dl2k: Clean up rio_ioctl
[zen-stable.git] / drivers / mmc / host / mmci.c
blob11e589cd8233e5f7438f7240d14c8f7897fbf8d7
1 /*
2 * linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
4 * Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
5 * Copyright (C) 2010 ST-Ericsson SA
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 #include <linux/module.h>
12 #include <linux/moduleparam.h>
13 #include <linux/init.h>
14 #include <linux/ioport.h>
15 #include <linux/device.h>
16 #include <linux/interrupt.h>
17 #include <linux/kernel.h>
18 #include <linux/delay.h>
19 #include <linux/err.h>
20 #include <linux/highmem.h>
21 #include <linux/log2.h>
22 #include <linux/mmc/host.h>
23 #include <linux/mmc/card.h>
24 #include <linux/amba/bus.h>
25 #include <linux/clk.h>
26 #include <linux/scatterlist.h>
27 #include <linux/gpio.h>
28 #include <linux/regulator/consumer.h>
29 #include <linux/dmaengine.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/amba/mmci.h>
32 #include <linux/pm_runtime.h>
34 #include <asm/div64.h>
35 #include <asm/io.h>
36 #include <asm/sizes.h>
38 #include "mmci.h"
40 #define DRIVER_NAME "mmci-pl18x"
42 static unsigned int fmax = 515633;
44 /**
45 * struct variant_data - MMCI variant-specific quirks
46 * @clkreg: default value for MCICLOCK register
47 * @clkreg_enable: enable value for MMCICLOCK register
48 * @datalength_bits: number of bits in the MMCIDATALENGTH register
49 * @fifosize: number of bytes that can be written when MMCI_TXFIFOEMPTY
50 * is asserted (likewise for RX)
51 * @fifohalfsize: number of bytes that can be written when MCI_TXFIFOHALFEMPTY
52 * is asserted (likewise for RX)
53 * @sdio: variant supports SDIO
54 * @st_clkdiv: true if using a ST-specific clock divider algorithm
55 * @blksz_datactrl16: true if Block size is at b16..b30 position in datactrl register
57 struct variant_data {
58 unsigned int clkreg;
59 unsigned int clkreg_enable;
60 unsigned int datalength_bits;
61 unsigned int fifosize;
62 unsigned int fifohalfsize;
63 bool sdio;
64 bool st_clkdiv;
65 bool blksz_datactrl16;
68 static struct variant_data variant_arm = {
69 .fifosize = 16 * 4,
70 .fifohalfsize = 8 * 4,
71 .datalength_bits = 16,
74 static struct variant_data variant_arm_extended_fifo = {
75 .fifosize = 128 * 4,
76 .fifohalfsize = 64 * 4,
77 .datalength_bits = 16,
80 static struct variant_data variant_u300 = {
81 .fifosize = 16 * 4,
82 .fifohalfsize = 8 * 4,
83 .clkreg_enable = MCI_ST_U300_HWFCEN,
84 .datalength_bits = 16,
85 .sdio = true,
88 static struct variant_data variant_ux500 = {
89 .fifosize = 30 * 4,
90 .fifohalfsize = 8 * 4,
91 .clkreg = MCI_CLK_ENABLE,
92 .clkreg_enable = MCI_ST_UX500_HWFCEN,
93 .datalength_bits = 24,
94 .sdio = true,
95 .st_clkdiv = true,
98 static struct variant_data variant_ux500v2 = {
99 .fifosize = 30 * 4,
100 .fifohalfsize = 8 * 4,
101 .clkreg = MCI_CLK_ENABLE,
102 .clkreg_enable = MCI_ST_UX500_HWFCEN,
103 .datalength_bits = 24,
104 .sdio = true,
105 .st_clkdiv = true,
106 .blksz_datactrl16 = true,
110 * This must be called with host->lock held
112 static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
114 struct variant_data *variant = host->variant;
115 u32 clk = variant->clkreg;
117 if (desired) {
118 if (desired >= host->mclk) {
119 clk = MCI_CLK_BYPASS;
120 if (variant->st_clkdiv)
121 clk |= MCI_ST_UX500_NEG_EDGE;
122 host->cclk = host->mclk;
123 } else if (variant->st_clkdiv) {
125 * DB8500 TRM says f = mclk / (clkdiv + 2)
126 * => clkdiv = (mclk / f) - 2
127 * Round the divider up so we don't exceed the max
128 * frequency
130 clk = DIV_ROUND_UP(host->mclk, desired) - 2;
131 if (clk >= 256)
132 clk = 255;
133 host->cclk = host->mclk / (clk + 2);
134 } else {
136 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
137 * => clkdiv = mclk / (2 * f) - 1
139 clk = host->mclk / (2 * desired) - 1;
140 if (clk >= 256)
141 clk = 255;
142 host->cclk = host->mclk / (2 * (clk + 1));
145 clk |= variant->clkreg_enable;
146 clk |= MCI_CLK_ENABLE;
147 /* This hasn't proven to be worthwhile */
148 /* clk |= MCI_CLK_PWRSAVE; */
151 if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
152 clk |= MCI_4BIT_BUS;
153 if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
154 clk |= MCI_ST_8BIT_BUS;
156 writel(clk, host->base + MMCICLOCK);
159 static void
160 mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
162 writel(0, host->base + MMCICOMMAND);
164 BUG_ON(host->data);
166 host->mrq = NULL;
167 host->cmd = NULL;
170 * Need to drop the host lock here; mmc_request_done may call
171 * back into the driver...
173 spin_unlock(&host->lock);
174 pm_runtime_put(mmc_dev(host->mmc));
175 mmc_request_done(host->mmc, mrq);
176 spin_lock(&host->lock);
179 static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
181 void __iomem *base = host->base;
183 if (host->singleirq) {
184 unsigned int mask0 = readl(base + MMCIMASK0);
186 mask0 &= ~MCI_IRQ1MASK;
187 mask0 |= mask;
189 writel(mask0, base + MMCIMASK0);
192 writel(mask, base + MMCIMASK1);
195 static void mmci_stop_data(struct mmci_host *host)
197 writel(0, host->base + MMCIDATACTRL);
198 mmci_set_mask1(host, 0);
199 host->data = NULL;
202 static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
204 unsigned int flags = SG_MITER_ATOMIC;
206 if (data->flags & MMC_DATA_READ)
207 flags |= SG_MITER_TO_SG;
208 else
209 flags |= SG_MITER_FROM_SG;
211 sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
215 * All the DMA operation mode stuff goes inside this ifdef.
216 * This assumes that you have a generic DMA device interface,
217 * no custom DMA interfaces are supported.
219 #ifdef CONFIG_DMA_ENGINE
220 static void __devinit mmci_dma_setup(struct mmci_host *host)
222 struct mmci_platform_data *plat = host->plat;
223 const char *rxname, *txname;
224 dma_cap_mask_t mask;
226 if (!plat || !plat->dma_filter) {
227 dev_info(mmc_dev(host->mmc), "no DMA platform data\n");
228 return;
231 /* initialize pre request cookie */
232 host->next_data.cookie = 1;
234 /* Try to acquire a generic DMA engine slave channel */
235 dma_cap_zero(mask);
236 dma_cap_set(DMA_SLAVE, mask);
239 * If only an RX channel is specified, the driver will
240 * attempt to use it bidirectionally, however if it is
241 * is specified but cannot be located, DMA will be disabled.
243 if (plat->dma_rx_param) {
244 host->dma_rx_channel = dma_request_channel(mask,
245 plat->dma_filter,
246 plat->dma_rx_param);
247 /* E.g if no DMA hardware is present */
248 if (!host->dma_rx_channel)
249 dev_err(mmc_dev(host->mmc), "no RX DMA channel\n");
252 if (plat->dma_tx_param) {
253 host->dma_tx_channel = dma_request_channel(mask,
254 plat->dma_filter,
255 plat->dma_tx_param);
256 if (!host->dma_tx_channel)
257 dev_warn(mmc_dev(host->mmc), "no TX DMA channel\n");
258 } else {
259 host->dma_tx_channel = host->dma_rx_channel;
262 if (host->dma_rx_channel)
263 rxname = dma_chan_name(host->dma_rx_channel);
264 else
265 rxname = "none";
267 if (host->dma_tx_channel)
268 txname = dma_chan_name(host->dma_tx_channel);
269 else
270 txname = "none";
272 dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
273 rxname, txname);
276 * Limit the maximum segment size in any SG entry according to
277 * the parameters of the DMA engine device.
279 if (host->dma_tx_channel) {
280 struct device *dev = host->dma_tx_channel->device->dev;
281 unsigned int max_seg_size = dma_get_max_seg_size(dev);
283 if (max_seg_size < host->mmc->max_seg_size)
284 host->mmc->max_seg_size = max_seg_size;
286 if (host->dma_rx_channel) {
287 struct device *dev = host->dma_rx_channel->device->dev;
288 unsigned int max_seg_size = dma_get_max_seg_size(dev);
290 if (max_seg_size < host->mmc->max_seg_size)
291 host->mmc->max_seg_size = max_seg_size;
296 * This is used in __devinit or __devexit so inline it
297 * so it can be discarded.
299 static inline void mmci_dma_release(struct mmci_host *host)
301 struct mmci_platform_data *plat = host->plat;
303 if (host->dma_rx_channel)
304 dma_release_channel(host->dma_rx_channel);
305 if (host->dma_tx_channel && plat->dma_tx_param)
306 dma_release_channel(host->dma_tx_channel);
307 host->dma_rx_channel = host->dma_tx_channel = NULL;
310 static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
312 struct dma_chan *chan = host->dma_current;
313 enum dma_data_direction dir;
314 u32 status;
315 int i;
317 /* Wait up to 1ms for the DMA to complete */
318 for (i = 0; ; i++) {
319 status = readl(host->base + MMCISTATUS);
320 if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
321 break;
322 udelay(10);
326 * Check to see whether we still have some data left in the FIFO -
327 * this catches DMA controllers which are unable to monitor the
328 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
329 * contiguous buffers. On TX, we'll get a FIFO underrun error.
331 if (status & MCI_RXDATAAVLBLMASK) {
332 dmaengine_terminate_all(chan);
333 if (!data->error)
334 data->error = -EIO;
337 if (data->flags & MMC_DATA_WRITE) {
338 dir = DMA_TO_DEVICE;
339 } else {
340 dir = DMA_FROM_DEVICE;
343 if (!data->host_cookie)
344 dma_unmap_sg(chan->device->dev, data->sg, data->sg_len, dir);
347 * Use of DMA with scatter-gather is impossible.
348 * Give up with DMA and switch back to PIO mode.
350 if (status & MCI_RXDATAAVLBLMASK) {
351 dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
352 mmci_dma_release(host);
356 static void mmci_dma_data_error(struct mmci_host *host)
358 dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
359 dmaengine_terminate_all(host->dma_current);
362 static int mmci_dma_prep_data(struct mmci_host *host, struct mmc_data *data,
363 struct mmci_host_next *next)
365 struct variant_data *variant = host->variant;
366 struct dma_slave_config conf = {
367 .src_addr = host->phybase + MMCIFIFO,
368 .dst_addr = host->phybase + MMCIFIFO,
369 .src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
370 .dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
371 .src_maxburst = variant->fifohalfsize >> 2, /* # of words */
372 .dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
374 struct dma_chan *chan;
375 struct dma_device *device;
376 struct dma_async_tx_descriptor *desc;
377 enum dma_data_direction buffer_dirn;
378 int nr_sg;
380 /* Check if next job is already prepared */
381 if (data->host_cookie && !next &&
382 host->dma_current && host->dma_desc_current)
383 return 0;
385 if (!next) {
386 host->dma_current = NULL;
387 host->dma_desc_current = NULL;
390 if (data->flags & MMC_DATA_READ) {
391 conf.direction = DMA_DEV_TO_MEM;
392 buffer_dirn = DMA_FROM_DEVICE;
393 chan = host->dma_rx_channel;
394 } else {
395 conf.direction = DMA_MEM_TO_DEV;
396 buffer_dirn = DMA_TO_DEVICE;
397 chan = host->dma_tx_channel;
400 /* If there's no DMA channel, fall back to PIO */
401 if (!chan)
402 return -EINVAL;
404 /* If less than or equal to the fifo size, don't bother with DMA */
405 if (data->blksz * data->blocks <= variant->fifosize)
406 return -EINVAL;
408 device = chan->device;
409 nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len, buffer_dirn);
410 if (nr_sg == 0)
411 return -EINVAL;
413 dmaengine_slave_config(chan, &conf);
414 desc = device->device_prep_slave_sg(chan, data->sg, nr_sg,
415 conf.direction, DMA_CTRL_ACK);
416 if (!desc)
417 goto unmap_exit;
419 if (next) {
420 next->dma_chan = chan;
421 next->dma_desc = desc;
422 } else {
423 host->dma_current = chan;
424 host->dma_desc_current = desc;
427 return 0;
429 unmap_exit:
430 if (!next)
431 dmaengine_terminate_all(chan);
432 dma_unmap_sg(device->dev, data->sg, data->sg_len, buffer_dirn);
433 return -ENOMEM;
436 static int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
438 int ret;
439 struct mmc_data *data = host->data;
441 ret = mmci_dma_prep_data(host, host->data, NULL);
442 if (ret)
443 return ret;
445 /* Okay, go for it. */
446 dev_vdbg(mmc_dev(host->mmc),
447 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
448 data->sg_len, data->blksz, data->blocks, data->flags);
449 dmaengine_submit(host->dma_desc_current);
450 dma_async_issue_pending(host->dma_current);
452 datactrl |= MCI_DPSM_DMAENABLE;
454 /* Trigger the DMA transfer */
455 writel(datactrl, host->base + MMCIDATACTRL);
458 * Let the MMCI say when the data is ended and it's time
459 * to fire next DMA request. When that happens, MMCI will
460 * call mmci_data_end()
462 writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
463 host->base + MMCIMASK0);
464 return 0;
467 static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
469 struct mmci_host_next *next = &host->next_data;
471 if (data->host_cookie && data->host_cookie != next->cookie) {
472 pr_warning("[%s] invalid cookie: data->host_cookie %d"
473 " host->next_data.cookie %d\n",
474 __func__, data->host_cookie, host->next_data.cookie);
475 data->host_cookie = 0;
478 if (!data->host_cookie)
479 return;
481 host->dma_desc_current = next->dma_desc;
482 host->dma_current = next->dma_chan;
484 next->dma_desc = NULL;
485 next->dma_chan = NULL;
488 static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq,
489 bool is_first_req)
491 struct mmci_host *host = mmc_priv(mmc);
492 struct mmc_data *data = mrq->data;
493 struct mmci_host_next *nd = &host->next_data;
495 if (!data)
496 return;
498 if (data->host_cookie) {
499 data->host_cookie = 0;
500 return;
503 /* if config for dma */
504 if (((data->flags & MMC_DATA_WRITE) && host->dma_tx_channel) ||
505 ((data->flags & MMC_DATA_READ) && host->dma_rx_channel)) {
506 if (mmci_dma_prep_data(host, data, nd))
507 data->host_cookie = 0;
508 else
509 data->host_cookie = ++nd->cookie < 0 ? 1 : nd->cookie;
513 static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
514 int err)
516 struct mmci_host *host = mmc_priv(mmc);
517 struct mmc_data *data = mrq->data;
518 struct dma_chan *chan;
519 enum dma_data_direction dir;
521 if (!data)
522 return;
524 if (data->flags & MMC_DATA_READ) {
525 dir = DMA_FROM_DEVICE;
526 chan = host->dma_rx_channel;
527 } else {
528 dir = DMA_TO_DEVICE;
529 chan = host->dma_tx_channel;
533 /* if config for dma */
534 if (chan) {
535 if (err)
536 dmaengine_terminate_all(chan);
537 if (data->host_cookie)
538 dma_unmap_sg(mmc_dev(host->mmc), data->sg,
539 data->sg_len, dir);
540 mrq->data->host_cookie = 0;
544 #else
545 /* Blank functions if the DMA engine is not available */
546 static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
549 static inline void mmci_dma_setup(struct mmci_host *host)
553 static inline void mmci_dma_release(struct mmci_host *host)
557 static inline void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
561 static inline void mmci_dma_data_error(struct mmci_host *host)
565 static inline int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
567 return -ENOSYS;
570 #define mmci_pre_request NULL
571 #define mmci_post_request NULL
573 #endif
575 static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
577 struct variant_data *variant = host->variant;
578 unsigned int datactrl, timeout, irqmask;
579 unsigned long long clks;
580 void __iomem *base;
581 int blksz_bits;
583 dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
584 data->blksz, data->blocks, data->flags);
586 host->data = data;
587 host->size = data->blksz * data->blocks;
588 data->bytes_xfered = 0;
590 clks = (unsigned long long)data->timeout_ns * host->cclk;
591 do_div(clks, 1000000000UL);
593 timeout = data->timeout_clks + (unsigned int)clks;
595 base = host->base;
596 writel(timeout, base + MMCIDATATIMER);
597 writel(host->size, base + MMCIDATALENGTH);
599 blksz_bits = ffs(data->blksz) - 1;
600 BUG_ON(1 << blksz_bits != data->blksz);
602 if (variant->blksz_datactrl16)
603 datactrl = MCI_DPSM_ENABLE | (data->blksz << 16);
604 else
605 datactrl = MCI_DPSM_ENABLE | blksz_bits << 4;
607 if (data->flags & MMC_DATA_READ)
608 datactrl |= MCI_DPSM_DIRECTION;
611 * Attempt to use DMA operation mode, if this
612 * should fail, fall back to PIO mode
614 if (!mmci_dma_start_data(host, datactrl))
615 return;
617 /* IRQ mode, map the SG list for CPU reading/writing */
618 mmci_init_sg(host, data);
620 if (data->flags & MMC_DATA_READ) {
621 irqmask = MCI_RXFIFOHALFFULLMASK;
624 * If we have less than the fifo 'half-full' threshold to
625 * transfer, trigger a PIO interrupt as soon as any data
626 * is available.
628 if (host->size < variant->fifohalfsize)
629 irqmask |= MCI_RXDATAAVLBLMASK;
630 } else {
632 * We don't actually need to include "FIFO empty" here
633 * since its implicit in "FIFO half empty".
635 irqmask = MCI_TXFIFOHALFEMPTYMASK;
638 /* The ST Micro variants has a special bit to enable SDIO */
639 if (variant->sdio && host->mmc->card)
640 if (mmc_card_sdio(host->mmc->card))
641 datactrl |= MCI_ST_DPSM_SDIOEN;
643 writel(datactrl, base + MMCIDATACTRL);
644 writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
645 mmci_set_mask1(host, irqmask);
648 static void
649 mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
651 void __iomem *base = host->base;
653 dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
654 cmd->opcode, cmd->arg, cmd->flags);
656 if (readl(base + MMCICOMMAND) & MCI_CPSM_ENABLE) {
657 writel(0, base + MMCICOMMAND);
658 udelay(1);
661 c |= cmd->opcode | MCI_CPSM_ENABLE;
662 if (cmd->flags & MMC_RSP_PRESENT) {
663 if (cmd->flags & MMC_RSP_136)
664 c |= MCI_CPSM_LONGRSP;
665 c |= MCI_CPSM_RESPONSE;
667 if (/*interrupt*/0)
668 c |= MCI_CPSM_INTERRUPT;
670 host->cmd = cmd;
672 writel(cmd->arg, base + MMCIARGUMENT);
673 writel(c, base + MMCICOMMAND);
676 static void
677 mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
678 unsigned int status)
680 /* First check for errors */
681 if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_STARTBITERR|
682 MCI_TXUNDERRUN|MCI_RXOVERRUN)) {
683 u32 remain, success;
685 /* Terminate the DMA transfer */
686 if (dma_inprogress(host))
687 mmci_dma_data_error(host);
690 * Calculate how far we are into the transfer. Note that
691 * the data counter gives the number of bytes transferred
692 * on the MMC bus, not on the host side. On reads, this
693 * can be as much as a FIFO-worth of data ahead. This
694 * matters for FIFO overruns only.
696 remain = readl(host->base + MMCIDATACNT);
697 success = data->blksz * data->blocks - remain;
699 dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
700 status, success);
701 if (status & MCI_DATACRCFAIL) {
702 /* Last block was not successful */
703 success -= 1;
704 data->error = -EILSEQ;
705 } else if (status & MCI_DATATIMEOUT) {
706 data->error = -ETIMEDOUT;
707 } else if (status & MCI_STARTBITERR) {
708 data->error = -ECOMM;
709 } else if (status & MCI_TXUNDERRUN) {
710 data->error = -EIO;
711 } else if (status & MCI_RXOVERRUN) {
712 if (success > host->variant->fifosize)
713 success -= host->variant->fifosize;
714 else
715 success = 0;
716 data->error = -EIO;
718 data->bytes_xfered = round_down(success, data->blksz);
721 if (status & MCI_DATABLOCKEND)
722 dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
724 if (status & MCI_DATAEND || data->error) {
725 if (dma_inprogress(host))
726 mmci_dma_unmap(host, data);
727 mmci_stop_data(host);
729 if (!data->error)
730 /* The error clause is handled above, success! */
731 data->bytes_xfered = data->blksz * data->blocks;
733 if (!data->stop) {
734 mmci_request_end(host, data->mrq);
735 } else {
736 mmci_start_command(host, data->stop, 0);
741 static void
742 mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
743 unsigned int status)
745 void __iomem *base = host->base;
747 host->cmd = NULL;
749 if (status & MCI_CMDTIMEOUT) {
750 cmd->error = -ETIMEDOUT;
751 } else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
752 cmd->error = -EILSEQ;
753 } else {
754 cmd->resp[0] = readl(base + MMCIRESPONSE0);
755 cmd->resp[1] = readl(base + MMCIRESPONSE1);
756 cmd->resp[2] = readl(base + MMCIRESPONSE2);
757 cmd->resp[3] = readl(base + MMCIRESPONSE3);
760 if (!cmd->data || cmd->error) {
761 if (host->data) {
762 /* Terminate the DMA transfer */
763 if (dma_inprogress(host))
764 mmci_dma_data_error(host);
765 mmci_stop_data(host);
767 mmci_request_end(host, cmd->mrq);
768 } else if (!(cmd->data->flags & MMC_DATA_READ)) {
769 mmci_start_data(host, cmd->data);
773 static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
775 void __iomem *base = host->base;
776 char *ptr = buffer;
777 u32 status;
778 int host_remain = host->size;
780 do {
781 int count = host_remain - (readl(base + MMCIFIFOCNT) << 2);
783 if (count > remain)
784 count = remain;
786 if (count <= 0)
787 break;
789 readsl(base + MMCIFIFO, ptr, count >> 2);
791 ptr += count;
792 remain -= count;
793 host_remain -= count;
795 if (remain == 0)
796 break;
798 status = readl(base + MMCISTATUS);
799 } while (status & MCI_RXDATAAVLBL);
801 return ptr - buffer;
804 static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
806 struct variant_data *variant = host->variant;
807 void __iomem *base = host->base;
808 char *ptr = buffer;
810 do {
811 unsigned int count, maxcnt;
813 maxcnt = status & MCI_TXFIFOEMPTY ?
814 variant->fifosize : variant->fifohalfsize;
815 count = min(remain, maxcnt);
818 * The ST Micro variant for SDIO transfer sizes
819 * less then 8 bytes should have clock H/W flow
820 * control disabled.
822 if (variant->sdio &&
823 mmc_card_sdio(host->mmc->card)) {
824 if (count < 8)
825 writel(readl(host->base + MMCICLOCK) &
826 ~variant->clkreg_enable,
827 host->base + MMCICLOCK);
828 else
829 writel(readl(host->base + MMCICLOCK) |
830 variant->clkreg_enable,
831 host->base + MMCICLOCK);
835 * SDIO especially may want to send something that is
836 * not divisible by 4 (as opposed to card sectors
837 * etc), and the FIFO only accept full 32-bit writes.
838 * So compensate by adding +3 on the count, a single
839 * byte become a 32bit write, 7 bytes will be two
840 * 32bit writes etc.
842 writesl(base + MMCIFIFO, ptr, (count + 3) >> 2);
844 ptr += count;
845 remain -= count;
847 if (remain == 0)
848 break;
850 status = readl(base + MMCISTATUS);
851 } while (status & MCI_TXFIFOHALFEMPTY);
853 return ptr - buffer;
857 * PIO data transfer IRQ handler.
859 static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
861 struct mmci_host *host = dev_id;
862 struct sg_mapping_iter *sg_miter = &host->sg_miter;
863 struct variant_data *variant = host->variant;
864 void __iomem *base = host->base;
865 unsigned long flags;
866 u32 status;
868 status = readl(base + MMCISTATUS);
870 dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
872 local_irq_save(flags);
874 do {
875 unsigned int remain, len;
876 char *buffer;
879 * For write, we only need to test the half-empty flag
880 * here - if the FIFO is completely empty, then by
881 * definition it is more than half empty.
883 * For read, check for data available.
885 if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
886 break;
888 if (!sg_miter_next(sg_miter))
889 break;
891 buffer = sg_miter->addr;
892 remain = sg_miter->length;
894 len = 0;
895 if (status & MCI_RXACTIVE)
896 len = mmci_pio_read(host, buffer, remain);
897 if (status & MCI_TXACTIVE)
898 len = mmci_pio_write(host, buffer, remain, status);
900 sg_miter->consumed = len;
902 host->size -= len;
903 remain -= len;
905 if (remain)
906 break;
908 status = readl(base + MMCISTATUS);
909 } while (1);
911 sg_miter_stop(sg_miter);
913 local_irq_restore(flags);
916 * If we have less than the fifo 'half-full' threshold to transfer,
917 * trigger a PIO interrupt as soon as any data is available.
919 if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
920 mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
923 * If we run out of data, disable the data IRQs; this
924 * prevents a race where the FIFO becomes empty before
925 * the chip itself has disabled the data path, and
926 * stops us racing with our data end IRQ.
928 if (host->size == 0) {
929 mmci_set_mask1(host, 0);
930 writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
933 return IRQ_HANDLED;
937 * Handle completion of command and data transfers.
939 static irqreturn_t mmci_irq(int irq, void *dev_id)
941 struct mmci_host *host = dev_id;
942 u32 status;
943 int ret = 0;
945 spin_lock(&host->lock);
947 do {
948 struct mmc_command *cmd;
949 struct mmc_data *data;
951 status = readl(host->base + MMCISTATUS);
953 if (host->singleirq) {
954 if (status & readl(host->base + MMCIMASK1))
955 mmci_pio_irq(irq, dev_id);
957 status &= ~MCI_IRQ1MASK;
960 status &= readl(host->base + MMCIMASK0);
961 writel(status, host->base + MMCICLEAR);
963 dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
965 data = host->data;
966 if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_STARTBITERR|
967 MCI_TXUNDERRUN|MCI_RXOVERRUN|MCI_DATAEND|
968 MCI_DATABLOCKEND) && data)
969 mmci_data_irq(host, data, status);
971 cmd = host->cmd;
972 if (status & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT|MCI_CMDSENT|MCI_CMDRESPEND) && cmd)
973 mmci_cmd_irq(host, cmd, status);
975 ret = 1;
976 } while (status);
978 spin_unlock(&host->lock);
980 return IRQ_RETVAL(ret);
983 static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
985 struct mmci_host *host = mmc_priv(mmc);
986 unsigned long flags;
988 WARN_ON(host->mrq != NULL);
990 if (mrq->data && !is_power_of_2(mrq->data->blksz)) {
991 dev_err(mmc_dev(mmc), "unsupported block size (%d bytes)\n",
992 mrq->data->blksz);
993 mrq->cmd->error = -EINVAL;
994 mmc_request_done(mmc, mrq);
995 return;
998 pm_runtime_get_sync(mmc_dev(mmc));
1000 spin_lock_irqsave(&host->lock, flags);
1002 host->mrq = mrq;
1004 if (mrq->data)
1005 mmci_get_next_data(host, mrq->data);
1007 if (mrq->data && mrq->data->flags & MMC_DATA_READ)
1008 mmci_start_data(host, mrq->data);
1010 mmci_start_command(host, mrq->cmd, 0);
1012 spin_unlock_irqrestore(&host->lock, flags);
1015 static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1017 struct mmci_host *host = mmc_priv(mmc);
1018 u32 pwr = 0;
1019 unsigned long flags;
1020 int ret;
1022 switch (ios->power_mode) {
1023 case MMC_POWER_OFF:
1024 if (host->vcc)
1025 ret = mmc_regulator_set_ocr(mmc, host->vcc, 0);
1026 break;
1027 case MMC_POWER_UP:
1028 if (host->vcc) {
1029 ret = mmc_regulator_set_ocr(mmc, host->vcc, ios->vdd);
1030 if (ret) {
1031 dev_err(mmc_dev(mmc), "unable to set OCR\n");
1033 * The .set_ios() function in the mmc_host_ops
1034 * struct return void, and failing to set the
1035 * power should be rare so we print an error
1036 * and return here.
1038 return;
1041 if (host->plat->vdd_handler)
1042 pwr |= host->plat->vdd_handler(mmc_dev(mmc), ios->vdd,
1043 ios->power_mode);
1044 /* The ST version does not have this, fall through to POWER_ON */
1045 if (host->hw_designer != AMBA_VENDOR_ST) {
1046 pwr |= MCI_PWR_UP;
1047 break;
1049 case MMC_POWER_ON:
1050 pwr |= MCI_PWR_ON;
1051 break;
1054 if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN) {
1055 if (host->hw_designer != AMBA_VENDOR_ST)
1056 pwr |= MCI_ROD;
1057 else {
1059 * The ST Micro variant use the ROD bit for something
1060 * else and only has OD (Open Drain).
1062 pwr |= MCI_OD;
1066 spin_lock_irqsave(&host->lock, flags);
1068 mmci_set_clkreg(host, ios->clock);
1070 if (host->pwr != pwr) {
1071 host->pwr = pwr;
1072 writel(pwr, host->base + MMCIPOWER);
1075 spin_unlock_irqrestore(&host->lock, flags);
1078 static int mmci_get_ro(struct mmc_host *mmc)
1080 struct mmci_host *host = mmc_priv(mmc);
1082 if (host->gpio_wp == -ENOSYS)
1083 return -ENOSYS;
1085 return gpio_get_value_cansleep(host->gpio_wp);
1088 static int mmci_get_cd(struct mmc_host *mmc)
1090 struct mmci_host *host = mmc_priv(mmc);
1091 struct mmci_platform_data *plat = host->plat;
1092 unsigned int status;
1094 if (host->gpio_cd == -ENOSYS) {
1095 if (!plat->status)
1096 return 1; /* Assume always present */
1098 status = plat->status(mmc_dev(host->mmc));
1099 } else
1100 status = !!gpio_get_value_cansleep(host->gpio_cd)
1101 ^ plat->cd_invert;
1104 * Use positive logic throughout - status is zero for no card,
1105 * non-zero for card inserted.
1107 return status;
1110 static irqreturn_t mmci_cd_irq(int irq, void *dev_id)
1112 struct mmci_host *host = dev_id;
1114 mmc_detect_change(host->mmc, msecs_to_jiffies(500));
1116 return IRQ_HANDLED;
1119 static const struct mmc_host_ops mmci_ops = {
1120 .request = mmci_request,
1121 .pre_req = mmci_pre_request,
1122 .post_req = mmci_post_request,
1123 .set_ios = mmci_set_ios,
1124 .get_ro = mmci_get_ro,
1125 .get_cd = mmci_get_cd,
1128 static int __devinit mmci_probe(struct amba_device *dev,
1129 const struct amba_id *id)
1131 struct mmci_platform_data *plat = dev->dev.platform_data;
1132 struct variant_data *variant = id->data;
1133 struct mmci_host *host;
1134 struct mmc_host *mmc;
1135 int ret;
1137 /* must have platform data */
1138 if (!plat) {
1139 ret = -EINVAL;
1140 goto out;
1143 ret = amba_request_regions(dev, DRIVER_NAME);
1144 if (ret)
1145 goto out;
1147 mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
1148 if (!mmc) {
1149 ret = -ENOMEM;
1150 goto rel_regions;
1153 host = mmc_priv(mmc);
1154 host->mmc = mmc;
1156 host->gpio_wp = -ENOSYS;
1157 host->gpio_cd = -ENOSYS;
1158 host->gpio_cd_irq = -1;
1160 host->hw_designer = amba_manf(dev);
1161 host->hw_revision = amba_rev(dev);
1162 dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
1163 dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
1165 host->clk = clk_get(&dev->dev, NULL);
1166 if (IS_ERR(host->clk)) {
1167 ret = PTR_ERR(host->clk);
1168 host->clk = NULL;
1169 goto host_free;
1172 ret = clk_prepare(host->clk);
1173 if (ret)
1174 goto clk_free;
1176 ret = clk_enable(host->clk);
1177 if (ret)
1178 goto clk_unprep;
1180 host->plat = plat;
1181 host->variant = variant;
1182 host->mclk = clk_get_rate(host->clk);
1184 * According to the spec, mclk is max 100 MHz,
1185 * so we try to adjust the clock down to this,
1186 * (if possible).
1188 if (host->mclk > 100000000) {
1189 ret = clk_set_rate(host->clk, 100000000);
1190 if (ret < 0)
1191 goto clk_disable;
1192 host->mclk = clk_get_rate(host->clk);
1193 dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
1194 host->mclk);
1196 host->phybase = dev->res.start;
1197 host->base = ioremap(dev->res.start, resource_size(&dev->res));
1198 if (!host->base) {
1199 ret = -ENOMEM;
1200 goto clk_disable;
1203 mmc->ops = &mmci_ops;
1205 * The ARM and ST versions of the block have slightly different
1206 * clock divider equations which means that the minimum divider
1207 * differs too.
1209 if (variant->st_clkdiv)
1210 mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
1211 else
1212 mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
1214 * If the platform data supplies a maximum operating
1215 * frequency, this takes precedence. Else, we fall back
1216 * to using the module parameter, which has a (low)
1217 * default value in case it is not specified. Either
1218 * value must not exceed the clock rate into the block,
1219 * of course.
1221 if (plat->f_max)
1222 mmc->f_max = min(host->mclk, plat->f_max);
1223 else
1224 mmc->f_max = min(host->mclk, fmax);
1225 dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
1227 #ifdef CONFIG_REGULATOR
1228 /* If we're using the regulator framework, try to fetch a regulator */
1229 host->vcc = regulator_get(&dev->dev, "vmmc");
1230 if (IS_ERR(host->vcc))
1231 host->vcc = NULL;
1232 else {
1233 int mask = mmc_regulator_get_ocrmask(host->vcc);
1235 if (mask < 0)
1236 dev_err(&dev->dev, "error getting OCR mask (%d)\n",
1237 mask);
1238 else {
1239 host->mmc->ocr_avail = (u32) mask;
1240 if (plat->ocr_mask)
1241 dev_warn(&dev->dev,
1242 "Provided ocr_mask/setpower will not be used "
1243 "(using regulator instead)\n");
1246 #endif
1247 /* Fall back to platform data if no regulator is found */
1248 if (host->vcc == NULL)
1249 mmc->ocr_avail = plat->ocr_mask;
1250 mmc->caps = plat->capabilities;
1251 mmc->caps2 = plat->capabilities2;
1254 * We can do SGIO
1256 mmc->max_segs = NR_SG;
1259 * Since only a certain number of bits are valid in the data length
1260 * register, we must ensure that we don't exceed 2^num-1 bytes in a
1261 * single request.
1263 mmc->max_req_size = (1 << variant->datalength_bits) - 1;
1266 * Set the maximum segment size. Since we aren't doing DMA
1267 * (yet) we are only limited by the data length register.
1269 mmc->max_seg_size = mmc->max_req_size;
1272 * Block size can be up to 2048 bytes, but must be a power of two.
1274 mmc->max_blk_size = 1 << 11;
1277 * Limit the number of blocks transferred so that we don't overflow
1278 * the maximum request size.
1280 mmc->max_blk_count = mmc->max_req_size >> 11;
1282 spin_lock_init(&host->lock);
1284 writel(0, host->base + MMCIMASK0);
1285 writel(0, host->base + MMCIMASK1);
1286 writel(0xfff, host->base + MMCICLEAR);
1288 if (gpio_is_valid(plat->gpio_cd)) {
1289 ret = gpio_request(plat->gpio_cd, DRIVER_NAME " (cd)");
1290 if (ret == 0)
1291 ret = gpio_direction_input(plat->gpio_cd);
1292 if (ret == 0)
1293 host->gpio_cd = plat->gpio_cd;
1294 else if (ret != -ENOSYS)
1295 goto err_gpio_cd;
1298 * A gpio pin that will detect cards when inserted and removed
1299 * will most likely want to trigger on the edges if it is
1300 * 0 when ejected and 1 when inserted (or mutatis mutandis
1301 * for the inverted case) so we request triggers on both
1302 * edges.
1304 ret = request_any_context_irq(gpio_to_irq(plat->gpio_cd),
1305 mmci_cd_irq,
1306 IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING,
1307 DRIVER_NAME " (cd)", host);
1308 if (ret >= 0)
1309 host->gpio_cd_irq = gpio_to_irq(plat->gpio_cd);
1311 if (gpio_is_valid(plat->gpio_wp)) {
1312 ret = gpio_request(plat->gpio_wp, DRIVER_NAME " (wp)");
1313 if (ret == 0)
1314 ret = gpio_direction_input(plat->gpio_wp);
1315 if (ret == 0)
1316 host->gpio_wp = plat->gpio_wp;
1317 else if (ret != -ENOSYS)
1318 goto err_gpio_wp;
1321 if ((host->plat->status || host->gpio_cd != -ENOSYS)
1322 && host->gpio_cd_irq < 0)
1323 mmc->caps |= MMC_CAP_NEEDS_POLL;
1325 ret = request_irq(dev->irq[0], mmci_irq, IRQF_SHARED, DRIVER_NAME " (cmd)", host);
1326 if (ret)
1327 goto unmap;
1329 if (dev->irq[1] == NO_IRQ)
1330 host->singleirq = true;
1331 else {
1332 ret = request_irq(dev->irq[1], mmci_pio_irq, IRQF_SHARED,
1333 DRIVER_NAME " (pio)", host);
1334 if (ret)
1335 goto irq0_free;
1338 writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1340 amba_set_drvdata(dev, mmc);
1342 dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
1343 mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
1344 amba_rev(dev), (unsigned long long)dev->res.start,
1345 dev->irq[0], dev->irq[1]);
1347 mmci_dma_setup(host);
1349 pm_runtime_put(&dev->dev);
1351 mmc_add_host(mmc);
1353 return 0;
1355 irq0_free:
1356 free_irq(dev->irq[0], host);
1357 unmap:
1358 if (host->gpio_wp != -ENOSYS)
1359 gpio_free(host->gpio_wp);
1360 err_gpio_wp:
1361 if (host->gpio_cd_irq >= 0)
1362 free_irq(host->gpio_cd_irq, host);
1363 if (host->gpio_cd != -ENOSYS)
1364 gpio_free(host->gpio_cd);
1365 err_gpio_cd:
1366 iounmap(host->base);
1367 clk_disable:
1368 clk_disable(host->clk);
1369 clk_unprep:
1370 clk_unprepare(host->clk);
1371 clk_free:
1372 clk_put(host->clk);
1373 host_free:
1374 mmc_free_host(mmc);
1375 rel_regions:
1376 amba_release_regions(dev);
1377 out:
1378 return ret;
1381 static int __devexit mmci_remove(struct amba_device *dev)
1383 struct mmc_host *mmc = amba_get_drvdata(dev);
1385 amba_set_drvdata(dev, NULL);
1387 if (mmc) {
1388 struct mmci_host *host = mmc_priv(mmc);
1391 * Undo pm_runtime_put() in probe. We use the _sync
1392 * version here so that we can access the primecell.
1394 pm_runtime_get_sync(&dev->dev);
1396 mmc_remove_host(mmc);
1398 writel(0, host->base + MMCIMASK0);
1399 writel(0, host->base + MMCIMASK1);
1401 writel(0, host->base + MMCICOMMAND);
1402 writel(0, host->base + MMCIDATACTRL);
1404 mmci_dma_release(host);
1405 free_irq(dev->irq[0], host);
1406 if (!host->singleirq)
1407 free_irq(dev->irq[1], host);
1409 if (host->gpio_wp != -ENOSYS)
1410 gpio_free(host->gpio_wp);
1411 if (host->gpio_cd_irq >= 0)
1412 free_irq(host->gpio_cd_irq, host);
1413 if (host->gpio_cd != -ENOSYS)
1414 gpio_free(host->gpio_cd);
1416 iounmap(host->base);
1417 clk_disable(host->clk);
1418 clk_unprepare(host->clk);
1419 clk_put(host->clk);
1421 if (host->vcc)
1422 mmc_regulator_set_ocr(mmc, host->vcc, 0);
1423 regulator_put(host->vcc);
1425 mmc_free_host(mmc);
1427 amba_release_regions(dev);
1430 return 0;
1433 #ifdef CONFIG_PM
1434 static int mmci_suspend(struct amba_device *dev, pm_message_t state)
1436 struct mmc_host *mmc = amba_get_drvdata(dev);
1437 int ret = 0;
1439 if (mmc) {
1440 struct mmci_host *host = mmc_priv(mmc);
1442 ret = mmc_suspend_host(mmc);
1443 if (ret == 0)
1444 writel(0, host->base + MMCIMASK0);
1447 return ret;
1450 static int mmci_resume(struct amba_device *dev)
1452 struct mmc_host *mmc = amba_get_drvdata(dev);
1453 int ret = 0;
1455 if (mmc) {
1456 struct mmci_host *host = mmc_priv(mmc);
1458 writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1460 ret = mmc_resume_host(mmc);
1463 return ret;
1465 #else
1466 #define mmci_suspend NULL
1467 #define mmci_resume NULL
1468 #endif
1470 static struct amba_id mmci_ids[] = {
1472 .id = 0x00041180,
1473 .mask = 0xff0fffff,
1474 .data = &variant_arm,
1477 .id = 0x01041180,
1478 .mask = 0xff0fffff,
1479 .data = &variant_arm_extended_fifo,
1482 .id = 0x00041181,
1483 .mask = 0x000fffff,
1484 .data = &variant_arm,
1486 /* ST Micro variants */
1488 .id = 0x00180180,
1489 .mask = 0x00ffffff,
1490 .data = &variant_u300,
1493 .id = 0x00280180,
1494 .mask = 0x00ffffff,
1495 .data = &variant_u300,
1498 .id = 0x00480180,
1499 .mask = 0xf0ffffff,
1500 .data = &variant_ux500,
1503 .id = 0x10480180,
1504 .mask = 0xf0ffffff,
1505 .data = &variant_ux500v2,
1507 { 0, 0 },
1510 MODULE_DEVICE_TABLE(amba, mmci_ids);
1512 static struct amba_driver mmci_driver = {
1513 .drv = {
1514 .name = DRIVER_NAME,
1516 .probe = mmci_probe,
1517 .remove = __devexit_p(mmci_remove),
1518 .suspend = mmci_suspend,
1519 .resume = mmci_resume,
1520 .id_table = mmci_ids,
1523 static int __init mmci_init(void)
1525 return amba_driver_register(&mmci_driver);
1528 static void __exit mmci_exit(void)
1530 amba_driver_unregister(&mmci_driver);
1533 module_init(mmci_init);
1534 module_exit(mmci_exit);
1535 module_param(fmax, uint, 0444);
1537 MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
1538 MODULE_LICENSE("GPL");