dl2k: Clean up rio_ioctl
[zen-stable.git] / drivers / mtd / nand / davinci_nand.c
blob6e566156956f2465e32b122d7728d9890ed98f08
1 /*
2 * davinci_nand.c - NAND Flash Driver for DaVinci family chips
4 * Copyright © 2006 Texas Instruments.
6 * Port to 2.6.23 Copyright © 2008 by:
7 * Sander Huijsen <Shuijsen@optelecom-nkf.com>
8 * Troy Kisky <troy.kisky@boundarydevices.com>
9 * Dirk Behme <Dirk.Behme@gmail.com>
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2 of the License, or
14 * (at your option) any later version.
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26 #include <linux/kernel.h>
27 #include <linux/init.h>
28 #include <linux/module.h>
29 #include <linux/platform_device.h>
30 #include <linux/err.h>
31 #include <linux/clk.h>
32 #include <linux/io.h>
33 #include <linux/mtd/nand.h>
34 #include <linux/mtd/partitions.h>
35 #include <linux/slab.h>
37 #include <mach/nand.h>
38 #include <mach/aemif.h>
41 * This is a device driver for the NAND flash controller found on the
42 * various DaVinci family chips. It handles up to four SoC chipselects,
43 * and some flavors of secondary chipselect (e.g. based on A12) as used
44 * with multichip packages.
46 * The 1-bit ECC hardware is supported, as well as the newer 4-bit ECC
47 * available on chips like the DM355 and OMAP-L137 and needed with the
48 * more error-prone MLC NAND chips.
50 * This driver assumes EM_WAIT connects all the NAND devices' RDY/nBUSY
51 * outputs in a "wire-AND" configuration, with no per-chip signals.
53 struct davinci_nand_info {
54 struct mtd_info mtd;
55 struct nand_chip chip;
56 struct nand_ecclayout ecclayout;
58 struct device *dev;
59 struct clk *clk;
61 bool is_readmode;
63 void __iomem *base;
64 void __iomem *vaddr;
66 uint32_t ioaddr;
67 uint32_t current_cs;
69 uint32_t mask_chipsel;
70 uint32_t mask_ale;
71 uint32_t mask_cle;
73 uint32_t core_chipsel;
75 struct davinci_aemif_timing *timing;
78 static DEFINE_SPINLOCK(davinci_nand_lock);
79 static bool ecc4_busy;
81 #define to_davinci_nand(m) container_of(m, struct davinci_nand_info, mtd)
84 static inline unsigned int davinci_nand_readl(struct davinci_nand_info *info,
85 int offset)
87 return __raw_readl(info->base + offset);
90 static inline void davinci_nand_writel(struct davinci_nand_info *info,
91 int offset, unsigned long value)
93 __raw_writel(value, info->base + offset);
96 /*----------------------------------------------------------------------*/
99 * Access to hardware control lines: ALE, CLE, secondary chipselect.
102 static void nand_davinci_hwcontrol(struct mtd_info *mtd, int cmd,
103 unsigned int ctrl)
105 struct davinci_nand_info *info = to_davinci_nand(mtd);
106 uint32_t addr = info->current_cs;
107 struct nand_chip *nand = mtd->priv;
109 /* Did the control lines change? */
110 if (ctrl & NAND_CTRL_CHANGE) {
111 if ((ctrl & NAND_CTRL_CLE) == NAND_CTRL_CLE)
112 addr |= info->mask_cle;
113 else if ((ctrl & NAND_CTRL_ALE) == NAND_CTRL_ALE)
114 addr |= info->mask_ale;
116 nand->IO_ADDR_W = (void __iomem __force *)addr;
119 if (cmd != NAND_CMD_NONE)
120 iowrite8(cmd, nand->IO_ADDR_W);
123 static void nand_davinci_select_chip(struct mtd_info *mtd, int chip)
125 struct davinci_nand_info *info = to_davinci_nand(mtd);
126 uint32_t addr = info->ioaddr;
128 /* maybe kick in a second chipselect */
129 if (chip > 0)
130 addr |= info->mask_chipsel;
131 info->current_cs = addr;
133 info->chip.IO_ADDR_W = (void __iomem __force *)addr;
134 info->chip.IO_ADDR_R = info->chip.IO_ADDR_W;
137 /*----------------------------------------------------------------------*/
140 * 1-bit hardware ECC ... context maintained for each core chipselect
143 static inline uint32_t nand_davinci_readecc_1bit(struct mtd_info *mtd)
145 struct davinci_nand_info *info = to_davinci_nand(mtd);
147 return davinci_nand_readl(info, NANDF1ECC_OFFSET
148 + 4 * info->core_chipsel);
151 static void nand_davinci_hwctl_1bit(struct mtd_info *mtd, int mode)
153 struct davinci_nand_info *info;
154 uint32_t nandcfr;
155 unsigned long flags;
157 info = to_davinci_nand(mtd);
159 /* Reset ECC hardware */
160 nand_davinci_readecc_1bit(mtd);
162 spin_lock_irqsave(&davinci_nand_lock, flags);
164 /* Restart ECC hardware */
165 nandcfr = davinci_nand_readl(info, NANDFCR_OFFSET);
166 nandcfr |= BIT(8 + info->core_chipsel);
167 davinci_nand_writel(info, NANDFCR_OFFSET, nandcfr);
169 spin_unlock_irqrestore(&davinci_nand_lock, flags);
173 * Read hardware ECC value and pack into three bytes
175 static int nand_davinci_calculate_1bit(struct mtd_info *mtd,
176 const u_char *dat, u_char *ecc_code)
178 unsigned int ecc_val = nand_davinci_readecc_1bit(mtd);
179 unsigned int ecc24 = (ecc_val & 0x0fff) | ((ecc_val & 0x0fff0000) >> 4);
181 /* invert so that erased block ecc is correct */
182 ecc24 = ~ecc24;
183 ecc_code[0] = (u_char)(ecc24);
184 ecc_code[1] = (u_char)(ecc24 >> 8);
185 ecc_code[2] = (u_char)(ecc24 >> 16);
187 return 0;
190 static int nand_davinci_correct_1bit(struct mtd_info *mtd, u_char *dat,
191 u_char *read_ecc, u_char *calc_ecc)
193 struct nand_chip *chip = mtd->priv;
194 uint32_t eccNand = read_ecc[0] | (read_ecc[1] << 8) |
195 (read_ecc[2] << 16);
196 uint32_t eccCalc = calc_ecc[0] | (calc_ecc[1] << 8) |
197 (calc_ecc[2] << 16);
198 uint32_t diff = eccCalc ^ eccNand;
200 if (diff) {
201 if ((((diff >> 12) ^ diff) & 0xfff) == 0xfff) {
202 /* Correctable error */
203 if ((diff >> (12 + 3)) < chip->ecc.size) {
204 dat[diff >> (12 + 3)] ^= BIT((diff >> 12) & 7);
205 return 1;
206 } else {
207 return -1;
209 } else if (!(diff & (diff - 1))) {
210 /* Single bit ECC error in the ECC itself,
211 * nothing to fix */
212 return 1;
213 } else {
214 /* Uncorrectable error */
215 return -1;
219 return 0;
222 /*----------------------------------------------------------------------*/
225 * 4-bit hardware ECC ... context maintained over entire AEMIF
227 * This is a syndrome engine, but we avoid NAND_ECC_HW_SYNDROME
228 * since that forces use of a problematic "infix OOB" layout.
229 * Among other things, it trashes manufacturer bad block markers.
230 * Also, and specific to this hardware, it ECC-protects the "prepad"
231 * in the OOB ... while having ECC protection for parts of OOB would
232 * seem useful, the current MTD stack sometimes wants to update the
233 * OOB without recomputing ECC.
236 static void nand_davinci_hwctl_4bit(struct mtd_info *mtd, int mode)
238 struct davinci_nand_info *info = to_davinci_nand(mtd);
239 unsigned long flags;
240 u32 val;
242 spin_lock_irqsave(&davinci_nand_lock, flags);
244 /* Start 4-bit ECC calculation for read/write */
245 val = davinci_nand_readl(info, NANDFCR_OFFSET);
246 val &= ~(0x03 << 4);
247 val |= (info->core_chipsel << 4) | BIT(12);
248 davinci_nand_writel(info, NANDFCR_OFFSET, val);
250 info->is_readmode = (mode == NAND_ECC_READ);
252 spin_unlock_irqrestore(&davinci_nand_lock, flags);
255 /* Read raw ECC code after writing to NAND. */
256 static void
257 nand_davinci_readecc_4bit(struct davinci_nand_info *info, u32 code[4])
259 const u32 mask = 0x03ff03ff;
261 code[0] = davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET) & mask;
262 code[1] = davinci_nand_readl(info, NAND_4BIT_ECC2_OFFSET) & mask;
263 code[2] = davinci_nand_readl(info, NAND_4BIT_ECC3_OFFSET) & mask;
264 code[3] = davinci_nand_readl(info, NAND_4BIT_ECC4_OFFSET) & mask;
267 /* Terminate read ECC; or return ECC (as bytes) of data written to NAND. */
268 static int nand_davinci_calculate_4bit(struct mtd_info *mtd,
269 const u_char *dat, u_char *ecc_code)
271 struct davinci_nand_info *info = to_davinci_nand(mtd);
272 u32 raw_ecc[4], *p;
273 unsigned i;
275 /* After a read, terminate ECC calculation by a dummy read
276 * of some 4-bit ECC register. ECC covers everything that
277 * was read; correct() just uses the hardware state, so
278 * ecc_code is not needed.
280 if (info->is_readmode) {
281 davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET);
282 return 0;
285 /* Pack eight raw 10-bit ecc values into ten bytes, making
286 * two passes which each convert four values (in upper and
287 * lower halves of two 32-bit words) into five bytes. The
288 * ROM boot loader uses this same packing scheme.
290 nand_davinci_readecc_4bit(info, raw_ecc);
291 for (i = 0, p = raw_ecc; i < 2; i++, p += 2) {
292 *ecc_code++ = p[0] & 0xff;
293 *ecc_code++ = ((p[0] >> 8) & 0x03) | ((p[0] >> 14) & 0xfc);
294 *ecc_code++ = ((p[0] >> 22) & 0x0f) | ((p[1] << 4) & 0xf0);
295 *ecc_code++ = ((p[1] >> 4) & 0x3f) | ((p[1] >> 10) & 0xc0);
296 *ecc_code++ = (p[1] >> 18) & 0xff;
299 return 0;
302 /* Correct up to 4 bits in data we just read, using state left in the
303 * hardware plus the ecc_code computed when it was first written.
305 static int nand_davinci_correct_4bit(struct mtd_info *mtd,
306 u_char *data, u_char *ecc_code, u_char *null)
308 int i;
309 struct davinci_nand_info *info = to_davinci_nand(mtd);
310 unsigned short ecc10[8];
311 unsigned short *ecc16;
312 u32 syndrome[4];
313 u32 ecc_state;
314 unsigned num_errors, corrected;
315 unsigned long timeo;
317 /* All bytes 0xff? It's an erased page; ignore its ECC. */
318 for (i = 0; i < 10; i++) {
319 if (ecc_code[i] != 0xff)
320 goto compare;
322 return 0;
324 compare:
325 /* Unpack ten bytes into eight 10 bit values. We know we're
326 * little-endian, and use type punning for less shifting/masking.
328 if (WARN_ON(0x01 & (unsigned) ecc_code))
329 return -EINVAL;
330 ecc16 = (unsigned short *)ecc_code;
332 ecc10[0] = (ecc16[0] >> 0) & 0x3ff;
333 ecc10[1] = ((ecc16[0] >> 10) & 0x3f) | ((ecc16[1] << 6) & 0x3c0);
334 ecc10[2] = (ecc16[1] >> 4) & 0x3ff;
335 ecc10[3] = ((ecc16[1] >> 14) & 0x3) | ((ecc16[2] << 2) & 0x3fc);
336 ecc10[4] = (ecc16[2] >> 8) | ((ecc16[3] << 8) & 0x300);
337 ecc10[5] = (ecc16[3] >> 2) & 0x3ff;
338 ecc10[6] = ((ecc16[3] >> 12) & 0xf) | ((ecc16[4] << 4) & 0x3f0);
339 ecc10[7] = (ecc16[4] >> 6) & 0x3ff;
341 /* Tell ECC controller about the expected ECC codes. */
342 for (i = 7; i >= 0; i--)
343 davinci_nand_writel(info, NAND_4BIT_ECC_LOAD_OFFSET, ecc10[i]);
345 /* Allow time for syndrome calculation ... then read it.
346 * A syndrome of all zeroes 0 means no detected errors.
348 davinci_nand_readl(info, NANDFSR_OFFSET);
349 nand_davinci_readecc_4bit(info, syndrome);
350 if (!(syndrome[0] | syndrome[1] | syndrome[2] | syndrome[3]))
351 return 0;
354 * Clear any previous address calculation by doing a dummy read of an
355 * error address register.
357 davinci_nand_readl(info, NAND_ERR_ADD1_OFFSET);
359 /* Start address calculation, and wait for it to complete.
360 * We _could_ start reading more data while this is working,
361 * to speed up the overall page read.
363 davinci_nand_writel(info, NANDFCR_OFFSET,
364 davinci_nand_readl(info, NANDFCR_OFFSET) | BIT(13));
367 * ECC_STATE field reads 0x3 (Error correction complete) immediately
368 * after setting the 4BITECC_ADD_CALC_START bit. So if you immediately
369 * begin trying to poll for the state, you may fall right out of your
370 * loop without any of the correction calculations having taken place.
371 * The recommendation from the hardware team is to initially delay as
372 * long as ECC_STATE reads less than 4. After that, ECC HW has entered
373 * correction state.
375 timeo = jiffies + usecs_to_jiffies(100);
376 do {
377 ecc_state = (davinci_nand_readl(info,
378 NANDFSR_OFFSET) >> 8) & 0x0f;
379 cpu_relax();
380 } while ((ecc_state < 4) && time_before(jiffies, timeo));
382 for (;;) {
383 u32 fsr = davinci_nand_readl(info, NANDFSR_OFFSET);
385 switch ((fsr >> 8) & 0x0f) {
386 case 0: /* no error, should not happen */
387 davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET);
388 return 0;
389 case 1: /* five or more errors detected */
390 davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET);
391 return -EIO;
392 case 2: /* error addresses computed */
393 case 3:
394 num_errors = 1 + ((fsr >> 16) & 0x03);
395 goto correct;
396 default: /* still working on it */
397 cpu_relax();
398 continue;
402 correct:
403 /* correct each error */
404 for (i = 0, corrected = 0; i < num_errors; i++) {
405 int error_address, error_value;
407 if (i > 1) {
408 error_address = davinci_nand_readl(info,
409 NAND_ERR_ADD2_OFFSET);
410 error_value = davinci_nand_readl(info,
411 NAND_ERR_ERRVAL2_OFFSET);
412 } else {
413 error_address = davinci_nand_readl(info,
414 NAND_ERR_ADD1_OFFSET);
415 error_value = davinci_nand_readl(info,
416 NAND_ERR_ERRVAL1_OFFSET);
419 if (i & 1) {
420 error_address >>= 16;
421 error_value >>= 16;
423 error_address &= 0x3ff;
424 error_address = (512 + 7) - error_address;
426 if (error_address < 512) {
427 data[error_address] ^= error_value;
428 corrected++;
432 return corrected;
435 /*----------------------------------------------------------------------*/
438 * NOTE: NAND boot requires ALE == EM_A[1], CLE == EM_A[2], so that's
439 * how these chips are normally wired. This translates to both 8 and 16
440 * bit busses using ALE == BIT(3) in byte addresses, and CLE == BIT(4).
442 * For now we assume that configuration, or any other one which ignores
443 * the two LSBs for NAND access ... so we can issue 32-bit reads/writes
444 * and have that transparently morphed into multiple NAND operations.
446 static void nand_davinci_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
448 struct nand_chip *chip = mtd->priv;
450 if ((0x03 & ((unsigned)buf)) == 0 && (0x03 & len) == 0)
451 ioread32_rep(chip->IO_ADDR_R, buf, len >> 2);
452 else if ((0x01 & ((unsigned)buf)) == 0 && (0x01 & len) == 0)
453 ioread16_rep(chip->IO_ADDR_R, buf, len >> 1);
454 else
455 ioread8_rep(chip->IO_ADDR_R, buf, len);
458 static void nand_davinci_write_buf(struct mtd_info *mtd,
459 const uint8_t *buf, int len)
461 struct nand_chip *chip = mtd->priv;
463 if ((0x03 & ((unsigned)buf)) == 0 && (0x03 & len) == 0)
464 iowrite32_rep(chip->IO_ADDR_R, buf, len >> 2);
465 else if ((0x01 & ((unsigned)buf)) == 0 && (0x01 & len) == 0)
466 iowrite16_rep(chip->IO_ADDR_R, buf, len >> 1);
467 else
468 iowrite8_rep(chip->IO_ADDR_R, buf, len);
472 * Check hardware register for wait status. Returns 1 if device is ready,
473 * 0 if it is still busy.
475 static int nand_davinci_dev_ready(struct mtd_info *mtd)
477 struct davinci_nand_info *info = to_davinci_nand(mtd);
479 return davinci_nand_readl(info, NANDFSR_OFFSET) & BIT(0);
482 /*----------------------------------------------------------------------*/
484 /* An ECC layout for using 4-bit ECC with small-page flash, storing
485 * ten ECC bytes plus the manufacturer's bad block marker byte, and
486 * and not overlapping the default BBT markers.
488 static struct nand_ecclayout hwecc4_small __initconst = {
489 .eccbytes = 10,
490 .eccpos = { 0, 1, 2, 3, 4,
491 /* offset 5 holds the badblock marker */
492 6, 7,
493 13, 14, 15, },
494 .oobfree = {
495 {.offset = 8, .length = 5, },
496 {.offset = 16, },
500 /* An ECC layout for using 4-bit ECC with large-page (2048bytes) flash,
501 * storing ten ECC bytes plus the manufacturer's bad block marker byte,
502 * and not overlapping the default BBT markers.
504 static struct nand_ecclayout hwecc4_2048 __initconst = {
505 .eccbytes = 40,
506 .eccpos = {
507 /* at the end of spare sector */
508 24, 25, 26, 27, 28, 29, 30, 31, 32, 33,
509 34, 35, 36, 37, 38, 39, 40, 41, 42, 43,
510 44, 45, 46, 47, 48, 49, 50, 51, 52, 53,
511 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
513 .oobfree = {
514 /* 2 bytes at offset 0 hold manufacturer badblock markers */
515 {.offset = 2, .length = 22, },
516 /* 5 bytes at offset 8 hold BBT markers */
517 /* 8 bytes at offset 16 hold JFFS2 clean markers */
521 static int __init nand_davinci_probe(struct platform_device *pdev)
523 struct davinci_nand_pdata *pdata = pdev->dev.platform_data;
524 struct davinci_nand_info *info;
525 struct resource *res1;
526 struct resource *res2;
527 void __iomem *vaddr;
528 void __iomem *base;
529 int ret;
530 uint32_t val;
531 nand_ecc_modes_t ecc_mode;
533 /* insist on board-specific configuration */
534 if (!pdata)
535 return -ENODEV;
537 /* which external chipselect will we be managing? */
538 if (pdev->id < 0 || pdev->id > 3)
539 return -ENODEV;
541 info = kzalloc(sizeof(*info), GFP_KERNEL);
542 if (!info) {
543 dev_err(&pdev->dev, "unable to allocate memory\n");
544 ret = -ENOMEM;
545 goto err_nomem;
548 platform_set_drvdata(pdev, info);
550 res1 = platform_get_resource(pdev, IORESOURCE_MEM, 0);
551 res2 = platform_get_resource(pdev, IORESOURCE_MEM, 1);
552 if (!res1 || !res2) {
553 dev_err(&pdev->dev, "resource missing\n");
554 ret = -EINVAL;
555 goto err_nomem;
558 vaddr = ioremap(res1->start, resource_size(res1));
559 base = ioremap(res2->start, resource_size(res2));
560 if (!vaddr || !base) {
561 dev_err(&pdev->dev, "ioremap failed\n");
562 ret = -EINVAL;
563 goto err_ioremap;
566 info->dev = &pdev->dev;
567 info->base = base;
568 info->vaddr = vaddr;
570 info->mtd.priv = &info->chip;
571 info->mtd.name = dev_name(&pdev->dev);
572 info->mtd.owner = THIS_MODULE;
574 info->mtd.dev.parent = &pdev->dev;
576 info->chip.IO_ADDR_R = vaddr;
577 info->chip.IO_ADDR_W = vaddr;
578 info->chip.chip_delay = 0;
579 info->chip.select_chip = nand_davinci_select_chip;
581 /* options such as NAND_BBT_USE_FLASH */
582 info->chip.bbt_options = pdata->bbt_options;
583 /* options such as 16-bit widths */
584 info->chip.options = pdata->options;
585 info->chip.bbt_td = pdata->bbt_td;
586 info->chip.bbt_md = pdata->bbt_md;
587 info->timing = pdata->timing;
589 info->ioaddr = (uint32_t __force) vaddr;
591 info->current_cs = info->ioaddr;
592 info->core_chipsel = pdev->id;
593 info->mask_chipsel = pdata->mask_chipsel;
595 /* use nandboot-capable ALE/CLE masks by default */
596 info->mask_ale = pdata->mask_ale ? : MASK_ALE;
597 info->mask_cle = pdata->mask_cle ? : MASK_CLE;
599 /* Set address of hardware control function */
600 info->chip.cmd_ctrl = nand_davinci_hwcontrol;
601 info->chip.dev_ready = nand_davinci_dev_ready;
603 /* Speed up buffer I/O */
604 info->chip.read_buf = nand_davinci_read_buf;
605 info->chip.write_buf = nand_davinci_write_buf;
607 /* Use board-specific ECC config */
608 ecc_mode = pdata->ecc_mode;
610 ret = -EINVAL;
611 switch (ecc_mode) {
612 case NAND_ECC_NONE:
613 case NAND_ECC_SOFT:
614 pdata->ecc_bits = 0;
615 break;
616 case NAND_ECC_HW:
617 if (pdata->ecc_bits == 4) {
618 /* No sanity checks: CPUs must support this,
619 * and the chips may not use NAND_BUSWIDTH_16.
622 /* No sharing 4-bit hardware between chipselects yet */
623 spin_lock_irq(&davinci_nand_lock);
624 if (ecc4_busy)
625 ret = -EBUSY;
626 else
627 ecc4_busy = true;
628 spin_unlock_irq(&davinci_nand_lock);
630 if (ret == -EBUSY)
631 goto err_ecc;
633 info->chip.ecc.calculate = nand_davinci_calculate_4bit;
634 info->chip.ecc.correct = nand_davinci_correct_4bit;
635 info->chip.ecc.hwctl = nand_davinci_hwctl_4bit;
636 info->chip.ecc.bytes = 10;
637 } else {
638 info->chip.ecc.calculate = nand_davinci_calculate_1bit;
639 info->chip.ecc.correct = nand_davinci_correct_1bit;
640 info->chip.ecc.hwctl = nand_davinci_hwctl_1bit;
641 info->chip.ecc.bytes = 3;
643 info->chip.ecc.size = 512;
644 break;
645 default:
646 ret = -EINVAL;
647 goto err_ecc;
649 info->chip.ecc.mode = ecc_mode;
651 info->clk = clk_get(&pdev->dev, "aemif");
652 if (IS_ERR(info->clk)) {
653 ret = PTR_ERR(info->clk);
654 dev_dbg(&pdev->dev, "unable to get AEMIF clock, err %d\n", ret);
655 goto err_clk;
658 ret = clk_enable(info->clk);
659 if (ret < 0) {
660 dev_dbg(&pdev->dev, "unable to enable AEMIF clock, err %d\n",
661 ret);
662 goto err_clk_enable;
666 * Setup Async configuration register in case we did not boot from
667 * NAND and so bootloader did not bother to set it up.
669 val = davinci_nand_readl(info, A1CR_OFFSET + info->core_chipsel * 4);
671 /* Extended Wait is not valid and Select Strobe mode is not used */
672 val &= ~(ACR_ASIZE_MASK | ACR_EW_MASK | ACR_SS_MASK);
673 if (info->chip.options & NAND_BUSWIDTH_16)
674 val |= 0x1;
676 davinci_nand_writel(info, A1CR_OFFSET + info->core_chipsel * 4, val);
678 ret = 0;
679 if (info->timing)
680 ret = davinci_aemif_setup_timing(info->timing, info->base,
681 info->core_chipsel);
682 if (ret < 0) {
683 dev_dbg(&pdev->dev, "NAND timing values setup fail\n");
684 goto err_timing;
687 spin_lock_irq(&davinci_nand_lock);
689 /* put CSxNAND into NAND mode */
690 val = davinci_nand_readl(info, NANDFCR_OFFSET);
691 val |= BIT(info->core_chipsel);
692 davinci_nand_writel(info, NANDFCR_OFFSET, val);
694 spin_unlock_irq(&davinci_nand_lock);
696 /* Scan to find existence of the device(s) */
697 ret = nand_scan_ident(&info->mtd, pdata->mask_chipsel ? 2 : 1, NULL);
698 if (ret < 0) {
699 dev_dbg(&pdev->dev, "no NAND chip(s) found\n");
700 goto err_scan;
703 /* Update ECC layout if needed ... for 1-bit HW ECC, the default
704 * is OK, but it allocates 6 bytes when only 3 are needed (for
705 * each 512 bytes). For the 4-bit HW ECC, that default is not
706 * usable: 10 bytes are needed, not 6.
708 if (pdata->ecc_bits == 4) {
709 int chunks = info->mtd.writesize / 512;
711 if (!chunks || info->mtd.oobsize < 16) {
712 dev_dbg(&pdev->dev, "too small\n");
713 ret = -EINVAL;
714 goto err_scan;
717 /* For small page chips, preserve the manufacturer's
718 * badblock marking data ... and make sure a flash BBT
719 * table marker fits in the free bytes.
721 if (chunks == 1) {
722 info->ecclayout = hwecc4_small;
723 info->ecclayout.oobfree[1].length =
724 info->mtd.oobsize - 16;
725 goto syndrome_done;
727 if (chunks == 4) {
728 info->ecclayout = hwecc4_2048;
729 info->chip.ecc.mode = NAND_ECC_HW_OOB_FIRST;
730 goto syndrome_done;
733 /* 4KiB page chips are not yet supported. The eccpos from
734 * nand_ecclayout cannot hold 80 bytes and change to eccpos[]
735 * breaks userspace ioctl interface with mtd-utils. Once we
736 * resolve this issue, NAND_ECC_HW_OOB_FIRST mode can be used
737 * for the 4KiB page chips.
739 * TODO: Note that nand_ecclayout has now been expanded and can
740 * hold plenty of OOB entries.
742 dev_warn(&pdev->dev, "no 4-bit ECC support yet "
743 "for 4KiB-page NAND\n");
744 ret = -EIO;
745 goto err_scan;
747 syndrome_done:
748 info->chip.ecc.layout = &info->ecclayout;
751 ret = nand_scan_tail(&info->mtd);
752 if (ret < 0)
753 goto err_scan;
755 ret = mtd_device_parse_register(&info->mtd, NULL, 0,
756 pdata->parts, pdata->nr_parts);
758 if (ret < 0)
759 goto err_scan;
761 val = davinci_nand_readl(info, NRCSR_OFFSET);
762 dev_info(&pdev->dev, "controller rev. %d.%d\n",
763 (val >> 8) & 0xff, val & 0xff);
765 return 0;
767 err_scan:
768 err_timing:
769 clk_disable(info->clk);
771 err_clk_enable:
772 clk_put(info->clk);
774 spin_lock_irq(&davinci_nand_lock);
775 if (ecc_mode == NAND_ECC_HW_SYNDROME)
776 ecc4_busy = false;
777 spin_unlock_irq(&davinci_nand_lock);
779 err_ecc:
780 err_clk:
781 err_ioremap:
782 if (base)
783 iounmap(base);
784 if (vaddr)
785 iounmap(vaddr);
787 err_nomem:
788 kfree(info);
789 return ret;
792 static int __exit nand_davinci_remove(struct platform_device *pdev)
794 struct davinci_nand_info *info = platform_get_drvdata(pdev);
796 spin_lock_irq(&davinci_nand_lock);
797 if (info->chip.ecc.mode == NAND_ECC_HW_SYNDROME)
798 ecc4_busy = false;
799 spin_unlock_irq(&davinci_nand_lock);
801 iounmap(info->base);
802 iounmap(info->vaddr);
804 nand_release(&info->mtd);
806 clk_disable(info->clk);
807 clk_put(info->clk);
809 kfree(info);
811 return 0;
814 static struct platform_driver nand_davinci_driver = {
815 .remove = __exit_p(nand_davinci_remove),
816 .driver = {
817 .name = "davinci_nand",
820 MODULE_ALIAS("platform:davinci_nand");
822 static int __init nand_davinci_init(void)
824 return platform_driver_probe(&nand_davinci_driver, nand_davinci_probe);
826 module_init(nand_davinci_init);
828 static void __exit nand_davinci_exit(void)
830 platform_driver_unregister(&nand_davinci_driver);
832 module_exit(nand_davinci_exit);
834 MODULE_LICENSE("GPL");
835 MODULE_AUTHOR("Texas Instruments");
836 MODULE_DESCRIPTION("Davinci NAND flash driver");