2 * Toshiba TMIO NAND flash controller driver
4 * Slightly murky pre-git history of the driver:
6 * Copyright (c) Ian Molton 2004, 2005, 2008
7 * Original work, independent of sharps code. Included hardware ECC support.
8 * Hard ECC did not work for writes in the early revisions.
9 * Copyright (c) Dirk Opfer 2005.
10 * Modifications developed from sharps code but
11 * NOT containing any, ported onto Ians base.
12 * Copyright (c) Chris Humbert 2005
13 * Copyright (c) Dmitry Baryshkov 2008
16 * Parts copyright Sebastian Carlier
18 * This file is licensed under
19 * the terms of the GNU General Public License version 2. This program
20 * is licensed "as is" without any warranty of any kind, whether express
26 #include <linux/kernel.h>
27 #include <linux/module.h>
28 #include <linux/platform_device.h>
29 #include <linux/mfd/core.h>
30 #include <linux/mfd/tmio.h>
31 #include <linux/delay.h>
33 #include <linux/irq.h>
34 #include <linux/interrupt.h>
35 #include <linux/ioport.h>
36 #include <linux/mtd/mtd.h>
37 #include <linux/mtd/nand.h>
38 #include <linux/mtd/nand_ecc.h>
39 #include <linux/mtd/partitions.h>
40 #include <linux/slab.h>
42 /*--------------------------------------------------------------------------*/
45 * NAND Flash Host Controller Configuration Register
47 #define CCR_COMMAND 0x04 /* w Command */
48 #define CCR_BASE 0x10 /* l NAND Flash Control Reg Base Addr */
49 #define CCR_INTP 0x3d /* b Interrupt Pin */
50 #define CCR_INTE 0x48 /* b Interrupt Enable */
51 #define CCR_EC 0x4a /* b Event Control */
52 #define CCR_ICC 0x4c /* b Internal Clock Control */
53 #define CCR_ECCC 0x5b /* b ECC Control */
54 #define CCR_NFTC 0x60 /* b NAND Flash Transaction Control */
55 #define CCR_NFM 0x61 /* b NAND Flash Monitor */
56 #define CCR_NFPSC 0x62 /* b NAND Flash Power Supply Control */
57 #define CCR_NFDC 0x63 /* b NAND Flash Detect Control */
60 * NAND Flash Control Register
62 #define FCR_DATA 0x00 /* bwl Data Register */
63 #define FCR_MODE 0x04 /* b Mode Register */
64 #define FCR_STATUS 0x05 /* b Status Register */
65 #define FCR_ISR 0x06 /* b Interrupt Status Register */
66 #define FCR_IMR 0x07 /* b Interrupt Mask Register */
68 /* FCR_MODE Register Command List */
69 #define FCR_MODE_DATA 0x94 /* Data Data_Mode */
70 #define FCR_MODE_COMMAND 0x95 /* Data Command_Mode */
71 #define FCR_MODE_ADDRESS 0x96 /* Data Address_Mode */
73 #define FCR_MODE_HWECC_CALC 0xB4 /* HW-ECC Data */
74 #define FCR_MODE_HWECC_RESULT 0xD4 /* HW-ECC Calc result Read_Mode */
75 #define FCR_MODE_HWECC_RESET 0xF4 /* HW-ECC Reset */
77 #define FCR_MODE_POWER_ON 0x0C /* Power Supply ON to SSFDC card */
78 #define FCR_MODE_POWER_OFF 0x08 /* Power Supply OFF to SSFDC card */
80 #define FCR_MODE_LED_OFF 0x00 /* LED OFF */
81 #define FCR_MODE_LED_ON 0x04 /* LED ON */
83 #define FCR_MODE_EJECT_ON 0x68 /* Ejection events active */
84 #define FCR_MODE_EJECT_OFF 0x08 /* Ejection events ignored */
86 #define FCR_MODE_LOCK 0x6C /* Lock_Mode. Eject Switch Invalid */
87 #define FCR_MODE_UNLOCK 0x0C /* UnLock_Mode. Eject Switch is valid */
89 #define FCR_MODE_CONTROLLER_ID 0x40 /* Controller ID Read */
90 #define FCR_MODE_STANDBY 0x00 /* SSFDC card Changes Standby State */
92 #define FCR_MODE_WE 0x80
93 #define FCR_MODE_ECC1 0x40
94 #define FCR_MODE_ECC0 0x20
95 #define FCR_MODE_CE 0x10
96 #define FCR_MODE_PCNT1 0x08
97 #define FCR_MODE_PCNT0 0x04
98 #define FCR_MODE_ALE 0x02
99 #define FCR_MODE_CLE 0x01
101 #define FCR_STATUS_BUSY 0x80
103 /*--------------------------------------------------------------------------*/
107 struct nand_chip chip
;
109 struct platform_device
*dev
;
113 unsigned long fcr_base
;
117 /* for tmio_nand_read_byte */
119 unsigned read_good
:1;
122 #define mtd_to_tmio(m) container_of(m, struct tmio_nand, mtd)
125 /*--------------------------------------------------------------------------*/
127 static void tmio_nand_hwcontrol(struct mtd_info
*mtd
, int cmd
,
130 struct tmio_nand
*tmio
= mtd_to_tmio(mtd
);
131 struct nand_chip
*chip
= mtd
->priv
;
133 if (ctrl
& NAND_CTRL_CHANGE
) {
136 if (ctrl
& NAND_NCE
) {
137 mode
= FCR_MODE_DATA
;
140 mode
|= FCR_MODE_CLE
;
142 mode
&= ~FCR_MODE_CLE
;
145 mode
|= FCR_MODE_ALE
;
147 mode
&= ~FCR_MODE_ALE
;
149 mode
= FCR_MODE_STANDBY
;
152 tmio_iowrite8(mode
, tmio
->fcr
+ FCR_MODE
);
156 if (cmd
!= NAND_CMD_NONE
)
157 tmio_iowrite8(cmd
, chip
->IO_ADDR_W
);
160 static int tmio_nand_dev_ready(struct mtd_info
*mtd
)
162 struct tmio_nand
*tmio
= mtd_to_tmio(mtd
);
164 return !(tmio_ioread8(tmio
->fcr
+ FCR_STATUS
) & FCR_STATUS_BUSY
);
167 static irqreturn_t
tmio_irq(int irq
, void *__tmio
)
169 struct tmio_nand
*tmio
= __tmio
;
170 struct nand_chip
*nand_chip
= &tmio
->chip
;
172 /* disable RDYREQ interrupt */
173 tmio_iowrite8(0x00, tmio
->fcr
+ FCR_IMR
);
175 if (unlikely(!waitqueue_active(&nand_chip
->controller
->wq
)))
176 dev_warn(&tmio
->dev
->dev
, "spurious interrupt\n");
178 wake_up(&nand_chip
->controller
->wq
);
183 *The TMIO core has a RDYREQ interrupt on the posedge of #SMRB.
184 *This interrupt is normally disabled, but for long operations like
185 *erase and write, we enable it to wake us up. The irq handler
186 *disables the interrupt.
189 tmio_nand_wait(struct mtd_info
*mtd
, struct nand_chip
*nand_chip
)
191 struct tmio_nand
*tmio
= mtd_to_tmio(mtd
);
194 /* enable RDYREQ interrupt */
195 tmio_iowrite8(0x0f, tmio
->fcr
+ FCR_ISR
);
196 tmio_iowrite8(0x81, tmio
->fcr
+ FCR_IMR
);
198 timeout
= wait_event_timeout(nand_chip
->controller
->wq
,
199 tmio_nand_dev_ready(mtd
),
200 msecs_to_jiffies(nand_chip
->state
== FL_ERASING
? 400 : 20));
202 if (unlikely(!tmio_nand_dev_ready(mtd
))) {
203 tmio_iowrite8(0x00, tmio
->fcr
+ FCR_IMR
);
204 dev_warn(&tmio
->dev
->dev
, "still busy with %s after %d ms\n",
205 nand_chip
->state
== FL_ERASING
? "erase" : "program",
206 nand_chip
->state
== FL_ERASING
? 400 : 20);
208 } else if (unlikely(!timeout
)) {
209 tmio_iowrite8(0x00, tmio
->fcr
+ FCR_IMR
);
210 dev_warn(&tmio
->dev
->dev
, "timeout waiting for interrupt\n");
213 nand_chip
->cmdfunc(mtd
, NAND_CMD_STATUS
, -1, -1);
214 return nand_chip
->read_byte(mtd
);
218 *The TMIO controller combines two 8-bit data bytes into one 16-bit
219 *word. This function separates them so nand_base.c works as expected,
220 *especially its NAND_CMD_READID routines.
222 *To prevent stale data from being read, tmio_nand_hwcontrol() clears
225 static u_char
tmio_nand_read_byte(struct mtd_info
*mtd
)
227 struct tmio_nand
*tmio
= mtd_to_tmio(mtd
);
230 if (tmio
->read_good
--)
233 data
= tmio_ioread16(tmio
->fcr
+ FCR_DATA
);
234 tmio
->read
= data
>> 8;
239 *The TMIO controller converts an 8-bit NAND interface to a 16-bit
240 *bus interface, so all data reads and writes must be 16-bit wide.
241 *Thus, we implement 16-bit versions of the read, write, and verify
245 tmio_nand_write_buf(struct mtd_info
*mtd
, const u_char
*buf
, int len
)
247 struct tmio_nand
*tmio
= mtd_to_tmio(mtd
);
249 tmio_iowrite16_rep(tmio
->fcr
+ FCR_DATA
, buf
, len
>> 1);
252 static void tmio_nand_read_buf(struct mtd_info
*mtd
, u_char
*buf
, int len
)
254 struct tmio_nand
*tmio
= mtd_to_tmio(mtd
);
256 tmio_ioread16_rep(tmio
->fcr
+ FCR_DATA
, buf
, len
>> 1);
260 tmio_nand_verify_buf(struct mtd_info
*mtd
, const u_char
*buf
, int len
)
262 struct tmio_nand
*tmio
= mtd_to_tmio(mtd
);
263 u16
*p
= (u16
*) buf
;
265 for (len
>>= 1; len
; len
--)
266 if (*(p
++) != tmio_ioread16(tmio
->fcr
+ FCR_DATA
))
271 static void tmio_nand_enable_hwecc(struct mtd_info
*mtd
, int mode
)
273 struct tmio_nand
*tmio
= mtd_to_tmio(mtd
);
275 tmio_iowrite8(FCR_MODE_HWECC_RESET
, tmio
->fcr
+ FCR_MODE
);
276 tmio_ioread8(tmio
->fcr
+ FCR_DATA
); /* dummy read */
277 tmio_iowrite8(FCR_MODE_HWECC_CALC
, tmio
->fcr
+ FCR_MODE
);
280 static int tmio_nand_calculate_ecc(struct mtd_info
*mtd
, const u_char
*dat
,
283 struct tmio_nand
*tmio
= mtd_to_tmio(mtd
);
286 tmio_iowrite8(FCR_MODE_HWECC_RESULT
, tmio
->fcr
+ FCR_MODE
);
288 ecc
= tmio_ioread16(tmio
->fcr
+ FCR_DATA
);
289 ecc_code
[1] = ecc
; /* 000-255 LP7-0 */
290 ecc_code
[0] = ecc
>> 8; /* 000-255 LP15-8 */
291 ecc
= tmio_ioread16(tmio
->fcr
+ FCR_DATA
);
292 ecc_code
[2] = ecc
; /* 000-255 CP5-0,11b */
293 ecc_code
[4] = ecc
>> 8; /* 256-511 LP7-0 */
294 ecc
= tmio_ioread16(tmio
->fcr
+ FCR_DATA
);
295 ecc_code
[3] = ecc
; /* 256-511 LP15-8 */
296 ecc_code
[5] = ecc
>> 8; /* 256-511 CP5-0,11b */
298 tmio_iowrite8(FCR_MODE_DATA
, tmio
->fcr
+ FCR_MODE
);
302 static int tmio_nand_correct_data(struct mtd_info
*mtd
, unsigned char *buf
,
303 unsigned char *read_ecc
, unsigned char *calc_ecc
)
307 /* assume ecc.size = 512 and ecc.bytes = 6 */
308 r0
= __nand_correct_data(buf
, read_ecc
, calc_ecc
, 256);
311 r1
= __nand_correct_data(buf
+ 256, read_ecc
+ 3, calc_ecc
+ 3, 256);
317 static int tmio_hw_init(struct platform_device
*dev
, struct tmio_nand
*tmio
)
319 const struct mfd_cell
*cell
= mfd_get_cell(dev
);
323 ret
= cell
->enable(dev
);
328 /* (4Ch) CLKRUN Enable 1st spcrunc */
329 tmio_iowrite8(0x81, tmio
->ccr
+ CCR_ICC
);
331 /* (10h)BaseAddress 0x1000 spba.spba2 */
332 tmio_iowrite16(tmio
->fcr_base
, tmio
->ccr
+ CCR_BASE
);
333 tmio_iowrite16(tmio
->fcr_base
>> 16, tmio
->ccr
+ CCR_BASE
+ 2);
335 /* (04h)Command Register I/O spcmd */
336 tmio_iowrite8(0x02, tmio
->ccr
+ CCR_COMMAND
);
338 /* (62h) Power Supply Control ssmpwc */
339 /* HardPowerOFF - SuspendOFF - PowerSupplyWait_4MS */
340 tmio_iowrite8(0x02, tmio
->ccr
+ CCR_NFPSC
);
342 /* (63h) Detect Control ssmdtc */
343 tmio_iowrite8(0x02, tmio
->ccr
+ CCR_NFDC
);
345 /* Interrupt status register clear sintst */
346 tmio_iowrite8(0x0f, tmio
->fcr
+ FCR_ISR
);
348 /* After power supply, Media are reset smode */
349 tmio_iowrite8(FCR_MODE_POWER_ON
, tmio
->fcr
+ FCR_MODE
);
350 tmio_iowrite8(FCR_MODE_COMMAND
, tmio
->fcr
+ FCR_MODE
);
351 tmio_iowrite8(NAND_CMD_RESET
, tmio
->fcr
+ FCR_DATA
);
353 /* Standby Mode smode */
354 tmio_iowrite8(FCR_MODE_STANDBY
, tmio
->fcr
+ FCR_MODE
);
361 static void tmio_hw_stop(struct platform_device
*dev
, struct tmio_nand
*tmio
)
363 const struct mfd_cell
*cell
= mfd_get_cell(dev
);
365 tmio_iowrite8(FCR_MODE_POWER_OFF
, tmio
->fcr
+ FCR_MODE
);
370 static int tmio_probe(struct platform_device
*dev
)
372 struct tmio_nand_data
*data
= dev
->dev
.platform_data
;
373 struct resource
*fcr
= platform_get_resource(dev
,
375 struct resource
*ccr
= platform_get_resource(dev
,
377 int irq
= platform_get_irq(dev
, 0);
378 struct tmio_nand
*tmio
;
379 struct mtd_info
*mtd
;
380 struct nand_chip
*nand_chip
;
384 dev_warn(&dev
->dev
, "NULL platform data!\n");
386 tmio
= kzalloc(sizeof *tmio
, GFP_KERNEL
);
394 platform_set_drvdata(dev
, tmio
);
396 nand_chip
= &tmio
->chip
;
397 mtd
->priv
= nand_chip
;
398 mtd
->name
= "tmio-nand";
400 tmio
->ccr
= ioremap(ccr
->start
, resource_size(ccr
));
406 tmio
->fcr_base
= fcr
->start
& 0xfffff;
407 tmio
->fcr
= ioremap(fcr
->start
, resource_size(fcr
));
413 retval
= tmio_hw_init(dev
, tmio
);
417 /* Set address of NAND IO lines */
418 nand_chip
->IO_ADDR_R
= tmio
->fcr
;
419 nand_chip
->IO_ADDR_W
= tmio
->fcr
;
421 /* Set address of hardware control function */
422 nand_chip
->cmd_ctrl
= tmio_nand_hwcontrol
;
423 nand_chip
->dev_ready
= tmio_nand_dev_ready
;
424 nand_chip
->read_byte
= tmio_nand_read_byte
;
425 nand_chip
->write_buf
= tmio_nand_write_buf
;
426 nand_chip
->read_buf
= tmio_nand_read_buf
;
427 nand_chip
->verify_buf
= tmio_nand_verify_buf
;
429 /* set eccmode using hardware ECC */
430 nand_chip
->ecc
.mode
= NAND_ECC_HW
;
431 nand_chip
->ecc
.size
= 512;
432 nand_chip
->ecc
.bytes
= 6;
433 nand_chip
->ecc
.hwctl
= tmio_nand_enable_hwecc
;
434 nand_chip
->ecc
.calculate
= tmio_nand_calculate_ecc
;
435 nand_chip
->ecc
.correct
= tmio_nand_correct_data
;
438 nand_chip
->badblock_pattern
= data
->badblock_pattern
;
440 /* 15 us command delay time */
441 nand_chip
->chip_delay
= 15;
443 retval
= request_irq(irq
, &tmio_irq
,
444 IRQF_DISABLED
, dev_name(&dev
->dev
), tmio
);
446 dev_err(&dev
->dev
, "request_irq error %d\n", retval
);
451 nand_chip
->waitfunc
= tmio_nand_wait
;
453 /* Scan to find existence of the device */
454 if (nand_scan(mtd
, 1)) {
458 /* Register the partitions */
459 retval
= mtd_device_parse_register(mtd
, NULL
, 0,
460 data
? data
->partition
: NULL
,
461 data
? data
->num_partitions
: 0);
469 free_irq(tmio
->irq
, tmio
);
471 tmio_hw_stop(dev
, tmio
);
482 static int tmio_remove(struct platform_device
*dev
)
484 struct tmio_nand
*tmio
= platform_get_drvdata(dev
);
486 nand_release(&tmio
->mtd
);
488 free_irq(tmio
->irq
, tmio
);
489 tmio_hw_stop(dev
, tmio
);
497 static int tmio_suspend(struct platform_device
*dev
, pm_message_t state
)
499 const struct mfd_cell
*cell
= mfd_get_cell(dev
);
504 tmio_hw_stop(dev
, platform_get_drvdata(dev
));
508 static int tmio_resume(struct platform_device
*dev
)
510 const struct mfd_cell
*cell
= mfd_get_cell(dev
);
512 /* FIXME - is this required or merely another attack of the broken
513 * SHARP platform? Looks suspicious.
515 tmio_hw_init(dev
, platform_get_drvdata(dev
));
523 #define tmio_suspend NULL
524 #define tmio_resume NULL
527 static struct platform_driver tmio_driver
= {
528 .driver
.name
= "tmio-nand",
529 .driver
.owner
= THIS_MODULE
,
531 .remove
= tmio_remove
,
532 .suspend
= tmio_suspend
,
533 .resume
= tmio_resume
,
536 module_platform_driver(tmio_driver
);
538 MODULE_LICENSE("GPL v2");
539 MODULE_AUTHOR("Ian Molton, Dirk Opfer, Chris Humbert, Dmitry Baryshkov");
540 MODULE_DESCRIPTION("NAND flash driver on Toshiba Mobile IO controller");
541 MODULE_ALIAS("platform:tmio-nand");