dl2k: Clean up rio_ioctl
[zen-stable.git] / drivers / mtd / nand / gpmi-nand / gpmi-lib.c
blob7db6555ed3ba630f2935ce65b25200295b1754db
1 /*
2 * Freescale GPMI NAND Flash Driver
4 * Copyright (C) 2008-2011 Freescale Semiconductor, Inc.
5 * Copyright (C) 2008 Embedded Alley Solutions, Inc.
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License along
18 * with this program; if not, write to the Free Software Foundation, Inc.,
19 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
21 #include <linux/mtd/gpmi-nand.h>
22 #include <linux/delay.h>
23 #include <linux/clk.h>
24 #include <mach/mxs.h>
26 #include "gpmi-nand.h"
27 #include "gpmi-regs.h"
28 #include "bch-regs.h"
30 struct timing_threshod timing_default_threshold = {
31 .max_data_setup_cycles = (BM_GPMI_TIMING0_DATA_SETUP >>
32 BP_GPMI_TIMING0_DATA_SETUP),
33 .internal_data_setup_in_ns = 0,
34 .max_sample_delay_factor = (BM_GPMI_CTRL1_RDN_DELAY >>
35 BP_GPMI_CTRL1_RDN_DELAY),
36 .max_dll_clock_period_in_ns = 32,
37 .max_dll_delay_in_ns = 16,
41 * Clear the bit and poll it cleared. This is usually called with
42 * a reset address and mask being either SFTRST(bit 31) or CLKGATE
43 * (bit 30).
45 static int clear_poll_bit(void __iomem *addr, u32 mask)
47 int timeout = 0x400;
49 /* clear the bit */
50 __mxs_clrl(mask, addr);
53 * SFTRST needs 3 GPMI clocks to settle, the reference manual
54 * recommends to wait 1us.
56 udelay(1);
58 /* poll the bit becoming clear */
59 while ((readl(addr) & mask) && --timeout)
60 /* nothing */;
62 return !timeout;
65 #define MODULE_CLKGATE (1 << 30)
66 #define MODULE_SFTRST (1 << 31)
68 * The current mxs_reset_block() will do two things:
69 * [1] enable the module.
70 * [2] reset the module.
72 * In most of the cases, it's ok.
73 * But in MX23, there is a hardware bug in the BCH block (see erratum #2847).
74 * If you try to soft reset the BCH block, it becomes unusable until
75 * the next hard reset. This case occurs in the NAND boot mode. When the board
76 * boots by NAND, the ROM of the chip will initialize the BCH blocks itself.
77 * So If the driver tries to reset the BCH again, the BCH will not work anymore.
78 * You will see a DMA timeout in this case. The bug has been fixed
79 * in the following chips, such as MX28.
81 * To avoid this bug, just add a new parameter `just_enable` for
82 * the mxs_reset_block(), and rewrite it here.
84 static int gpmi_reset_block(void __iomem *reset_addr, bool just_enable)
86 int ret;
87 int timeout = 0x400;
89 /* clear and poll SFTRST */
90 ret = clear_poll_bit(reset_addr, MODULE_SFTRST);
91 if (unlikely(ret))
92 goto error;
94 /* clear CLKGATE */
95 __mxs_clrl(MODULE_CLKGATE, reset_addr);
97 if (!just_enable) {
98 /* set SFTRST to reset the block */
99 __mxs_setl(MODULE_SFTRST, reset_addr);
100 udelay(1);
102 /* poll CLKGATE becoming set */
103 while ((!(readl(reset_addr) & MODULE_CLKGATE)) && --timeout)
104 /* nothing */;
105 if (unlikely(!timeout))
106 goto error;
109 /* clear and poll SFTRST */
110 ret = clear_poll_bit(reset_addr, MODULE_SFTRST);
111 if (unlikely(ret))
112 goto error;
114 /* clear and poll CLKGATE */
115 ret = clear_poll_bit(reset_addr, MODULE_CLKGATE);
116 if (unlikely(ret))
117 goto error;
119 return 0;
121 error:
122 pr_err("%s(%p): module reset timeout\n", __func__, reset_addr);
123 return -ETIMEDOUT;
126 int gpmi_init(struct gpmi_nand_data *this)
128 struct resources *r = &this->resources;
129 int ret;
131 ret = clk_prepare_enable(r->clock);
132 if (ret)
133 goto err_out;
134 ret = gpmi_reset_block(r->gpmi_regs, false);
135 if (ret)
136 goto err_out;
138 /* Choose NAND mode. */
139 writel(BM_GPMI_CTRL1_GPMI_MODE, r->gpmi_regs + HW_GPMI_CTRL1_CLR);
141 /* Set the IRQ polarity. */
142 writel(BM_GPMI_CTRL1_ATA_IRQRDY_POLARITY,
143 r->gpmi_regs + HW_GPMI_CTRL1_SET);
145 /* Disable Write-Protection. */
146 writel(BM_GPMI_CTRL1_DEV_RESET, r->gpmi_regs + HW_GPMI_CTRL1_SET);
148 /* Select BCH ECC. */
149 writel(BM_GPMI_CTRL1_BCH_MODE, r->gpmi_regs + HW_GPMI_CTRL1_SET);
151 clk_disable_unprepare(r->clock);
152 return 0;
153 err_out:
154 return ret;
157 /* This function is very useful. It is called only when the bug occur. */
158 void gpmi_dump_info(struct gpmi_nand_data *this)
160 struct resources *r = &this->resources;
161 struct bch_geometry *geo = &this->bch_geometry;
162 u32 reg;
163 int i;
165 pr_err("Show GPMI registers :\n");
166 for (i = 0; i <= HW_GPMI_DEBUG / 0x10 + 1; i++) {
167 reg = readl(r->gpmi_regs + i * 0x10);
168 pr_err("offset 0x%.3x : 0x%.8x\n", i * 0x10, reg);
171 /* start to print out the BCH info */
172 pr_err("BCH Geometry :\n");
173 pr_err("GF length : %u\n", geo->gf_len);
174 pr_err("ECC Strength : %u\n", geo->ecc_strength);
175 pr_err("Page Size in Bytes : %u\n", geo->page_size);
176 pr_err("Metadata Size in Bytes : %u\n", geo->metadata_size);
177 pr_err("ECC Chunk Size in Bytes: %u\n", geo->ecc_chunk_size);
178 pr_err("ECC Chunk Count : %u\n", geo->ecc_chunk_count);
179 pr_err("Payload Size in Bytes : %u\n", geo->payload_size);
180 pr_err("Auxiliary Size in Bytes: %u\n", geo->auxiliary_size);
181 pr_err("Auxiliary Status Offset: %u\n", geo->auxiliary_status_offset);
182 pr_err("Block Mark Byte Offset : %u\n", geo->block_mark_byte_offset);
183 pr_err("Block Mark Bit Offset : %u\n", geo->block_mark_bit_offset);
186 /* Configures the geometry for BCH. */
187 int bch_set_geometry(struct gpmi_nand_data *this)
189 struct resources *r = &this->resources;
190 struct bch_geometry *bch_geo = &this->bch_geometry;
191 unsigned int block_count;
192 unsigned int block_size;
193 unsigned int metadata_size;
194 unsigned int ecc_strength;
195 unsigned int page_size;
196 int ret;
198 if (common_nfc_set_geometry(this))
199 return !0;
201 block_count = bch_geo->ecc_chunk_count - 1;
202 block_size = bch_geo->ecc_chunk_size;
203 metadata_size = bch_geo->metadata_size;
204 ecc_strength = bch_geo->ecc_strength >> 1;
205 page_size = bch_geo->page_size;
207 ret = clk_prepare_enable(r->clock);
208 if (ret)
209 goto err_out;
212 * Due to erratum #2847 of the MX23, the BCH cannot be soft reset on this
213 * chip, otherwise it will lock up. So we skip resetting BCH on the MX23.
214 * On the other hand, the MX28 needs the reset, because one case has been
215 * seen where the BCH produced ECC errors constantly after 10000
216 * consecutive reboots. The latter case has not been seen on the MX23 yet,
217 * still we don't know if it could happen there as well.
219 ret = gpmi_reset_block(r->bch_regs, GPMI_IS_MX23(this));
220 if (ret)
221 goto err_out;
223 /* Configure layout 0. */
224 writel(BF_BCH_FLASH0LAYOUT0_NBLOCKS(block_count)
225 | BF_BCH_FLASH0LAYOUT0_META_SIZE(metadata_size)
226 | BF_BCH_FLASH0LAYOUT0_ECC0(ecc_strength)
227 | BF_BCH_FLASH0LAYOUT0_DATA0_SIZE(block_size),
228 r->bch_regs + HW_BCH_FLASH0LAYOUT0);
230 writel(BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(page_size)
231 | BF_BCH_FLASH0LAYOUT1_ECCN(ecc_strength)
232 | BF_BCH_FLASH0LAYOUT1_DATAN_SIZE(block_size),
233 r->bch_regs + HW_BCH_FLASH0LAYOUT1);
235 /* Set *all* chip selects to use layout 0. */
236 writel(0, r->bch_regs + HW_BCH_LAYOUTSELECT);
238 /* Enable interrupts. */
239 writel(BM_BCH_CTRL_COMPLETE_IRQ_EN,
240 r->bch_regs + HW_BCH_CTRL_SET);
242 clk_disable_unprepare(r->clock);
243 return 0;
244 err_out:
245 return ret;
248 /* Converts time in nanoseconds to cycles. */
249 static unsigned int ns_to_cycles(unsigned int time,
250 unsigned int period, unsigned int min)
252 unsigned int k;
254 k = (time + period - 1) / period;
255 return max(k, min);
258 /* Apply timing to current hardware conditions. */
259 static int gpmi_nfc_compute_hardware_timing(struct gpmi_nand_data *this,
260 struct gpmi_nfc_hardware_timing *hw)
262 struct gpmi_nand_platform_data *pdata = this->pdata;
263 struct timing_threshod *nfc = &timing_default_threshold;
264 struct nand_chip *nand = &this->nand;
265 struct nand_timing target = this->timing;
266 bool improved_timing_is_available;
267 unsigned long clock_frequency_in_hz;
268 unsigned int clock_period_in_ns;
269 bool dll_use_half_periods;
270 unsigned int dll_delay_shift;
271 unsigned int max_sample_delay_in_ns;
272 unsigned int address_setup_in_cycles;
273 unsigned int data_setup_in_ns;
274 unsigned int data_setup_in_cycles;
275 unsigned int data_hold_in_cycles;
276 int ideal_sample_delay_in_ns;
277 unsigned int sample_delay_factor;
278 int tEYE;
279 unsigned int min_prop_delay_in_ns = pdata->min_prop_delay_in_ns;
280 unsigned int max_prop_delay_in_ns = pdata->max_prop_delay_in_ns;
283 * If there are multiple chips, we need to relax the timings to allow
284 * for signal distortion due to higher capacitance.
286 if (nand->numchips > 2) {
287 target.data_setup_in_ns += 10;
288 target.data_hold_in_ns += 10;
289 target.address_setup_in_ns += 10;
290 } else if (nand->numchips > 1) {
291 target.data_setup_in_ns += 5;
292 target.data_hold_in_ns += 5;
293 target.address_setup_in_ns += 5;
296 /* Check if improved timing information is available. */
297 improved_timing_is_available =
298 (target.tREA_in_ns >= 0) &&
299 (target.tRLOH_in_ns >= 0) &&
300 (target.tRHOH_in_ns >= 0) ;
302 /* Inspect the clock. */
303 clock_frequency_in_hz = nfc->clock_frequency_in_hz;
304 clock_period_in_ns = 1000000000 / clock_frequency_in_hz;
307 * The NFC quantizes setup and hold parameters in terms of clock cycles.
308 * Here, we quantize the setup and hold timing parameters to the
309 * next-highest clock period to make sure we apply at least the
310 * specified times.
312 * For data setup and data hold, the hardware interprets a value of zero
313 * as the largest possible delay. This is not what's intended by a zero
314 * in the input parameter, so we impose a minimum of one cycle.
316 data_setup_in_cycles = ns_to_cycles(target.data_setup_in_ns,
317 clock_period_in_ns, 1);
318 data_hold_in_cycles = ns_to_cycles(target.data_hold_in_ns,
319 clock_period_in_ns, 1);
320 address_setup_in_cycles = ns_to_cycles(target.address_setup_in_ns,
321 clock_period_in_ns, 0);
324 * The clock's period affects the sample delay in a number of ways:
326 * (1) The NFC HAL tells us the maximum clock period the sample delay
327 * DLL can tolerate. If the clock period is greater than half that
328 * maximum, we must configure the DLL to be driven by half periods.
330 * (2) We need to convert from an ideal sample delay, in ns, to a
331 * "sample delay factor," which the NFC uses. This factor depends on
332 * whether we're driving the DLL with full or half periods.
333 * Paraphrasing the reference manual:
335 * AD = SDF x 0.125 x RP
337 * where:
339 * AD is the applied delay, in ns.
340 * SDF is the sample delay factor, which is dimensionless.
341 * RP is the reference period, in ns, which is a full clock period
342 * if the DLL is being driven by full periods, or half that if
343 * the DLL is being driven by half periods.
345 * Let's re-arrange this in a way that's more useful to us:
348 * SDF = AD x ----
349 * RP
351 * The reference period is either the clock period or half that, so this
352 * is:
354 * 8 AD x DDF
355 * SDF = AD x ----- = --------
356 * f x P P
358 * where:
360 * f is 1 or 1/2, depending on how we're driving the DLL.
361 * P is the clock period.
362 * DDF is the DLL Delay Factor, a dimensionless value that
363 * incorporates all the constants in the conversion.
365 * DDF will be either 8 or 16, both of which are powers of two. We can
366 * reduce the cost of this conversion by using bit shifts instead of
367 * multiplication or division. Thus:
369 * AD << DDS
370 * SDF = ---------
373 * or
375 * AD = (SDF >> DDS) x P
377 * where:
379 * DDS is the DLL Delay Shift, the logarithm to base 2 of the DDF.
381 if (clock_period_in_ns > (nfc->max_dll_clock_period_in_ns >> 1)) {
382 dll_use_half_periods = true;
383 dll_delay_shift = 3 + 1;
384 } else {
385 dll_use_half_periods = false;
386 dll_delay_shift = 3;
390 * Compute the maximum sample delay the NFC allows, under current
391 * conditions. If the clock is running too slowly, no sample delay is
392 * possible.
394 if (clock_period_in_ns > nfc->max_dll_clock_period_in_ns)
395 max_sample_delay_in_ns = 0;
396 else {
398 * Compute the delay implied by the largest sample delay factor
399 * the NFC allows.
401 max_sample_delay_in_ns =
402 (nfc->max_sample_delay_factor * clock_period_in_ns) >>
403 dll_delay_shift;
406 * Check if the implied sample delay larger than the NFC
407 * actually allows.
409 if (max_sample_delay_in_ns > nfc->max_dll_delay_in_ns)
410 max_sample_delay_in_ns = nfc->max_dll_delay_in_ns;
414 * Check if improved timing information is available. If not, we have to
415 * use a less-sophisticated algorithm.
417 if (!improved_timing_is_available) {
419 * Fold the read setup time required by the NFC into the ideal
420 * sample delay.
422 ideal_sample_delay_in_ns = target.gpmi_sample_delay_in_ns +
423 nfc->internal_data_setup_in_ns;
426 * The ideal sample delay may be greater than the maximum
427 * allowed by the NFC. If so, we can trade off sample delay time
428 * for more data setup time.
430 * In each iteration of the following loop, we add a cycle to
431 * the data setup time and subtract a corresponding amount from
432 * the sample delay until we've satisified the constraints or
433 * can't do any better.
435 while ((ideal_sample_delay_in_ns > max_sample_delay_in_ns) &&
436 (data_setup_in_cycles < nfc->max_data_setup_cycles)) {
438 data_setup_in_cycles++;
439 ideal_sample_delay_in_ns -= clock_period_in_ns;
441 if (ideal_sample_delay_in_ns < 0)
442 ideal_sample_delay_in_ns = 0;
447 * Compute the sample delay factor that corresponds most closely
448 * to the ideal sample delay. If the result is too large for the
449 * NFC, use the maximum value.
451 * Notice that we use the ns_to_cycles function to compute the
452 * sample delay factor. We do this because the form of the
453 * computation is the same as that for calculating cycles.
455 sample_delay_factor =
456 ns_to_cycles(
457 ideal_sample_delay_in_ns << dll_delay_shift,
458 clock_period_in_ns, 0);
460 if (sample_delay_factor > nfc->max_sample_delay_factor)
461 sample_delay_factor = nfc->max_sample_delay_factor;
463 /* Skip to the part where we return our results. */
464 goto return_results;
468 * If control arrives here, we have more detailed timing information,
469 * so we can use a better algorithm.
473 * Fold the read setup time required by the NFC into the maximum
474 * propagation delay.
476 max_prop_delay_in_ns += nfc->internal_data_setup_in_ns;
479 * Earlier, we computed the number of clock cycles required to satisfy
480 * the data setup time. Now, we need to know the actual nanoseconds.
482 data_setup_in_ns = clock_period_in_ns * data_setup_in_cycles;
485 * Compute tEYE, the width of the data eye when reading from the NAND
486 * Flash. The eye width is fundamentally determined by the data setup
487 * time, perturbed by propagation delays and some characteristics of the
488 * NAND Flash device.
490 * start of the eye = max_prop_delay + tREA
491 * end of the eye = min_prop_delay + tRHOH + data_setup
493 tEYE = (int)min_prop_delay_in_ns + (int)target.tRHOH_in_ns +
494 (int)data_setup_in_ns;
496 tEYE -= (int)max_prop_delay_in_ns + (int)target.tREA_in_ns;
499 * The eye must be open. If it's not, we can try to open it by
500 * increasing its main forcer, the data setup time.
502 * In each iteration of the following loop, we increase the data setup
503 * time by a single clock cycle. We do this until either the eye is
504 * open or we run into NFC limits.
506 while ((tEYE <= 0) &&
507 (data_setup_in_cycles < nfc->max_data_setup_cycles)) {
508 /* Give a cycle to data setup. */
509 data_setup_in_cycles++;
510 /* Synchronize the data setup time with the cycles. */
511 data_setup_in_ns += clock_period_in_ns;
512 /* Adjust tEYE accordingly. */
513 tEYE += clock_period_in_ns;
517 * When control arrives here, the eye is open. The ideal time to sample
518 * the data is in the center of the eye:
520 * end of the eye + start of the eye
521 * --------------------------------- - data_setup
524 * After some algebra, this simplifies to the code immediately below.
526 ideal_sample_delay_in_ns =
527 ((int)max_prop_delay_in_ns +
528 (int)target.tREA_in_ns +
529 (int)min_prop_delay_in_ns +
530 (int)target.tRHOH_in_ns -
531 (int)data_setup_in_ns) >> 1;
534 * The following figure illustrates some aspects of a NAND Flash read:
537 * __ _____________________________________
538 * RDN \_________________/
540 * <---- tEYE ----->
541 * /-----------------\
542 * Read Data ----------------------------< >---------
543 * \-----------------/
544 * ^ ^ ^ ^
545 * | | | |
546 * |<--Data Setup -->|<--Delay Time -->| |
547 * | | | |
548 * | | |
549 * | |<-- Quantized Delay Time -->|
550 * | | |
553 * We have some issues we must now address:
555 * (1) The *ideal* sample delay time must not be negative. If it is, we
556 * jam it to zero.
558 * (2) The *ideal* sample delay time must not be greater than that
559 * allowed by the NFC. If it is, we can increase the data setup
560 * time, which will reduce the delay between the end of the data
561 * setup and the center of the eye. It will also make the eye
562 * larger, which might help with the next issue...
564 * (3) The *quantized* sample delay time must not fall either before the
565 * eye opens or after it closes (the latter is the problem
566 * illustrated in the above figure).
569 /* Jam a negative ideal sample delay to zero. */
570 if (ideal_sample_delay_in_ns < 0)
571 ideal_sample_delay_in_ns = 0;
574 * Extend the data setup as needed to reduce the ideal sample delay
575 * below the maximum permitted by the NFC.
577 while ((ideal_sample_delay_in_ns > max_sample_delay_in_ns) &&
578 (data_setup_in_cycles < nfc->max_data_setup_cycles)) {
580 /* Give a cycle to data setup. */
581 data_setup_in_cycles++;
582 /* Synchronize the data setup time with the cycles. */
583 data_setup_in_ns += clock_period_in_ns;
584 /* Adjust tEYE accordingly. */
585 tEYE += clock_period_in_ns;
588 * Decrease the ideal sample delay by one half cycle, to keep it
589 * in the middle of the eye.
591 ideal_sample_delay_in_ns -= (clock_period_in_ns >> 1);
593 /* Jam a negative ideal sample delay to zero. */
594 if (ideal_sample_delay_in_ns < 0)
595 ideal_sample_delay_in_ns = 0;
599 * Compute the sample delay factor that corresponds to the ideal sample
600 * delay. If the result is too large, then use the maximum allowed
601 * value.
603 * Notice that we use the ns_to_cycles function to compute the sample
604 * delay factor. We do this because the form of the computation is the
605 * same as that for calculating cycles.
607 sample_delay_factor =
608 ns_to_cycles(ideal_sample_delay_in_ns << dll_delay_shift,
609 clock_period_in_ns, 0);
611 if (sample_delay_factor > nfc->max_sample_delay_factor)
612 sample_delay_factor = nfc->max_sample_delay_factor;
615 * These macros conveniently encapsulate a computation we'll use to
616 * continuously evaluate whether or not the data sample delay is inside
617 * the eye.
619 #define IDEAL_DELAY ((int) ideal_sample_delay_in_ns)
621 #define QUANTIZED_DELAY \
622 ((int) ((sample_delay_factor * clock_period_in_ns) >> \
623 dll_delay_shift))
625 #define DELAY_ERROR (abs(QUANTIZED_DELAY - IDEAL_DELAY))
627 #define SAMPLE_IS_NOT_WITHIN_THE_EYE (DELAY_ERROR > (tEYE >> 1))
630 * While the quantized sample time falls outside the eye, reduce the
631 * sample delay or extend the data setup to move the sampling point back
632 * toward the eye. Do not allow the number of data setup cycles to
633 * exceed the maximum allowed by the NFC.
635 while (SAMPLE_IS_NOT_WITHIN_THE_EYE &&
636 (data_setup_in_cycles < nfc->max_data_setup_cycles)) {
638 * If control arrives here, the quantized sample delay falls
639 * outside the eye. Check if it's before the eye opens, or after
640 * the eye closes.
642 if (QUANTIZED_DELAY > IDEAL_DELAY) {
644 * If control arrives here, the quantized sample delay
645 * falls after the eye closes. Decrease the quantized
646 * delay time and then go back to re-evaluate.
648 if (sample_delay_factor != 0)
649 sample_delay_factor--;
650 continue;
654 * If control arrives here, the quantized sample delay falls
655 * before the eye opens. Shift the sample point by increasing
656 * data setup time. This will also make the eye larger.
659 /* Give a cycle to data setup. */
660 data_setup_in_cycles++;
661 /* Synchronize the data setup time with the cycles. */
662 data_setup_in_ns += clock_period_in_ns;
663 /* Adjust tEYE accordingly. */
664 tEYE += clock_period_in_ns;
667 * Decrease the ideal sample delay by one half cycle, to keep it
668 * in the middle of the eye.
670 ideal_sample_delay_in_ns -= (clock_period_in_ns >> 1);
672 /* ...and one less period for the delay time. */
673 ideal_sample_delay_in_ns -= clock_period_in_ns;
675 /* Jam a negative ideal sample delay to zero. */
676 if (ideal_sample_delay_in_ns < 0)
677 ideal_sample_delay_in_ns = 0;
680 * We have a new ideal sample delay, so re-compute the quantized
681 * delay.
683 sample_delay_factor =
684 ns_to_cycles(
685 ideal_sample_delay_in_ns << dll_delay_shift,
686 clock_period_in_ns, 0);
688 if (sample_delay_factor > nfc->max_sample_delay_factor)
689 sample_delay_factor = nfc->max_sample_delay_factor;
692 /* Control arrives here when we're ready to return our results. */
693 return_results:
694 hw->data_setup_in_cycles = data_setup_in_cycles;
695 hw->data_hold_in_cycles = data_hold_in_cycles;
696 hw->address_setup_in_cycles = address_setup_in_cycles;
697 hw->use_half_periods = dll_use_half_periods;
698 hw->sample_delay_factor = sample_delay_factor;
700 /* Return success. */
701 return 0;
704 /* Begin the I/O */
705 void gpmi_begin(struct gpmi_nand_data *this)
707 struct resources *r = &this->resources;
708 struct timing_threshod *nfc = &timing_default_threshold;
709 unsigned char *gpmi_regs = r->gpmi_regs;
710 unsigned int clock_period_in_ns;
711 uint32_t reg;
712 unsigned int dll_wait_time_in_us;
713 struct gpmi_nfc_hardware_timing hw;
714 int ret;
716 /* Enable the clock. */
717 ret = clk_prepare_enable(r->clock);
718 if (ret) {
719 pr_err("We failed in enable the clk\n");
720 goto err_out;
723 /* set ready/busy timeout */
724 writel(0x500 << BP_GPMI_TIMING1_BUSY_TIMEOUT,
725 gpmi_regs + HW_GPMI_TIMING1);
727 /* Get the timing information we need. */
728 nfc->clock_frequency_in_hz = clk_get_rate(r->clock);
729 clock_period_in_ns = 1000000000 / nfc->clock_frequency_in_hz;
731 gpmi_nfc_compute_hardware_timing(this, &hw);
733 /* Set up all the simple timing parameters. */
734 reg = BF_GPMI_TIMING0_ADDRESS_SETUP(hw.address_setup_in_cycles) |
735 BF_GPMI_TIMING0_DATA_HOLD(hw.data_hold_in_cycles) |
736 BF_GPMI_TIMING0_DATA_SETUP(hw.data_setup_in_cycles) ;
738 writel(reg, gpmi_regs + HW_GPMI_TIMING0);
741 * DLL_ENABLE must be set to 0 when setting RDN_DELAY or HALF_PERIOD.
743 writel(BM_GPMI_CTRL1_DLL_ENABLE, gpmi_regs + HW_GPMI_CTRL1_CLR);
745 /* Clear out the DLL control fields. */
746 writel(BM_GPMI_CTRL1_RDN_DELAY, gpmi_regs + HW_GPMI_CTRL1_CLR);
747 writel(BM_GPMI_CTRL1_HALF_PERIOD, gpmi_regs + HW_GPMI_CTRL1_CLR);
749 /* If no sample delay is called for, return immediately. */
750 if (!hw.sample_delay_factor)
751 return;
753 /* Configure the HALF_PERIOD flag. */
754 if (hw.use_half_periods)
755 writel(BM_GPMI_CTRL1_HALF_PERIOD,
756 gpmi_regs + HW_GPMI_CTRL1_SET);
758 /* Set the delay factor. */
759 writel(BF_GPMI_CTRL1_RDN_DELAY(hw.sample_delay_factor),
760 gpmi_regs + HW_GPMI_CTRL1_SET);
762 /* Enable the DLL. */
763 writel(BM_GPMI_CTRL1_DLL_ENABLE, gpmi_regs + HW_GPMI_CTRL1_SET);
766 * After we enable the GPMI DLL, we have to wait 64 clock cycles before
767 * we can use the GPMI.
769 * Calculate the amount of time we need to wait, in microseconds.
771 dll_wait_time_in_us = (clock_period_in_ns * 64) / 1000;
773 if (!dll_wait_time_in_us)
774 dll_wait_time_in_us = 1;
776 /* Wait for the DLL to settle. */
777 udelay(dll_wait_time_in_us);
779 err_out:
780 return;
783 void gpmi_end(struct gpmi_nand_data *this)
785 struct resources *r = &this->resources;
786 clk_disable_unprepare(r->clock);
789 /* Clears a BCH interrupt. */
790 void gpmi_clear_bch(struct gpmi_nand_data *this)
792 struct resources *r = &this->resources;
793 writel(BM_BCH_CTRL_COMPLETE_IRQ, r->bch_regs + HW_BCH_CTRL_CLR);
796 /* Returns the Ready/Busy status of the given chip. */
797 int gpmi_is_ready(struct gpmi_nand_data *this, unsigned chip)
799 struct resources *r = &this->resources;
800 uint32_t mask = 0;
801 uint32_t reg = 0;
803 if (GPMI_IS_MX23(this)) {
804 mask = MX23_BM_GPMI_DEBUG_READY0 << chip;
805 reg = readl(r->gpmi_regs + HW_GPMI_DEBUG);
806 } else if (GPMI_IS_MX28(this)) {
807 mask = MX28_BF_GPMI_STAT_READY_BUSY(1 << chip);
808 reg = readl(r->gpmi_regs + HW_GPMI_STAT);
809 } else
810 pr_err("unknow arch.\n");
811 return reg & mask;
814 static inline void set_dma_type(struct gpmi_nand_data *this,
815 enum dma_ops_type type)
817 this->last_dma_type = this->dma_type;
818 this->dma_type = type;
821 int gpmi_send_command(struct gpmi_nand_data *this)
823 struct dma_chan *channel = get_dma_chan(this);
824 struct dma_async_tx_descriptor *desc;
825 struct scatterlist *sgl;
826 int chip = this->current_chip;
827 u32 pio[3];
829 /* [1] send out the PIO words */
830 pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__WRITE)
831 | BM_GPMI_CTRL0_WORD_LENGTH
832 | BF_GPMI_CTRL0_CS(chip, this)
833 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
834 | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_CLE)
835 | BM_GPMI_CTRL0_ADDRESS_INCREMENT
836 | BF_GPMI_CTRL0_XFER_COUNT(this->command_length);
837 pio[1] = pio[2] = 0;
838 desc = channel->device->device_prep_slave_sg(channel,
839 (struct scatterlist *)pio,
840 ARRAY_SIZE(pio), DMA_TRANS_NONE, 0);
841 if (!desc) {
842 pr_err("step 1 error\n");
843 return -1;
846 /* [2] send out the COMMAND + ADDRESS string stored in @buffer */
847 sgl = &this->cmd_sgl;
849 sg_init_one(sgl, this->cmd_buffer, this->command_length);
850 dma_map_sg(this->dev, sgl, 1, DMA_TO_DEVICE);
851 desc = channel->device->device_prep_slave_sg(channel,
852 sgl, 1, DMA_MEM_TO_DEV, 1);
853 if (!desc) {
854 pr_err("step 2 error\n");
855 return -1;
858 /* [3] submit the DMA */
859 set_dma_type(this, DMA_FOR_COMMAND);
860 return start_dma_without_bch_irq(this, desc);
863 int gpmi_send_data(struct gpmi_nand_data *this)
865 struct dma_async_tx_descriptor *desc;
866 struct dma_chan *channel = get_dma_chan(this);
867 int chip = this->current_chip;
868 uint32_t command_mode;
869 uint32_t address;
870 u32 pio[2];
872 /* [1] PIO */
873 command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WRITE;
874 address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
876 pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
877 | BM_GPMI_CTRL0_WORD_LENGTH
878 | BF_GPMI_CTRL0_CS(chip, this)
879 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
880 | BF_GPMI_CTRL0_ADDRESS(address)
881 | BF_GPMI_CTRL0_XFER_COUNT(this->upper_len);
882 pio[1] = 0;
883 desc = channel->device->device_prep_slave_sg(channel,
884 (struct scatterlist *)pio,
885 ARRAY_SIZE(pio), DMA_TRANS_NONE, 0);
886 if (!desc) {
887 pr_err("step 1 error\n");
888 return -1;
891 /* [2] send DMA request */
892 prepare_data_dma(this, DMA_TO_DEVICE);
893 desc = channel->device->device_prep_slave_sg(channel, &this->data_sgl,
894 1, DMA_MEM_TO_DEV, 1);
895 if (!desc) {
896 pr_err("step 2 error\n");
897 return -1;
899 /* [3] submit the DMA */
900 set_dma_type(this, DMA_FOR_WRITE_DATA);
901 return start_dma_without_bch_irq(this, desc);
904 int gpmi_read_data(struct gpmi_nand_data *this)
906 struct dma_async_tx_descriptor *desc;
907 struct dma_chan *channel = get_dma_chan(this);
908 int chip = this->current_chip;
909 u32 pio[2];
911 /* [1] : send PIO */
912 pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__READ)
913 | BM_GPMI_CTRL0_WORD_LENGTH
914 | BF_GPMI_CTRL0_CS(chip, this)
915 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
916 | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_DATA)
917 | BF_GPMI_CTRL0_XFER_COUNT(this->upper_len);
918 pio[1] = 0;
919 desc = channel->device->device_prep_slave_sg(channel,
920 (struct scatterlist *)pio,
921 ARRAY_SIZE(pio), DMA_TRANS_NONE, 0);
922 if (!desc) {
923 pr_err("step 1 error\n");
924 return -1;
927 /* [2] : send DMA request */
928 prepare_data_dma(this, DMA_FROM_DEVICE);
929 desc = channel->device->device_prep_slave_sg(channel, &this->data_sgl,
930 1, DMA_DEV_TO_MEM, 1);
931 if (!desc) {
932 pr_err("step 2 error\n");
933 return -1;
936 /* [3] : submit the DMA */
937 set_dma_type(this, DMA_FOR_READ_DATA);
938 return start_dma_without_bch_irq(this, desc);
941 int gpmi_send_page(struct gpmi_nand_data *this,
942 dma_addr_t payload, dma_addr_t auxiliary)
944 struct bch_geometry *geo = &this->bch_geometry;
945 uint32_t command_mode;
946 uint32_t address;
947 uint32_t ecc_command;
948 uint32_t buffer_mask;
949 struct dma_async_tx_descriptor *desc;
950 struct dma_chan *channel = get_dma_chan(this);
951 int chip = this->current_chip;
952 u32 pio[6];
954 /* A DMA descriptor that does an ECC page read. */
955 command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WRITE;
956 address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
957 ecc_command = BV_GPMI_ECCCTRL_ECC_CMD__BCH_ENCODE;
958 buffer_mask = BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE |
959 BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY;
961 pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
962 | BM_GPMI_CTRL0_WORD_LENGTH
963 | BF_GPMI_CTRL0_CS(chip, this)
964 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
965 | BF_GPMI_CTRL0_ADDRESS(address)
966 | BF_GPMI_CTRL0_XFER_COUNT(0);
967 pio[1] = 0;
968 pio[2] = BM_GPMI_ECCCTRL_ENABLE_ECC
969 | BF_GPMI_ECCCTRL_ECC_CMD(ecc_command)
970 | BF_GPMI_ECCCTRL_BUFFER_MASK(buffer_mask);
971 pio[3] = geo->page_size;
972 pio[4] = payload;
973 pio[5] = auxiliary;
975 desc = channel->device->device_prep_slave_sg(channel,
976 (struct scatterlist *)pio,
977 ARRAY_SIZE(pio), DMA_TRANS_NONE, 0);
978 if (!desc) {
979 pr_err("step 2 error\n");
980 return -1;
982 set_dma_type(this, DMA_FOR_WRITE_ECC_PAGE);
983 return start_dma_with_bch_irq(this, desc);
986 int gpmi_read_page(struct gpmi_nand_data *this,
987 dma_addr_t payload, dma_addr_t auxiliary)
989 struct bch_geometry *geo = &this->bch_geometry;
990 uint32_t command_mode;
991 uint32_t address;
992 uint32_t ecc_command;
993 uint32_t buffer_mask;
994 struct dma_async_tx_descriptor *desc;
995 struct dma_chan *channel = get_dma_chan(this);
996 int chip = this->current_chip;
997 u32 pio[6];
999 /* [1] Wait for the chip to report ready. */
1000 command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY;
1001 address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
1003 pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
1004 | BM_GPMI_CTRL0_WORD_LENGTH
1005 | BF_GPMI_CTRL0_CS(chip, this)
1006 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
1007 | BF_GPMI_CTRL0_ADDRESS(address)
1008 | BF_GPMI_CTRL0_XFER_COUNT(0);
1009 pio[1] = 0;
1010 desc = channel->device->device_prep_slave_sg(channel,
1011 (struct scatterlist *)pio, 2,
1012 DMA_TRANS_NONE, 0);
1013 if (!desc) {
1014 pr_err("step 1 error\n");
1015 return -1;
1018 /* [2] Enable the BCH block and read. */
1019 command_mode = BV_GPMI_CTRL0_COMMAND_MODE__READ;
1020 address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
1021 ecc_command = BV_GPMI_ECCCTRL_ECC_CMD__BCH_DECODE;
1022 buffer_mask = BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE
1023 | BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY;
1025 pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
1026 | BM_GPMI_CTRL0_WORD_LENGTH
1027 | BF_GPMI_CTRL0_CS(chip, this)
1028 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
1029 | BF_GPMI_CTRL0_ADDRESS(address)
1030 | BF_GPMI_CTRL0_XFER_COUNT(geo->page_size);
1032 pio[1] = 0;
1033 pio[2] = BM_GPMI_ECCCTRL_ENABLE_ECC
1034 | BF_GPMI_ECCCTRL_ECC_CMD(ecc_command)
1035 | BF_GPMI_ECCCTRL_BUFFER_MASK(buffer_mask);
1036 pio[3] = geo->page_size;
1037 pio[4] = payload;
1038 pio[5] = auxiliary;
1039 desc = channel->device->device_prep_slave_sg(channel,
1040 (struct scatterlist *)pio,
1041 ARRAY_SIZE(pio), DMA_TRANS_NONE, 1);
1042 if (!desc) {
1043 pr_err("step 2 error\n");
1044 return -1;
1047 /* [3] Disable the BCH block */
1048 command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY;
1049 address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
1051 pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
1052 | BM_GPMI_CTRL0_WORD_LENGTH
1053 | BF_GPMI_CTRL0_CS(chip, this)
1054 | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
1055 | BF_GPMI_CTRL0_ADDRESS(address)
1056 | BF_GPMI_CTRL0_XFER_COUNT(geo->page_size);
1057 pio[1] = 0;
1058 desc = channel->device->device_prep_slave_sg(channel,
1059 (struct scatterlist *)pio, 2,
1060 DMA_TRANS_NONE, 1);
1061 if (!desc) {
1062 pr_err("step 3 error\n");
1063 return -1;
1066 /* [4] submit the DMA */
1067 set_dma_type(this, DMA_FOR_READ_ECC_PAGE);
1068 return start_dma_with_bch_irq(this, desc);