dl2k: Clean up rio_ioctl
[zen-stable.git] / drivers / mmc / card / block.c
bloba1b1574dcdf092f1549f0ad91873c48bef720f42
1 /*
2 * Block driver for media (i.e., flash cards)
4 * Copyright 2002 Hewlett-Packard Company
5 * Copyright 2005-2008 Pierre Ossman
7 * Use consistent with the GNU GPL is permitted,
8 * provided that this copyright notice is
9 * preserved in its entirety in all copies and derived works.
11 * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED,
12 * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS
13 * FITNESS FOR ANY PARTICULAR PURPOSE.
15 * Many thanks to Alessandro Rubini and Jonathan Corbet!
17 * Author: Andrew Christian
18 * 28 May 2002
20 #include <linux/moduleparam.h>
21 #include <linux/module.h>
22 #include <linux/init.h>
24 #include <linux/kernel.h>
25 #include <linux/fs.h>
26 #include <linux/slab.h>
27 #include <linux/errno.h>
28 #include <linux/hdreg.h>
29 #include <linux/kdev_t.h>
30 #include <linux/blkdev.h>
31 #include <linux/mutex.h>
32 #include <linux/scatterlist.h>
33 #include <linux/string_helpers.h>
34 #include <linux/delay.h>
35 #include <linux/capability.h>
36 #include <linux/compat.h>
38 #include <linux/mmc/ioctl.h>
39 #include <linux/mmc/card.h>
40 #include <linux/mmc/host.h>
41 #include <linux/mmc/mmc.h>
42 #include <linux/mmc/sd.h>
44 #include <asm/system.h>
45 #include <asm/uaccess.h>
47 #include "queue.h"
49 MODULE_ALIAS("mmc:block");
50 #ifdef MODULE_PARAM_PREFIX
51 #undef MODULE_PARAM_PREFIX
52 #endif
53 #define MODULE_PARAM_PREFIX "mmcblk."
55 #define INAND_CMD38_ARG_EXT_CSD 113
56 #define INAND_CMD38_ARG_ERASE 0x00
57 #define INAND_CMD38_ARG_TRIM 0x01
58 #define INAND_CMD38_ARG_SECERASE 0x80
59 #define INAND_CMD38_ARG_SECTRIM1 0x81
60 #define INAND_CMD38_ARG_SECTRIM2 0x88
62 static DEFINE_MUTEX(block_mutex);
65 * The defaults come from config options but can be overriden by module
66 * or bootarg options.
68 static int perdev_minors = CONFIG_MMC_BLOCK_MINORS;
71 * We've only got one major, so number of mmcblk devices is
72 * limited to 256 / number of minors per device.
74 static int max_devices;
76 /* 256 minors, so at most 256 separate devices */
77 static DECLARE_BITMAP(dev_use, 256);
78 static DECLARE_BITMAP(name_use, 256);
81 * There is one mmc_blk_data per slot.
83 struct mmc_blk_data {
84 spinlock_t lock;
85 struct gendisk *disk;
86 struct mmc_queue queue;
87 struct list_head part;
89 unsigned int flags;
90 #define MMC_BLK_CMD23 (1 << 0) /* Can do SET_BLOCK_COUNT for multiblock */
91 #define MMC_BLK_REL_WR (1 << 1) /* MMC Reliable write support */
93 unsigned int usage;
94 unsigned int read_only;
95 unsigned int part_type;
96 unsigned int name_idx;
97 unsigned int reset_done;
98 #define MMC_BLK_READ BIT(0)
99 #define MMC_BLK_WRITE BIT(1)
100 #define MMC_BLK_DISCARD BIT(2)
101 #define MMC_BLK_SECDISCARD BIT(3)
104 * Only set in main mmc_blk_data associated
105 * with mmc_card with mmc_set_drvdata, and keeps
106 * track of the current selected device partition.
108 unsigned int part_curr;
109 struct device_attribute force_ro;
110 struct device_attribute power_ro_lock;
111 int area_type;
114 static DEFINE_MUTEX(open_lock);
116 enum mmc_blk_status {
117 MMC_BLK_SUCCESS = 0,
118 MMC_BLK_PARTIAL,
119 MMC_BLK_CMD_ERR,
120 MMC_BLK_RETRY,
121 MMC_BLK_ABORT,
122 MMC_BLK_DATA_ERR,
123 MMC_BLK_ECC_ERR,
124 MMC_BLK_NOMEDIUM,
127 module_param(perdev_minors, int, 0444);
128 MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device");
130 static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk)
132 struct mmc_blk_data *md;
134 mutex_lock(&open_lock);
135 md = disk->private_data;
136 if (md && md->usage == 0)
137 md = NULL;
138 if (md)
139 md->usage++;
140 mutex_unlock(&open_lock);
142 return md;
145 static inline int mmc_get_devidx(struct gendisk *disk)
147 int devmaj = MAJOR(disk_devt(disk));
148 int devidx = MINOR(disk_devt(disk)) / perdev_minors;
150 if (!devmaj)
151 devidx = disk->first_minor / perdev_minors;
152 return devidx;
155 static void mmc_blk_put(struct mmc_blk_data *md)
157 mutex_lock(&open_lock);
158 md->usage--;
159 if (md->usage == 0) {
160 int devidx = mmc_get_devidx(md->disk);
161 blk_cleanup_queue(md->queue.queue);
163 __clear_bit(devidx, dev_use);
165 put_disk(md->disk);
166 kfree(md);
168 mutex_unlock(&open_lock);
171 static ssize_t power_ro_lock_show(struct device *dev,
172 struct device_attribute *attr, char *buf)
174 int ret;
175 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
176 struct mmc_card *card = md->queue.card;
177 int locked = 0;
179 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN)
180 locked = 2;
181 else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN)
182 locked = 1;
184 ret = snprintf(buf, PAGE_SIZE, "%d\n", locked);
186 return ret;
189 static ssize_t power_ro_lock_store(struct device *dev,
190 struct device_attribute *attr, const char *buf, size_t count)
192 int ret;
193 struct mmc_blk_data *md, *part_md;
194 struct mmc_card *card;
195 unsigned long set;
197 if (kstrtoul(buf, 0, &set))
198 return -EINVAL;
200 if (set != 1)
201 return count;
203 md = mmc_blk_get(dev_to_disk(dev));
204 card = md->queue.card;
206 mmc_claim_host(card->host);
208 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP,
209 card->ext_csd.boot_ro_lock |
210 EXT_CSD_BOOT_WP_B_PWR_WP_EN,
211 card->ext_csd.part_time);
212 if (ret)
213 pr_err("%s: Locking boot partition ro until next power on failed: %d\n", md->disk->disk_name, ret);
214 else
215 card->ext_csd.boot_ro_lock |= EXT_CSD_BOOT_WP_B_PWR_WP_EN;
217 mmc_release_host(card->host);
219 if (!ret) {
220 pr_info("%s: Locking boot partition ro until next power on\n",
221 md->disk->disk_name);
222 set_disk_ro(md->disk, 1);
224 list_for_each_entry(part_md, &md->part, part)
225 if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) {
226 pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name);
227 set_disk_ro(part_md->disk, 1);
231 mmc_blk_put(md);
232 return count;
235 static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr,
236 char *buf)
238 int ret;
239 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
241 ret = snprintf(buf, PAGE_SIZE, "%d",
242 get_disk_ro(dev_to_disk(dev)) ^
243 md->read_only);
244 mmc_blk_put(md);
245 return ret;
248 static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr,
249 const char *buf, size_t count)
251 int ret;
252 char *end;
253 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
254 unsigned long set = simple_strtoul(buf, &end, 0);
255 if (end == buf) {
256 ret = -EINVAL;
257 goto out;
260 set_disk_ro(dev_to_disk(dev), set || md->read_only);
261 ret = count;
262 out:
263 mmc_blk_put(md);
264 return ret;
267 static int mmc_blk_open(struct block_device *bdev, fmode_t mode)
269 struct mmc_blk_data *md = mmc_blk_get(bdev->bd_disk);
270 int ret = -ENXIO;
272 mutex_lock(&block_mutex);
273 if (md) {
274 if (md->usage == 2)
275 check_disk_change(bdev);
276 ret = 0;
278 if ((mode & FMODE_WRITE) && md->read_only) {
279 mmc_blk_put(md);
280 ret = -EROFS;
283 mutex_unlock(&block_mutex);
285 return ret;
288 static int mmc_blk_release(struct gendisk *disk, fmode_t mode)
290 struct mmc_blk_data *md = disk->private_data;
292 mutex_lock(&block_mutex);
293 mmc_blk_put(md);
294 mutex_unlock(&block_mutex);
295 return 0;
298 static int
299 mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
301 geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16);
302 geo->heads = 4;
303 geo->sectors = 16;
304 return 0;
307 struct mmc_blk_ioc_data {
308 struct mmc_ioc_cmd ic;
309 unsigned char *buf;
310 u64 buf_bytes;
313 static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user(
314 struct mmc_ioc_cmd __user *user)
316 struct mmc_blk_ioc_data *idata;
317 int err;
319 idata = kzalloc(sizeof(*idata), GFP_KERNEL);
320 if (!idata) {
321 err = -ENOMEM;
322 goto out;
325 if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) {
326 err = -EFAULT;
327 goto idata_err;
330 idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks;
331 if (idata->buf_bytes > MMC_IOC_MAX_BYTES) {
332 err = -EOVERFLOW;
333 goto idata_err;
336 if (!idata->buf_bytes)
337 return idata;
339 idata->buf = kzalloc(idata->buf_bytes, GFP_KERNEL);
340 if (!idata->buf) {
341 err = -ENOMEM;
342 goto idata_err;
345 if (copy_from_user(idata->buf, (void __user *)(unsigned long)
346 idata->ic.data_ptr, idata->buf_bytes)) {
347 err = -EFAULT;
348 goto copy_err;
351 return idata;
353 copy_err:
354 kfree(idata->buf);
355 idata_err:
356 kfree(idata);
357 out:
358 return ERR_PTR(err);
361 static int mmc_blk_ioctl_cmd(struct block_device *bdev,
362 struct mmc_ioc_cmd __user *ic_ptr)
364 struct mmc_blk_ioc_data *idata;
365 struct mmc_blk_data *md;
366 struct mmc_card *card;
367 struct mmc_command cmd = {0};
368 struct mmc_data data = {0};
369 struct mmc_request mrq = {NULL};
370 struct scatterlist sg;
371 int err;
374 * The caller must have CAP_SYS_RAWIO, and must be calling this on the
375 * whole block device, not on a partition. This prevents overspray
376 * between sibling partitions.
378 if ((!capable(CAP_SYS_RAWIO)) || (bdev != bdev->bd_contains))
379 return -EPERM;
381 idata = mmc_blk_ioctl_copy_from_user(ic_ptr);
382 if (IS_ERR(idata))
383 return PTR_ERR(idata);
385 md = mmc_blk_get(bdev->bd_disk);
386 if (!md) {
387 err = -EINVAL;
388 goto cmd_done;
391 card = md->queue.card;
392 if (IS_ERR(card)) {
393 err = PTR_ERR(card);
394 goto cmd_done;
397 cmd.opcode = idata->ic.opcode;
398 cmd.arg = idata->ic.arg;
399 cmd.flags = idata->ic.flags;
401 if (idata->buf_bytes) {
402 data.sg = &sg;
403 data.sg_len = 1;
404 data.blksz = idata->ic.blksz;
405 data.blocks = idata->ic.blocks;
407 sg_init_one(data.sg, idata->buf, idata->buf_bytes);
409 if (idata->ic.write_flag)
410 data.flags = MMC_DATA_WRITE;
411 else
412 data.flags = MMC_DATA_READ;
414 /* data.flags must already be set before doing this. */
415 mmc_set_data_timeout(&data, card);
417 /* Allow overriding the timeout_ns for empirical tuning. */
418 if (idata->ic.data_timeout_ns)
419 data.timeout_ns = idata->ic.data_timeout_ns;
421 if ((cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) {
423 * Pretend this is a data transfer and rely on the
424 * host driver to compute timeout. When all host
425 * drivers support cmd.cmd_timeout for R1B, this
426 * can be changed to:
428 * mrq.data = NULL;
429 * cmd.cmd_timeout = idata->ic.cmd_timeout_ms;
431 data.timeout_ns = idata->ic.cmd_timeout_ms * 1000000;
434 mrq.data = &data;
437 mrq.cmd = &cmd;
439 mmc_claim_host(card->host);
441 if (idata->ic.is_acmd) {
442 err = mmc_app_cmd(card->host, card);
443 if (err)
444 goto cmd_rel_host;
447 mmc_wait_for_req(card->host, &mrq);
449 if (cmd.error) {
450 dev_err(mmc_dev(card->host), "%s: cmd error %d\n",
451 __func__, cmd.error);
452 err = cmd.error;
453 goto cmd_rel_host;
455 if (data.error) {
456 dev_err(mmc_dev(card->host), "%s: data error %d\n",
457 __func__, data.error);
458 err = data.error;
459 goto cmd_rel_host;
463 * According to the SD specs, some commands require a delay after
464 * issuing the command.
466 if (idata->ic.postsleep_min_us)
467 usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us);
469 if (copy_to_user(&(ic_ptr->response), cmd.resp, sizeof(cmd.resp))) {
470 err = -EFAULT;
471 goto cmd_rel_host;
474 if (!idata->ic.write_flag) {
475 if (copy_to_user((void __user *)(unsigned long) idata->ic.data_ptr,
476 idata->buf, idata->buf_bytes)) {
477 err = -EFAULT;
478 goto cmd_rel_host;
482 cmd_rel_host:
483 mmc_release_host(card->host);
485 cmd_done:
486 mmc_blk_put(md);
487 kfree(idata->buf);
488 kfree(idata);
489 return err;
492 static int mmc_blk_ioctl(struct block_device *bdev, fmode_t mode,
493 unsigned int cmd, unsigned long arg)
495 int ret = -EINVAL;
496 if (cmd == MMC_IOC_CMD)
497 ret = mmc_blk_ioctl_cmd(bdev, (struct mmc_ioc_cmd __user *)arg);
498 return ret;
501 #ifdef CONFIG_COMPAT
502 static int mmc_blk_compat_ioctl(struct block_device *bdev, fmode_t mode,
503 unsigned int cmd, unsigned long arg)
505 return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg));
507 #endif
509 static const struct block_device_operations mmc_bdops = {
510 .open = mmc_blk_open,
511 .release = mmc_blk_release,
512 .getgeo = mmc_blk_getgeo,
513 .owner = THIS_MODULE,
514 .ioctl = mmc_blk_ioctl,
515 #ifdef CONFIG_COMPAT
516 .compat_ioctl = mmc_blk_compat_ioctl,
517 #endif
520 static inline int mmc_blk_part_switch(struct mmc_card *card,
521 struct mmc_blk_data *md)
523 int ret;
524 struct mmc_blk_data *main_md = mmc_get_drvdata(card);
526 if (main_md->part_curr == md->part_type)
527 return 0;
529 if (mmc_card_mmc(card)) {
530 u8 part_config = card->ext_csd.part_config;
532 part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
533 part_config |= md->part_type;
535 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
536 EXT_CSD_PART_CONFIG, part_config,
537 card->ext_csd.part_time);
538 if (ret)
539 return ret;
541 card->ext_csd.part_config = part_config;
544 main_md->part_curr = md->part_type;
545 return 0;
548 static u32 mmc_sd_num_wr_blocks(struct mmc_card *card)
550 int err;
551 u32 result;
552 __be32 *blocks;
554 struct mmc_request mrq = {NULL};
555 struct mmc_command cmd = {0};
556 struct mmc_data data = {0};
557 unsigned int timeout_us;
559 struct scatterlist sg;
561 cmd.opcode = MMC_APP_CMD;
562 cmd.arg = card->rca << 16;
563 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
565 err = mmc_wait_for_cmd(card->host, &cmd, 0);
566 if (err)
567 return (u32)-1;
568 if (!mmc_host_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD))
569 return (u32)-1;
571 memset(&cmd, 0, sizeof(struct mmc_command));
573 cmd.opcode = SD_APP_SEND_NUM_WR_BLKS;
574 cmd.arg = 0;
575 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
577 data.timeout_ns = card->csd.tacc_ns * 100;
578 data.timeout_clks = card->csd.tacc_clks * 100;
580 timeout_us = data.timeout_ns / 1000;
581 timeout_us += data.timeout_clks * 1000 /
582 (card->host->ios.clock / 1000);
584 if (timeout_us > 100000) {
585 data.timeout_ns = 100000000;
586 data.timeout_clks = 0;
589 data.blksz = 4;
590 data.blocks = 1;
591 data.flags = MMC_DATA_READ;
592 data.sg = &sg;
593 data.sg_len = 1;
595 mrq.cmd = &cmd;
596 mrq.data = &data;
598 blocks = kmalloc(4, GFP_KERNEL);
599 if (!blocks)
600 return (u32)-1;
602 sg_init_one(&sg, blocks, 4);
604 mmc_wait_for_req(card->host, &mrq);
606 result = ntohl(*blocks);
607 kfree(blocks);
609 if (cmd.error || data.error)
610 result = (u32)-1;
612 return result;
615 static int send_stop(struct mmc_card *card, u32 *status)
617 struct mmc_command cmd = {0};
618 int err;
620 cmd.opcode = MMC_STOP_TRANSMISSION;
621 cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
622 err = mmc_wait_for_cmd(card->host, &cmd, 5);
623 if (err == 0)
624 *status = cmd.resp[0];
625 return err;
628 static int get_card_status(struct mmc_card *card, u32 *status, int retries)
630 struct mmc_command cmd = {0};
631 int err;
633 cmd.opcode = MMC_SEND_STATUS;
634 if (!mmc_host_is_spi(card->host))
635 cmd.arg = card->rca << 16;
636 cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
637 err = mmc_wait_for_cmd(card->host, &cmd, retries);
638 if (err == 0)
639 *status = cmd.resp[0];
640 return err;
643 #define ERR_NOMEDIUM 3
644 #define ERR_RETRY 2
645 #define ERR_ABORT 1
646 #define ERR_CONTINUE 0
648 static int mmc_blk_cmd_error(struct request *req, const char *name, int error,
649 bool status_valid, u32 status)
651 switch (error) {
652 case -EILSEQ:
653 /* response crc error, retry the r/w cmd */
654 pr_err("%s: %s sending %s command, card status %#x\n",
655 req->rq_disk->disk_name, "response CRC error",
656 name, status);
657 return ERR_RETRY;
659 case -ETIMEDOUT:
660 pr_err("%s: %s sending %s command, card status %#x\n",
661 req->rq_disk->disk_name, "timed out", name, status);
663 /* If the status cmd initially failed, retry the r/w cmd */
664 if (!status_valid)
665 return ERR_RETRY;
668 * If it was a r/w cmd crc error, or illegal command
669 * (eg, issued in wrong state) then retry - we should
670 * have corrected the state problem above.
672 if (status & (R1_COM_CRC_ERROR | R1_ILLEGAL_COMMAND))
673 return ERR_RETRY;
675 /* Otherwise abort the command */
676 return ERR_ABORT;
678 default:
679 /* We don't understand the error code the driver gave us */
680 pr_err("%s: unknown error %d sending read/write command, card status %#x\n",
681 req->rq_disk->disk_name, error, status);
682 return ERR_ABORT;
687 * Initial r/w and stop cmd error recovery.
688 * We don't know whether the card received the r/w cmd or not, so try to
689 * restore things back to a sane state. Essentially, we do this as follows:
690 * - Obtain card status. If the first attempt to obtain card status fails,
691 * the status word will reflect the failed status cmd, not the failed
692 * r/w cmd. If we fail to obtain card status, it suggests we can no
693 * longer communicate with the card.
694 * - Check the card state. If the card received the cmd but there was a
695 * transient problem with the response, it might still be in a data transfer
696 * mode. Try to send it a stop command. If this fails, we can't recover.
697 * - If the r/w cmd failed due to a response CRC error, it was probably
698 * transient, so retry the cmd.
699 * - If the r/w cmd timed out, but we didn't get the r/w cmd status, retry.
700 * - If the r/w cmd timed out, and the r/w cmd failed due to CRC error or
701 * illegal cmd, retry.
702 * Otherwise we don't understand what happened, so abort.
704 static int mmc_blk_cmd_recovery(struct mmc_card *card, struct request *req,
705 struct mmc_blk_request *brq, int *ecc_err)
707 bool prev_cmd_status_valid = true;
708 u32 status, stop_status = 0;
709 int err, retry;
711 if (mmc_card_removed(card))
712 return ERR_NOMEDIUM;
715 * Try to get card status which indicates both the card state
716 * and why there was no response. If the first attempt fails,
717 * we can't be sure the returned status is for the r/w command.
719 for (retry = 2; retry >= 0; retry--) {
720 err = get_card_status(card, &status, 0);
721 if (!err)
722 break;
724 prev_cmd_status_valid = false;
725 pr_err("%s: error %d sending status command, %sing\n",
726 req->rq_disk->disk_name, err, retry ? "retry" : "abort");
729 /* We couldn't get a response from the card. Give up. */
730 if (err) {
731 /* Check if the card is removed */
732 if (mmc_detect_card_removed(card->host))
733 return ERR_NOMEDIUM;
734 return ERR_ABORT;
737 /* Flag ECC errors */
738 if ((status & R1_CARD_ECC_FAILED) ||
739 (brq->stop.resp[0] & R1_CARD_ECC_FAILED) ||
740 (brq->cmd.resp[0] & R1_CARD_ECC_FAILED))
741 *ecc_err = 1;
744 * Check the current card state. If it is in some data transfer
745 * mode, tell it to stop (and hopefully transition back to TRAN.)
747 if (R1_CURRENT_STATE(status) == R1_STATE_DATA ||
748 R1_CURRENT_STATE(status) == R1_STATE_RCV) {
749 err = send_stop(card, &stop_status);
750 if (err)
751 pr_err("%s: error %d sending stop command\n",
752 req->rq_disk->disk_name, err);
755 * If the stop cmd also timed out, the card is probably
756 * not present, so abort. Other errors are bad news too.
758 if (err)
759 return ERR_ABORT;
760 if (stop_status & R1_CARD_ECC_FAILED)
761 *ecc_err = 1;
764 /* Check for set block count errors */
765 if (brq->sbc.error)
766 return mmc_blk_cmd_error(req, "SET_BLOCK_COUNT", brq->sbc.error,
767 prev_cmd_status_valid, status);
769 /* Check for r/w command errors */
770 if (brq->cmd.error)
771 return mmc_blk_cmd_error(req, "r/w cmd", brq->cmd.error,
772 prev_cmd_status_valid, status);
774 /* Data errors */
775 if (!brq->stop.error)
776 return ERR_CONTINUE;
778 /* Now for stop errors. These aren't fatal to the transfer. */
779 pr_err("%s: error %d sending stop command, original cmd response %#x, card status %#x\n",
780 req->rq_disk->disk_name, brq->stop.error,
781 brq->cmd.resp[0], status);
784 * Subsitute in our own stop status as this will give the error
785 * state which happened during the execution of the r/w command.
787 if (stop_status) {
788 brq->stop.resp[0] = stop_status;
789 brq->stop.error = 0;
791 return ERR_CONTINUE;
794 static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host,
795 int type)
797 int err;
799 if (md->reset_done & type)
800 return -EEXIST;
802 md->reset_done |= type;
803 err = mmc_hw_reset(host);
804 /* Ensure we switch back to the correct partition */
805 if (err != -EOPNOTSUPP) {
806 struct mmc_blk_data *main_md = mmc_get_drvdata(host->card);
807 int part_err;
809 main_md->part_curr = main_md->part_type;
810 part_err = mmc_blk_part_switch(host->card, md);
811 if (part_err) {
813 * We have failed to get back into the correct
814 * partition, so we need to abort the whole request.
816 return -ENODEV;
819 return err;
822 static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type)
824 md->reset_done &= ~type;
827 static int mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req)
829 struct mmc_blk_data *md = mq->data;
830 struct mmc_card *card = md->queue.card;
831 unsigned int from, nr, arg;
832 int err = 0, type = MMC_BLK_DISCARD;
834 if (!mmc_can_erase(card)) {
835 err = -EOPNOTSUPP;
836 goto out;
839 from = blk_rq_pos(req);
840 nr = blk_rq_sectors(req);
842 if (mmc_can_discard(card))
843 arg = MMC_DISCARD_ARG;
844 else if (mmc_can_trim(card))
845 arg = MMC_TRIM_ARG;
846 else
847 arg = MMC_ERASE_ARG;
848 retry:
849 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
850 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
851 INAND_CMD38_ARG_EXT_CSD,
852 arg == MMC_TRIM_ARG ?
853 INAND_CMD38_ARG_TRIM :
854 INAND_CMD38_ARG_ERASE,
856 if (err)
857 goto out;
859 err = mmc_erase(card, from, nr, arg);
860 out:
861 if (err == -EIO && !mmc_blk_reset(md, card->host, type))
862 goto retry;
863 if (!err)
864 mmc_blk_reset_success(md, type);
865 spin_lock_irq(&md->lock);
866 __blk_end_request(req, err, blk_rq_bytes(req));
867 spin_unlock_irq(&md->lock);
869 return err ? 0 : 1;
872 static int mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq,
873 struct request *req)
875 struct mmc_blk_data *md = mq->data;
876 struct mmc_card *card = md->queue.card;
877 unsigned int from, nr, arg, trim_arg, erase_arg;
878 int err = 0, type = MMC_BLK_SECDISCARD;
880 if (!(mmc_can_secure_erase_trim(card) || mmc_can_sanitize(card))) {
881 err = -EOPNOTSUPP;
882 goto out;
885 from = blk_rq_pos(req);
886 nr = blk_rq_sectors(req);
888 /* The sanitize operation is supported at v4.5 only */
889 if (mmc_can_sanitize(card)) {
890 erase_arg = MMC_ERASE_ARG;
891 trim_arg = MMC_TRIM_ARG;
892 } else {
893 erase_arg = MMC_SECURE_ERASE_ARG;
894 trim_arg = MMC_SECURE_TRIM1_ARG;
897 if (mmc_erase_group_aligned(card, from, nr))
898 arg = erase_arg;
899 else if (mmc_can_trim(card))
900 arg = trim_arg;
901 else {
902 err = -EINVAL;
903 goto out;
905 retry:
906 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
907 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
908 INAND_CMD38_ARG_EXT_CSD,
909 arg == MMC_SECURE_TRIM1_ARG ?
910 INAND_CMD38_ARG_SECTRIM1 :
911 INAND_CMD38_ARG_SECERASE,
913 if (err)
914 goto out_retry;
917 err = mmc_erase(card, from, nr, arg);
918 if (err == -EIO)
919 goto out_retry;
920 if (err)
921 goto out;
923 if (arg == MMC_SECURE_TRIM1_ARG) {
924 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
925 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
926 INAND_CMD38_ARG_EXT_CSD,
927 INAND_CMD38_ARG_SECTRIM2,
929 if (err)
930 goto out_retry;
933 err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG);
934 if (err == -EIO)
935 goto out_retry;
936 if (err)
937 goto out;
940 if (mmc_can_sanitize(card))
941 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
942 EXT_CSD_SANITIZE_START, 1, 0);
943 out_retry:
944 if (err && !mmc_blk_reset(md, card->host, type))
945 goto retry;
946 if (!err)
947 mmc_blk_reset_success(md, type);
948 out:
949 spin_lock_irq(&md->lock);
950 __blk_end_request(req, err, blk_rq_bytes(req));
951 spin_unlock_irq(&md->lock);
953 return err ? 0 : 1;
956 static int mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req)
958 struct mmc_blk_data *md = mq->data;
959 struct mmc_card *card = md->queue.card;
960 int ret = 0;
962 ret = mmc_flush_cache(card);
963 if (ret)
964 ret = -EIO;
966 spin_lock_irq(&md->lock);
967 __blk_end_request_all(req, ret);
968 spin_unlock_irq(&md->lock);
970 return ret ? 0 : 1;
974 * Reformat current write as a reliable write, supporting
975 * both legacy and the enhanced reliable write MMC cards.
976 * In each transfer we'll handle only as much as a single
977 * reliable write can handle, thus finish the request in
978 * partial completions.
980 static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq,
981 struct mmc_card *card,
982 struct request *req)
984 if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) {
985 /* Legacy mode imposes restrictions on transfers. */
986 if (!IS_ALIGNED(brq->cmd.arg, card->ext_csd.rel_sectors))
987 brq->data.blocks = 1;
989 if (brq->data.blocks > card->ext_csd.rel_sectors)
990 brq->data.blocks = card->ext_csd.rel_sectors;
991 else if (brq->data.blocks < card->ext_csd.rel_sectors)
992 brq->data.blocks = 1;
996 #define CMD_ERRORS \
997 (R1_OUT_OF_RANGE | /* Command argument out of range */ \
998 R1_ADDRESS_ERROR | /* Misaligned address */ \
999 R1_BLOCK_LEN_ERROR | /* Transferred block length incorrect */\
1000 R1_WP_VIOLATION | /* Tried to write to protected block */ \
1001 R1_CC_ERROR | /* Card controller error */ \
1002 R1_ERROR) /* General/unknown error */
1004 static int mmc_blk_err_check(struct mmc_card *card,
1005 struct mmc_async_req *areq)
1007 struct mmc_queue_req *mq_mrq = container_of(areq, struct mmc_queue_req,
1008 mmc_active);
1009 struct mmc_blk_request *brq = &mq_mrq->brq;
1010 struct request *req = mq_mrq->req;
1011 int ecc_err = 0;
1014 * sbc.error indicates a problem with the set block count
1015 * command. No data will have been transferred.
1017 * cmd.error indicates a problem with the r/w command. No
1018 * data will have been transferred.
1020 * stop.error indicates a problem with the stop command. Data
1021 * may have been transferred, or may still be transferring.
1023 if (brq->sbc.error || brq->cmd.error || brq->stop.error ||
1024 brq->data.error) {
1025 switch (mmc_blk_cmd_recovery(card, req, brq, &ecc_err)) {
1026 case ERR_RETRY:
1027 return MMC_BLK_RETRY;
1028 case ERR_ABORT:
1029 return MMC_BLK_ABORT;
1030 case ERR_NOMEDIUM:
1031 return MMC_BLK_NOMEDIUM;
1032 case ERR_CONTINUE:
1033 break;
1038 * Check for errors relating to the execution of the
1039 * initial command - such as address errors. No data
1040 * has been transferred.
1042 if (brq->cmd.resp[0] & CMD_ERRORS) {
1043 pr_err("%s: r/w command failed, status = %#x\n",
1044 req->rq_disk->disk_name, brq->cmd.resp[0]);
1045 return MMC_BLK_ABORT;
1049 * Everything else is either success, or a data error of some
1050 * kind. If it was a write, we may have transitioned to
1051 * program mode, which we have to wait for it to complete.
1053 if (!mmc_host_is_spi(card->host) && rq_data_dir(req) != READ) {
1054 u32 status;
1055 do {
1056 int err = get_card_status(card, &status, 5);
1057 if (err) {
1058 pr_err("%s: error %d requesting status\n",
1059 req->rq_disk->disk_name, err);
1060 return MMC_BLK_CMD_ERR;
1063 * Some cards mishandle the status bits,
1064 * so make sure to check both the busy
1065 * indication and the card state.
1067 } while (!(status & R1_READY_FOR_DATA) ||
1068 (R1_CURRENT_STATE(status) == R1_STATE_PRG));
1071 if (brq->data.error) {
1072 pr_err("%s: error %d transferring data, sector %u, nr %u, cmd response %#x, card status %#x\n",
1073 req->rq_disk->disk_name, brq->data.error,
1074 (unsigned)blk_rq_pos(req),
1075 (unsigned)blk_rq_sectors(req),
1076 brq->cmd.resp[0], brq->stop.resp[0]);
1078 if (rq_data_dir(req) == READ) {
1079 if (ecc_err)
1080 return MMC_BLK_ECC_ERR;
1081 return MMC_BLK_DATA_ERR;
1082 } else {
1083 return MMC_BLK_CMD_ERR;
1087 if (!brq->data.bytes_xfered)
1088 return MMC_BLK_RETRY;
1090 if (blk_rq_bytes(req) != brq->data.bytes_xfered)
1091 return MMC_BLK_PARTIAL;
1093 return MMC_BLK_SUCCESS;
1096 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
1097 struct mmc_card *card,
1098 int disable_multi,
1099 struct mmc_queue *mq)
1101 u32 readcmd, writecmd;
1102 struct mmc_blk_request *brq = &mqrq->brq;
1103 struct request *req = mqrq->req;
1104 struct mmc_blk_data *md = mq->data;
1107 * Reliable writes are used to implement Forced Unit Access and
1108 * REQ_META accesses, and are supported only on MMCs.
1110 * XXX: this really needs a good explanation of why REQ_META
1111 * is treated special.
1113 bool do_rel_wr = ((req->cmd_flags & REQ_FUA) ||
1114 (req->cmd_flags & REQ_META)) &&
1115 (rq_data_dir(req) == WRITE) &&
1116 (md->flags & MMC_BLK_REL_WR);
1118 memset(brq, 0, sizeof(struct mmc_blk_request));
1119 brq->mrq.cmd = &brq->cmd;
1120 brq->mrq.data = &brq->data;
1122 brq->cmd.arg = blk_rq_pos(req);
1123 if (!mmc_card_blockaddr(card))
1124 brq->cmd.arg <<= 9;
1125 brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
1126 brq->data.blksz = 512;
1127 brq->stop.opcode = MMC_STOP_TRANSMISSION;
1128 brq->stop.arg = 0;
1129 brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1130 brq->data.blocks = blk_rq_sectors(req);
1133 * The block layer doesn't support all sector count
1134 * restrictions, so we need to be prepared for too big
1135 * requests.
1137 if (brq->data.blocks > card->host->max_blk_count)
1138 brq->data.blocks = card->host->max_blk_count;
1140 if (brq->data.blocks > 1) {
1142 * After a read error, we redo the request one sector
1143 * at a time in order to accurately determine which
1144 * sectors can be read successfully.
1146 if (disable_multi)
1147 brq->data.blocks = 1;
1149 /* Some controllers can't do multiblock reads due to hw bugs */
1150 if (card->host->caps2 & MMC_CAP2_NO_MULTI_READ &&
1151 rq_data_dir(req) == READ)
1152 brq->data.blocks = 1;
1155 if (brq->data.blocks > 1 || do_rel_wr) {
1156 /* SPI multiblock writes terminate using a special
1157 * token, not a STOP_TRANSMISSION request.
1159 if (!mmc_host_is_spi(card->host) ||
1160 rq_data_dir(req) == READ)
1161 brq->mrq.stop = &brq->stop;
1162 readcmd = MMC_READ_MULTIPLE_BLOCK;
1163 writecmd = MMC_WRITE_MULTIPLE_BLOCK;
1164 } else {
1165 brq->mrq.stop = NULL;
1166 readcmd = MMC_READ_SINGLE_BLOCK;
1167 writecmd = MMC_WRITE_BLOCK;
1169 if (rq_data_dir(req) == READ) {
1170 brq->cmd.opcode = readcmd;
1171 brq->data.flags |= MMC_DATA_READ;
1172 } else {
1173 brq->cmd.opcode = writecmd;
1174 brq->data.flags |= MMC_DATA_WRITE;
1177 if (do_rel_wr)
1178 mmc_apply_rel_rw(brq, card, req);
1181 * Pre-defined multi-block transfers are preferable to
1182 * open ended-ones (and necessary for reliable writes).
1183 * However, it is not sufficient to just send CMD23,
1184 * and avoid the final CMD12, as on an error condition
1185 * CMD12 (stop) needs to be sent anyway. This, coupled
1186 * with Auto-CMD23 enhancements provided by some
1187 * hosts, means that the complexity of dealing
1188 * with this is best left to the host. If CMD23 is
1189 * supported by card and host, we'll fill sbc in and let
1190 * the host deal with handling it correctly. This means
1191 * that for hosts that don't expose MMC_CAP_CMD23, no
1192 * change of behavior will be observed.
1194 * N.B: Some MMC cards experience perf degradation.
1195 * We'll avoid using CMD23-bounded multiblock writes for
1196 * these, while retaining features like reliable writes.
1199 if ((md->flags & MMC_BLK_CMD23) &&
1200 mmc_op_multi(brq->cmd.opcode) &&
1201 (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23))) {
1202 brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
1203 brq->sbc.arg = brq->data.blocks |
1204 (do_rel_wr ? (1 << 31) : 0);
1205 brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
1206 brq->mrq.sbc = &brq->sbc;
1209 mmc_set_data_timeout(&brq->data, card);
1211 brq->data.sg = mqrq->sg;
1212 brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
1215 * Adjust the sg list so it is the same size as the
1216 * request.
1218 if (brq->data.blocks != blk_rq_sectors(req)) {
1219 int i, data_size = brq->data.blocks << 9;
1220 struct scatterlist *sg;
1222 for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) {
1223 data_size -= sg->length;
1224 if (data_size <= 0) {
1225 sg->length += data_size;
1226 i++;
1227 break;
1230 brq->data.sg_len = i;
1233 mqrq->mmc_active.mrq = &brq->mrq;
1234 mqrq->mmc_active.err_check = mmc_blk_err_check;
1236 mmc_queue_bounce_pre(mqrq);
1239 static int mmc_blk_cmd_err(struct mmc_blk_data *md, struct mmc_card *card,
1240 struct mmc_blk_request *brq, struct request *req,
1241 int ret)
1244 * If this is an SD card and we're writing, we can first
1245 * mark the known good sectors as ok.
1247 * If the card is not SD, we can still ok written sectors
1248 * as reported by the controller (which might be less than
1249 * the real number of written sectors, but never more).
1251 if (mmc_card_sd(card)) {
1252 u32 blocks;
1254 blocks = mmc_sd_num_wr_blocks(card);
1255 if (blocks != (u32)-1) {
1256 spin_lock_irq(&md->lock);
1257 ret = __blk_end_request(req, 0, blocks << 9);
1258 spin_unlock_irq(&md->lock);
1260 } else {
1261 spin_lock_irq(&md->lock);
1262 ret = __blk_end_request(req, 0, brq->data.bytes_xfered);
1263 spin_unlock_irq(&md->lock);
1265 return ret;
1268 static int mmc_blk_issue_rw_rq(struct mmc_queue *mq, struct request *rqc)
1270 struct mmc_blk_data *md = mq->data;
1271 struct mmc_card *card = md->queue.card;
1272 struct mmc_blk_request *brq = &mq->mqrq_cur->brq;
1273 int ret = 1, disable_multi = 0, retry = 0, type;
1274 enum mmc_blk_status status;
1275 struct mmc_queue_req *mq_rq;
1276 struct request *req;
1277 struct mmc_async_req *areq;
1279 if (!rqc && !mq->mqrq_prev->req)
1280 return 0;
1282 do {
1283 if (rqc) {
1284 mmc_blk_rw_rq_prep(mq->mqrq_cur, card, 0, mq);
1285 areq = &mq->mqrq_cur->mmc_active;
1286 } else
1287 areq = NULL;
1288 areq = mmc_start_req(card->host, areq, (int *) &status);
1289 if (!areq)
1290 return 0;
1292 mq_rq = container_of(areq, struct mmc_queue_req, mmc_active);
1293 brq = &mq_rq->brq;
1294 req = mq_rq->req;
1295 type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1296 mmc_queue_bounce_post(mq_rq);
1298 switch (status) {
1299 case MMC_BLK_SUCCESS:
1300 case MMC_BLK_PARTIAL:
1302 * A block was successfully transferred.
1304 mmc_blk_reset_success(md, type);
1305 spin_lock_irq(&md->lock);
1306 ret = __blk_end_request(req, 0,
1307 brq->data.bytes_xfered);
1308 spin_unlock_irq(&md->lock);
1310 * If the blk_end_request function returns non-zero even
1311 * though all data has been transferred and no errors
1312 * were returned by the host controller, it's a bug.
1314 if (status == MMC_BLK_SUCCESS && ret) {
1315 pr_err("%s BUG rq_tot %d d_xfer %d\n",
1316 __func__, blk_rq_bytes(req),
1317 brq->data.bytes_xfered);
1318 rqc = NULL;
1319 goto cmd_abort;
1321 break;
1322 case MMC_BLK_CMD_ERR:
1323 ret = mmc_blk_cmd_err(md, card, brq, req, ret);
1324 if (!mmc_blk_reset(md, card->host, type))
1325 break;
1326 goto cmd_abort;
1327 case MMC_BLK_RETRY:
1328 if (retry++ < 5)
1329 break;
1330 /* Fall through */
1331 case MMC_BLK_ABORT:
1332 if (!mmc_blk_reset(md, card->host, type))
1333 break;
1334 goto cmd_abort;
1335 case MMC_BLK_DATA_ERR: {
1336 int err;
1338 err = mmc_blk_reset(md, card->host, type);
1339 if (!err)
1340 break;
1341 if (err == -ENODEV)
1342 goto cmd_abort;
1343 /* Fall through */
1345 case MMC_BLK_ECC_ERR:
1346 if (brq->data.blocks > 1) {
1347 /* Redo read one sector at a time */
1348 pr_warning("%s: retrying using single block read\n",
1349 req->rq_disk->disk_name);
1350 disable_multi = 1;
1351 break;
1354 * After an error, we redo I/O one sector at a
1355 * time, so we only reach here after trying to
1356 * read a single sector.
1358 spin_lock_irq(&md->lock);
1359 ret = __blk_end_request(req, -EIO,
1360 brq->data.blksz);
1361 spin_unlock_irq(&md->lock);
1362 if (!ret)
1363 goto start_new_req;
1364 break;
1365 case MMC_BLK_NOMEDIUM:
1366 goto cmd_abort;
1369 if (ret) {
1371 * In case of a incomplete request
1372 * prepare it again and resend.
1374 mmc_blk_rw_rq_prep(mq_rq, card, disable_multi, mq);
1375 mmc_start_req(card->host, &mq_rq->mmc_active, NULL);
1377 } while (ret);
1379 return 1;
1381 cmd_abort:
1382 spin_lock_irq(&md->lock);
1383 if (mmc_card_removed(card))
1384 req->cmd_flags |= REQ_QUIET;
1385 while (ret)
1386 ret = __blk_end_request(req, -EIO, blk_rq_cur_bytes(req));
1387 spin_unlock_irq(&md->lock);
1389 start_new_req:
1390 if (rqc) {
1391 mmc_blk_rw_rq_prep(mq->mqrq_cur, card, 0, mq);
1392 mmc_start_req(card->host, &mq->mqrq_cur->mmc_active, NULL);
1395 return 0;
1398 static int mmc_blk_issue_rq(struct mmc_queue *mq, struct request *req)
1400 int ret;
1401 struct mmc_blk_data *md = mq->data;
1402 struct mmc_card *card = md->queue.card;
1404 if (req && !mq->mqrq_prev->req)
1405 /* claim host only for the first request */
1406 mmc_claim_host(card->host);
1408 ret = mmc_blk_part_switch(card, md);
1409 if (ret) {
1410 if (req) {
1411 spin_lock_irq(&md->lock);
1412 __blk_end_request_all(req, -EIO);
1413 spin_unlock_irq(&md->lock);
1415 ret = 0;
1416 goto out;
1419 if (req && req->cmd_flags & REQ_DISCARD) {
1420 /* complete ongoing async transfer before issuing discard */
1421 if (card->host->areq)
1422 mmc_blk_issue_rw_rq(mq, NULL);
1423 if (req->cmd_flags & REQ_SECURE)
1424 ret = mmc_blk_issue_secdiscard_rq(mq, req);
1425 else
1426 ret = mmc_blk_issue_discard_rq(mq, req);
1427 } else if (req && req->cmd_flags & REQ_FLUSH) {
1428 /* complete ongoing async transfer before issuing flush */
1429 if (card->host->areq)
1430 mmc_blk_issue_rw_rq(mq, NULL);
1431 ret = mmc_blk_issue_flush(mq, req);
1432 } else {
1433 ret = mmc_blk_issue_rw_rq(mq, req);
1436 out:
1437 if (!req)
1438 /* release host only when there are no more requests */
1439 mmc_release_host(card->host);
1440 return ret;
1443 static inline int mmc_blk_readonly(struct mmc_card *card)
1445 return mmc_card_readonly(card) ||
1446 !(card->csd.cmdclass & CCC_BLOCK_WRITE);
1449 static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card,
1450 struct device *parent,
1451 sector_t size,
1452 bool default_ro,
1453 const char *subname,
1454 int area_type)
1456 struct mmc_blk_data *md;
1457 int devidx, ret;
1459 devidx = find_first_zero_bit(dev_use, max_devices);
1460 if (devidx >= max_devices)
1461 return ERR_PTR(-ENOSPC);
1462 __set_bit(devidx, dev_use);
1464 md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL);
1465 if (!md) {
1466 ret = -ENOMEM;
1467 goto out;
1471 * !subname implies we are creating main mmc_blk_data that will be
1472 * associated with mmc_card with mmc_set_drvdata. Due to device
1473 * partitions, devidx will not coincide with a per-physical card
1474 * index anymore so we keep track of a name index.
1476 if (!subname) {
1477 md->name_idx = find_first_zero_bit(name_use, max_devices);
1478 __set_bit(md->name_idx, name_use);
1479 } else
1480 md->name_idx = ((struct mmc_blk_data *)
1481 dev_to_disk(parent)->private_data)->name_idx;
1483 md->area_type = area_type;
1486 * Set the read-only status based on the supported commands
1487 * and the write protect switch.
1489 md->read_only = mmc_blk_readonly(card);
1491 md->disk = alloc_disk(perdev_minors);
1492 if (md->disk == NULL) {
1493 ret = -ENOMEM;
1494 goto err_kfree;
1497 spin_lock_init(&md->lock);
1498 INIT_LIST_HEAD(&md->part);
1499 md->usage = 1;
1501 ret = mmc_init_queue(&md->queue, card, &md->lock, subname);
1502 if (ret)
1503 goto err_putdisk;
1505 md->queue.issue_fn = mmc_blk_issue_rq;
1506 md->queue.data = md;
1508 md->disk->major = MMC_BLOCK_MAJOR;
1509 md->disk->first_minor = devidx * perdev_minors;
1510 md->disk->fops = &mmc_bdops;
1511 md->disk->private_data = md;
1512 md->disk->queue = md->queue.queue;
1513 md->disk->driverfs_dev = parent;
1514 set_disk_ro(md->disk, md->read_only || default_ro);
1517 * As discussed on lkml, GENHD_FL_REMOVABLE should:
1519 * - be set for removable media with permanent block devices
1520 * - be unset for removable block devices with permanent media
1522 * Since MMC block devices clearly fall under the second
1523 * case, we do not set GENHD_FL_REMOVABLE. Userspace
1524 * should use the block device creation/destruction hotplug
1525 * messages to tell when the card is present.
1528 snprintf(md->disk->disk_name, sizeof(md->disk->disk_name),
1529 "mmcblk%d%s", md->name_idx, subname ? subname : "");
1531 blk_queue_logical_block_size(md->queue.queue, 512);
1532 set_capacity(md->disk, size);
1534 if (mmc_host_cmd23(card->host)) {
1535 if (mmc_card_mmc(card) ||
1536 (mmc_card_sd(card) &&
1537 card->scr.cmds & SD_SCR_CMD23_SUPPORT))
1538 md->flags |= MMC_BLK_CMD23;
1541 if (mmc_card_mmc(card) &&
1542 md->flags & MMC_BLK_CMD23 &&
1543 ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) ||
1544 card->ext_csd.rel_sectors)) {
1545 md->flags |= MMC_BLK_REL_WR;
1546 blk_queue_flush(md->queue.queue, REQ_FLUSH | REQ_FUA);
1549 return md;
1551 err_putdisk:
1552 put_disk(md->disk);
1553 err_kfree:
1554 kfree(md);
1555 out:
1556 return ERR_PTR(ret);
1559 static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card)
1561 sector_t size;
1562 struct mmc_blk_data *md;
1564 if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) {
1566 * The EXT_CSD sector count is in number or 512 byte
1567 * sectors.
1569 size = card->ext_csd.sectors;
1570 } else {
1572 * The CSD capacity field is in units of read_blkbits.
1573 * set_capacity takes units of 512 bytes.
1575 size = card->csd.capacity << (card->csd.read_blkbits - 9);
1578 md = mmc_blk_alloc_req(card, &card->dev, size, false, NULL,
1579 MMC_BLK_DATA_AREA_MAIN);
1580 return md;
1583 static int mmc_blk_alloc_part(struct mmc_card *card,
1584 struct mmc_blk_data *md,
1585 unsigned int part_type,
1586 sector_t size,
1587 bool default_ro,
1588 const char *subname,
1589 int area_type)
1591 char cap_str[10];
1592 struct mmc_blk_data *part_md;
1594 part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro,
1595 subname, area_type);
1596 if (IS_ERR(part_md))
1597 return PTR_ERR(part_md);
1598 part_md->part_type = part_type;
1599 list_add(&part_md->part, &md->part);
1601 string_get_size((u64)get_capacity(part_md->disk) << 9, STRING_UNITS_2,
1602 cap_str, sizeof(cap_str));
1603 pr_info("%s: %s %s partition %u %s\n",
1604 part_md->disk->disk_name, mmc_card_id(card),
1605 mmc_card_name(card), part_md->part_type, cap_str);
1606 return 0;
1609 /* MMC Physical partitions consist of two boot partitions and
1610 * up to four general purpose partitions.
1611 * For each partition enabled in EXT_CSD a block device will be allocatedi
1612 * to provide access to the partition.
1615 static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md)
1617 int idx, ret = 0;
1619 if (!mmc_card_mmc(card))
1620 return 0;
1622 for (idx = 0; idx < card->nr_parts; idx++) {
1623 if (card->part[idx].size) {
1624 ret = mmc_blk_alloc_part(card, md,
1625 card->part[idx].part_cfg,
1626 card->part[idx].size >> 9,
1627 card->part[idx].force_ro,
1628 card->part[idx].name,
1629 card->part[idx].area_type);
1630 if (ret)
1631 return ret;
1635 return ret;
1638 static int
1639 mmc_blk_set_blksize(struct mmc_blk_data *md, struct mmc_card *card)
1641 int err;
1643 mmc_claim_host(card->host);
1644 err = mmc_set_blocklen(card, 512);
1645 mmc_release_host(card->host);
1647 if (err) {
1648 pr_err("%s: unable to set block size to 512: %d\n",
1649 md->disk->disk_name, err);
1650 return -EINVAL;
1653 return 0;
1656 static void mmc_blk_remove_req(struct mmc_blk_data *md)
1658 struct mmc_card *card;
1660 if (md) {
1661 card = md->queue.card;
1662 if (md->disk->flags & GENHD_FL_UP) {
1663 device_remove_file(disk_to_dev(md->disk), &md->force_ro);
1664 if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
1665 card->ext_csd.boot_ro_lockable)
1666 device_remove_file(disk_to_dev(md->disk),
1667 &md->power_ro_lock);
1669 /* Stop new requests from getting into the queue */
1670 del_gendisk(md->disk);
1673 /* Then flush out any already in there */
1674 mmc_cleanup_queue(&md->queue);
1675 mmc_blk_put(md);
1679 static void mmc_blk_remove_parts(struct mmc_card *card,
1680 struct mmc_blk_data *md)
1682 struct list_head *pos, *q;
1683 struct mmc_blk_data *part_md;
1685 __clear_bit(md->name_idx, name_use);
1686 list_for_each_safe(pos, q, &md->part) {
1687 part_md = list_entry(pos, struct mmc_blk_data, part);
1688 list_del(pos);
1689 mmc_blk_remove_req(part_md);
1693 static int mmc_add_disk(struct mmc_blk_data *md)
1695 int ret;
1696 struct mmc_card *card = md->queue.card;
1698 add_disk(md->disk);
1699 md->force_ro.show = force_ro_show;
1700 md->force_ro.store = force_ro_store;
1701 sysfs_attr_init(&md->force_ro.attr);
1702 md->force_ro.attr.name = "force_ro";
1703 md->force_ro.attr.mode = S_IRUGO | S_IWUSR;
1704 ret = device_create_file(disk_to_dev(md->disk), &md->force_ro);
1705 if (ret)
1706 goto force_ro_fail;
1708 if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
1709 card->ext_csd.boot_ro_lockable) {
1710 mode_t mode;
1712 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_DIS)
1713 mode = S_IRUGO;
1714 else
1715 mode = S_IRUGO | S_IWUSR;
1717 md->power_ro_lock.show = power_ro_lock_show;
1718 md->power_ro_lock.store = power_ro_lock_store;
1719 sysfs_attr_init(&md->power_ro_lock.attr);
1720 md->power_ro_lock.attr.mode = mode;
1721 md->power_ro_lock.attr.name =
1722 "ro_lock_until_next_power_on";
1723 ret = device_create_file(disk_to_dev(md->disk),
1724 &md->power_ro_lock);
1725 if (ret)
1726 goto power_ro_lock_fail;
1728 return ret;
1730 power_ro_lock_fail:
1731 device_remove_file(disk_to_dev(md->disk), &md->force_ro);
1732 force_ro_fail:
1733 del_gendisk(md->disk);
1735 return ret;
1738 #define CID_MANFID_SANDISK 0x2
1739 #define CID_MANFID_TOSHIBA 0x11
1740 #define CID_MANFID_MICRON 0x13
1742 static const struct mmc_fixup blk_fixups[] =
1744 MMC_FIXUP("SEM02G", CID_MANFID_SANDISK, 0x100, add_quirk,
1745 MMC_QUIRK_INAND_CMD38),
1746 MMC_FIXUP("SEM04G", CID_MANFID_SANDISK, 0x100, add_quirk,
1747 MMC_QUIRK_INAND_CMD38),
1748 MMC_FIXUP("SEM08G", CID_MANFID_SANDISK, 0x100, add_quirk,
1749 MMC_QUIRK_INAND_CMD38),
1750 MMC_FIXUP("SEM16G", CID_MANFID_SANDISK, 0x100, add_quirk,
1751 MMC_QUIRK_INAND_CMD38),
1752 MMC_FIXUP("SEM32G", CID_MANFID_SANDISK, 0x100, add_quirk,
1753 MMC_QUIRK_INAND_CMD38),
1756 * Some MMC cards experience performance degradation with CMD23
1757 * instead of CMD12-bounded multiblock transfers. For now we'll
1758 * black list what's bad...
1759 * - Certain Toshiba cards.
1761 * N.B. This doesn't affect SD cards.
1763 MMC_FIXUP("MMC08G", CID_MANFID_TOSHIBA, CID_OEMID_ANY, add_quirk_mmc,
1764 MMC_QUIRK_BLK_NO_CMD23),
1765 MMC_FIXUP("MMC16G", CID_MANFID_TOSHIBA, CID_OEMID_ANY, add_quirk_mmc,
1766 MMC_QUIRK_BLK_NO_CMD23),
1767 MMC_FIXUP("MMC32G", CID_MANFID_TOSHIBA, CID_OEMID_ANY, add_quirk_mmc,
1768 MMC_QUIRK_BLK_NO_CMD23),
1771 * Some Micron MMC cards needs longer data read timeout than
1772 * indicated in CSD.
1774 MMC_FIXUP(CID_NAME_ANY, CID_MANFID_MICRON, 0x200, add_quirk_mmc,
1775 MMC_QUIRK_LONG_READ_TIME),
1777 END_FIXUP
1780 static int mmc_blk_probe(struct mmc_card *card)
1782 struct mmc_blk_data *md, *part_md;
1783 int err;
1784 char cap_str[10];
1787 * Check that the card supports the command class(es) we need.
1789 if (!(card->csd.cmdclass & CCC_BLOCK_READ))
1790 return -ENODEV;
1792 md = mmc_blk_alloc(card);
1793 if (IS_ERR(md))
1794 return PTR_ERR(md);
1796 err = mmc_blk_set_blksize(md, card);
1797 if (err)
1798 goto out;
1800 string_get_size((u64)get_capacity(md->disk) << 9, STRING_UNITS_2,
1801 cap_str, sizeof(cap_str));
1802 pr_info("%s: %s %s %s %s\n",
1803 md->disk->disk_name, mmc_card_id(card), mmc_card_name(card),
1804 cap_str, md->read_only ? "(ro)" : "");
1806 if (mmc_blk_alloc_parts(card, md))
1807 goto out;
1809 mmc_set_drvdata(card, md);
1810 mmc_fixup_device(card, blk_fixups);
1812 if (mmc_add_disk(md))
1813 goto out;
1815 list_for_each_entry(part_md, &md->part, part) {
1816 if (mmc_add_disk(part_md))
1817 goto out;
1819 return 0;
1821 out:
1822 mmc_blk_remove_parts(card, md);
1823 mmc_blk_remove_req(md);
1824 return err;
1827 static void mmc_blk_remove(struct mmc_card *card)
1829 struct mmc_blk_data *md = mmc_get_drvdata(card);
1831 mmc_blk_remove_parts(card, md);
1832 mmc_claim_host(card->host);
1833 mmc_blk_part_switch(card, md);
1834 mmc_release_host(card->host);
1835 mmc_blk_remove_req(md);
1836 mmc_set_drvdata(card, NULL);
1839 #ifdef CONFIG_PM
1840 static int mmc_blk_suspend(struct mmc_card *card, pm_message_t state)
1842 struct mmc_blk_data *part_md;
1843 struct mmc_blk_data *md = mmc_get_drvdata(card);
1845 if (md) {
1846 mmc_queue_suspend(&md->queue);
1847 list_for_each_entry(part_md, &md->part, part) {
1848 mmc_queue_suspend(&part_md->queue);
1851 return 0;
1854 static int mmc_blk_resume(struct mmc_card *card)
1856 struct mmc_blk_data *part_md;
1857 struct mmc_blk_data *md = mmc_get_drvdata(card);
1859 if (md) {
1860 mmc_blk_set_blksize(md, card);
1863 * Resume involves the card going into idle state,
1864 * so current partition is always the main one.
1866 md->part_curr = md->part_type;
1867 mmc_queue_resume(&md->queue);
1868 list_for_each_entry(part_md, &md->part, part) {
1869 mmc_queue_resume(&part_md->queue);
1872 return 0;
1874 #else
1875 #define mmc_blk_suspend NULL
1876 #define mmc_blk_resume NULL
1877 #endif
1879 static struct mmc_driver mmc_driver = {
1880 .drv = {
1881 .name = "mmcblk",
1883 .probe = mmc_blk_probe,
1884 .remove = mmc_blk_remove,
1885 .suspend = mmc_blk_suspend,
1886 .resume = mmc_blk_resume,
1889 static int __init mmc_blk_init(void)
1891 int res;
1893 if (perdev_minors != CONFIG_MMC_BLOCK_MINORS)
1894 pr_info("mmcblk: using %d minors per device\n", perdev_minors);
1896 max_devices = 256 / perdev_minors;
1898 res = register_blkdev(MMC_BLOCK_MAJOR, "mmc");
1899 if (res)
1900 goto out;
1902 res = mmc_register_driver(&mmc_driver);
1903 if (res)
1904 goto out2;
1906 return 0;
1907 out2:
1908 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
1909 out:
1910 return res;
1913 static void __exit mmc_blk_exit(void)
1915 mmc_unregister_driver(&mmc_driver);
1916 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
1919 module_init(mmc_blk_init);
1920 module_exit(mmc_blk_exit);
1922 MODULE_LICENSE("GPL");
1923 MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver");