line_size;
4418 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
4419 *display_wm = entries + display->guard_size;
4422 * Spec says:
4423 * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
4425 *fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;
4427 /* calculate the self-refresh watermark for display cursor */
4428 entries = line_count * pixel_size * 64;
4429 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
4430 *cursor_wm = entries + cursor->guard_size;
4432 return ironlake_check_srwm(dev, level,
4433 *fbc_wm, *display_wm, *cursor_wm,
4434 display, cursor);
4437 static void ironlake_update_wm(struct drm_device *dev)
4439 struct drm_i915_private *dev_priv = dev->dev_private;
4440 int fbc_wm, plane_wm, cursor_wm;
4441 unsigned int enabled;
4443 enabled = 0;
4444 if (g4x_compute_wm0(dev, 0,
4445 &ironlake_display_wm_info,
4446 ILK_LP0_PLANE_LATENCY,
4447 &ironlake_cursor_wm_info,
4448 ILK_LP0_CURSOR_LATENCY,
4449 &plane_wm, &cursor_wm)) {
4450 I915_WRITE(WM0_PIPEA_ILK,
4451 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4452 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
4453 " plane %d, " "cursor: %d\n",
4454 plane_wm, cursor_wm);
4455 enabled |= 1;
4458 if (g4x_compute_wm0(dev, 1,
4459 &ironlake_display_wm_info,
4460 ILK_LP0_PLANE_LATENCY,
4461 &ironlake_cursor_wm_info,
4462 ILK_LP0_CURSOR_LATENCY,
4463 &plane_wm, &cursor_wm)) {
4464 I915_WRITE(WM0_PIPEB_ILK,
4465 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4466 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
4467 " plane %d, cursor: %d\n",
4468 plane_wm, cursor_wm);
4469 enabled |= 2;
4473 * Calculate and update the self-refresh watermark only when one
4474 * display plane is used.
4476 I915_WRITE(WM3_LP_ILK, 0);
4477 I915_WRITE(WM2_LP_ILK, 0);
4478 I915_WRITE(WM1_LP_ILK, 0);
4480 if (!single_plane_enabled(enabled))
4481 return;
4482 enabled = ffs(enabled) - 1;
4484 /* WM1 */
4485 if (!ironlake_compute_srwm(dev, 1, enabled,
4486 ILK_READ_WM1_LATENCY() * 500,
4487 &ironlake_display_srwm_info,
4488 &ironlake_cursor_srwm_info,
4489 &fbc_wm, &plane_wm, &cursor_wm))
4490 return;
4492 I915_WRITE(WM1_LP_ILK,
4493 WM1_LP_SR_EN |
4494 (ILK_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4495 (fbc_wm << WM1_LP_FBC_SHIFT) |
4496 (plane_wm << WM1_LP_SR_SHIFT) |
4497 cursor_wm);
4499 /* WM2 */
4500 if (!ironlake_compute_srwm(dev, 2, enabled,
4501 ILK_READ_WM2_LATENCY() * 500,
4502 &ironlake_display_srwm_info,
4503 &ironlake_cursor_srwm_info,
4504 &fbc_wm, &plane_wm, &cursor_wm))
4505 return;
4507 I915_WRITE(WM2_LP_ILK,
4508 WM2_LP_EN |
4509 (ILK_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4510 (fbc_wm << WM1_LP_FBC_SHIFT) |
4511 (plane_wm << WM1_LP_SR_SHIFT) |
4512 cursor_wm);
4515 * WM3 is unsupported on ILK, probably because we don't have latency
4516 * data for that power state
4520 void sandybridge_update_wm(struct drm_device *dev)
4522 struct drm_i915_private *dev_priv = dev->dev_private;
4523 int latency = SNB_READ_WM0_LATENCY() * 100; /* In unit 0.1us */
4524 int fbc_wm, plane_wm, cursor_wm;
4525 unsigned int enabled;
4527 enabled = 0;
4528 if (g4x_compute_wm0(dev, 0,
4529 &sandybridge_display_wm_info, latency,
4530 &sandybridge_cursor_wm_info, latency,
4531 &plane_wm, &cursor_wm)) {
4532 I915_WRITE(WM0_PIPEA_ILK,
4533 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4534 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
4535 " plane %d, " "cursor: %d\n",
4536 plane_wm, cursor_wm);
4537 enabled |= 1;
4540 if (g4x_compute_wm0(dev, 1,
4541 &sandybridge_display_wm_info, latency,
4542 &sandybridge_cursor_wm_info, latency,
4543 &plane_wm, &cursor_wm)) {
4544 I915_WRITE(WM0_PIPEB_ILK,
4545 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4546 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
4547 " plane %d, cursor: %d\n",
4548 plane_wm, cursor_wm);
4549 enabled |= 2;
4552 /* IVB has 3 pipes */
4553 if (IS_IVYBRIDGE(dev) &&
4554 g4x_compute_wm0(dev, 2,
4555 &sandybridge_display_wm_info, latency,
4556 &sandybridge_cursor_wm_info, latency,
4557 &plane_wm, &cursor_wm)) {
4558 I915_WRITE(WM0_PIPEC_IVB,
4559 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4560 DRM_DEBUG_KMS("FIFO watermarks For pipe C -"
4561 " plane %d, cursor: %d\n",
4562 plane_wm, cursor_wm);
4563 enabled |= 3;
4567 * Calculate and update the self-refresh watermark only when one
4568 * display plane is used.
4570 * SNB support 3 levels of watermark.
4572 * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
4573 * and disabled in the descending order
4576 I915_WRITE(WM3_LP_ILK, 0);
4577 I915_WRITE(WM2_LP_ILK, 0);
4578 I915_WRITE(WM1_LP_ILK, 0);
4580 if (!single_plane_enabled(enabled) ||
4581 dev_priv->sprite_scaling_enabled)
4582 return;
4583 enabled = ffs(enabled) - 1;
4585 /* WM1 */
4586 if (!ironlake_compute_srwm(dev, 1, enabled,
4587 SNB_READ_WM1_LATENCY() * 500,
4588 &sandybridge_display_srwm_info,
4589 &sandybridge_cursor_srwm_info,
4590 &fbc_wm, &plane_wm, &cursor_wm))
4591 return;
4593 I915_WRITE(WM1_LP_ILK,
4594 WM1_LP_SR_EN |
4595 (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4596 (fbc_wm << WM1_LP_FBC_SHIFT) |
4597 (plane_wm << WM1_LP_SR_SHIFT) |
4598 cursor_wm);
4600 /* WM2 */
4601 if (!ironlake_compute_srwm(dev, 2, enabled,
4602 SNB_READ_WM2_LATENCY() * 500,
4603 &sandybridge_display_srwm_info,
4604 &sandybridge_cursor_srwm_info,
4605 &fbc_wm, &plane_wm, &cursor_wm))
4606 return;
4608 I915_WRITE(WM2_LP_ILK,
4609 WM2_LP_EN |
4610 (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4611 (fbc_wm << WM1_LP_FBC_SHIFT) |
4612 (plane_wm << WM1_LP_SR_SHIFT) |
4613 cursor_wm);
4615 /* WM3 */
4616 if (!ironlake_compute_srwm(dev, 3, enabled,
4617 SNB_READ_WM3_LATENCY() * 500,
4618 &sandybridge_display_srwm_info,
4619 &sandybridge_cursor_srwm_info,
4620 &fbc_wm, &plane_wm, &cursor_wm))
4621 return;
4623 I915_WRITE(WM3_LP_ILK,
4624 WM3_LP_EN |
4625 (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4626 (fbc_wm << WM1_LP_FBC_SHIFT) |
4627 (plane_wm << WM1_LP_SR_SHIFT) |
4628 cursor_wm);
4631 static bool
4632 sandybridge_compute_sprite_wm(struct drm_device *dev, int plane,
4633 uint32_t sprite_width, int pixel_size,
4634 const struct intel_watermark_params *display,
4635 int display_latency_ns, int *sprite_wm)
4637 struct drm_crtc *crtc;
4638 int clock;
4639 int entries, tlb_miss;
4641 crtc = intel_get_crtc_for_plane(dev, plane);
4642 if (crtc->fb == NULL || !crtc->enabled) {
4643 *sprite_wm = display->guard_size;
4644 return false;
4647 clock = crtc->mode.clock;
4649 /* Use the small buffer method to calculate the sprite watermark */
4650 entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
4651 tlb_miss = display->fifo_size*display->cacheline_size -
4652 sprite_width * 8;
4653 if (tlb_miss > 0)
4654 entries += tlb_miss;
4655 entries = DIV_ROUND_UP(entries, display->cacheline_size);
4656 *sprite_wm = entries + display->guard_size;
4657 if (*sprite_wm > (int)display->max_wm)
4658 *sprite_wm = display->max_wm;
4660 return true;
4663 static bool
4664 sandybridge_compute_sprite_srwm(struct drm_device *dev, int plane,
4665 uint32_t sprite_width, int pixel_size,
4666 const struct intel_watermark_params *display,
4667 int latency_ns, int *sprite_wm)
4669 struct drm_crtc *crtc;
4670 unsigned long line_time_us;
4671 int clock;
4672 int line_count, line_size;
4673 int small, large;
4674 int entries;
4676 if (!latency_ns) {
4677 *sprite_wm = 0;
4678 return false;
4681 crtc = intel_get_crtc_for_plane(dev, plane);
4682 clock = crtc->mode.clock;
4683 if (!clock) {
4684 *sprite_wm = 0;
4685 return false;
4688 line_time_us = (sprite_width * 1000) / clock;
4689 if (!line_time_us) {
4690 *sprite_wm = 0;
4691 return false;
4694 line_count = (latency_ns / line_time_us + 1000) / 1000;
4695 line_size = sprite_width * pixel_size;
4697 /* Use the minimum of the small and large buffer method for primary */
4698 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
4699 large = line_count * line_size;
4701 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
4702 *sprite_wm = entries + display->guard_size;
4704 return *sprite_wm > 0x3ff ? false : true;
4707 static void sandybridge_update_sprite_wm(struct drm_device *dev, int pipe,
4708 uint32_t sprite_width, int pixel_size)
4710 struct drm_i915_private *dev_priv = dev->dev_private;
4711 int latency = SNB_READ_WM0_LATENCY() * 100; /* In unit 0.1us */
4712 int sprite_wm, reg;
4713 int ret;
4715 switch (pipe) {
4716 case 0:
4717 reg = WM0_PIPEA_ILK;
4718 break;
4719 case 1:
4720 reg = WM0_PIPEB_ILK;
4721 break;
4722 case 2:
4723 reg = WM0_PIPEC_IVB;
4724 break;
4725 default:
4726 return; /* bad pipe */
4729 ret = sandybridge_compute_sprite_wm(dev, pipe, sprite_width, pixel_size,
4730 &sandybridge_display_wm_info,
4731 latency, &sprite_wm);
4732 if (!ret) {
4733 DRM_DEBUG_KMS("failed to compute sprite wm for pipe %d\n",
4734 pipe);
4735 return;
4738 I915_WRITE(reg, I915_READ(reg) | (sprite_wm << WM0_PIPE_SPRITE_SHIFT));
4739 DRM_DEBUG_KMS("sprite watermarks For pipe %d - %d\n", pipe, sprite_wm);
4742 ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
4743 pixel_size,
4744 &sandybridge_display_srwm_info,
4745 SNB_READ_WM1_LATENCY() * 500,
4746 &sprite_wm);
4747 if (!ret) {
4748 DRM_DEBUG_KMS("failed to compute sprite lp1 wm on pipe %d\n",
4749 pipe);
4750 return;
4752 I915_WRITE(WM1S_LP_ILK, sprite_wm);
4754 /* Only IVB has two more LP watermarks for sprite */
4755 if (!IS_IVYBRIDGE(dev))
4756 return;
4758 ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
4759 pixel_size,
4760 &sandybridge_display_srwm_info,
4761 SNB_READ_WM2_LATENCY() * 500,
4762 &sprite_wm);
4763 if (!ret) {
4764 DRM_DEBUG_KMS("failed to compute sprite lp2 wm on pipe %d\n",
4765 pipe);
4766 return;
4768 I915_WRITE(WM2S_LP_IVB, sprite_wm);
4770 ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
4771 pixel_size,
4772 &sandybridge_display_srwm_info,
4773 SNB_READ_WM3_LATENCY() * 500,
4774 &sprite_wm);
4775 if (!ret) {
4776 DRM_DEBUG_KMS("failed to compute sprite lp3 wm on pipe %d\n",
4777 pipe);
4778 return;
4780 I915_WRITE(WM3S_LP_IVB, sprite_wm);
4784 * intel_update_watermarks - update FIFO watermark values based on current modes
4786 * Calculate watermark values for the various WM regs based on current mode
4787 * and plane configuration.
4789 * There are several cases to deal with here:
4790 * - normal (i.e. non-self-refresh)
4791 * - self-refresh (SR) mode
4792 * - lines are large relative to FIFO size (buffer can hold up to 2)
4793 * - lines are small relative to FIFO size (buffer can hold more than 2
4794 * lines), so need to account for TLB latency
4796 * The normal calculation is:
4797 * watermark = dotclock * bytes per pixel * latency
4798 * where latency is platform & configuration dependent (we assume pessimal
4799 * values here).
4801 * The SR calculation is:
4802 * watermark = (trunc(latency/line time)+1) * surface width *
4803 * bytes per pixel
4804 * where
4805 * line time = htotal / dotclock
4806 * surface width = hdisplay for normal plane and 64 for cursor
4807 * and latency is assumed to be high, as above.
4809 * The final value programmed to the register should always be rounded up,
4810 * and include an extra 2 entries to account for clock crossings.
4812 * We don't use the sprite, so we can ignore that. And on Crestline we have
4813 * to set the non-SR watermarks to 8.
4815 static void intel_update_watermarks(struct drm_device *dev)
4817 struct drm_i915_private *dev_priv = dev->dev_private;
4819 if (dev_priv->display.update_wm)
4820 dev_priv->display.update_wm(dev);
4823 void intel_update_sprite_watermarks(struct drm_device *dev, int pipe,
4824 uint32_t sprite_width, int pixel_size)
4826 struct drm_i915_private *dev_priv = dev->dev_private;
4828 if (dev_priv->display.update_sprite_wm)
4829 dev_priv->display.update_sprite_wm(dev, pipe, sprite_width,
4830 pixel_size);
4833 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4835 if (i915_panel_use_ssc >= 0)
4836 return i915_panel_use_ssc != 0;
4837 return dev_priv->lvds_use_ssc
4838 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
4842 * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
4843 * @crtc: CRTC structure
4844 * @mode: requested mode
4846 * A pipe may be connected to one or more outputs. Based on the depth of the
4847 * attached framebuffer, choose a good color depth to use on the pipe.
4849 * If possible, match the pipe depth to the fb depth. In some cases, this
4850 * isn't ideal, because the connected output supports a lesser or restricted
4851 * set of depths. Resolve that here:
4852 * LVDS typically supports only 6bpc, so clamp down in that case
4853 * HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
4854 * Displays may support a restricted set as well, check EDID and clamp as
4855 * appropriate.
4856 * DP may want to dither down to 6bpc to fit larger modes
4858 * RETURNS:
4859 * Dithering requirement (i.e. false if display bpc and pipe bpc match,
4860 * true if they don't match).
4862 static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc,
4863 unsigned int *pipe_bpp,
4864 struct drm_display_mode *mode)
4866 struct drm_device *dev = crtc->dev;
4867 struct drm_i915_private *dev_priv = dev->dev_private;
4868 struct drm_encoder *encoder;
4869 struct drm_connector *connector;
4870 unsigned int display_bpc = UINT_MAX, bpc;
4872 /* Walk the encoders & connectors on this crtc, get min bpc */
4873 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
4874 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
4876 if (encoder->crtc != crtc)
4877 continue;
4879 if (intel_encoder->type == INTEL_OUTPUT_LVDS) {
4880 unsigned int lvds_bpc;
4882 if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) ==
4883 LVDS_A3_POWER_UP)
4884 lvds_bpc = 8;
4885 else
4886 lvds_bpc = 6;
4888 if (lvds_bpc < display_bpc) {
4889 DRM_DEBUG_KMS("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc);
4890 display_bpc = lvds_bpc;
4892 continue;
4895 if (intel_encoder->type == INTEL_OUTPUT_EDP) {
4896 /* Use VBT settings if we have an eDP panel */
4897 unsigned int edp_bpc = dev_priv->edp.bpp / 3;
4899 if (edp_bpc < display_bpc) {
4900 DRM_DEBUG_KMS("clamping display bpc (was %d) to eDP (%d)\n", display_bpc, edp_bpc);
4901 display_bpc = edp_bpc;
4903 continue;
4906 /* Not one of the known troublemakers, check the EDID */
4907 list_for_each_entry(connector, &dev->mode_config.connector_list,
4908 head) {
4909 if (connector->encoder != encoder)
4910 continue;
4912 /* Don't use an invalid EDID bpc value */
4913 if (connector->display_info.bpc &&
4914 connector->display_info.bpc < display_bpc) {
4915 DRM_DEBUG_KMS("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc);
4916 display_bpc = connector->display_info.bpc;
4921 * HDMI is either 12 or 8, so if the display lets 10bpc sneak
4922 * through, clamp it down. (Note: >12bpc will be caught below.)
4924 if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
4925 if (display_bpc > 8 && display_bpc < 12) {
4926 DRM_DEBUG_KMS("forcing bpc to 12 for HDMI\n");
4927 display_bpc = 12;
4928 } else {
4929 DRM_DEBUG_KMS("forcing bpc to 8 for HDMI\n");
4930 display_bpc = 8;
4935 if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4936 DRM_DEBUG_KMS("Dithering DP to 6bpc\n");
4937 display_bpc = 6;
4941 * We could just drive the pipe at the highest bpc all the time and
4942 * enable dithering as needed, but that costs bandwidth. So choose
4943 * the minimum value that expresses the full color range of the fb but
4944 * also stays within the max display bpc discovered above.
4947 switch (crtc->fb->depth) {
4948 case 8:
4949 bpc = 8; /* since we go through a colormap */
4950 break;
4951 case 15:
4952 case 16:
4953 bpc = 6; /* min is 18bpp */
4954 break;
4955 case 24:
4956 bpc = 8;
4957 break;
4958 case 30:
4959 bpc = 10;
4960 break;
4961 case 48:
4962 bpc = 12;
4963 break;
4964 default:
4965 DRM_DEBUG("unsupported depth, assuming 24 bits\n");
4966 bpc = min((unsigned int)8, display_bpc);
4967 break;
4970 display_bpc = min(display_bpc, bpc);
4972 DRM_DEBUG_KMS("setting pipe bpc to %d (max display bpc %d)\n",
4973 bpc, display_bpc);
4975 *pipe_bpp = display_bpc * 3;
4977 return display_bpc != bpc;
4980 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
4981 struct drm_display_mode *mode,
4982 struct drm_display_mode *adjusted_mode,
4983 int x, int y,
4984 struct drm_framebuffer *old_fb)
4986 struct drm_device *dev = crtc->dev;
4987 struct drm_i915_private *dev_priv = dev->dev_private;
4988 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4989 int pipe = intel_crtc->pipe;
4990 int plane = intel_crtc->plane;
4991 int refclk, num_connectors = 0;
4992 intel_clock_t clock, reduced_clock;
4993 u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
4994 bool ok, has_reduced_clock = false, is_sdvo = false, is_dvo = false;
4995 bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
4996 struct drm_mode_config *mode_config = &dev->mode_config;
4997 struct intel_encoder *encoder;
4998 const intel_limit_t *limit;
4999 int ret;
5000 u32 temp;
5001 u32 lvds_sync = 0;
5003 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
5004 if (encoder->base.crtc != crtc)
5005 continue;
5007 switch (encoder->type) {
5008 case INTEL_OUTPUT_LVDS:
5009 is_lvds = true;
5010 break;
5011 case INTEL_OUTPUT_SDVO:
5012 case INTEL_OUTPUT_HDMI:
5013 is_sdvo = true;
5014 if (encoder->needs_tv_clock)
5015 is_tv = true;
5016 break;
5017 case INTEL_OUTPUT_DVO:
5018 is_dvo = true;
5019 break;
5020 case INTEL_OUTPUT_TVOUT:
5021 is_tv = true;
5022 break;
5023 case INTEL_OUTPUT_ANALOG:
5024 is_crt = true;
5025 break;
5026 case INTEL_OUTPUT_DISPLAYPORT:
5027 is_dp = true;
5028 break;
5031 num_connectors++;
5034 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5035 refclk = dev_priv->lvds_ssc_freq * 1000;
5036 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5037 refclk / 1000);
5038 } else if (!IS_GEN2(dev)) {
5039 refclk = 96000;
5040 } else {
5041 refclk = 48000;
5045 * Returns a set of divisors for the desired target clock with the given
5046 * refclk, or FALSE. The returned values represent the clock equation:
5047 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5049 limit = intel_limit(crtc, refclk);
5050 ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
5051 if (!ok) {
5052 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5053 return -EINVAL;
5056 /* Ensure that the cursor is valid for the new mode before changing... */
5057 intel_crtc_update_cursor(crtc, true);
5059 if (is_lvds && dev_priv->lvds_downclock_avail) {
5060 has_reduced_clock = limit->find_pll(limit, crtc,
5061 dev_priv->lvds_downclock,
5062 refclk,
5063 &reduced_clock);
5064 if (has_reduced_clock && (clock.p != reduced_clock.p)) {
5066 * If the different P is found, it means that we can't
5067 * switch the display clock by using the FP0/FP1.
5068 * In such case we will disable the LVDS downclock
5069 * feature.
5071 DRM_DEBUG_KMS("Different P is found for "
5072 "LVDS clock/downclock\n");
5073 has_reduced_clock = 0;
5076 /* SDVO TV has fixed PLL values depend on its clock range,
5077 this mirrors vbios setting. */
5078 if (is_sdvo && is_tv) {
5079 if (adjusted_mode->clock >= 100000
5080 && adjusted_mode->clock < 140500) {
5081 clock.p1 = 2;
5082 clock.p2 = 10;
5083 clock.n = 3;
5084 clock.m1 = 16;
5085 clock.m2 = 8;
5086 } else if (adjusted_mode->clock >= 140500
5087 && adjusted_mode->clock <= 200000) {
5088 clock.p1 = 1;
5089 clock.p2 = 10;
5090 clock.n = 6;
5091 clock.m1 = 12;
5092 clock.m2 = 8;
5096 if (IS_PINEVIEW(dev)) {
5097 fp = (1 << clock.n) << 16 | clock.m1 << 8 | clock.m2;
5098 if (has_reduced_clock)
5099 fp2 = (1 << reduced_clock.n) << 16 |
5100 reduced_clock.m1 << 8 | reduced_clock.m2;
5101 } else {
5102 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
5103 if (has_reduced_clock)
5104 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
5105 reduced_clock.m2;
5108 dpll = DPLL_VGA_MODE_DIS;
5110 if (!IS_GEN2(dev)) {
5111 if (is_lvds)
5112 dpll |= DPLLB_MODE_LVDS;
5113 else
5114 dpll |= DPLLB_MODE_DAC_SERIAL;
5115 if (is_sdvo) {
5116 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5117 if (pixel_multiplier > 1) {
5118 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
5119 dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
5121 dpll |= DPLL_DVO_HIGH_SPEED;
5123 if (is_dp)
5124 dpll |= DPLL_DVO_HIGH_SPEED;
5126 /* compute bitmask from p1 value */
5127 if (IS_PINEVIEW(dev))
5128 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
5129 else {
5130 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5131 if (IS_G4X(dev) && has_reduced_clock)
5132 dpll |= (1 << (reduced_clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5134 switch (clock.p2) {
5135 case 5:
5136 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5137 break;
5138 case 7:
5139 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5140 break;
5141 case 10:
5142 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5143 break;
5144 case 14:
5145 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5146 break;
5148 if (INTEL_INFO(dev)->gen >= 4)
5149 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
5150 } else {
5151 if (is_lvds) {
5152 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5153 } else {
5154 if (clock.p1 == 2)
5155 dpll |= PLL_P1_DIVIDE_BY_TWO;
5156 else
5157 dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5158 if (clock.p2 == 4)
5159 dpll |= PLL_P2_DIVIDE_BY_4;
5163 if (is_sdvo && is_tv)
5164 dpll |= PLL_REF_INPUT_TVCLKINBC;
5165 else if (is_tv)
5166 /* XXX: just matching BIOS for now */
5167 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
5168 dpll |= 3;
5169 else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5170 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5171 else
5172 dpll |= PLL_REF_INPUT_DREFCLK;
5174 /* setup pipeconf */
5175 pipeconf = I915_READ(PIPECONF(pipe));
5177 /* Set up the display plane register */
5178 dspcntr = DISPPLANE_GAMMA_ENABLE;
5180 /* Ironlake's plane is forced to pipe, bit 24 is to
5181 enable color space conversion */
5182 if (pipe == 0)
5183 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
5184 else
5185 dspcntr |= DISPPLANE_SEL_PIPE_B;
5187 if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
5188 /* Enable pixel doubling when the dot clock is > 90% of the (display)
5189 * core speed.
5191 * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
5192 * pipe == 0 check?
5194 if (mode->clock >
5195 dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
5196 pipeconf |= PIPECONF_DOUBLE_WIDE;
5197 else
5198 pipeconf &= ~PIPECONF_DOUBLE_WIDE;
5201 /* default to 8bpc */
5202 pipeconf &= ~(PIPECONF_BPP_MASK | PIPECONF_DITHER_EN);
5203 if (is_dp) {
5204 if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
5205 pipeconf |= PIPECONF_BPP_6 |
5206 PIPECONF_DITHER_EN |
5207 PIPECONF_DITHER_TYPE_SP;
5211 dpll |= DPLL_VCO_ENABLE;
5213 DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
5214 drm_mode_debug_printmodeline(mode);
5216 I915_WRITE(FP0(pipe), fp);
5217 I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
5219 POSTING_READ(DPLL(pipe));
5220 udelay(150);
5222 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
5223 * This is an exception to the general rule that mode_set doesn't turn
5224 * things on.
5226 if (is_lvds) {
5227 temp = I915_READ(LVDS);
5228 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
5229 if (pipe == 1) {
5230 temp |= LVDS_PIPEB_SELECT;
5231 } else {
5232 temp &= ~LVDS_PIPEB_SELECT;
5234 /* set the corresponsding LVDS_BORDER bit */
5235 temp |= dev_priv->lvds_border_bits;
5236 /* Set the B0-B3 data pairs corresponding to whether we're going to
5237 * set the DPLLs for dual-channel mode or not.
5239 if (clock.p2 == 7)
5240 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
5241 else
5242 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
5244 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
5245 * appropriately here, but we need to look more thoroughly into how
5246 * panels behave in the two modes.
5248 /* set the dithering flag on LVDS as needed */
5249 if (INTEL_INFO(dev)->gen >= 4) {
5250 if (dev_priv->lvds_dither)
5251 temp |= LVDS_ENABLE_DITHER;
5252 else
5253 temp &= ~LVDS_ENABLE_DITHER;
5255 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
5256 lvds_sync |= LVDS_HSYNC_POLARITY;
5257 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
5258 lvds_sync |= LVDS_VSYNC_POLARITY;
5259 if ((temp & (LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY))
5260 != lvds_sync) {
5261 char flags[2] = "-+";
5262 DRM_INFO("Changing LVDS panel from "
5263 "(%chsync, %cvsync) to (%chsync, %cvsync)\n",
5264 flags[!(temp & LVDS_HSYNC_POLARITY)],
5265 flags[!(temp & LVDS_VSYNC_POLARITY)],
5266 flags[!(lvds_sync & LVDS_HSYNC_POLARITY)],
5267 flags[!(lvds_sync & LVDS_VSYNC_POLARITY)]);
5268 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
5269 temp |= lvds_sync;
5271 I915_WRITE(LVDS, temp);
5274 if (is_dp) {
5275 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5278 I915_WRITE(DPLL(pipe), dpll);
5280 /* Wait for the clocks to stabilize. */
5281 POSTING_READ(DPLL(pipe));
5282 udelay(150);
5284 if (INTEL_INFO(dev)->gen >= 4) {
5285 temp = 0;
5286 if (is_sdvo) {
5287 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
5288 if (temp > 1)
5289 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5290 else
5291 temp = 0;
5293 I915_WRITE(DPLL_MD(pipe), temp);
5294 } else {
5295 /* The pixel multiplier can only be updated once the
5296 * DPLL is enabled and the clocks are stable.
5298 * So write it again.
5300 I915_WRITE(DPLL(pipe), dpll);
5303 intel_crtc->lowfreq_avail = false;
5304 if (is_lvds && has_reduced_clock && i915_powersave) {
5305 I915_WRITE(FP1(pipe), fp2);
5306 intel_crtc->lowfreq_avail = true;
5307 if (HAS_PIPE_CXSR(dev)) {
5308 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
5309 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
5311 } else {
5312 I915_WRITE(FP1(pipe), fp);
5313 if (HAS_PIPE_CXSR(dev)) {
5314 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
5315 pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
5319 pipeconf &= ~PIPECONF_INTERLACE_MASK;
5320 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
5321 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
5322 /* the chip adds 2 halflines automatically */
5323 adjusted_mode->crtc_vdisplay -= 1;
5324 adjusted_mode->crtc_vtotal -= 1;
5325 adjusted_mode->crtc_vblank_start -= 1;
5326 adjusted_mode->crtc_vblank_end -= 1;
5327 adjusted_mode->crtc_vsync_end -= 1;
5328 adjusted_mode->crtc_vsync_start -= 1;
5329 } else
5330 pipeconf |= PIPECONF_PROGRESSIVE;
5332 I915_WRITE(HTOTAL(pipe),
5333 (adjusted_mode->crtc_hdisplay - 1) |
5334 ((adjusted_mode->crtc_htotal - 1) << 16));
5335 I915_WRITE(HBLANK(pipe),
5336 (adjusted_mode->crtc_hblank_start - 1) |
5337 ((adjusted_mode->crtc_hblank_end - 1) << 16));
5338 I915_WRITE(HSYNC(pipe),
5339 (adjusted_mode->crtc_hsync_start - 1) |
5340 ((adjusted_mode->crtc_hsync_end - 1) << 16));
5342 I915_WRITE(VTOTAL(pipe),
5343 (adjusted_mode->crtc_vdisplay - 1) |
5344 ((adjusted_mode->crtc_vtotal - 1) << 16));
5345 I915_WRITE(VBLANK(pipe),
5346 (adjusted_mode->crtc_vblank_start - 1) |
5347 ((adjusted_mode->crtc_vblank_end - 1) << 16));
5348 I915_WRITE(VSYNC(pipe),
5349 (adjusted_mode->crtc_vsync_start - 1) |
5350 ((adjusted_mode->crtc_vsync_end - 1) << 16));
5352 /* pipesrc and dspsize control the size that is scaled from,
5353 * which should always be the user's requested size.
5355 I915_WRITE(DSPSIZE(plane),
5356 ((mode->vdisplay - 1) << 16) |
5357 (mode->hdisplay - 1));
5358 I915_WRITE(DSPPOS(plane), 0);
5359 I915_WRITE(PIPESRC(pipe),
5360 ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
5362 I915_WRITE(PIPECONF(pipe), pipeconf);
5363 POSTING_READ(PIPECONF(pipe));
5364 intel_enable_pipe(dev_priv, pipe, false);
5366 intel_wait_for_vblank(dev, pipe);
5368 I915_WRITE(DSPCNTR(plane), dspcntr);
5369 POSTING_READ(DSPCNTR(plane));
5370 intel_enable_plane(dev_priv, plane, pipe);
5372 ret = intel_pipe_set_base(crtc, x, y, old_fb);
5374 intel_update_watermarks(dev);
5376 return ret;
5380 * Initialize reference clocks when the driver loads
5382 void ironlake_init_pch_refclk(struct drm_device *dev)
5384 struct drm_i915_private *dev_priv = dev->dev_private;
5385 struct drm_mode_config *mode_config = &dev->mode_config;
5386 struct intel_encoder *encoder;
5387 u32 temp;
5388 bool has_lvds = false;
5389 bool has_cpu_edp = false;
5390 bool has_pch_edp = false;
5391 bool has_panel = false;
5392 bool has_ck505 = false;
5393 bool can_ssc = false;
5395 /* We need to take the global config into account */
5396 list_for_each_entry(encoder, &mode_config->encoder_list,
5397 base.head) {
5398 switch (encoder->type) {
5399 case INTEL_OUTPUT_LVDS:
5400 has_panel = true;
5401 has_lvds = true;
5402 break;
5403 case INTEL_OUTPUT_EDP:
5404 has_panel = true;
5405 if (intel_encoder_is_pch_edp(&encoder->base))
5406 has_pch_edp = true;
5407 else
5408 has_cpu_edp = true;
5409 break;
5413 if (HAS_PCH_IBX(dev)) {
5414 has_ck505 = dev_priv->display_clock_mode;
5415 can_ssc = has_ck505;
5416 } else {
5417 has_ck505 = false;
5418 can_ssc = true;
5421 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
5422 has_panel, has_lvds, has_pch_edp, has_cpu_edp,
5423 has_ck505);
5425 /* Ironlake: try to setup display ref clock before DPLL
5426 * enabling. This is only under driver's control after
5427 * PCH B stepping, previous chipset stepping should be
5428 * ignoring this setting.
5430 temp = I915_READ(PCH_DREF_CONTROL);
5431 /* Always enable nonspread source */
5432 temp &= ~DREF_NONSPREAD_SOURCE_MASK;
5434 if (has_ck505)
5435 temp |= DREF_NONSPREAD_CK505_ENABLE;
5436 else
5437 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
5439 if (has_panel) {
5440 temp &= ~DREF_SSC_SOURCE_MASK;
5441 temp |= DREF_SSC_SOURCE_ENABLE;
5443 /* SSC must be turned on before enabling the CPU output */
5444 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5445 DRM_DEBUG_KMS("Using SSC on panel\n");
5446 temp |= DREF_SSC1_ENABLE;
5449 /* Get SSC going before enabling the outputs */
5450 I915_WRITE(PCH_DREF_CONTROL, temp);
5451 POSTING_READ(PCH_DREF_CONTROL);
5452 udelay(200);
5454 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5456 /* Enable CPU source on CPU attached eDP */
5457 if (has_cpu_edp) {
5458 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5459 DRM_DEBUG_KMS("Using SSC on eDP\n");
5460 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5462 else
5463 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5464 } else
5465 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5467 I915_WRITE(PCH_DREF_CONTROL, temp);
5468 POSTING_READ(PCH_DREF_CONTROL);
5469 udelay(200);
5470 } else {
5471 DRM_DEBUG_KMS("Disabling SSC entirely\n");
5473 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5475 /* Turn off CPU output */
5476 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5478 I915_WRITE(PCH_DREF_CONTROL, temp);
5479 POSTING_READ(PCH_DREF_CONTROL);
5480 udelay(200);
5482 /* Turn off the SSC source */
5483 temp &= ~DREF_SSC_SOURCE_MASK;
5484 temp |= DREF_SSC_SOURCE_DISABLE;
5486 /* Turn off SSC1 */
5487 temp &= ~ DREF_SSC1_ENABLE;
5489 I915_WRITE(PCH_DREF_CONTROL, temp);
5490 POSTING_READ(PCH_DREF_CONTROL);
5491 udelay(200);
5495 static int ironlake_get_refclk(struct drm_crtc *crtc)
5497 struct drm_device *dev = crtc->dev;
5498 struct drm_i915_private *dev_priv = dev->dev_private;
5499 struct intel_encoder *encoder;
5500 struct drm_mode_config *mode_config = &dev->mode_config;
5501 struct intel_encoder *edp_encoder = NULL;
5502 int num_connectors = 0;
5503 bool is_lvds = false;
5505 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
5506 if (encoder->base.crtc != crtc)
5507 continue;
5509 switch (encoder->type) {
5510 case INTEL_OUTPUT_LVDS:
5511 is_lvds = true;
5512 break;
5513 case INTEL_OUTPUT_EDP:
5514 edp_encoder = encoder;
5515 break;
5517 num_connectors++;
5520 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5521 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5522 dev_priv->lvds_ssc_freq);
5523 return dev_priv->lvds_ssc_freq * 1000;
5526 return 120000;
5529 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
5530 struct drm_display_mode *mode,
5531 struct drm_display_mode *adjusted_mode,
5532 int x, int y,
5533 struct drm_framebuffer *old_fb)
5535 struct drm_device *dev = crtc->dev;
5536 struct drm_i915_private *dev_priv = dev->dev_private;
5537 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5538 int pipe = intel_crtc->pipe;
5539 int plane = intel_crtc->plane;
5540 int refclk, num_connectors = 0;
5541 intel_clock_t clock, reduced_clock;
5542 u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
5543 bool ok, has_reduced_clock = false, is_sdvo = false;
5544 bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
5545 struct intel_encoder *has_edp_encoder = NULL;
5546 struct drm_mode_config *mode_config = &dev->mode_config;
5547 struct intel_encoder *encoder;
5548 const intel_limit_t *limit;
5549 int ret;
5550 struct fdi_m_n m_n = {0};
5551 u32 temp;
5552 u32 lvds_sync = 0;
5553 int target_clock, pixel_multiplier, lane, link_bw, factor;
5554 unsigned int pipe_bpp;
5555 bool dither;
5557 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
5558 if (encoder->base.crtc != crtc)
5559 continue;
5561 switch (encoder->type) {
5562 case INTEL_OUTPUT_LVDS:
5563 is_lvds = true;
5564 break;
5565 case INTEL_OUTPUT_SDVO:
5566 case INTEL_OUTPUT_HDMI:
5567 is_sdvo = true;
5568 if (encoder->needs_tv_clock)
5569 is_tv = true;
5570 break;
5571 case INTEL_OUTPUT_TVOUT:
5572 is_tv = true;
5573 break;
5574 case INTEL_OUTPUT_ANALOG:
5575 is_crt = true;
5576 break;
5577 case INTEL_OUTPUT_DISPLAYPORT:
5578 is_dp = true;
5579 break;
5580 case INTEL_OUTPUT_EDP:
5581 has_edp_encoder = encoder;
5582 break;
5585 num_connectors++;
5588 refclk = ironlake_get_refclk(crtc);
5591 * Returns a set of divisors for the desired target clock with the given
5592 * refclk, or FALSE. The returned values represent the clock equation:
5593 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5595 limit = intel_limit(crtc, refclk);
5596 ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
5597 if (!ok) {
5598 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5599 return -EINVAL;
5602 /* Ensure that the cursor is valid for the new mode before changing... */
5603 intel_crtc_update_cursor(crtc, true);
5605 if (is_lvds && dev_priv->lvds_downclock_avail) {
5606 has_reduced_clock = limit->find_pll(limit, crtc,
5607 dev_priv->lvds_downclock,
5608 refclk,
5609 &reduced_clock);
5610 if (has_reduced_clock && (clock.p != reduced_clock.p)) {
5612 * If the different P is found, it means that we can't
5613 * switch the display clock by using the FP0/FP1.
5614 * In such case we will disable the LVDS downclock
5615 * feature.
5617 DRM_DEBUG_KMS("Different P is found for "
5618 "LVDS clock/downclock\n");
5619 has_reduced_clock = 0;
5622 /* SDVO TV has fixed PLL values depend on its clock range,
5623 this mirrors vbios setting. */
5624 if (is_sdvo && is_tv) {
5625 if (adjusted_mode->clock >= 100000
5626 && adjusted_mode->clock < 140500) {
5627 clock.p1 = 2;
5628 clock.p2 = 10;
5629 clock.n = 3;
5630 clock.m1 = 16;
5631 clock.m2 = 8;
5632 } else if (adjusted_mode->clock >= 140500
5633 && adjusted_mode->clock <= 200000) {
5634 clock.p1 = 1;
5635 clock.p2 = 10;
5636 clock.n = 6;
5637 clock.m1 = 12;
5638 clock.m2 = 8;
5642 /* FDI link */
5643 pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5644 lane = 0;
5645 /* CPU eDP doesn't require FDI link, so just set DP M/N
5646 according to current link config */
5647 if (has_edp_encoder &&
5648 !intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5649 target_clock = mode->clock;
5650 intel_edp_link_config(has_edp_encoder,
5651 &lane, &link_bw);
5652 } else {
5653 /* [e]DP over FDI requires target mode clock
5654 instead of link clock */
5655 if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
5656 target_clock = mode->clock;
5657 else
5658 target_clock = adjusted_mode->clock;
5660 /* FDI is a binary signal running at ~2.7GHz, encoding
5661 * each output octet as 10 bits. The actual frequency
5662 * is stored as a divider into a 100MHz clock, and the
5663 * mode pixel clock is stored in units of 1KHz.
5664 * Hence the bw of each lane in terms of the mode signal
5665 * is:
5667 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5670 /* determine panel color depth */
5671 temp = I915_READ(PIPECONF(pipe));
5672 temp &= ~PIPE_BPC_MASK;
5673 dither = intel_choose_pipe_bpp_dither(crtc, &pipe_bpp, mode);
5674 switch (pipe_bpp) {
5675 case 18:
5676 temp |= PIPE_6BPC;
5677 break;
5678 case 24:
5679 temp |= PIPE_8BPC;
5680 break;
5681 case 30:
5682 temp |= PIPE_10BPC;
5683 break;
5684 case 36:
5685 temp |= PIPE_12BPC;
5686 break;
5687 default:
5688 WARN(1, "intel_choose_pipe_bpp returned invalid value %d\n",
5689 pipe_bpp);
5690 temp |= PIPE_8BPC;
5691 pipe_bpp = 24;
5692 break;
5695 intel_crtc->bpp = pipe_bpp;
5696 I915_WRITE(PIPECONF(pipe), temp);
5698 if (!lane) {
5700 * Account for spread spectrum to avoid
5701 * oversubscribing the link. Max center spread
5702 * is 2.5%; use 5% for safety's sake.
5704 u32 bps = target_clock * intel_crtc->bpp * 21 / 20;
5705 lane = bps / (link_bw * 8) + 1;
5708 intel_crtc->fdi_lanes = lane;
5710 if (pixel_multiplier > 1)
5711 link_bw *= pixel_multiplier;
5712 ironlake_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw,
5713 &m_n);
5715 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
5716 if (has_reduced_clock)
5717 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
5718 reduced_clock.m2;
5720 /* Enable autotuning of the PLL clock (if permissible) */
5721 factor = 21;
5722 if (is_lvds) {
5723 if ((intel_panel_use_ssc(dev_priv) &&
5724 dev_priv->lvds_ssc_freq == 100) ||
5725 (I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP)
5726 factor = 25;
5727 } else if (is_sdvo && is_tv)
5728 factor = 20;
5730 if (clock.m < factor * clock.n)
5731 fp |= FP_CB_TUNE;
5733 dpll = 0;
5735 if (is_lvds)
5736 dpll |= DPLLB_MODE_LVDS;
5737 else
5738 dpll |= DPLLB_MODE_DAC_SERIAL;
5739 if (is_sdvo) {
5740 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5741 if (pixel_multiplier > 1) {
5742 dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
5744 dpll |= DPLL_DVO_HIGH_SPEED;
5746 if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
5747 dpll |= DPLL_DVO_HIGH_SPEED;
5749 /* compute bitmask from p1 value */
5750 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5751 /* also FPA1 */
5752 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5754 switch (clock.p2) {
5755 case 5:
5756 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5757 break;
5758 case 7:
5759 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5760 break;
5761 case 10:
5762 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5763 break;
5764 case 14:
5765 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5766 break;
5769 if (is_sdvo && is_tv)
5770 dpll |= PLL_REF_INPUT_TVCLKINBC;
5771 else if (is_tv)
5772 /* XXX: just matching BIOS for now */
5773 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
5774 dpll |= 3;
5775 else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5776 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5777 else
5778 dpll |= PLL_REF_INPUT_DREFCLK;
5780 /* setup pipeconf */
5781 pipeconf = I915_READ(PIPECONF(pipe));
5783 /* Set up the display plane register */
5784 dspcntr = DISPPLANE_GAMMA_ENABLE;
5786 DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
5787 drm_mode_debug_printmodeline(mode);
5789 /* PCH eDP needs FDI, but CPU eDP does not */
5790 if (!intel_crtc->no_pll) {
5791 if (!has_edp_encoder ||
5792 intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5793 I915_WRITE(PCH_FP0(pipe), fp);
5794 I915_WRITE(PCH_DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
5796 POSTING_READ(PCH_DPLL(pipe));
5797 udelay(150);
5799 } else {
5800 if (dpll == (I915_READ(PCH_DPLL(0)) & 0x7fffffff) &&
5801 fp == I915_READ(PCH_FP0(0))) {
5802 intel_crtc->use_pll_a = true;
5803 DRM_DEBUG_KMS("using pipe a dpll\n");
5804 } else if (dpll == (I915_READ(PCH_DPLL(1)) & 0x7fffffff) &&
5805 fp == I915_READ(PCH_FP0(1))) {
5806 intel_crtc->use_pll_a = false;
5807 DRM_DEBUG_KMS("using pipe b dpll\n");
5808 } else {
5809 DRM_DEBUG_KMS("no matching PLL configuration for pipe 2\n");
5810 return -EINVAL;
5814 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
5815 * This is an exception to the general rule that mode_set doesn't turn
5816 * things on.
5818 if (is_lvds) {
5819 temp = I915_READ(PCH_LVDS);
5820 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
5821 if (HAS_PCH_CPT(dev)) {
5822 temp &= ~PORT_TRANS_SEL_MASK;
5823 temp |= PORT_TRANS_SEL_CPT(pipe);
5824 } else {
5825 if (pipe == 1)
5826 temp |= LVDS_PIPEB_SELECT;
5827 else
5828 temp &= ~LVDS_PIPEB_SELECT;
5831 /* set the corresponsding LVDS_BORDER bit */
5832 temp |= dev_priv->lvds_border_bits;
5833 /* Set the B0-B3 data pairs corresponding to whether we're going to
5834 * set the DPLLs for dual-channel mode or not.
5836 if (clock.p2 == 7)
5837 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
5838 else
5839 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
5841 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
5842 * appropriately here, but we need to look more thoroughly into how
5843 * panels behave in the two modes.
5845 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
5846 lvds_sync |= LVDS_HSYNC_POLARITY;
5847 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
5848 lvds_sync |= LVDS_VSYNC_POLARITY;
5849 if ((temp & (LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY))
5850 != lvds_sync) {
5851 char flags[2] = "-+";
5852 DRM_INFO("Changing LVDS panel from "
5853 "(%chsync, %cvsync) to (%chsync, %cvsync)\n",
5854 flags[!(temp & LVDS_HSYNC_POLARITY)],
5855 flags[!(temp & LVDS_VSYNC_POLARITY)],
5856 flags[!(lvds_sync & LVDS_HSYNC_POLARITY)],
5857 flags[!(lvds_sync & LVDS_VSYNC_POLARITY)]);
5858 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
5859 temp |= lvds_sync;
5861 I915_WRITE(PCH_LVDS, temp);
5864 pipeconf &= ~PIPECONF_DITHER_EN;
5865 pipeconf &= ~PIPECONF_DITHER_TYPE_MASK;
5866 if ((is_lvds && dev_priv->lvds_dither) || dither) {
5867 pipeconf |= PIPECONF_DITHER_EN;
5868 pipeconf |= PIPECONF_DITHER_TYPE_SP;
5870 if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5871 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5872 } else {
5873 /* For non-DP output, clear any trans DP clock recovery setting.*/
5874 I915_WRITE(TRANSDATA_M1(pipe), 0);
5875 I915_WRITE(TRANSDATA_N1(pipe), 0);
5876 I915_WRITE(TRANSDPLINK_M1(pipe), 0);
5877 I915_WRITE(TRANSDPLINK_N1(pipe), 0);
5880 if (!intel_crtc->no_pll &&
5881 (!has_edp_encoder ||
5882 intel_encoder_is_pch_edp(&has_edp_encoder->base))) {
5883 I915_WRITE(PCH_DPLL(pipe), dpll);
5885 /* Wait for the clocks to stabilize. */
5886 POSTING_READ(PCH_DPLL(pipe));
5887 udelay(150);
5889 /* The pixel multiplier can only be updated once the
5890 * DPLL is enabled and the clocks are stable.
5892 * So write it again.
5894 I915_WRITE(PCH_DPLL(pipe), dpll);
5897 intel_crtc->lowfreq_avail = false;
5898 if (!intel_crtc->no_pll) {
5899 if (is_lvds && has_reduced_clock && i915_powersave) {
5900 I915_WRITE(PCH_FP1(pipe), fp2);
5901 intel_crtc->lowfreq_avail = true;
5902 if (HAS_PIPE_CXSR(dev)) {
5903 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
5904 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
5906 } else {
5907 I915_WRITE(PCH_FP1(pipe), fp);
5908 if (HAS_PIPE_CXSR(dev)) {
5909 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
5910 pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
5915 pipeconf &= ~PIPECONF_INTERLACE_MASK;
5916 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
5917 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
5918 /* the chip adds 2 halflines automatically */
5919 adjusted_mode->crtc_vdisplay -= 1;
5920 adjusted_mode->crtc_vtotal -= 1;
5921 adjusted_mode->crtc_vblank_start -= 1;
5922 adjusted_mode->crtc_vblank_end -= 1;
5923 adjusted_mode->crtc_vsync_end -= 1;
5924 adjusted_mode->crtc_vsync_start -= 1;
5925 } else
5926 pipeconf |= PIPECONF_PROGRESSIVE;
5928 I915_WRITE(HTOTAL(pipe),
5929 (adjusted_mode->crtc_hdisplay - 1) |
5930 ((adjusted_mode->crtc_htotal - 1) << 16));
5931 I915_WRITE(HBLANK(pipe),
5932 (adjusted_mode->crtc_hblank_start - 1) |
5933 ((adjusted_mode->crtc_hblank_end - 1) << 16));
5934 I915_WRITE(HSYNC(pipe),
5935 (adjusted_mode->crtc_hsync_start - 1) |
5936 ((adjusted_mode->crtc_hsync_end - 1) << 16));
5938 I915_WRITE(VTOTAL(pipe),
5939 (adjusted_mode->crtc_vdisplay - 1) |
5940 ((adjusted_mode->crtc_vtotal - 1) << 16));
5941 I915_WRITE(VBLANK(pipe),
5942 (adjusted_mode->crtc_vblank_start - 1) |
5943 ((adjusted_mode->crtc_vblank_end - 1) << 16));
5944 I915_WRITE(VSYNC(pipe),
5945 (adjusted_mode->crtc_vsync_start - 1) |
5946 ((adjusted_mode->crtc_vsync_end - 1) << 16));
5948 /* pipesrc controls the size that is scaled from, which should
5949 * always be the user's requested size.
5951 I915_WRITE(PIPESRC(pipe),
5952 ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
5954 I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
5955 I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
5956 I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
5957 I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
5959 if (has_edp_encoder &&
5960 !intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5961 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
5964 I915_WRITE(PIPECONF(pipe), pipeconf);
5965 POSTING_READ(PIPECONF(pipe));
5967 intel_wait_for_vblank(dev, pipe);
5969 if (IS_GEN5(dev)) {
5970 /* enable address swizzle for tiling buffer */
5971 temp = I915_READ(DISP_ARB_CTL);
5972 I915_WRITE(DISP_ARB_CTL, temp | DISP_TILE_SURFACE_SWIZZLING);
5975 I915_WRITE(DSPCNTR(plane), dspcntr);
5976 POSTING_READ(DSPCNTR(plane));
5978 ret = intel_pipe_set_base(crtc, x, y, old_fb);
5980 intel_update_watermarks(dev);
5982 return ret;
5985 static int intel_crtc_mode_set(struct drm_crtc *crtc,
5986 struct drm_display_mode *mode,
5987 struct drm_display_mode *adjusted_mode,
5988 int x, int y,
5989 struct drm_framebuffer *old_fb)
5991 struct drm_device *dev = crtc->dev;
5992 struct drm_i915_private *dev_priv = dev->dev_private;
5993 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5994 int pipe = intel_crtc->pipe;
5995 int ret;
5997 drm_vblank_pre_modeset(dev, pipe);
5999 ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
6000 x, y, old_fb);
6001 drm_vblank_post_modeset(dev, pipe);
6003 if (ret)
6004 intel_crtc->dpms_mode = DRM_MODE_DPMS_OFF;
6005 else
6006 intel_crtc->dpms_mode = DRM_MODE_DPMS_ON;
6008 return ret;
6011 static bool intel_eld_uptodate(struct drm_connector *connector,
6012 int reg_eldv, uint32_t bits_eldv,
6013 int reg_elda, uint32_t bits_elda,
6014 int reg_edid)
6016 struct drm_i915_private *dev_priv = connector->dev->dev_private;
6017 uint8_t *eld = connector->eld;
6018 uint32_t i;
6020 i = I915_READ(reg_eldv);
6021 i &= bits_eldv;
6023 if (!eld[0])
6024 return !i;
6026 if (!i)
6027 return false;
6029 i = I915_READ(reg_elda);
6030 i &= ~bits_elda;
6031 I915_WRITE(reg_elda, i);
6033 for (i = 0; i < eld[2]; i++)
6034 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
6035 return false;
6037 return true;
6040 static void g4x_write_eld(struct drm_connector *connector,
6041 struct drm_crtc *crtc)
6043 struct drm_i915_private *dev_priv = connector->dev->dev_private;
6044 uint8_t *eld = connector->eld;
6045 uint32_t eldv;
6046 uint32_t len;
6047 uint32_t i;
6049 i = I915_READ(G4X_AUD_VID_DID);
6051 if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
6052 eldv = G4X_ELDV_DEVCL_DEVBLC;
6053 else
6054 eldv = G4X_ELDV_DEVCTG;
6056 if (intel_eld_uptodate(connector,
6057 G4X_AUD_CNTL_ST, eldv,
6058 G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
6059 G4X_HDMIW_HDMIEDID))
6060 return;
6062 i = I915_READ(G4X_AUD_CNTL_ST);
6063 i &= ~(eldv | G4X_ELD_ADDR);
6064 len = (i >> 9) & 0x1f; /* ELD buffer size */
6065 I915_WRITE(G4X_AUD_CNTL_ST, i);
6067 if (!eld[0])
6068 return;
6070 len = min_t(uint8_t, eld[2], len);
6071 DRM_DEBUG_DRIVER("ELD size %d\n", len);
6072 for (i = 0; i < len; i++)
6073 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
6075 i = I915_READ(G4X_AUD_CNTL_ST);
6076 i |= eldv;
6077 I915_WRITE(G4X_AUD_CNTL_ST, i);
6080 static void ironlake_write_eld(struct drm_connector *connector,
6081 struct drm_crtc *crtc)
6083 struct drm_i915_private *dev_priv = connector->dev->dev_private;
6084 uint8_t *eld = connector->eld;
6085 uint32_t eldv;
6086 uint32_t i;
6087 int len;
6088 int hdmiw_hdmiedid;
6089 int aud_cntl_st;
6090 int aud_cntrl_st2;
6092 if (HAS_PCH_IBX(connector->dev)) {
6093 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID_A;
6094 aud_cntl_st = IBX_AUD_CNTL_ST_A;
6095 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
6096 } else {
6097 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID_A;
6098 aud_cntl_st = CPT_AUD_CNTL_ST_A;
6099 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
6102 i = to_intel_crtc(crtc)->pipe;
6103 hdmiw_hdmiedid += i * 0x100;
6104 aud_cntl_st += i * 0x100;
6106 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(i));
6108 i = I915_READ(aud_cntl_st);
6109 i = (i >> 29) & 0x3; /* DIP_Port_Select, 0x1 = PortB */
6110 if (!i) {
6111 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
6112 /* operate blindly on all ports */
6113 eldv = IBX_ELD_VALIDB;
6114 eldv |= IBX_ELD_VALIDB << 4;
6115 eldv |= IBX_ELD_VALIDB << 8;
6116 } else {
6117 DRM_DEBUG_DRIVER("ELD on port %c\n", 'A' + i);
6118 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
6121 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6122 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6123 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
6126 if (intel_eld_uptodate(connector,
6127 aud_cntrl_st2, eldv,
6128 aud_cntl_st, IBX_ELD_ADDRESS,
6129 hdmiw_hdmiedid))
6130 return;
6132 i = I915_READ(aud_cntrl_st2);
6133 i &= ~eldv;
6134 I915_WRITE(aud_cntrl_st2, i);
6136 if (!eld[0])
6137 return;
6139 i = I915_READ(aud_cntl_st);
6140 i &= ~IBX_ELD_ADDRESS;
6141 I915_WRITE(aud_cntl_st, i);
6143 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
6144 DRM_DEBUG_DRIVER("ELD size %d\n", len);
6145 for (i = 0; i < len; i++)
6146 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6148 i = I915_READ(aud_cntrl_st2);
6149 i |= eldv;
6150 I915_WRITE(aud_cntrl_st2, i);
6153 void intel_write_eld(struct drm_encoder *encoder,
6154 struct drm_display_mode *mode)
6156 struct drm_crtc *crtc = encoder->crtc;
6157 struct drm_connector *connector;
6158 struct drm_device *dev = encoder->dev;
6159 struct drm_i915_private *dev_priv = dev->dev_private;
6161 connector = drm_select_eld(encoder, mode);
6162 if (!connector)
6163 return;
6165 DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6166 connector->base.id,
6167 drm_get_connector_name(connector),
6168 connector->encoder->base.id,
6169 drm_get_encoder_name(connector->encoder));
6171 connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
6173 if (dev_priv->display.write_eld)
6174 dev_priv->display.write_eld(connector, crtc);
6177 /** Loads the palette/gamma unit for the CRTC with the prepared values */
6178 void intel_crtc_load_lut(struct drm_crtc *crtc)
6180 struct drm_device *dev = crtc->dev;
6181 struct drm_i915_private *dev_priv = dev->dev_private;
6182 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6183 int palreg = PALETTE(intel_crtc->pipe);
6184 int i;
6186 /* The clocks have to be on to load the palette. */
6187 if (!crtc->enabled || !intel_crtc->active)
6188 return;
6190 /* use legacy palette for Ironlake */
6191 if (HAS_PCH_SPLIT(dev))
6192 palreg = LGC_PALETTE(intel_crtc->pipe);
6194 for (i = 0; i < 256; i++) {
6195 I915_WRITE(palreg + 4 * i,
6196 (intel_crtc->lut_r[i] << 16) |
6197 (intel_crtc->lut_g[i] << 8) |
6198 intel_crtc->lut_b[i]);
6202 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
6204 struct drm_device *dev = crtc->dev;
6205 struct drm_i915_private *dev_priv = dev->dev_private;
6206 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6207 bool visible = base != 0;
6208 u32 cntl;
6210 if (intel_crtc->cursor_visible == visible)
6211 return;
6213 cntl = I915_READ(_CURACNTR);
6214 if (visible) {
6215 /* On these chipsets we can only modify the base whilst
6216 * the cursor is disabled.
6218 I915_WRITE(_CURABASE, base);
6220 cntl &= ~(CURSOR_FORMAT_MASK);
6221 /* XXX width must be 64, stride 256 => 0x00 << 28 */
6222 cntl |= CURSOR_ENABLE |
6223 CURSOR_GAMMA_ENABLE |
6224 CURSOR_FORMAT_ARGB;
6225 } else
6226 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
6227 I915_WRITE(_CURACNTR, cntl);
6229 intel_crtc->cursor_visible = visible;
6232 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
6234 struct drm_device *dev = crtc->dev;
6235 struct drm_i915_private *dev_priv = dev->dev_private;
6236 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6237 int pipe = intel_crtc->pipe;
6238 bool visible = base != 0;
6240 if (intel_crtc->cursor_visible != visible) {
6241 uint32_t cntl = I915_READ(CURCNTR(pipe));
6242 if (base) {
6243 cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
6244 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6245 cntl |= pipe << 28; /* Connect to correct pipe */
6246 } else {
6247 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6248 cntl |= CURSOR_MODE_DISABLE;
6250 I915_WRITE(CURCNTR(pipe), cntl);
6252 intel_crtc->cursor_visible = visible;
6254 /* and commit changes on next vblank */
6255 I915_WRITE(CURBASE(pipe), base);
6258 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
6260 struct drm_device *dev = crtc->dev;
6261 struct drm_i915_private *dev_priv = dev->dev_private;
6262 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6263 int pipe = intel_crtc->pipe;
6264 bool visible = base != 0;
6266 if (intel_crtc->cursor_visible != visible) {
6267 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
6268 if (base) {
6269 cntl &= ~CURSOR_MODE;
6270 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6271 } else {
6272 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6273 cntl |= CURSOR_MODE_DISABLE;
6275 I915_WRITE(CURCNTR_IVB(pipe), cntl);
6277 intel_crtc->cursor_visible = visible;
6279 /* and commit changes on next vblank */
6280 I915_WRITE(CURBASE_IVB(pipe), base);
6283 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6284 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
6285 bool on)
6287 struct drm_device *dev = crtc->dev;
6288 struct drm_i915_private *dev_priv = dev->dev_private;
6289 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6290 int pipe = intel_crtc->pipe;
6291 int x = intel_crtc->cursor_x;
6292 int y = intel_crtc->cursor_y;
6293 u32 base, pos;
6294 bool visible;
6296 pos = 0;
6298 if (on && crtc->enabled && crtc->fb) {
6299 base = intel_crtc->cursor_addr;
6300 if (x > (int) crtc->fb->width)
6301 base = 0;
6303 if (y > (int) crtc->fb->height)
6304 base = 0;
6305 } else
6306 base = 0;
6308 if (x < 0) {
6309 if (x + intel_crtc->cursor_width < 0)
6310 base = 0;
6312 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
6313 x = -x;
6315 pos |= x << CURSOR_X_SHIFT;
6317 if (y < 0) {
6318 if (y + intel_crtc->cursor_height < 0)
6319 base = 0;
6321 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
6322 y = -y;
6324 pos |= y << CURSOR_Y_SHIFT;
6326 visible = base != 0;
6327 if (!visible && !intel_crtc->cursor_visible)
6328 return;
6330 if (IS_IVYBRIDGE(dev)) {
6331 I915_WRITE(CURPOS_IVB(pipe), pos);
6332 ivb_update_cursor(crtc, base);
6333 } else {
6334 I915_WRITE(CURPOS(pipe), pos);
6335 if (IS_845G(dev) || IS_I865G(dev))
6336 i845_update_cursor(crtc, base);
6337 else
6338 i9xx_update_cursor(crtc, base);
6341 if (visible)
6342 intel_mark_busy(dev, to_intel_framebuffer(crtc->fb)->obj);
6345 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
6346 struct drm_file *file,
6347 uint32_t handle,
6348 uint32_t width, uint32_t height)
6350 struct drm_device *dev = crtc->dev;
6351 struct drm_i915_private *dev_priv = dev->dev_private;
6352 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6353 struct drm_i915_gem_object *obj;
6354 uint32_t addr;
6355 int ret;
6357 DRM_DEBUG_KMS("\n");
6359 /* if we want to turn off the cursor ignore width and height */
6360 if (!handle) {
6361 DRM_DEBUG_KMS("cursor off\n");
6362 addr = 0;
6363 obj = NULL;
6364 mutex_lock(&dev->struct_mutex);
6365 goto finish;
6368 /* Currently we only support 64x64 cursors */
6369 if (width != 64 || height != 64) {
6370 DRM_ERROR("we currently only support 64x64 cursors\n");
6371 return -EINVAL;
6374 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
6375 if (&obj->base == NULL)
6376 return -ENOENT;
6378 if (obj->base.size < width * height * 4) {
6379 DRM_ERROR("buffer is to small\n");
6380 ret = -ENOMEM;
6381 goto fail;
6384 /* we only need to pin inside GTT if cursor is non-phy */
6385 mutex_lock(&dev->struct_mutex);
6386 if (!dev_priv->info->cursor_needs_physical) {
6387 if (obj->tiling_mode) {
6388 DRM_ERROR("cursor cannot be tiled\n");
6389 ret = -EINVAL;
6390 goto fail_locked;
6393 ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
6394 if (ret) {
6395 DRM_ERROR("failed to move cursor bo into the GTT\n");
6396 goto fail_locked;
6399 ret = i915_gem_object_put_fence(obj);
6400 if (ret) {
6401 DRM_ERROR("failed to release fence for cursor");
6402 goto fail_unpin;
6405 addr = obj->gtt_offset;
6406 } else {
6407 int align = IS_I830(dev) ? 16 * 1024 : 256;
6408 ret = i915_gem_attach_phys_object(dev, obj,
6409 (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
6410 align);
6411 if (ret) {
6412 DRM_ERROR("failed to attach phys object\n");
6413 goto fail_locked;
6415 addr = obj->phys_obj->handle->busaddr;
6418 if (IS_GEN2(dev))
6419 I915_WRITE(CURSIZE, (height << 12) | width);
6421 finish:
6422 if (intel_crtc->cursor_bo) {
6423 if (dev_priv->info->cursor_needs_physical) {
6424 if (intel_crtc->cursor_bo != obj)
6425 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
6426 } else
6427 i915_gem_object_unpin(intel_crtc->cursor_bo);
6428 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
6431 mutex_unlock(&dev->struct_mutex);
6433 intel_crtc->cursor_addr = addr;
6434 intel_crtc->cursor_bo = obj;
6435 intel_crtc->cursor_width = width;
6436 intel_crtc->cursor_height = height;
6438 intel_crtc_update_cursor(crtc, true);
6440 return 0;
6441 fail_unpin:
6442 i915_gem_object_unpin(obj);
6443 fail_locked:
6444 mutex_unlock(&dev->struct_mutex);
6445 fail:
6446 drm_gem_object_unreference_unlocked(&obj->base);
6447 return ret;
6450 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
6452 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6454 intel_crtc->cursor_x = x;
6455 intel_crtc->cursor_y = y;
6457 intel_crtc_update_cursor(crtc, true);
6459 return 0;
6462 /** Sets the color ramps on behalf of RandR */
6463 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
6464 u16 blue, int regno)
6466 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6468 intel_crtc->lut_r[regno] = red >> 8;
6469 intel_crtc->lut_g[regno] = green >> 8;
6470 intel_crtc->lut_b[regno] = blue >> 8;
6473 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
6474 u16 *blue, int regno)
6476 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6478 *red = intel_crtc->lut_r[regno] << 8;
6479 *green = intel_crtc->lut_g[regno] << 8;
6480 *blue = intel_crtc->lut_b[regno] << 8;
6483 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
6484 u16 *blue, uint32_t start, uint32_t size)
6486 int end = (start + size > 256) ? 256 : start + size, i;
6487 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6489 for (i = start; i < end; i++) {
6490 intel_crtc->lut_r[i] = red[i] >> 8;
6491 intel_crtc->lut_g[i] = green[i] >> 8;
6492 intel_crtc->lut_b[i] = blue[i] >> 8;
6495 intel_crtc_load_lut(crtc);
6499 * Get a pipe with a simple mode set on it for doing load-based monitor
6500 * detection.
6502 * It will be up to the load-detect code to adjust the pipe as appropriate for
6503 * its requirements. The pipe will be connected to no other encoders.
6505 * Currently this code will only succeed if there is a pipe with no encoders
6506 * configured for it. In the future, it could choose to temporarily disable
6507 * some outputs to free up a pipe for its use.
6509 * \return crtc, or NULL if no pipes are available.
6512 /* VESA 640x480x72Hz mode to set on the pipe */
6513 static struct drm_display_mode load_detect_mode = {
6514 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
6515 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
6518 static struct drm_framebuffer *
6519 intel_framebuffer_create(struct drm_device *dev,
6520 struct drm_mode_fb_cmd2 *mode_cmd,
6521 struct drm_i915_gem_object *obj)
6523 struct intel_framebuffer *intel_fb;
6524 int ret;
6526 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
6527 if (!intel_fb) {
6528 drm_gem_object_unreference_unlocked(&obj->base);
6529 return ERR_PTR(-ENOMEM);
6532 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
6533 if (ret) {
6534 drm_gem_object_unreference_unlocked(&obj->base);
6535 kfree(intel_fb);
6536 return ERR_PTR(ret);
6539 return &intel_fb->base;
6542 static u32
6543 intel_framebuffer_pitch_for_width(int width, int bpp)
6545 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
6546 return ALIGN(pitch, 64);
6549 static u32
6550 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
6552 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
6553 return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
6556 static struct drm_framebuffer *
6557 intel_framebuffer_create_for_mode(struct drm_device *dev,
6558 struct drm_display_mode *mode,
6559 int depth, int bpp)
6561 struct drm_i915_gem_object *obj;
6562 struct drm_mode_fb_cmd2 mode_cmd;
6564 obj = i915_gem_alloc_object(dev,
6565 intel_framebuffer_size_for_mode(mode, bpp));
6566 if (obj == NULL)
6567 return ERR_PTR(-ENOMEM);
6569 mode_cmd.width = mode->hdisplay;
6570 mode_cmd.height = mode->vdisplay;
6571 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
6572 bpp);
6573 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
6575 return intel_framebuffer_create(dev, &mode_cmd, obj);
6578 static struct drm_framebuffer *
6579 mode_fits_in_fbdev(struct drm_device *dev,
6580 struct drm_display_mode *mode)
6582 struct drm_i915_private *dev_priv = dev->dev_private;
6583 struct drm_i915_gem_object *obj;
6584 struct drm_framebuffer *fb;
6586 if (dev_priv->fbdev == NULL)
6587 return NULL;
6589 obj = dev_priv->fbdev->ifb.obj;
6590 if (obj == NULL)
6591 return NULL;
6593 fb = &dev_priv->fbdev->ifb.base;
6594 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
6595 fb->bits_per_pixel))
6596 return NULL;
6598 if (obj->base.size < mode->vdisplay * fb->pitches[0])
6599 return NULL;
6601 return fb;
6604 bool intel_get_load_detect_pipe(struct intel_encoder *intel_encoder,
6605 struct drm_connector *connector,
6606 struct drm_display_mode *mode,
6607 struct intel_load_detect_pipe *old)
6609 struct intel_crtc *intel_crtc;
6610 struct drm_crtc *possible_crtc;
6611 struct drm_encoder *encoder = &intel_encoder->base;
6612 struct drm_crtc *crtc = NULL;
6613 struct drm_device *dev = encoder->dev;
6614 struct drm_framebuffer *old_fb;
6615 int i = -1;
6617 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6618 connector->base.id, drm_get_connector_name(connector),
6619 encoder->base.id, drm_get_encoder_name(encoder));
6622 * Algorithm gets a little messy:
6624 * - if the connector already has an assigned crtc, use it (but make
6625 * sure it's on first)
6627 * - try to find the first unused crtc that can drive this connector,
6628 * and use that if we find one
6631 /* See if we already have a CRTC for this connector */
6632 if (encoder->crtc) {
6633 crtc = encoder->crtc;
6635 intel_crtc = to_intel_crtc(crtc);
6636 old->dpms_mode = intel_crtc->dpms_mode;
6637 old->load_detect_temp = false;
6639 /* Make sure the crtc and connector are running */
6640 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
6641 struct drm_encoder_helper_funcs *encoder_funcs;
6642 struct drm_crtc_helper_funcs *crtc_funcs;
6644 crtc_funcs = crtc->helper_private;
6645 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
6647 encoder_funcs = encoder->helper_private;
6648 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
6651 return true;
6654 /* Find an unused one (if possible) */
6655 list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
6656 i++;
6657 if (!(encoder->possible_crtcs & (1 << i)))
6658 continue;
6659 if (!possible_crtc->enabled) {
6660 crtc = possible_crtc;
6661 break;
6666 * If we didn't find an unused CRTC, don't use any.
6668 if (!crtc) {
6669 DRM_DEBUG_KMS("no pipe available for load-detect\n");
6670 return false;
6673 encoder->crtc = crtc;
6674 connector->encoder = encoder;
6676 intel_crtc = to_intel_crtc(crtc);
6677 old->dpms_mode = intel_crtc->dpms_mode;
6678 old->load_detect_temp = true;
6679 old->release_fb = NULL;
6681 if (!mode)
6682 mode = &load_detect_mode;
6684 old_fb = crtc->fb;
6686 /* We need a framebuffer large enough to accommodate all accesses
6687 * that the plane may generate whilst we perform load detection.
6688 * We can not rely on the fbcon either being present (we get called
6689 * during its initialisation to detect all boot displays, or it may
6690 * not even exist) or that it is large enough to satisfy the
6691 * requested mode.
6693 crtc->fb = mode_fits_in_fbdev(dev, mode);
6694 if (crtc->fb == NULL) {
6695 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
6696 crtc->fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
6697 old->release_fb = crtc->fb;
6698 } else
6699 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
6700 if (IS_ERR(crtc->fb)) {
6701 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
6702 crtc->fb = old_fb;
6703 return false;
6706 if (!drm_crtc_helper_set_mode(crtc, mode, 0, 0, old_fb)) {
6707 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
6708 if (old->release_fb)
6709 old->release_fb->funcs->destroy(old->release_fb);
6710 crtc->fb = old_fb;
6711 return false;
6714 /* let the connector get through one full cycle before testing */
6715 intel_wait_for_vblank(dev, intel_crtc->pipe);
6717 return true;
6720 void intel_release_load_detect_pipe(struct intel_encoder *intel_encoder,
6721 struct drm_connector *connector,
6722 struct intel_load_detect_pipe *old)
6724 struct drm_encoder *encoder = &intel_encoder->base;
6725 struct drm_device *dev = encoder->dev;
6726 struct drm_crtc *crtc = encoder->crtc;
6727 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
6728 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
6730 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6731 connector->base.id, drm_get_connector_name(connector),
6732 encoder->base.id, drm_get_encoder_name(encoder));
6734 if (old->load_detect_temp) {
6735 connector->encoder = NULL;
6736 drm_helper_disable_unused_functions(dev);
6738 if (old->release_fb)
6739 old->release_fb->funcs->destroy(old->release_fb);
6741 return;
6744 /* Switch crtc and encoder back off if necessary */
6745 if (old->dpms_mode != DRM_MODE_DPMS_ON) {
6746 encoder_funcs->dpms(encoder, old->dpms_mode);
6747 crtc_funcs->dpms(crtc, old->dpms_mode);
6751 /* Returns the clock of the currently programmed mode of the given pipe. */
6752 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
6754 struct drm_i915_private *dev_priv = dev->dev_private;
6755 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6756 int pipe = intel_crtc->pipe;
6757 u32 dpll = I915_READ(DPLL(pipe));
6758 u32 fp;
6759 intel_clock_t clock;
6761 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
6762 fp = I915_READ(FP0(pipe));
6763 else
6764 fp = I915_READ(FP1(pipe));
6766 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
6767 if (IS_PINEVIEW(dev)) {
6768 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
6769 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
6770 } else {
6771 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
6772 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
6775 if (!IS_GEN2(dev)) {
6776 if (IS_PINEVIEW(dev))
6777 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
6778 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
6779 else
6780 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
6781 DPLL_FPA01_P1_POST_DIV_SHIFT);
6783 switch (dpll & DPLL_MODE_MASK) {
6784 case DPLLB_MODE_DAC_SERIAL:
6785 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
6786 5 : 10;
6787 break;
6788 case DPLLB_MODE_LVDS:
6789 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
6790 7 : 14;
6791 break;
6792 default:
6793 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
6794 "mode\n", (int)(dpll & DPLL_MODE_MASK));
6795 return 0;
6798 /* XXX: Handle the 100Mhz refclk */
6799 intel_clock(dev, 96000, &clock);
6800 } else {
6801 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
6803 if (is_lvds) {
6804 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
6805 DPLL_FPA01_P1_POST_DIV_SHIFT);
6806 clock.p2 = 14;
6808 if ((dpll & PLL_REF_INPUT_MASK) ==
6809 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
6810 /* XXX: might not be 66MHz */
6811 intel_clock(dev, 66000, &clock);
6812 } else
6813 intel_clock(dev, 48000, &clock);
6814 } else {
6815 if (dpll & PLL_P1_DIVIDE_BY_TWO)
6816 clock.p1 = 2;
6817 else {
6818 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
6819 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
6821 if (dpll & PLL_P2_DIVIDE_BY_4)
6822 clock.p2 = 4;
6823 else
6824 clock.p2 = 2;
6826 intel_clock(dev, 48000, &clock);
6830 /* XXX: It would be nice to validate the clocks, but we can't reuse
6831 * i830PllIsValid() because it relies on the xf86_config connector
6832 * configuration being accurate, which it isn't necessarily.
6835 return clock.dot;
6838 /** Returns the currently programmed mode of the given pipe. */
6839 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
6840 struct drm_crtc *crtc)
6842 struct drm_i915_private *dev_priv = dev->dev_private;
6843 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6844 int pipe = intel_crtc->pipe;
6845 struct drm_display_mode *mode;
6846 int htot = I915_READ(HTOTAL(pipe));
6847 int hsync = I915_READ(HSYNC(pipe));
6848 int vtot = I915_READ(VTOTAL(pipe));
6849 int vsync = I915_READ(VSYNC(pipe));
6851 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
6852 if (!mode)
6853 return NULL;
6855 mode->clock = intel_crtc_clock_get(dev, crtc);
6856 mode->hdisplay = (htot & 0xffff) + 1;
6857 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
6858 mode->hsync_start = (hsync & 0xffff) + 1;
6859 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
6860 mode->vdisplay = (vtot & 0xffff) + 1;
6861 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
6862 mode->vsync_start = (vsync & 0xffff) + 1;
6863 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
6865 drm_mode_set_name(mode);
6866 drm_mode_set_crtcinfo(mode, 0);
6868 return mode;
6871 #define GPU_IDLE_TIMEOUT 500 /* ms */
6873 /* When this timer fires, we've been idle for awhile */
6874 static void intel_gpu_idle_timer(unsigned long arg)
6876 struct drm_device *dev = (struct drm_device *)arg;
6877 drm_i915_private_t *dev_priv = dev->dev_private;
6879 if (!list_empty(&dev_priv->mm.active_list)) {
6880 /* Still processing requests, so just re-arm the timer. */
6881 mod_timer(&dev_priv->idle_timer, jiffies +
6882 msecs_to_jiffies(GPU_IDLE_TIMEOUT));
6883 return;
6886 dev_priv->busy = false;
6887 queue_work(dev_priv->wq, &dev_priv->idle_work);
6890 #define CRTC_IDLE_TIMEOUT 1000 /* ms */
6892 static void intel_crtc_idle_timer(unsigned long arg)
6894 struct intel_crtc *intel_crtc = (struct intel_crtc *)arg;
6895 struct drm_crtc *crtc = &intel_crtc->base;
6896 drm_i915_private_t *dev_priv = crtc->dev->dev_private;
6897 struct intel_framebuffer *intel_fb;
6899 intel_fb = to_intel_framebuffer(crtc->fb);
6900 if (intel_fb && intel_fb->obj->active) {
6901 /* The framebuffer is still being accessed by the GPU. */
6902 mod_timer(&intel_crtc->idle_timer, jiffies +
6903 msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
6904 return;
6907 intel_crtc->busy = false;
6908 queue_work(dev_priv->wq, &dev_priv->idle_work);
6911 static void intel_increase_pllclock(struct drm_crtc *crtc)
6913 struct drm_device *dev = crtc->dev;
6914 drm_i915_private_t *dev_priv = dev->dev_private;
6915 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6916 int pipe = intel_crtc->pipe;
6917 int dpll_reg = DPLL(pipe);
6918 int dpll;
6920 if (HAS_PCH_SPLIT(dev))
6921 return;
6923 if (!dev_priv->lvds_downclock_avail)
6924 return;
6926 dpll = I915_READ(dpll_reg);
6927 if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
6928 DRM_DEBUG_DRIVER("upclocking LVDS\n");
6930 /* Unlock panel regs */
6931 I915_WRITE(PP_CONTROL,
6932 I915_READ(PP_CONTROL) | PANEL_UNLOCK_REGS);
6934 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
6935 I915_WRITE(dpll_reg, dpll);
6936 intel_wait_for_vblank(dev, pipe);
6938 dpll = I915_READ(dpll_reg);
6939 if (dpll & DISPLAY_RATE_SELECT_FPA1)
6940 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
6942 /* ...and lock them again */
6943 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
6946 /* Schedule downclock */
6947 mod_timer(&intel_crtc->idle_timer, jiffies +
6948 msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
6951 static void intel_decrease_pllclock(struct drm_crtc *crtc)
6953 struct drm_device *dev = crtc->dev;
6954 drm_i915_private_t *dev_priv = dev->dev_private;
6955 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6956 int pipe = intel_crtc->pipe;
6957 int dpll_reg = DPLL(pipe);
6958 int dpll = I915_READ(dpll_reg);
6960 if (HAS_PCH_SPLIT(dev))
6961 return;
6963 if (!dev_priv->lvds_downclock_avail)
6964 return;
6967 * Since this is called by a timer, we should never get here in
6968 * the manual case.
6970 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
6971 DRM_DEBUG_DRIVER("downclocking LVDS\n");
6973 /* Unlock panel regs */
6974 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) |
6975 PANEL_UNLOCK_REGS);
6977 dpll |= DISPLAY_RATE_SELECT_FPA1;
6978 I915_WRITE(dpll_reg, dpll);
6979 intel_wait_for_vblank(dev, pipe);
6980 dpll = I915_READ(dpll_reg);
6981 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
6982 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
6984 /* ...and lock them again */
6985 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
6991 * intel_idle_update - adjust clocks for idleness
6992 * @work: work struct
6994 * Either the GPU or display (or both) went idle. Check the busy status
6995 * here and adjust the CRTC and GPU clocks as necessary.
6997 static void intel_idle_update(struct work_struct *work)
6999 drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
7000 idle_work);
7001 struct drm_device *dev = dev_priv->dev;
7002 struct drm_crtc *crtc;
7003 struct intel_crtc *intel_crtc;
7005 if (!i915_powersave)
7006 return;
7008 mutex_lock(&dev->struct_mutex);
7010 i915_update_gfx_val(dev_priv);
7012 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7013 /* Skip inactive CRTCs */
7014 if (!crtc->fb)
7015 continue;
7017 intel_crtc = to_intel_crtc(crtc);
7018 if (!intel_crtc->busy)
7019 intel_decrease_pllclock(crtc);
7023 mutex_unlock(&dev->struct_mutex);
7027 * intel_mark_busy - mark the GPU and possibly the display busy
7028 * @dev: drm device
7029 * @obj: object we're operating on
7031 * Callers can use this function to indicate that the GPU is busy processing
7032 * commands. If @obj matches one of the CRTC objects (i.e. it's a scanout
7033 * buffer), we'll also mark the display as busy, so we know to increase its
7034 * clock frequency.
7036 void intel_mark_busy(struct drm_device *dev, struct drm_i915_gem_object *obj)
7038 drm_i915_private_t *dev_priv = dev->dev_private;
7039 struct drm_crtc *crtc = NULL;
7040 struct intel_framebuffer *intel_fb;
7041 struct intel_crtc *intel_crtc;
7043 if (!drm_core_check_feature(dev, DRIVER_MODESET))
7044 return;
7046 if (!dev_priv->busy)
7047 dev_priv->busy = true;
7048 else
7049 mod_timer(&dev_priv->idle_timer, jiffies +
7050 msecs_to_jiffies(GPU_IDLE_TIMEOUT));
7052 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7053 if (!crtc->fb)
7054 continue;
7056 intel_crtc = to_intel_crtc(crtc);
7057 intel_fb = to_intel_framebuffer(crtc->fb);
7058 if (intel_fb->obj == obj) {
7059 if (!intel_crtc->busy) {
7060 /* Non-busy -> busy, upclock */
7061 intel_increase_pllclock(crtc);
7062 intel_crtc->busy = true;
7063 } else {
7064 /* Busy -> busy, put off timer */
7065 mod_timer(&intel_crtc->idle_timer, jiffies +
7066 msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
7072 static void intel_crtc_destroy(struct drm_crtc *crtc)
7074 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7075 struct drm_device *dev = crtc->dev;
7076 struct intel_unpin_work *work;
7077 unsigned long flags;
7079 spin_lock_irqsave(&dev->event_lock, flags);
7080 work = intel_crtc->unpin_work;
7081 intel_crtc->unpin_work = NULL;
7082 spin_unlock_irqrestore(&dev->event_lock, flags);
7084 if (work) {
7085 cancel_work_sync(&work->work);
7086 kfree(work);
7089 drm_crtc_cleanup(crtc);
7091 kfree(intel_crtc);
7094 static void intel_unpin_work_fn(struct work_struct *__work)
7096 struct intel_unpin_work *work =
7097 container_of(__work, struct intel_unpin_work, work);
7099 mutex_lock(&work->dev->struct_mutex);
7100 i915_gem_object_unpin(work->old_fb_obj);
7101 drm_gem_object_unreference(&work->pending_flip_obj->base);
7102 drm_gem_object_unreference(&work->old_fb_obj->base);
7104 intel_update_fbc(work->dev);
7105 mutex_unlock(&work->dev->struct_mutex);
7106 kfree(work);
7109 static void do_intel_finish_page_flip(struct drm_device *dev,
7110 struct drm_crtc *crtc)
7112 drm_i915_private_t *dev_priv = dev->dev_private;
7113 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7114 struct intel_unpin_work *work;
7115 struct drm_i915_gem_object *obj;
7116 struct drm_pending_vblank_event *e;
7117 struct timeval tnow, tvbl;
7118 unsigned long flags;
7120 /* Ignore early vblank irqs */
7121 if (intel_crtc == NULL)
7122 return;
7124 do_gettimeofday(&tnow);
7126 spin_lock_irqsave(&dev->event_lock, flags);
7127 work = intel_crtc->unpin_work;
7128 if (work == NULL || !work->pending) {
7129 spin_unlock_irqrestore(&dev->event_lock, flags);
7130 return;
7133 intel_crtc->unpin_work = NULL;
7135 if (work->event) {
7136 e = work->event;
7137 e->event.sequence = drm_vblank_count_and_time(dev, intel_crtc->pipe, &tvbl);
7139 /* Called before vblank count and timestamps have
7140 * been updated for the vblank interval of flip
7141 * completion? Need to increment vblank count and
7142 * add one videorefresh duration to returned timestamp
7143 * to account for this. We assume this happened if we
7144 * get called over 0.9 frame durations after the last
7145 * timestamped vblank.
7147 * This calculation can not be used with vrefresh rates
7148 * below 5Hz (10Hz to be on the safe side) without
7149 * promoting to 64 integers.
7151 if (10 * (timeval_to_ns(&tnow) - timeval_to_ns(&tvbl)) >
7152 9 * crtc->framedur_ns) {
7153 e->event.sequence++;
7154 tvbl = ns_to_timeval(timeval_to_ns(&tvbl) +
7155 crtc->framedur_ns);
7158 e->event.tv_sec = tvbl.tv_sec;
7159 e->event.tv_usec = tvbl.tv_usec;
7161 list_add_tail(&e->base.link,
7162 &e->base.file_priv->event_list);
7163 wake_up_interruptible(&e->base.file_priv->event_wait);
7166 drm_vblank_put(dev, intel_crtc->pipe);
7168 spin_unlock_irqrestore(&dev->event_lock, flags);
7170 obj = work->old_fb_obj;
7172 atomic_clear_mask(1 << intel_crtc->plane,
7173 &obj->pending_flip.counter);
7174 if (atomic_read(&obj->pending_flip) == 0)
7175 wake_up(&dev_priv->pending_flip_queue);
7177 schedule_work(&work->work);
7179 trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
7182 void intel_finish_page_flip(struct drm_device *dev, int pipe)
7184 drm_i915_private_t *dev_priv = dev->dev_private;
7185 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
7187 do_intel_finish_page_flip(dev, crtc);
7190 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
7192 drm_i915_private_t *dev_priv = dev->dev_private;
7193 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
7195 do_intel_finish_page_flip(dev, crtc);
7198 void intel_prepare_page_flip(struct drm_device *dev, int plane)
7200 drm_i915_private_t *dev_priv = dev->dev_private;
7201 struct intel_crtc *intel_crtc =
7202 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
7203 unsigned long flags;
7205 spin_lock_irqsave(&dev->event_lock, flags);
7206 if (intel_crtc->unpin_work) {
7207 if ((++intel_crtc->unpin_work->pending) > 1)
7208 DRM_ERROR("Prepared flip multiple times\n");
7209 } else {
7210 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
7212 spin_unlock_irqrestore(&dev->event_lock, flags);
7215 static int intel_gen2_queue_flip(struct drm_device *dev,
7216 struct drm_crtc *crtc,
7217 struct drm_framebuffer *fb,
7218 struct drm_i915_gem_object *obj)
7220 struct drm_i915_private *dev_priv = dev->dev_private;
7221 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7222 unsigned long offset;
7223 u32 flip_mask;
7224 int ret;
7226 ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
7227 if (ret)
7228 goto out;
7230 /* Offset into the new buffer for cases of shared fbs between CRTCs */
7231 offset = crtc->y * fb->pitches[0] + crtc->x * fb->bits_per_pixel/8;
7233 ret = BEGIN_LP_RING(6);
7234 if (ret)
7235 goto out;
7237 /* Can't queue multiple flips, so wait for the previous
7238 * one to finish before executing the next.
7240 if (intel_crtc->plane)
7241 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7242 else
7243 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7244 OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
7245 OUT_RING(MI_NOOP);
7246 OUT_RING(MI_DISPLAY_FLIP |
7247 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7248 OUT_RING(fb->pitches[0]);
7249 OUT_RING(obj->gtt_offset + offset);
7250 OUT_RING(MI_NOOP);
7251 ADVANCE_LP_RING();
7252 out:
7253 return ret;
7256 static int intel_gen3_queue_flip(struct drm_device *dev,
7257 struct drm_crtc *crtc,
7258 struct drm_framebuffer *fb,
7259 struct drm_i915_gem_object *obj)
7261 struct drm_i915_private *dev_priv = dev->dev_private;
7262 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7263 unsigned long offset;
7264 u32 flip_mask;
7265 int ret;
7267 ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
7268 if (ret)
7269 goto out;
7271 /* Offset into the new buffer for cases of shared fbs between CRTCs */
7272 offset = crtc->y * fb->pitches[0] + crtc->x * fb->bits_per_pixel/8;
7274 ret = BEGIN_LP_RING(6);
7275 if (ret)
7276 goto out;
7278 if (intel_crtc->plane)
7279 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7280 else
7281 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7282 OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
7283 OUT_RING(MI_NOOP);
7284 OUT_RING(MI_DISPLAY_FLIP_I915 |
7285 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7286 OUT_RING(fb->pitches[0]);
7287 OUT_RING(obj->gtt_offset + offset);
7288 OUT_RING(MI_NOOP);
7290 ADVANCE_LP_RING();
7291 out:
7292 return ret;
7295 static int intel_gen4_queue_flip(struct drm_device *dev,
7296 struct drm_crtc *crtc,
7297 struct drm_framebuffer *fb,
7298 struct drm_i915_gem_object *obj)
7300 struct drm_i915_private *dev_priv = dev->dev_private;
7301 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7302 uint32_t pf, pipesrc;
7303 int ret;
7305 ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
7306 if (ret)
7307 goto out;
7309 ret = BEGIN_LP_RING(4);
7310 if (ret)
7311 goto out;
7313 /* i965+ uses the linear or tiled offsets from the
7314 * Display Registers (which do not change across a page-flip)
7315 * so we need only reprogram the base address.
7317 OUT_RING(MI_DISPLAY_FLIP |
7318 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7319 OUT_RING(fb->pitches[0]);
7320 OUT_RING(obj->gtt_offset | obj->tiling_mode);
7322 /* XXX Enabling the panel-fitter across page-flip is so far
7323 * untested on non-native modes, so ignore it for now.
7324 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
7326 pf = 0;
7327 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7328 OUT_RING(pf | pipesrc);
7329 ADVANCE_LP_RING();
7330 out:
7331 return ret;
7334 static int intel_gen6_queue_flip(struct drm_device *dev,
7335 struct drm_crtc *crtc,
7336 struct drm_framebuffer *fb,
7337 struct drm_i915_gem_object *obj)
7339 struct drm_i915_private *dev_priv = dev->dev_private;
7340 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7341 uint32_t pf, pipesrc;
7342 int ret;
7344 ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
7345 if (ret)
7346 goto out;
7348 ret = BEGIN_LP_RING(4);
7349 if (ret)
7350 goto out;
7352 OUT_RING(MI_DISPLAY_FLIP |
7353 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7354 OUT_RING(fb->pitches[0] | obj->tiling_mode);
7355 OUT_RING(obj->gtt_offset);
7357 pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
7358 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7359 OUT_RING(pf | pipesrc);
7360 ADVANCE_LP_RING();
7361 out:
7362 return ret;
7366 * On gen7 we currently use the blit ring because (in early silicon at least)
7367 * the render ring doesn't give us interrpts for page flip completion, which
7368 * means clients will hang after the first flip is queued. Fortunately the
7369 * blit ring generates interrupts properly, so use it instead.
7371 static int intel_gen7_queue_flip(struct drm_device *dev,
7372 struct drm_crtc *crtc,
7373 struct drm_framebuffer *fb,
7374 struct drm_i915_gem_object *obj)
7376 struct drm_i915_private *dev_priv = dev->dev_private;
7377 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7378 struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
7379 int ret;
7381 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7382 if (ret)
7383 goto out;
7385 ret = intel_ring_begin(ring, 4);
7386 if (ret)
7387 goto out;
7389 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | (intel_crtc->plane << 19));
7390 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
7391 intel_ring_emit(ring, (obj->gtt_offset));
7392 intel_ring_emit(ring, (MI_NOOP));
7393 intel_ring_advance(ring);
7394 out:
7395 return ret;
7398 static int intel_default_queue_flip(struct drm_device *dev,
7399 struct drm_crtc *crtc,
7400 struct drm_framebuffer *fb,
7401 struct drm_i915_gem_object *obj)
7403 return -ENODEV;
7406 static int intel_crtc_page_flip(struct drm_crtc *crtc,
7407 struct drm_framebuffer *fb,
7408 struct drm_pending_vblank_event *event)
7410 struct drm_device *dev = crtc->dev;
7411 struct drm_i915_private *dev_priv = dev->dev_private;
7412 struct intel_framebuffer *intel_fb;
7413 struct drm_i915_gem_object *obj;
7414 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7415 struct intel_unpin_work *work;
7416 unsigned long flags;
7417 int ret;
7419 work = kzalloc(sizeof *work, GFP_KERNEL);
7420 if (work == NULL)
7421 return -ENOMEM;
7423 work->event = event;
7424 work->dev = crtc->dev;
7425 intel_fb = to_intel_framebuffer(crtc->fb);
7426 work->old_fb_obj = intel_fb->obj;
7427 INIT_WORK(&work->work, intel_unpin_work_fn);
7429 ret = drm_vblank_get(dev, intel_crtc->pipe);
7430 if (ret)
7431 goto free_work;
7433 /* We borrow the event spin lock for protecting unpin_work */
7434 spin_lock_irqsave(&dev->event_lock, flags);
7435 if (intel_crtc->unpin_work) {
7436 spin_unlock_irqrestore(&dev->event_lock, flags);
7437 kfree(work);
7438 drm_vblank_put(dev, intel_crtc->pipe);
7440 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
7441 return -EBUSY;
7443 intel_crtc->unpin_work = work;
7444 spin_unlock_irqrestore(&dev->event_lock, flags);
7446 intel_fb = to_intel_framebuffer(fb);
7447 obj = intel_fb->obj;
7449 mutex_lock(&dev->struct_mutex);
7451 /* Reference the objects for the scheduled work. */
7452 drm_gem_object_reference(&work->old_fb_obj->base);
7453 drm_gem_object_reference(&obj->base);
7455 crtc->fb = fb;
7457 work->pending_flip_obj = obj;
7459 work->enable_stall_check = true;
7461 /* Block clients from rendering to the new back buffer until
7462 * the flip occurs and the object is no longer visible.
7464 atomic_add(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
7466 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
7467 if (ret)
7468 goto cleanup_pending;
7470 intel_disable_fbc(dev);
7471 mutex_unlock(&dev->struct_mutex);
7473 trace_i915_flip_request(intel_crtc->plane, obj);
7475 return 0;
7477 cleanup_pending:
7478 atomic_sub(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
7479 drm_gem_object_unreference(&work->old_fb_obj->base);
7480 drm_gem_object_unreference(&obj->base);
7481 mutex_unlock(&dev->struct_mutex);
7483 spin_lock_irqsave(&dev->event_lock, flags);
7484 intel_crtc->unpin_work = NULL;
7485 spin_unlock_irqrestore(&dev->event_lock, flags);
7487 drm_vblank_put(dev, intel_crtc->pipe);
7488 free_work:
7489 kfree(work);
7491 return ret;
7494 static void intel_sanitize_modesetting(struct drm_device *dev,
7495 int pipe, int plane)
7497 struct drm_i915_private *dev_priv = dev->dev_private;
7498 u32 reg, val;
7500 /* Clear any frame start delays used for debugging left by the BIOS */
7501 for_each_pipe(pipe) {
7502 reg = PIPECONF(pipe);
7503 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
7506 if (HAS_PCH_SPLIT(dev))
7507 return;
7509 /* Who knows what state these registers were left in by the BIOS or
7510 * grub?
7512 * If we leave the registers in a conflicting state (e.g. with the
7513 * display plane reading from the other pipe than the one we intend
7514 * to use) then when we attempt to teardown the active mode, we will
7515 * not disable the pipes and planes in the correct order -- leaving
7516 * a plane reading from a disabled pipe and possibly leading to
7517 * undefined behaviour.
7520 reg = DSPCNTR(plane);
7521 val = I915_READ(reg);
7523 if ((val & DISPLAY_PLANE_ENABLE) == 0)
7524 return;
7525 if (!!(val & DISPPLANE_SEL_PIPE_MASK) == pipe)
7526 return;
7528 /* This display plane is active and attached to the other CPU pipe. */
7529 pipe = !pipe;
7531 /* Disable the plane and wait for it to stop reading from the pipe. */
7532 intel_disable_plane(dev_priv, plane, pipe);
7533 intel_disable_pipe(dev_priv, pipe);
7536 static void intel_crtc_reset(struct drm_crtc *crtc)
7538 struct drm_device *dev = crtc->dev;
7539 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7541 /* Reset flags back to the 'unknown' status so that they
7542 * will be correctly set on the initial modeset.
7544 intel_crtc->dpms_mode = -1;
7546 /* We need to fix up any BIOS configuration that conflicts with
7547 * our expectations.
7549 intel_sanitize_modesetting(dev, intel_crtc->pipe, intel_crtc->plane);
7552 static struct drm_crtc_helper_funcs intel_helper_funcs = {
7553 .dpms = intel_crtc_dpms,
7554 .mode_fixup = intel_crtc_mode_fixup,
7555 .mode_set = intel_crtc_mode_set,
7556 .mode_set_base = intel_pipe_set_base,
7557 .mode_set_base_atomic = intel_pipe_set_base_atomic,
7558 .load_lut = intel_crtc_load_lut,
7559 .disable = intel_crtc_disable,
7562 static const struct drm_crtc_funcs intel_crtc_funcs = {
7563 .reset = intel_crtc_reset,
7564 .cursor_set = intel_crtc_cursor_set,
7565 .cursor_move = intel_crtc_cursor_move,
7566 .gamma_set = intel_crtc_gamma_set,
7567 .set_config = drm_crtc_helper_set_config,
7568 .destroy = intel_crtc_destroy,
7569 .page_flip = intel_crtc_page_flip,
7572 static void intel_crtc_init(struct drm_device *dev, int pipe)
7574 drm_i915_private_t *dev_priv = dev->dev_private;
7575 struct intel_crtc *intel_crtc;
7576 int i;
7578 intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
7579 if (intel_crtc == NULL)
7580 return;
7582 drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
7584 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
7585 for (i = 0; i < 256; i++) {
7586 intel_crtc->lut_r[i] = i;
7587 intel_crtc->lut_g[i] = i;
7588 intel_crtc->lut_b[i] = i;
7591 /* Swap pipes & planes for FBC on pre-965 */
7592 intel_crtc->pipe = pipe;
7593 intel_crtc->plane = pipe;
7594 if (IS_MOBILE(dev) && IS_GEN3(dev)) {
7595 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
7596 intel_crtc->plane = !pipe;
7599 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
7600 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
7601 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
7602 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
7604 intel_crtc_reset(&intel_crtc->base);
7605 intel_crtc->active = true; /* force the pipe off on setup_init_config */
7606 intel_crtc->bpp = 24; /* default for pre-Ironlake */
7608 if (HAS_PCH_SPLIT(dev)) {
7609 if (pipe == 2 && IS_IVYBRIDGE(dev))
7610 intel_crtc->no_pll = true;
7611 intel_helper_funcs.prepare = ironlake_crtc_prepare;
7612 intel_helper_funcs.commit = ironlake_crtc_commit;
7613 } else {
7614 intel_helper_funcs.prepare = i9xx_crtc_prepare;
7615 intel_helper_funcs.commit = i9xx_crtc_commit;
7618 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
7620 intel_crtc->busy = false;
7622 setup_timer(&intel_crtc->idle_timer, intel_crtc_idle_timer,
7623 (unsigned long)intel_crtc);
7626 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
7627 struct drm_file *file)
7629 drm_i915_private_t *dev_priv = dev->dev_private;
7630 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
7631 struct drm_mode_object *drmmode_obj;
7632 struct intel_crtc *crtc;
7634 if (!dev_priv) {
7635 DRM_ERROR("called with no initialization\n");
7636 return -EINVAL;
7639 drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
7640 DRM_MODE_OBJECT_CRTC);
7642 if (!drmmode_obj) {
7643 DRM_ERROR("no such CRTC id\n");
7644 return -EINVAL;
7647 crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
7648 pipe_from_crtc_id->pipe = crtc->pipe;
7650 return 0;
7653 static int intel_encoder_clones(struct drm_device *dev, int type_mask)
7655 struct intel_encoder *encoder;
7656 int index_mask = 0;
7657 int entry = 0;
7659 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
7660 if (type_mask & encoder->clone_mask)
7661 index_mask |= (1 << entry);
7662 entry++;
7665 return index_mask;
7668 static bool has_edp_a(struct drm_device *dev)
7670 struct drm_i915_private *dev_priv = dev->dev_private;
7672 if (!IS_MOBILE(dev))
7673 return false;
7675 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
7676 return false;
7678 if (IS_GEN5(dev) &&
7679 (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
7680 return false;
7682 return true;
7685 static void intel_setup_outputs(struct drm_device *dev)
7687 struct drm_i915_private *dev_priv = dev->dev_private;
7688 struct intel_encoder *encoder;
7689 bool dpd_is_edp = false;
7690 bool has_lvds = false;
7692 if (IS_MOBILE(dev) && !IS_I830(dev))
7693 has_lvds = intel_lvds_init(dev);
7694 if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
7695 /* disable the panel fitter on everything but LVDS */
7696 I915_WRITE(PFIT_CONTROL, 0);
7699 if (HAS_PCH_SPLIT(dev)) {
7700 dpd_is_edp = intel_dpd_is_edp(dev);
7702 if (has_edp_a(dev))
7703 intel_dp_init(dev, DP_A);
7705 if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
7706 intel_dp_init(dev, PCH_DP_D);
7709 intel_crt_init(dev);
7711 if (HAS_PCH_SPLIT(dev)) {
7712 int found;
7714 if (I915_READ(HDMIB) & PORT_DETECTED) {
7715 /* PCH SDVOB multiplex with HDMIB */
7716 found = intel_sdvo_init(dev, PCH_SDVOB);
7717 if (!found)
7718 intel_hdmi_init(dev, HDMIB);
7719 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
7720 intel_dp_init(dev, PCH_DP_B);
7723 if (I915_READ(HDMIC) & PORT_DETECTED)
7724 intel_hdmi_init(dev, HDMIC);
7726 if (I915_READ(HDMID) & PORT_DETECTED)
7727 intel_hdmi_init(dev, HDMID);
7729 if (I915_READ(PCH_DP_C) & DP_DETECTED)
7730 intel_dp_init(dev, PCH_DP_C);
7732 if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
7733 intel_dp_init(dev, PCH_DP_D);
7735 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
7736 bool found = false;
7738 if (I915_READ(SDVOB) & SDVO_DETECTED) {
7739 DRM_DEBUG_KMS("probing SDVOB\n");
7740 found = intel_sdvo_init(dev, SDVOB);
7741 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
7742 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
7743 intel_hdmi_init(dev, SDVOB);
7746 if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
7747 DRM_DEBUG_KMS("probing DP_B\n");
7748 intel_dp_init(dev, DP_B);
7752 /* Before G4X SDVOC doesn't have its own detect register */
7754 if (I915_READ(SDVOB) & SDVO_DETECTED) {
7755 DRM_DEBUG_KMS("probing SDVOC\n");
7756 found = intel_sdvo_init(dev, SDVOC);
7759 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
7761 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
7762 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
7763 intel_hdmi_init(dev, SDVOC);
7765 if (SUPPORTS_INTEGRATED_DP(dev)) {
7766 DRM_DEBUG_KMS("probing DP_C\n");
7767 intel_dp_init(dev, DP_C);
7771 if (SUPPORTS_INTEGRATED_DP(dev) &&
7772 (I915_READ(DP_D) & DP_DETECTED)) {
7773 DRM_DEBUG_KMS("probing DP_D\n");
7774 intel_dp_init(dev, DP_D);
7776 } else if (IS_GEN2(dev))
7777 intel_dvo_init(dev);
7779 if (SUPPORTS_TV(dev))
7780 intel_tv_init(dev);
7782 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
7783 encoder->base.possible_crtcs = encoder->crtc_mask;
7784 encoder->base.possible_clones =
7785 intel_encoder_clones(dev, encoder->clone_mask);
7788 /* disable all the possible outputs/crtcs before entering KMS mode */
7789 drm_helper_disable_unused_functions(dev);
7791 if (HAS_PCH_SPLIT(dev))
7792 ironlake_init_pch_refclk(dev);
7795 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
7797 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
7799 drm_framebuffer_cleanup(fb);
7800 drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
7802 kfree(intel_fb);
7805 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
7806 struct drm_file *file,
7807 unsigned int *handle)
7809 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
7810 struct drm_i915_gem_object *obj = intel_fb->obj;
7812 return drm_gem_handle_create(file, &obj->base, handle);
7815 static const struct drm_framebuffer_funcs intel_fb_funcs = {
7816 .destroy = intel_user_framebuffer_destroy,
7817 .create_handle = intel_user_framebuffer_create_handle,
7820 int intel_framebuffer_init(struct drm_device *dev,
7821 struct intel_framebuffer *intel_fb,
7822 struct drm_mode_fb_cmd2 *mode_cmd,
7823 struct drm_i915_gem_object *obj)
7825 int ret;
7827 if (obj->tiling_mode == I915_TILING_Y)
7828 return -EINVAL;
7830 if (mode_cmd->pitches[0] & 63)
7831 return -EINVAL;
7833 switch (mode_cmd->pixel_format) {
7834 case DRM_FORMAT_RGB332:
7835 case DRM_FORMAT_RGB565:
7836 case DRM_FORMAT_XRGB8888:
7837 case DRM_FORMAT_XBGR8888:
7838 case DRM_FORMAT_ARGB8888:
7839 case DRM_FORMAT_XRGB2101010:
7840 case DRM_FORMAT_ARGB2101010:
7841 /* RGB formats are common across chipsets */
7842 break;
7843 case DRM_FORMAT_YUYV:
7844 case DRM_FORMAT_UYVY:
7845 case DRM_FORMAT_YVYU:
7846 case DRM_FORMAT_VYUY:
7847 break;
7848 default:
7849 DRM_ERROR("unsupported pixel format\n");
7850 return -EINVAL;
7853 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
7854 if (ret) {
7855 DRM_ERROR("framebuffer init failed %d\n", ret);
7856 return ret;
7859 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
7860 intel_fb->obj = obj;
7861 return 0;
7864 static struct drm_framebuffer *
7865 intel_user_framebuffer_create(struct drm_device *dev,
7866 struct drm_file *filp,
7867 struct drm_mode_fb_cmd2 *mode_cmd)
7869 struct drm_i915_gem_object *obj;
7871 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
7872 mode_cmd->handles[0]));
7873 if (&obj->base == NULL)
7874 return ERR_PTR(-ENOENT);
7876 return intel_framebuffer_create(dev, mode_cmd, obj);
7879 static const struct drm_mode_config_funcs intel_mode_funcs = {
7880 .fb_create = intel_user_framebuffer_create,
7881 .output_poll_changed = intel_fb_output_poll_changed,
7884 static struct drm_i915_gem_object *
7885 intel_alloc_context_page(struct drm_device *dev)
7887 struct drm_i915_gem_object *ctx;
7888 int ret;
7890 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
7892 ctx = i915_gem_alloc_object(dev, 4096);
7893 if (!ctx) {
7894 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
7895 return NULL;
7898 ret = i915_gem_object_pin(ctx, 4096, true);
7899 if (ret) {
7900 DRM_ERROR("failed to pin power context: %d\n", ret);
7901 goto err_unref;
7904 ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
7905 if (ret) {
7906 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
7907 goto err_unpin;
7910 return ctx;
7912 err_unpin:
7913 i915_gem_object_unpin(ctx);
7914 err_unref:
7915 drm_gem_object_unreference(&ctx->base);
7916 mutex_unlock(&dev->struct_mutex);
7917 return NULL;
7920 bool ironlake_set_drps(struct drm_device *dev, u8 val)
7922 struct drm_i915_private *dev_priv = dev->dev_private;
7923 u16 rgvswctl;
7925 rgvswctl = I915_READ16(MEMSWCTL);
7926 if (rgvswctl & MEMCTL_CMD_STS) {
7927 DRM_DEBUG("gpu busy, RCS change rejected\n");
7928 return false; /* still busy with another command */
7931 rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
7932 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
7933 I915_WRITE16(MEMSWCTL, rgvswctl);
7934 POSTING_READ16(MEMSWCTL);
7936 rgvswctl |= MEMCTL_CMD_STS;
7937 I915_WRITE16(MEMSWCTL, rgvswctl);
7939 return true;
7942 void ironlake_enable_drps(struct drm_device *dev)
7944 struct drm_i915_private *dev_priv = dev->dev_private;
7945 u32 rgvmodectl = I915_READ(MEMMODECTL);
7946 u8 fmax, fmin, fstart, vstart;
7948 /* Enable temp reporting */
7949 I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
7950 I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
7952 /* 100ms RC evaluation intervals */
7953 I915_WRITE(RCUPEI, 100000);
7954 I915_WRITE(RCDNEI, 100000);
7956 /* Set max/min thresholds to 90ms and 80ms respectively */
7957 I915_WRITE(RCBMAXAVG, 90000);
7958 I915_WRITE(RCBMINAVG, 80000);
7960 I915_WRITE(MEMIHYST, 1);
7962 /* Set up min, max, and cur for interrupt handling */
7963 fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
7964 fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
7965 fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
7966 MEMMODE_FSTART_SHIFT;
7968 vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
7969 PXVFREQ_PX_SHIFT;
7971 dev_priv->fmax = fmax; /* IPS callback will increase this */
7972 dev_priv->fstart = fstart;
7974 dev_priv->max_delay = fstart;
7975 dev_priv->min_delay = fmin;
7976 dev_priv->cur_delay = fstart;
7978 DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
7979 fmax, fmin, fstart);
7981 I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
7984 * Interrupts will be enabled in ironlake_irq_postinstall
7987 I915_WRITE(VIDSTART, vstart);
7988 POSTING_READ(VIDSTART);
7990 rgvmodectl |= MEMMODE_SWMODE_EN;
7991 I915_WRITE(MEMMODECTL, rgvmodectl);
7993 if (wait_for((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
7994 DRM_ERROR("stuck trying to change perf mode\n");
7995 msleep(1);
7997 ironlake_set_drps(dev, fstart);
7999 dev_priv->last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
8000 I915_READ(0x112e0);
8001 dev_priv->last_time1 = jiffies_to_msecs(jiffies);
8002 dev_priv->last_count2 = I915_READ(0x112f4);
8003 getrawmonotonic(&dev_priv->last_time2);
8006 void ironlake_disable_drps(struct drm_device *dev)
8008 struct drm_i915_private *dev_priv = dev->dev_private;
8009 u16 rgvswctl = I915_READ16(MEMSWCTL);
8011 /* Ack interrupts, disable EFC interrupt */
8012 I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
8013 I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
8014 I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
8015 I915_WRITE(DEIIR, DE_PCU_EVENT);
8016 I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
8018 /* Go back to the starting frequency */
8019 ironlake_set_drps(dev, dev_priv->fstart);
8020 msleep(1);
8021 rgvswctl |= MEMCTL_CMD_STS;
8022 I915_WRITE(MEMSWCTL, rgvswctl);
8023 msleep(1);
8027 void gen6_set_rps(struct drm_device *dev, u8 val)
8029 struct drm_i915_private *dev_priv = dev->dev_private;
8030 u32 swreq;
8032 swreq = (val & 0x3ff) << 25;
8033 I915_WRITE(GEN6_RPNSWREQ, swreq);
8036 void gen6_disable_rps(struct drm_device *dev)
8038 struct drm_i915_private *dev_priv = dev->dev_private;
8040 I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
8041 I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
8042 I915_WRITE(GEN6_PMIER, 0);
8043 /* Complete PM interrupt masking here doesn't race with the rps work
8044 * item again unmasking PM interrupts because that is using a different
8045 * register (PMIMR) to mask PM interrupts. The only risk is in leaving
8046 * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
8048 spin_lock_irq(&dev_priv->rps_lock);
8049 dev_priv->pm_iir = 0;
8050 spin_unlock_irq(&dev_priv->rps_lock);
8052 I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
8055 static unsigned long intel_pxfreq(u32 vidfreq)
8057 unsigned long freq;
8058 int div = (vidfreq & 0x3f0000) >> 16;
8059 int post = (vidfreq & 0x3000) >> 12;
8060 int pre = (vidfreq & 0x7);
8062 if (!pre)
8063 return 0;
8065 freq = ((div * 133333) / ((1<<post) * pre));
8067 return freq;
8070 void intel_init_emon(struct drm_device *dev)
8072 struct drm_i915_private *dev_priv = dev->dev_private;
8073 u32 lcfuse;
8074 u8 pxw[16];
8075 int i;
8077 /* Disable to program */
8078 I915_WRITE(ECR, 0);
8079 POSTING_READ(ECR);
8081 /* Program energy weights for various events */
8082 I915_WRITE(SDEW, 0x15040d00);
8083 I915_WRITE(CSIEW0, 0x007f0000);
8084 I915_WRITE(CSIEW1, 0x1e220004);
8085 I915_WRITE(CSIEW2, 0x04000004);
8087 for (i = 0; i < 5; i++)
8088 I915_WRITE(PEW + (i * 4), 0);
8089 for (i = 0; i < 3; i++)
8090 I915_WRITE(DEW + (i * 4), 0);
8092 /* Program P-state weights to account for frequency power adjustment */
8093 for (i = 0; i < 16; i++) {
8094 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
8095 unsigned long freq = intel_pxfreq(pxvidfreq);
8096 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
8097 PXVFREQ_PX_SHIFT;
8098 unsigned long val;
8100 val = vid * vid;
8101 val *= (freq / 1000);
8102 val *= 255;
8103 val /= (127*127*900);
8104 if (val > 0xff)
8105 DRM_ERROR("bad pxval: %ld\n", val);
8106 pxw[i] = val;
8108 /* Render standby states get 0 weight */
8109 pxw[14] = 0;
8110 pxw[15] = 0;
8112 for (i = 0; i < 4; i++) {
8113 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
8114 (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
8115 I915_WRITE(PXW + (i * 4), val);
8118 /* Adjust magic regs to magic values (more experimental results) */
8119 I915_WRITE(OGW0, 0);
8120 I915_WRITE(OGW1, 0);
8121 I915_WRITE(EG0, 0x00007f00);
8122 I915_WRITE(EG1, 0x0000000e);
8123 I915_WRITE(EG2, 0x000e0000);
8124 I915_WRITE(EG3, 0x68000300);
8125 I915_WRITE(EG4, 0x42000000);
8126 I915_WRITE(EG5, 0x00140031);
8127 I915_WRITE(EG6, 0);
8128 I915_WRITE(EG7, 0);
8130 for (i = 0; i < 8; i++)
8131 I915_WRITE(PXWL + (i * 4), 0);
8133 /* Enable PMON + select events */
8134 I915_WRITE(ECR, 0x80000019);
8136 lcfuse = I915_READ(LCFUSE02);
8138 dev_priv->corr = (lcfuse & LCFUSE_HIV_MASK);
8141 static bool intel_enable_rc6(struct drm_device *dev)
8144 * Respect the kernel parameter if it is set
8146 if (i915_enable_rc6 >= 0)
8147 return i915_enable_rc6;
8150 * Disable RC6 on Ironlake
8152 if (INTEL_INFO(dev)->gen == 5)
8153 return 0;
8156 * Disable rc6 on Sandybridge
8158 if (INTEL_INFO(dev)->gen == 6) {
8159 DRM_DEBUG_DRIVER("Sandybridge: RC6 disabled\n");
8160 return 0;
8162 DRM_DEBUG_DRIVER("RC6 enabled\n");
8163 return 1;
8166 void gen6_enable_rps(struct drm_i915_private *dev_priv)
8168 u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
8169 u32 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
8170 u32 pcu_mbox, rc6_mask = 0;
8171 int cur_freq, min_freq, max_freq;
8172 int i;
8174 /* Here begins a magic sequence of register writes to enable
8175 * auto-downclocking.
8177 * Perhaps there might be some value in exposing these to
8178 * userspace...
8180 I915_WRITE(GEN6_RC_STATE, 0);
8181 mutex_lock(&dev_priv->dev->struct_mutex);
8182 gen6_gt_force_wake_get(dev_priv);
8184 /* disable the counters and set deterministic thresholds */
8185 I915_WRITE(GEN6_RC_CONTROL, 0);
8187 I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
8188 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
8189 I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
8190 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
8191 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
8193 for (i = 0; i < I915_NUM_RINGS; i++)
8194 I915_WRITE(RING_MAX_IDLE(dev_priv->ring[i].mmio_base), 10);
8196 I915_WRITE(GEN6_RC_SLEEP, 0);
8197 I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
8198 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
8199 I915_WRITE(GEN6_RC6p_THRESHOLD, 100000);
8200 I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
8202 if (intel_enable_rc6(dev_priv->dev))
8203 rc6_mask = GEN6_RC_CTL_RC6_ENABLE |
8204 ((IS_GEN7(dev_priv->dev)) ? GEN6_RC_CTL_RC6p_ENABLE : 0);
8206 I915_WRITE(GEN6_RC_CONTROL,
8207 rc6_mask |
8208 GEN6_RC_CTL_EI_MODE(1) |
8209 GEN6_RC_CTL_HW_ENABLE);
8211 I915_WRITE(GEN6_RPNSWREQ,
8212 GEN6_FREQUENCY(10) |
8213 GEN6_OFFSET(0) |
8214 GEN6_AGGRESSIVE_TURBO);
8215 I915_WRITE(GEN6_RC_VIDEO_FREQ,
8216 GEN6_FREQUENCY(12));
8218 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
8219 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
8220 18 << 24 |
8221 6 << 16);
8222 I915_WRITE(GEN6_RP_UP_THRESHOLD, 10000);
8223 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 1000000);
8224 I915_WRITE(GEN6_RP_UP_EI, 100000);
8225 I915_WRITE(GEN6_RP_DOWN_EI, 5000000);
8226 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
8227 I915_WRITE(GEN6_RP_CONTROL,
8228 GEN6_RP_MEDIA_TURBO |
8229 GEN6_RP_MEDIA_HW_MODE |
8230 GEN6_RP_MEDIA_IS_GFX |
8231 GEN6_RP_ENABLE |
8232 GEN6_RP_UP_BUSY_AVG |
8233 GEN6_RP_DOWN_IDLE_CONT);
8235 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
8236 500))
8237 DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
8239 I915_WRITE(GEN6_PCODE_DATA, 0);
8240 I915_WRITE(GEN6_PCODE_MAILBOX,
8241 GEN6_PCODE_READY |
8242 GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
8243 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
8244 500))
8245 DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
8247 min_freq = (rp_state_cap & 0xff0000) >> 16;
8248 max_freq = rp_state_cap & 0xff;
8249 cur_freq = (gt_perf_status & 0xff00) >> 8;
8251 /* Check for overclock support */
8252 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
8253 500))
8254 DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
8255 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_READ_OC_PARAMS);
8256 pcu_mbox = I915_READ(GEN6_PCODE_DATA);
8257 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
8258 500))
8259 DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
8260 if (pcu_mbox & (1<<31)) { /* OC supported */
8261 max_freq = pcu_mbox & 0xff;
8262 DRM_DEBUG_DRIVER("overclocking supported, adjusting frequency max to %dMHz\n", pcu_mbox * 50);
8265 /* In units of 100MHz */
8266 dev_priv->max_delay = max_freq;
8267 dev_priv->min_delay = min_freq;
8268 dev_priv->cur_delay = cur_freq;
8270 /* requires MSI enabled */
8271 I915_WRITE(GEN6_PMIER,
8272 GEN6_PM_MBOX_EVENT |
8273 GEN6_PM_THERMAL_EVENT |
8274 GEN6_PM_RP_DOWN_TIMEOUT |
8275 GEN6_PM_RP_UP_THRESHOLD |
8276 GEN6_PM_RP_DOWN_THRESHOLD |
8277 GEN6_PM_RP_UP_EI_EXPIRED |
8278 GEN6_PM_RP_DOWN_EI_EXPIRED);
8279 spin_lock_irq(&dev_priv->rps_lock);
8280 WARN_ON(dev_priv->pm_iir != 0);
8281 I915_WRITE(GEN6_PMIMR, 0);
8282 spin_unlock_irq(&dev_priv->rps_lock);
8283 /* enable all PM interrupts */
8284 I915_WRITE(GEN6_PMINTRMSK, 0);
8286 gen6_gt_force_wake_put(dev_priv);
8287 mutex_unlock(&dev_priv->dev->struct_mutex);
8290 void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
8292 int min_freq = 15;
8293 int gpu_freq, ia_freq, max_ia_freq;
8294 int scaling_factor = 180;
8296 max_ia_freq = cpufreq_quick_get_max(0);
8298 * Default to measured freq if none found, PCU will ensure we don't go
8299 * over
8301 if (!max_ia_freq)
8302 max_ia_freq = tsc_khz;
8304 /* Convert from kHz to MHz */
8305 max_ia_freq /= 1000;
8307 mutex_lock(&dev_priv->dev->struct_mutex);
8310 * For each potential GPU frequency, load a ring frequency we'd like
8311 * to use for memory access. We do this by specifying the IA frequency
8312 * the PCU should use as a reference to determine the ring frequency.
8314 for (gpu_freq = dev_priv->max_delay; gpu_freq >= dev_priv->min_delay;
8315 gpu_freq--) {
8316 int diff = dev_priv->max_delay - gpu_freq;
8319 * For GPU frequencies less than 750MHz, just use the lowest
8320 * ring freq.
8322 if (gpu_freq < min_freq)
8323 ia_freq = 800;
8324 else
8325 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
8326 ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
8328 I915_WRITE(GEN6_PCODE_DATA,
8329 (ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT) |
8330 gpu_freq);
8331 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY |
8332 GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
8333 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) &
8334 GEN6_PCODE_READY) == 0, 10)) {
8335 DRM_ERROR("pcode write of freq table timed out\n");
8336 continue;
8340 mutex_unlock(&dev_priv->dev->struct_mutex);
8343 static void ironlake_init_clock_gating(struct drm_device *dev)
8345 struct drm_i915_private *dev_priv = dev->dev_private;
8346 uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
8348 /* Required for FBC */
8349 dspclk_gate |= DPFCUNIT_CLOCK_GATE_DISABLE |
8350 DPFCRUNIT_CLOCK_GATE_DISABLE |
8351 DPFDUNIT_CLOCK_GATE_DISABLE;
8352 /* Required for CxSR */
8353 dspclk_gate |= DPARBUNIT_CLOCK_GATE_DISABLE;
8355 I915_WRITE(PCH_3DCGDIS0,
8356 MARIUNIT_CLOCK_GATE_DISABLE |
8357 SVSMUNIT_CLOCK_GATE_DISABLE);
8358 I915_WRITE(PCH_3DCGDIS1,
8359 VFMUNIT_CLOCK_GATE_DISABLE);
8361 I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
8364 * According to the spec the following bits should be set in
8365 * order to enable memory self-refresh
8366 * The bit 22/21 of 0x42004
8367 * The bit 5 of 0x42020
8368 * The bit 15 of 0x45000
8370 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8371 (I915_READ(ILK_DISPLAY_CHICKEN2) |
8372 ILK_DPARB_GATE | ILK_VSDPFD_FULL));
8373 I915_WRITE(ILK_DSPCLK_GATE,
8374 (I915_READ(ILK_DSPCLK_GATE) |
8375 ILK_DPARB_CLK_GATE));
8376 I915_WRITE(DISP_ARB_CTL,
8377 (I915_READ(DISP_ARB_CTL) |
8378 DISP_FBC_WM_DIS));
8379 I915_WRITE(WM3_LP_ILK, 0);
8380 I915_WRITE(WM2_LP_ILK, 0);
8381 I915_WRITE(WM1_LP_ILK, 0);
8384 * Based on the document from hardware guys the following bits
8385 * should be set unconditionally in order to enable FBC.
8386 * The bit 22 of 0x42000
8387 * The bit 22 of 0x42004
8388 * The bit 7,8,9 of 0x42020.
8390 if (IS_IRONLAKE_M(dev)) {
8391 I915_WRITE(ILK_DISPLAY_CHICKEN1,
8392 I915_READ(ILK_DISPLAY_CHICKEN1) |
8393 ILK_FBCQ_DIS);
8394 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8395 I915_READ(ILK_DISPLAY_CHICKEN2) |
8396 ILK_DPARB_GATE);
8397 I915_WRITE(ILK_DSPCLK_GATE,
8398 I915_READ(ILK_DSPCLK_GATE) |
8399 ILK_DPFC_DIS1 |
8400 ILK_DPFC_DIS2 |
8401 ILK_CLK_FBC);
8404 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8405 I915_READ(ILK_DISPLAY_CHICKEN2) |
8406 ILK_ELPIN_409_SELECT);
8407 I915_WRITE(_3D_CHICKEN2,
8408 _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
8409 _3D_CHICKEN2_WM_READ_PIPELINED);
8412 static void gen6_init_clock_gating(struct drm_device *dev)
8414 struct drm_i915_private *dev_priv = dev->dev_private;
8415 int pipe;
8416 uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
8418 I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
8420 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8421 I915_READ(ILK_DISPLAY_CHICKEN2) |
8422 ILK_ELPIN_409_SELECT);
8424 I915_WRITE(WM3_LP_ILK, 0);
8425 I915_WRITE(WM2_LP_ILK, 0);
8426 I915_WRITE(WM1_LP_ILK, 0);
8428 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
8429 * gating disable must be set. Failure to set it results in
8430 * flickering pixels due to Z write ordering failures after
8431 * some amount of runtime in the Mesa "fire" demo, and Unigine
8432 * Sanctuary and Tropics, and apparently anything else with
8433 * alpha test or pixel discard.
8435 * According to the spec, bit 11 (RCCUNIT) must also be set,
8436 * but we didn't debug actual testcases to find it out.
8438 I915_WRITE(GEN6_UCGCTL2,
8439 GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
8440 GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
8443 * According to the spec the following bits should be
8444 * set in order to enable memory self-refresh and fbc:
8445 * The bit21 and bit22 of 0x42000
8446 * The bit21 and bit22 of 0x42004
8447 * The bit5 and bit7 of 0x42020
8448 * The bit14 of 0x70180
8449 * The bit14 of 0x71180
8451 I915_WRITE(ILK_DISPLAY_CHICKEN1,
8452 I915_READ(ILK_DISPLAY_CHICKEN1) |
8453 ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
8454 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8455 I915_READ(ILK_DISPLAY_CHICKEN2) |
8456 ILK_DPARB_GATE | ILK_VSDPFD_FULL);
8457 I915_WRITE(ILK_DSPCLK_GATE,
8458 I915_READ(ILK_DSPCLK_GATE) |
8459 ILK_DPARB_CLK_GATE |
8460 ILK_DPFD_CLK_GATE);
8462 for_each_pipe(pipe) {
8463 I915_WRITE(DSPCNTR(pipe),
8464 I915_READ(DSPCNTR(pipe)) |
8465 DISPPLANE_TRICKLE_FEED_DISABLE);
8466 intel_flush_display_plane(dev_priv, pipe);
8470 static void ivybridge_init_clock_gating(struct drm_device *dev)
8472 struct drm_i915_private *dev_priv = dev->dev_private;
8473 int pipe;
8474 uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
8476 I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
8478 I915_WRITE(WM3_LP_ILK, 0);
8479 I915_WRITE(WM2_LP_ILK, 0);
8480 I915_WRITE(WM1_LP_ILK, 0);
8482 /* According to the spec, bit 13 (RCZUNIT) must be set on IVB.
8483 * This implements the WaDisableRCZUnitClockGating workaround.
8485 I915_WRITE(GEN6_UCGCTL2, GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
8487 I915_WRITE(ILK_DSPCLK_GATE, IVB_VRHUNIT_CLK_GATE);
8489 I915_WRITE(IVB_CHICKEN3,
8490 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
8491 CHICKEN3_DGMG_DONE_FIX_DISABLE);
8493 /* Apply the WaDisableRHWOOptimizationForRenderHang workaround. */
8494 I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
8495 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
8497 /* WaApplyL3ControlAndL3ChickenMode requires those two on Ivy Bridge */
8498 I915_WRITE(GEN7_L3CNTLREG1,
8499 GEN7_WA_FOR_GEN7_L3_CONTROL);
8500 I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
8501 GEN7_WA_L3_CHICKEN_MODE);
8503 /* This is required by WaCatErrorRejectionIssue */
8504 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
8505 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
8506 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
8508 for_each_pipe(pipe) {
8509 I915_WRITE(DSPCNTR(pipe),
8510 I915_READ(DSPCNTR(pipe)) |
8511 DISPPLANE_TRICKLE_FEED_DISABLE);
8512 intel_flush_display_plane(dev_priv, pipe);
8516 static void g4x_init_clock_gating(struct drm_device *dev)
8518 struct drm_i915_private *dev_priv = dev->dev_private;
8519 uint32_t dspclk_gate;
8521 I915_WRITE(RENCLK_GATE_D1, 0);
8522 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
8523 GS_UNIT_CLOCK_GATE_DISABLE |
8524 CL_UNIT_CLOCK_GATE_DISABLE);
8525 I915_WRITE(RAMCLK_GATE_D, 0);
8526 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
8527 OVRUNIT_CLOCK_GATE_DISABLE |
8528 OVCUNIT_CLOCK_GATE_DISABLE;
8529 if (IS_GM45(dev))
8530 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
8531 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
8534 static void crestline_init_clock_gating(struct drm_device *dev)
8536 struct drm_i915_private *dev_priv = dev->dev_private;
8538 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
8539 I915_WRITE(RENCLK_GATE_D2, 0);
8540 I915_WRITE(DSPCLK_GATE_D, 0);
8541 I915_WRITE(RAMCLK_GATE_D, 0);
8542 I915_WRITE16(DEUC, 0);
8545 static void broadwater_init_clock_gating(struct drm_device *dev)
8547 struct drm_i915_private *dev_priv = dev->dev_private;
8549 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
8550 I965_RCC_CLOCK_GATE_DISABLE |
8551 I965_RCPB_CLOCK_GATE_DISABLE |
8552 I965_ISC_CLOCK_GATE_DISABLE |
8553 I965_FBC_CLOCK_GATE_DISABLE);
8554 I915_WRITE(RENCLK_GATE_D2, 0);
8557 static void gen3_init_clock_gating(struct drm_device *dev)
8559 struct drm_i915_private *dev_priv = dev->dev_private;
8560 u32 dstate = I915_READ(D_STATE);
8562 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
8563 DSTATE_DOT_CLOCK_GATING;
8564 I915_WRITE(D_STATE, dstate);
8567 static void i85x_init_clock_gating(struct drm_device *dev)
8569 struct drm_i915_private *dev_priv = dev->dev_private;
8571 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
8574 static void i830_init_clock_gating(struct drm_device *dev)
8576 struct drm_i915_private *dev_priv = dev->dev_private;
8578 I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
8581 static void ibx_init_clock_gating(struct drm_device *dev)
8583 struct drm_i915_private *dev_priv = dev->dev_private;
8586 * On Ibex Peak and Cougar Point, we need to disable clock
8587 * gating for the panel power sequencer or it will fail to
8588 * start up when no ports are active.
8590 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
8593 static void cpt_init_clock_gating(struct drm_device *dev)
8595 struct drm_i915_private *dev_priv = dev->dev_private;
8596 int pipe;
8599 * On Ibex Peak and Cougar Point, we need to disable clock
8600 * gating for the panel power sequencer or it will fail to
8601 * start up when no ports are active.
8603 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
8604 I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
8605 DPLS_EDP_PPS_FIX_DIS);
8606 /* Without this, mode sets may fail silently on FDI */
8607 for_each_pipe(pipe)
8608 I915_WRITE(TRANS_CHICKEN2(pipe), TRANS_AUTOTRAIN_GEN_STALL_DIS);
8611 static void ironlake_teardown_rc6(struct drm_device *dev)
8613 struct drm_i915_private *dev_priv = dev->dev_private;
8615 if (dev_priv->renderctx) {
8616 i915_gem_object_unpin(dev_priv->renderctx);
8617 drm_gem_object_unreference(&dev_priv->renderctx->base);
8618 dev_priv->renderctx = NULL;
8621 if (dev_priv->pwrctx) {
8622 i915_gem_object_unpin(dev_priv->pwrctx);
8623 drm_gem_object_unreference(&dev_priv->pwrctx->base);
8624 dev_priv->pwrctx = NULL;
8628 static void ironlake_disable_rc6(struct drm_device *dev)
8630 struct drm_i915_private *dev_priv = dev->dev_private;
8632 if (I915_READ(PWRCTXA)) {
8633 /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
8634 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
8635 wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
8636 50);
8638 I915_WRITE(PWRCTXA, 0);
8639 POSTING_READ(PWRCTXA);
8641 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
8642 POSTING_READ(RSTDBYCTL);
8645 ironlake_teardown_rc6(dev);
8648 static int ironlake_setup_rc6(struct drm_device *dev)
8650 struct drm_i915_private *dev_priv = dev->dev_private;
8652 if (dev_priv->renderctx == NULL)
8653 dev_priv->renderctx = intel_alloc_context_page(dev);
8654 if (!dev_priv->renderctx)
8655 return -ENOMEM;
8657 if (dev_priv->pwrctx == NULL)
8658 dev_priv->pwrctx = intel_alloc_context_page(dev);
8659 if (!dev_priv->pwrctx) {
8660 ironlake_teardown_rc6(dev);
8661 return -ENOMEM;
8664 return 0;
8667 void ironlake_enable_rc6(struct drm_device *dev)
8669 struct drm_i915_private *dev_priv = dev->dev_private;
8670 int ret;
8672 /* rc6 disabled by default due to repeated reports of hanging during
8673 * boot and resume.
8675 if (!intel_enable_rc6(dev))
8676 return;
8678 mutex_lock(&dev->struct_mutex);
8679 ret = ironlake_setup_rc6(dev);
8680 if (ret) {
8681 mutex_unlock(&dev->struct_mutex);
8682 return;
8686 * GPU can automatically power down the render unit if given a page
8687 * to save state.
8689 ret = BEGIN_LP_RING(6);
8690 if (ret) {
8691 ironlake_teardown_rc6(dev);
8692 mutex_unlock(&dev->struct_mutex);
8693 return;
8696 OUT_RING(MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
8697 OUT_RING(MI_SET_CONTEXT);
8698 OUT_RING(dev_priv->renderctx->gtt_offset |
8699 MI_MM_SPACE_GTT |
8700 MI_SAVE_EXT_STATE_EN |
8701 MI_RESTORE_EXT_STATE_EN |
8702 MI_RESTORE_INHIBIT);
8703 OUT_RING(MI_SUSPEND_FLUSH);
8704 OUT_RING(MI_NOOP);
8705 OUT_RING(MI_FLUSH);
8706 ADVANCE_LP_RING();
8709 * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
8710 * does an implicit flush, combined with MI_FLUSH above, it should be
8711 * safe to assume that renderctx is valid
8713 ret = intel_wait_ring_idle(LP_RING(dev_priv));
8714 if (ret) {
8715 DRM_ERROR("failed to enable ironlake power power savings\n");
8716 ironlake_teardown_rc6(dev);
8717 mutex_unlock(&dev->struct_mutex);
8718 return;
8721 I915_WRITE(PWRCTXA, dev_priv->pwrctx->gtt_offset | PWRCTX_EN);
8722 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
8723 mutex_unlock(&dev->struct_mutex);
8726 void intel_init_clock_gating(struct drm_device *dev)
8728 struct drm_i915_private *dev_priv = dev->dev_private;
8730 dev_priv->display.init_clock_gating(dev);
8732 if (dev_priv->display.init_pch_clock_gating)
8733 dev_priv->display.init_pch_clock_gating(dev);
8736 /* Set up chip specific display functions */
8737 static void intel_init_display(struct drm_device *dev)
8739 struct drm_i915_private *dev_priv = dev->dev_private;
8741 /* We always want a DPMS function */
8742 if (HAS_PCH_SPLIT(dev)) {
8743 dev_priv->display.dpms = ironlake_crtc_dpms;
8744 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
8745 dev_priv->display.update_plane = ironlake_update_plane;
8746 } else {
8747 dev_priv->display.dpms = i9xx_crtc_dpms;
8748 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
8749 dev_priv->display.update_plane = i9xx_update_plane;
8752 if (I915_HAS_FBC(dev)) {
8753 if (HAS_PCH_SPLIT(dev)) {
8754 dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
8755 dev_priv->display.enable_fbc = ironlake_enable_fbc;
8756 dev_priv->display.disable_fbc = ironlake_disable_fbc;
8757 } else if (IS_GM45(dev)) {
8758 dev_priv->display.fbc_enabled = g4x_fbc_enabled;
8759 dev_priv->display.enable_fbc = g4x_enable_fbc;
8760 dev_priv->display.disable_fbc = g4x_disable_fbc;
8761 } else if (IS_CRESTLINE(dev)) {
8762 dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
8763 dev_priv->display.enable_fbc = i8xx_enable_fbc;
8764 dev_priv->display.disable_fbc = i8xx_disable_fbc;
8766 /* 855GM needs testing */
8769 /* Returns the core display clock speed */
8770 if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
8771 dev_priv->display.get_display_clock_speed =
8772 i945_get_display_clock_speed;
8773 else if (IS_I915G(dev))
8774 dev_priv->display.get_display_clock_speed =
8775 i915_get_display_clock_speed;
8776 else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
8777 dev_priv->display.get_display_clock_speed =
8778 i9xx_misc_get_display_clock_speed;
8779 else if (IS_I915GM(dev))
8780 dev_priv->display.get_display_clock_speed =
8781 i915gm_get_display_clock_speed;
8782 else if (IS_I865G(dev))
8783 dev_priv->display.get_display_clock_speed =
8784 i865_get_display_clock_speed;
8785 else if (IS_I85X(dev))
8786 dev_priv->display.get_display_clock_speed =
8787 i855_get_display_clock_speed;
8788 else /* 852, 830 */
8789 dev_priv->display.get_display_clock_speed =
8790 i830_get_display_clock_speed;
8792 /* For FIFO watermark updates */
8793 if (HAS_PCH_SPLIT(dev)) {
8794 dev_priv->display.force_wake_get = __gen6_gt_force_wake_get;
8795 dev_priv->display.force_wake_put = __gen6_gt_force_wake_put;
8797 /* IVB configs may use multi-threaded forcewake */
8798 if (IS_IVYBRIDGE(dev)) {
8799 u32 ecobus;
8801 /* A small trick here - if the bios hasn't configured MT forcewake,
8802 * and if the device is in RC6, then force_wake_mt_get will not wake
8803 * the device and the ECOBUS read will return zero. Which will be
8804 * (correctly) interpreted by the test below as MT forcewake being
8805 * disabled.
8807 mutex_lock(&dev->struct_mutex);
8808 __gen6_gt_force_wake_mt_get(dev_priv);
8809 ecobus = I915_READ_NOTRACE(ECOBUS);
8810 __gen6_gt_force_wake_mt_put(dev_priv);
8811 mutex_unlock(&dev->struct_mutex);
8813 if (ecobus & FORCEWAKE_MT_ENABLE) {
8814 DRM_DEBUG_KMS("Using MT version of forcewake\n");
8815 dev_priv->display.force_wake_get =
8816 __gen6_gt_force_wake_mt_get;
8817 dev_priv->display.force_wake_put =
8818 __gen6_gt_force_wake_mt_put;
8822 if (HAS_PCH_IBX(dev))
8823 dev_priv->display.init_pch_clock_gating = ibx_init_clock_gating;
8824 else if (HAS_PCH_CPT(dev))
8825 dev_priv->display.init_pch_clock_gating = cpt_init_clock_gating;
8827 if (IS_GEN5(dev)) {
8828 if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
8829 dev_priv->display.update_wm = ironlake_update_wm;
8830 else {
8831 DRM_DEBUG_KMS("Failed to get proper latency. "
8832 "Disable CxSR\n");
8833 dev_priv->display.update_wm = NULL;
8835 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
8836 dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
8837 dev_priv->display.write_eld = ironlake_write_eld;
8838 } else if (IS_GEN6(dev)) {
8839 if (SNB_READ_WM0_LATENCY()) {
8840 dev_priv->display.update_wm = sandybridge_update_wm;
8841 dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
8842 } else {
8843 DRM_DEBUG_KMS("Failed to read display plane latency. "
8844 "Disable CxSR\n");
8845 dev_priv->display.update_wm = NULL;
8847 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
8848 dev_priv->display.init_clock_gating = gen6_init_clock_gating;
8849 dev_priv->display.write_eld = ironlake_write_eld;
8850 } else if (IS_IVYBRIDGE(dev)) {
8851 /* FIXME: detect B0+ stepping and use auto training */
8852 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
8853 if (SNB_READ_WM0_LATENCY()) {
8854 dev_priv->display.update_wm = sandybridge_update_wm;
8855 dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
8856 } else {
8857 DRM_DEBUG_KMS("Failed to read display plane latency. "
8858 "Disable CxSR\n");
8859 dev_priv->display.update_wm = NULL;
8861 dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
8862 dev_priv->display.write_eld = ironlake_write_eld;
8863 } else
8864 dev_priv->display.update_wm = NULL;
8865 } else if (IS_PINEVIEW(dev)) {
8866 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
8867 dev_priv->is_ddr3,
8868 dev_priv->fsb_freq,
8869 dev_priv->mem_freq)) {
8870 DRM_INFO("failed to find known CxSR latency "
8871 "(found ddr%s fsb freq %d, mem freq %d), "
8872 "disabling CxSR\n",
8873 (dev_priv->is_ddr3 == 1) ? "3" : "2",
8874 dev_priv->fsb_freq, dev_priv->mem_freq);
8875 /* Disable CxSR and never update its watermark again */
8876 pineview_disable_cxsr(dev);
8877 dev_priv->display.update_wm = NULL;
8878 } else
8879 dev_priv->display.update_wm = pineview_update_wm;
8880 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
8881 } else if (IS_G4X(dev)) {
8882 dev_priv->display.write_eld = g4x_write_eld;
8883 dev_priv->display.update_wm = g4x_update_wm;
8884 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
8885 } else if (IS_GEN4(dev)) {
8886 dev_priv->display.update_wm = i965_update_wm;
8887 if (IS_CRESTLINE(dev))
8888 dev_priv->display.init_clock_gating = crestline_init_clock_gating;
8889 else if (IS_BROADWATER(dev))
8890 dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
8891 } else if (IS_GEN3(dev)) {
8892 dev_priv->display.update_wm = i9xx_update_wm;
8893 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
8894 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
8895 } else if (IS_I865G(dev)) {
8896 dev_priv->display.update_wm = i830_update_wm;
8897 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
8898 dev_priv->display.get_fifo_size = i830_get_fifo_size;
8899 } else if (IS_I85X(dev)) {
8900 dev_priv->display.update_wm = i9xx_update_wm;
8901 dev_priv->display.get_fifo_size = i85x_get_fifo_size;
8902 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
8903 } else {
8904 dev_priv->display.update_wm = i830_update_wm;
8905 dev_priv->display.init_clock_gating = i830_init_clock_gating;
8906 if (IS_845G(dev))
8907 dev_priv->display.get_fifo_size = i845_get_fifo_size;
8908 else
8909 dev_priv->display.get_fifo_size = i830_get_fifo_size;
8912 /* Default just returns -ENODEV to indicate unsupported */
8913 dev_priv->display.queue_flip = intel_default_queue_flip;
8915 switch (INTEL_INFO(dev)->gen) {
8916 case 2:
8917 dev_priv->display.queue_flip = intel_gen2_queue_flip;
8918 break;
8920 case 3:
8921 dev_priv->display.queue_flip = intel_gen3_queue_flip;
8922 break;
8924 case 4:
8925 case 5:
8926 dev_priv->display.queue_flip = intel_gen4_queue_flip;
8927 break;
8929 case 6:
8930 dev_priv->display.queue_flip = intel_gen6_queue_flip;
8931 break;
8932 case 7:
8933 dev_priv->display.queue_flip = intel_gen7_queue_flip;
8934 break;
8939 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
8940 * resume, or other times. This quirk makes sure that's the case for
8941 * affected systems.
8943 static void quirk_pipea_force(struct drm_device *dev)
8945 struct drm_i915_private *dev_priv = dev->dev_private;
8947 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
8948 DRM_DEBUG_DRIVER("applying pipe a force quirk\n");
8952 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
8954 static void quirk_ssc_force_disable(struct drm_device *dev)
8956 struct drm_i915_private *dev_priv = dev->dev_private;
8957 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
8960 struct intel_quirk {
8961 int device;
8962 int subsystem_vendor;
8963 int subsystem_device;
8964 void (*hook)(struct drm_device *dev);
8967 struct intel_quirk intel_quirks[] = {
8968 /* HP Compaq 2730p needs pipe A force quirk (LP: #291555) */
8969 { 0x2a42, 0x103c, 0x30eb, quirk_pipea_force },
8970 /* HP Mini needs pipe A force quirk (LP: #322104) */
8971 { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
8973 /* Thinkpad R31 needs pipe A force quirk */
8974 { 0x3577, 0x1014, 0x0505, quirk_pipea_force },
8975 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
8976 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
8978 /* ThinkPad X30 needs pipe A force quirk (LP: #304614) */
8979 { 0x3577, 0x1014, 0x0513, quirk_pipea_force },
8980 /* ThinkPad X40 needs pipe A force quirk */
8982 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
8983 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
8985 /* 855 & before need to leave pipe A & dpll A up */
8986 { 0x3582, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
8987 { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
8989 /* Lenovo U160 cannot use SSC on LVDS */
8990 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
8992 /* Sony Vaio Y cannot use SSC on LVDS */
8993 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
8996 static void intel_init_quirks(struct drm_device *dev)
8998 struct pci_dev *d = dev->pdev;
8999 int i;
9001 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
9002 struct intel_quirk *q = &intel_quirks[i];
9004 if (d->device == q->device &&
9005 (d->subsystem_vendor == q->subsystem_vendor ||
9006 q->subsystem_vendor == PCI_ANY_ID) &&
9007 (d->subsystem_device == q->subsystem_device ||
9008 q->subsystem_device == PCI_ANY_ID))
9009 q->hook(dev);
9013 /* Disable the VGA plane that we never use */
9014 static void i915_disable_vga(struct drm_device *dev)
9016 struct drm_i915_private *dev_priv = dev->dev_private;
9017 u8 sr1;
9018 u32 vga_reg;
9020 if (HAS_PCH_SPLIT(dev))
9021 vga_reg = CPU_VGACNTRL;
9022 else
9023 vga_reg = VGACNTRL;
9025 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
9026 outb(1, VGA_SR_INDEX);
9027 sr1 = inb(VGA_SR_DATA);
9028 outb(sr1 | 1<<5, VGA_SR_DATA);
9029 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
9030 udelay(300);
9032 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
9033 POSTING_READ(vga_reg);
9036 void intel_modeset_init(struct drm_device *dev)
9038 struct drm_i915_private *dev_priv = dev->dev_private;
9039 int i, ret;
9041 drm_mode_config_init(dev);
9043 dev->mode_config.min_width = 0;
9044 dev->mode_config.min_height = 0;
9046 dev->mode_config.funcs = (void *)&intel_mode_funcs;
9048 intel_init_quirks(dev);
9050 intel_init_display(dev);
9052 if (IS_GEN2(dev)) {
9053 dev->mode_config.max_width = 2048;
9054 dev->mode_config.max_height = 2048;
9055 } else if (IS_GEN3(dev)) {
9056 dev->mode_config.max_width = 4096;
9057 dev->mode_config.max_height = 4096;
9058 } else {
9059 dev->mode_config.max_width = 8192;
9060 dev->mode_config.max_height = 8192;
9062 dev->mode_config.fb_base = dev->agp->base;
9064 DRM_DEBUG_KMS("%d display pipe%s available.\n",
9065 dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
9067 for (i = 0; i < dev_priv->num_pipe; i++) {
9068 intel_crtc_init(dev, i);
9069 ret = intel_plane_init(dev, i);
9070 if (ret)
9071 DRM_DEBUG_KMS("plane %d init failed: %d\n", i, ret);
9074 /* Just disable it once at startup */
9075 i915_disable_vga(dev);
9076 intel_setup_outputs(dev);
9078 intel_init_clock_gating(dev);
9080 if (IS_IRONLAKE_M(dev)) {
9081 ironlake_enable_drps(dev);
9082 intel_init_emon(dev);
9085 if (IS_GEN6(dev) || IS_GEN7(dev)) {
9086 gen6_enable_rps(dev_priv);
9087 gen6_update_ring_freq(dev_priv);
9090 INIT_WORK(&dev_priv->idle_work, intel_idle_update);
9091 setup_timer(&dev_priv->idle_timer, intel_gpu_idle_timer,
9092 (unsigned long)dev);
9095 void intel_modeset_gem_init(struct drm_device *dev)
9097 if (IS_IRONLAKE_M(dev))
9098 ironlake_enable_rc6(dev);
9100 intel_setup_overlay(dev);
9103 void intel_modeset_cleanup(struct drm_device *dev)
9105 struct drm_i915_private *dev_priv = dev->dev_private;
9106 struct drm_crtc *crtc;
9107 struct intel_crtc *intel_crtc;
9109 drm_kms_helper_poll_fini(dev);
9110 mutex_lock(&dev->struct_mutex);
9112 intel_unregister_dsm_handler();
9115 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
9116 /* Skip inactive CRTCs */
9117 if (!crtc->fb)
9118 continue;
9120 intel_crtc = to_intel_crtc(crtc);
9121 intel_increase_pllclock(crtc);
9124 intel_disable_fbc(dev);
9126 if (IS_IRONLAKE_M(dev))
9127 ironlake_disable_drps(dev);
9128 if (IS_GEN6(dev) || IS_GEN7(dev))
9129 gen6_disable_rps(dev);
9131 if (IS_IRONLAKE_M(dev))
9132 ironlake_disable_rc6(dev);
9134 mutex_unlock(&dev->struct_mutex);
9136 /* Disable the irq before mode object teardown, for the irq might
9137 * enqueue unpin/hotplug work. */
9138 drm_irq_uninstall(dev);
9139 cancel_work_sync(&dev_priv->hotplug_work);
9140 cancel_work_sync(&dev_priv->rps_work);
9142 /* flush any delayed tasks or pending work */
9143 flush_scheduled_work();
9145 /* Shut off idle work before the crtcs get freed. */
9146 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
9147 intel_crtc = to_intel_crtc(crtc);
9148 del_timer_sync(&intel_crtc->idle_timer);
9150 del_timer_sync(&dev_priv->idle_timer);
9151 cancel_work_sync(&dev_priv->idle_work);
9153 drm_mode_config_cleanup(dev);
9157 * Return which encoder is currently attached for connector.
9159 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
9161 return &intel_attached_encoder(connector)->base;
9164 void intel_connector_attach_encoder(struct intel_connector *connector,
9165 struct intel_encoder *encoder)
9167 connector->encoder = encoder;
9168 drm_mode_connector_attach_encoder(&connector->base,
9169 &encoder->base);
9173 * set vga decode state - true == enable VGA decode
9175 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
9177 struct drm_i915_private *dev_priv = dev->dev_private;
9178 u16 gmch_ctrl;
9180 pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
9181 if (state)
9182 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
9183 else
9184 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
9185 pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
9186 return 0;
9189 #ifdef CONFIG_DEBUG_FS
9190 #include <linux/seq_file.h>
9192 struct intel_display_error_state {
9193 struct intel_cursor_error_state {
9194 u32 control;
9195 u32 position;
9196 u32 base;
9197 u32 size;
9198 } cursor[2];
9200 struct intel_pipe_error_state {
9201 u32 conf;
9202 u32 source;
9204 u32 htotal;
9205 u32 hblank;
9206 u32 hsync;
9207 u32 vtotal;
9208 u32 vblank;
9209 u32 vsync;
9210 } pipe[2];
9212 struct intel_plane_error_state {
9213 u32 control;
9214 u32 stride;
9215 u32 size;
9216 u32 pos;
9217 u32 addr;
9218 u32 surface;
9219 u32 tile_offset;
9220 } plane[2];
9223 struct intel_display_error_state *
9224 intel_display_capture_error_state(struct drm_device *dev)
9226 drm_i915_private_t *dev_priv = dev->dev_private;
9227 struct intel_display_error_state *error;
9228 int i;
9230 error = kmalloc(sizeof(*error), GFP_ATOMIC);
9231 if (error == NULL)
9232 return NULL;
9234 for (i = 0; i < 2; i++) {
9235 error->cursor[i].control = I915_READ(CURCNTR(i));
9236 error->cursor[i].position = I915_READ(CURPOS(i));
9237 error->cursor[i].base = I915_READ(CURBASE(i));
9239 error->plane[i].control = I915_READ(DSPCNTR(i));
9240 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
9241 error->plane[i].size = I915_READ(DSPSIZE(i));
9242 error->plane[i].pos = I915_READ(DSPPOS(i));
9243 error->plane[i].addr = I915_READ(DSPADDR(i));
9244 if (INTEL_INFO(dev)->gen >= 4) {
9245 error->plane[i].surface = I915_READ(DSPSURF(i));
9246 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
9249 error->pipe[i].conf = I915_READ(PIPECONF(i));
9250 error->pipe[i].source = I915_READ(PIPESRC(i));
9251 error->pipe[i].htotal = I915_READ(HTOTAL(i));
9252 error->pipe[i].hblank = I915_READ(HBLANK(i));
9253 error->pipe[i].hsync = I915_READ(HSYNC(i));
9254 error->pipe[i].vtotal = I915_READ(VTOTAL(i));
9255 error->pipe[i].vblank = I915_READ(VBLANK(i));
9256 error->pipe[i].vsync = I915_READ(VSYNC(i));
9259 return error;
9262 void
9263 intel_display_print_error_state(struct seq_file *m,
9264 struct drm_device *dev,
9265 struct intel_display_error_state *error)
9267 int i;
9269 for (i = 0; i < 2; i++) {
9270 seq_printf(m, "Pipe [%d]:\n", i);
9271 seq_printf(m, " CONF: %08x\n", error->pipe[i].conf);
9272 seq_printf(m, " SRC: %08x\n", error->pipe[i].source);
9273 seq_printf(m, " HTOTAL: %08x\n", error->pipe[i].htotal);
9274 seq_printf(m, " HBLANK: %08x\n", error->pipe[i].hblank);
9275 seq_printf(m, " HSYNC: %08x\n", error->pipe[i].hsync);
9276 seq_printf(m, " VTOTAL: %08x\n", error->pipe[i].vtotal);
9277 seq_printf(m, " VBLANK: %08x\n", error->pipe[i].vblank);
9278 seq_printf(m, " VSYNC: %08x\n", error->pipe[i].vsync);
9280 seq_printf(m, "Plane [%d]:\n", i);
9281 seq_printf(m, " CNTR: %08x\n", error->plane[i].control);
9282 seq_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
9283 seq_printf(m, " SIZE: %08x\n", error->plane[i].size);
9284 seq_printf(m, " POS: %08x\n", error->plane[i].pos);
9285 seq_printf(m, " ADDR: %08x\n", error->plane[i].addr);
9286 if (INTEL_INFO(dev)->gen >= 4) {
9287 seq_printf(m, " SURF: %08x\n", error->plane[i].surface);
9288 seq_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
9291 seq_printf(m, "Cursor [%d]:\n", i);
9292 seq_printf(m, " CNTR: %08x\n", error->cursor[i].control);
9293 seq_printf(m, " POS: %08x\n", error->cursor[i].position);
9294 seq_printf(m, " BASE: %08x\n", error->cursor[i].base);
9297 #endif